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Abstract:  
 
Although midbrain dopamine (DA) neurons have been thought to primarily encode reward 
prediction error (RPE), recent studies have also found movement-related DAergic signals. For 
example, we recently reported that DA neurons in mice projecting to dorsomedial striatum are 
modulated by choices contralateral to the recording side. Here, we introduce, and ultimately 
reject, a candidate resolution for the puzzling RPE vs movement dichotomy, by showing how 
seemingly movement-related activity might be explained by an action-specific RPE. By 
considering both choice and RPE on a trial-by-trial basis, we find that DA signals are modulated 
by contralateral choice in a manner that is distinct from RPE, implying that choice encoding is 
better explained by movement direction. This fundamental separation between RPE and 
movement encoding may help shed light on the diversity of functions and dysfunctions of the DA 
system.  
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Introduction 
 
A central feature of dopamine (DA) is its association with two apparently distinct functions: 
reward and movement ​(Niv et al. 2007; Berke 2018)​. Although manipulation of DA produces 
gross effects on movement initiation and invigoration, physiological recordings of DA neurons 
have historically shown few neural correlates of motor events ​(Wise 2004; Schultz, Dayan, and 
Montague 1997)​. Instead, classic studies reported responses to rewards and reward-predicting 
cues, with a pattern suggesting that DA neurons carry a “reward prediction error” (RPE) – the 
difference between expected reward and observed reward – for learning to anticipate rewards 
(Schultz, Dayan, and Montague 1997; Andrew G. Barto 1995; Cohen et al. 2012; Coddington 
and Dudman 2018; Soares, Atallah, and Paton 2016; Hart et al. 2014)​. In this classic 
framework, rather than explicitly encoding movement, DA neurons influence movements 
indirectly, by determining which movements are learned, and/or the general motivation to 
engage in a movement ​(Niv et al. 2007; Collins and Frank 2014; Berke 2018)​.  
 
Complicating this classic view, however, several recent studies have suggested that 
subpopulations of DA neurons may have a more direct role in encoding movement ​(Parker et al. 
2016)​. For example, we recently reported that whereas dopamine neurons projecting to ventral 
striatum showed classic RPE signals, a subset of midbrain DA neurons that project to the 
dorsomedial striatum (DMS) were selective for a mouse’s choice of action ​(Parker et al. 2016)​. 
In particular, they responded more strongly during contralateral (versus ipsilateral) choices as 
mice perform a probabilistic learning task ​(Parker et al. 2016)​. In addition, there have been 
several other recent studies that reported phasic changes in DA activity at the onset of 
spontaneous movements ​(Dodson et al. 2016; Howe and Dombeck 2016; da Silva et al. 2018; 
Barter et al. 2015; Syed et al. 2016)​. In addition, other studies have shown that DA neurons may 
also have other forms of apparently non-RPE signals, such as signals related to novel or 
aversive stimuli ​(Menegas et al. 2017; Horvitz 2000; Ungless, Magill, and Bolam 2004; 
Matsumoto and Hikosaka 2009; Lammel et al. 2011)​.  
 
These recent observations of movement selectivity leave open an important question: can the 
putatively movement-related signals be reconciled with Reinforcement Learning (RL) models 
describing the classic RPE signal? For instance, while it seems plausible that movement-related 
DA signals could influence movement via directly modulating striatal medium spiny neurons 
(DeLong 1990)​, these signals are accompanied in the same recordings by RPEs which are 
thought to drive corticostriatal plasticity ​(Reynolds, Hyland, and Wickens 2001)​. It is unclear how 
these two qualitatively different messages could be teased apart by the recipient neurons. Here 
we introduce and test one possible answer to this question, which we argue is left open by 
Parker et al.’s (2016) results and also by other reports of movement-related DA activity: that 
these movement-related signals actually also reflect RPEs, but for reward predictions tied to 
particular movement direction. Specifically, computational models like the actor-critic ​(A. G. 
Barto, Sutton, and Anderson 1983)​ and advantage learning ​(Baird 1994)​ learn separate 
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predictions about the overall value of situations or stimuli and about the value of specific 
actions. It has long been suggested these two calculations might be localized to ventral vs 
dorsal striatum, respectively ​(Montague, Dayan, and Sejnowski 1996; O’Doherty et al. 2004; 
Takahashi, Schoenbaum, and Niv 2008)​. Furthermore, a human neuroimaging experiment 
reported evidence of distinct prediction errors for right and left movements in the corresponding 
contralateral striatum ​(Gershman, Pesaran, and Daw 2009)​.  
 
This leads to the specific hypothesis that putative movement-related signals in DMS-projecting 
DA neurons might actually reflect an RPE related to the predicted value of contralateral choices. 
If so, this would unify two seemingly distinct messages observed in DA activity. Importantly, a 
choice-specific RPE could explain choice-related correlates observed prior to the time of reward. 
This is because temporal difference RPEs do not just signal error when a reward is received, 
they also have a phasic anticipatory component triggered by predictive cues indicating the 
availability and timing of future reward, such as (in choice tasks) the presentation of levers or 
choice targets ​(Montague, Dayan, and Sejnowski 1996; Morris et al. 2006; Roesch, Calu, and 
Schoenbaum 2007)​. This anticipatory prediction error is proportional to the value of the future 
expected reward following a given choice – indeed, we henceforth refer to this component of the 
RPE as a “value” signal, which tracks the reward expected for a choice. Crucially, a 
choice-specific value signal can masquerade as a choice signal because, by definition, action 
and value are closely related to each other: animals are more likely to choose actions they 
predict have high value. In this case, a value signal (RPE) for the contralateral choice will tend 
to be larger when that action is chosen than when it is not ​(Samuelson 1938)​. Altogether, given 
the fundamental correlation between actions and predicted value, a careful examination of the 
neural representation of both quantities, and a clear understanding of if and how they can be 
differentiated, is required to determine whether or not movement direction signals can be better 
explained as value-related. 
 
Thus, we examined whether dopamine signals in DMS-projecting DA neurons are better 
understood as a contralateral movement signal or as a contralateral RPE. To tease apart these 
two possibilities, we measured neural correlates of value and lateralized movement in our DA 
recordings from mice performing a probabilistic learning task. Since value predictions are 
subjective, we estimated value in two ways: 1) by using reward on the previous trial as a simple, 
theory-neutral proxy, and 2) by fitting the behavioral data with a more elaborate trial-by-trial 
Q-learning model. We compared the observed DA modulations to predictions based on 
modulation either by movement direction, and/or the expected value (anticipatory RPE) of 
contralateral or chosen actions. 
 
Ultimately, our results show that DMS-projecting DA neurons’ signals are indeed modulated by 
value (RPE), but, crucially, this modulation reflected the value of the chosen action rather than 
the contralateral one. Thus, the value aspects of the signals (which were not lateralized) could 
not explain the contralateral choice selectivity in these neurons, implying that this 
choice-dependent modulation indeed reflects modulation by contralateral movements and not 
value.  
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Results 
 
Task, behavior and DA recordings 
 
Mice were trained on a probabilistic reversal learning task as reported previously ​(Parker et al. 
2016)​. Each trial began with an illumination in the nose port, which cued the mouse to initiate a 
nose poke (​Figure 1a​). After a 0-1s delay, two levers appeared on both sides of the nose port. 
Each lever led to reward either with high probability (70%) or low probability (10%), with the 
identity of the high probability lever swapping after a block of variable length (see Methods for 
more details, ​Figure 1b​).  After another 0-1s delay, the mouse either received a sucrose reward 
and an accompanying auditory stimulus (positive conditioned stimulus, or CS+), or no reward 
and a different auditory stimulus (negative conditioned stimulus, or CS-). 
 
Given that block transitions were not signaled to the mouse, after each transition mice gradually 
learned to prefer the lever with the higher chance of reward. To capture this learning, we fitted 
their choices using a standard trial-by-trial ​Q-​learning model that predicted the probability of the 
animal's choice at each trial of the task (​Figure 1c, Table 1​). In the model, these choices were 
driven by a pair of decision variables (known as Q-values) putatively reflecting the animal’s 
valuation of each option. 
 
As mice performed this task, we recorded activity from either the terminals or cell bodies of DA 
neurons that project to DMS (VTA/SN::DMS) using fiber photometry to measure the 
fluorescence of the calcium indicator GCaMP6f (​Figure 1d,e; Figure 1-Figure Supplement 
1a,b​). As previously reported, this revealed elevated activity during contralateral choice trials 
relative to ipsilateral choice trials, particularly in relation to the nose poke and lever presentation 
events (​Figure 1f,g; Figure 1-Figure Supplement 1c ​) ​(Parker et al. 2016)​.  
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Figure 1:​ ​Mice performed a probabilistic reversal learning task during GCaMP6f recordings from 
VTA-SN::DMS terminals or cell bodies.​ (​a ​) Schematic of a mouse performing the task. The illumination of the 
central nosepoke signaled the start of the trial, allowing the mouse to enter the nose port. After a 0-1 second jitter 
delay, two levers are presented to the mouse, one of which results in a reward with high probability (70%) and the 
other with a low probability (10%). The levers swapped probabilities on a pseudorandom schedule, unsignaled to the 
mouse. ( ​b​) The averaged probability of how likely the mice were to choose the lever with high value before the 
switch, 10 trials before and after the block switch, when the identity of the high value lever reversed. Error bars 
indicate +/- 1 standard error (n = 19 recording sites). “Contra” and “Ipsi” refer to the location of the lever relative to the 
side of the recording.  (​c​) We fitted behavior with a trial-by-trial Q learning mixed effect model. Example trace of 150 
trials of a mouse's behavior compared to the model’s results. Black bars above and below the plot indicate which 
lever had the high probability for reward; Orange dots indicate the mouse’s actual choice; Blue dots indicate whether 
or not mouse was rewarded; Grey line indicate the difference of the model’s Q values for contralateral and ipsilateral 
choices. ​d​) Surgical schematic for recording with optical fibers from the ​GCaMP6f ​ terminals originating from VTA/SN. 
Projections were determined using viral traces. (​e​) Sample GCaMP6f traces from VTA/SN::DMS terminals and a GFP 
control animal. ​(f, g) ​Previous work has reported contralateral choice selectivity in DMS DA terminals ​(Parker et al. 
2016)​ when the signals are time-locked to nose poke (​f​) and lever presentation (​g​). Colored fringes represent +/- 1 
standard error. 
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 25th Percentile 50th Percentile 
(median) 

75th Percentile 

Alpha (learning 
rate) 

0.205782  0.283441  0.357970 

Beta (inverse 
temperature) 

0.990275 1.058405  1.204639 

Stay 0.883670  0.945385  1.008465 

 
Table 1​:​ Fitted Parameters for Q-learning model from PyStan. ​25th, 50th, and 75th percentile of the alpha, beta, 
and stay parameters of the Q-learning mixed effect model. These are the the group-level parameters that reflect the 
distribution of the subject-level parameters.  
 
Predictions of Contralateral and Chosen Value Models 
 
In order to examine how value-related activity might (or might not) explain seemingly 
movement-related activity, we introduced two hypothetical frames of reference by which the 
DMS DA neurons’ activity may be modulated by predicted value during trial events prior to the 
outcome: the DA signals could be modulated by the value of the contralateral option (relative to 
ipsilateral; ​Figure 2a​) or by the value of the chosen option (relative to unchosen; ​Figure 2b​). 
Note that both of these modulations could be understood as the anticipatory component 
(occasioned at lever presentation) of a temporal difference RPE, with respect to the respective 
action’s value. 
 
The first possibility is modulation by the value of the contralateral (relative to ipsilateral) action 
(​Figure 2a ​; such signals have been reported in human neuroimaging, Gershman et al., 2009, 
Palmenteri et al. 2009; but not previously to our knowledge examined in DA unit recordings in 
animals). The motivation for this hypothesis is that, if neurons in DMS participate in contralateral 
movements, such a side-specific error signal would be appropriate for teaching them when 
those movements are valuable. In this case, the relative value of the contralateral (versus 
ipsilateral) choice modulates signals, regardless of whether the choice is contralateral or 
ipsilateral. Thus, when the DA signals are broken down with respect to both the action chosen 
and its value, the direction of value modulation would depend on the choice: signals are highest 
for contralateral choices when these are relatively most valuable, but lowest for ipsilateral 
choices when ​they​ are most valuable (because in this case, contralateral choices will be 
relatively less valuable). Assuming mice tend to choose the option they expect to deliver more 
reward, such signals would be larger, on average, during contralateral choices than ipsilateral 
ones (​Figure 2a​), which could in theory explain the contralateral choice selectivity that we 
observed (​Figure 1f,g​).  
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Figure 2: Schematics of possible types of value 
modulation at lever presentation. ​Trials here are 
divided based on Q values of chosen minus 
unchosen action. ​(a) ​Contralateral value modulation 
theory postulates that the signals are selective for the 
value​ of the contralateral action (relative to ipsilateral 
value) instead of the action itself. This means that the 
direction of value modulation should be flipped for 
contralateral versus ipsilateral choices. Since mice 
would more often choose an option when its value is 
higher, the average ​GCaMP6f ​ signals would be 
higher for contralateral than ipsilateral choices. ​(b) 
Alternatively, the signals may be modulated by the 
value of the chosen action, resulting in similar value 
modulation for contralateral and ipsilateral choice. 
This type of value modulation will not in itself produce 
contralateral selectivity seen in previous results. (​c​) 
However, if the signals were modulated by the 
chosen value and the contralateral choice, the 

averaged GCaMP6f would exhibit the previously seen contralateral selectivity.  
 
The second possibility is that value modulation is relative to the chosen (versus unchosen) 
option (​Figure 2b​). This corresponds to the standard type of “critic” RPE most often invoked in 
models of DA: that is, RPE with respect to the overall value of the current state or situation 
(where that state reflects any choices previously made), and not specialized to a particular class 
of action. Indeed, human neuroimaging studies have primarily reported correlates of the value of 
the chosen option in DAtarget areas (Daw et al., 2006; Boorman et al., 2009; Li & Daw, 2011), 
and this also has been observed in primate DAneurons (Morris et al., 2006). 
 
If DMS-projecting DA neurons indeed display chosen value modulation  (​Figure 2b​), rather than 
contralateral value modulation, the value modulation for both contralateral and ipsilateral 
choices would be similar. In this case, value modulation could not in itself account for the 
neurons’ elevated activity during contralateral trials, which we have previously observed(​Figure 
1f,g​). Therefore, to account for contralateral choice preference, one would have to assume DA 
neurons are also selective for the contralateral action itself (unrelated to their value modulation; 
Figure 2c ​). 
 
DA in dorsomedial striatum is modulated by chosen value, not contralateral value 
 
Next, we determined which type of value modulation better captured the signal in DA neurons 
that project to DMS by comparing the GCaMP6f signal in these neurons for high and low value 
trials. We focused on the lever presentation since this event displayed a clear contralateral 
preference (​Figure 1g​). As a simple and objective proxy for the value of each action (i.e., the 
component of the RPE at lever presentation for each action), we compared signals when the 
animal was rewarded (high value), or not (low value), on the previous trial. (To simplify 
interpretation of this comparison, we only included trials in which the mice made the same 
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choice as the preceding trial, which accounted for 76.6% of the trials.) The traces (​Figure 3a​) 
indicated that the VTA/SN::DMS terminals were modulated by the previous trial’s reward. The 
value-related signals reflected chosen value – responding more when the previous choice was 
rewarded, whether contralateral or ipsilateral – and therefore did not explain the 
movement-related effect. This indicates that the DMS-projecting DA neurons represent both 
chosen value and movement direction (similar to ​Figure 2c​). The effect of contralateral action 
modulation was also visible in individual, non-z-scored data in both VTA/SN::DMS terminals 
(​Figure 3-Figure Supplement 1 ​)​ ​and VTA/SN::DMS cell-bodies (​Figure 3-Figure Supplement 
2)​.  
 
We repeated this analysis using trial-by-trial Q values extracted from the model, which we 
reasoned should reflect a finer grained (though more assumption-laden) estimate of the action’s 
value. (For this analysis, we were able to include both stay and switch trials.) Binning trials by 
chosen (minus unchosen) value, a similar movement effect and value gradient emerged as we 
have seen with the previous trial outcome analysis (​Figure 3b​). Trials with higher Q values had 
larger GCaMP6f signals, regardless which side was chosen, again suggesting that 
VTA/SN::DMS terminals were modulated by the expected value of the chosen (not contralateral) 
action, in addition to being modulated by contralateral movement.  
 
To quantify these effects statistically, we used a linear mixed effects regression at each of time 
point of the time-locked ​GCaMP6f​. The explanatory variables included the action chosen (contra 
or ipsi), the differential Q values (oriented in the reference frame suggested by the data, chosen 
minus unchosen), the value by action interaction, and an intercept (​Figure 3c​). The results 
verify significant effects of both movement direction and action value; that is, although a 
significant value effect is seen, it does not explain away the movement effect. Furthermore, the 
appearance of a consistent chosen value effect across both ipsilateral and contralateral choices 
is reflected in a significant value effect and no significant interaction during the period when 
action and value coding are most prominent (0.25 - 1 seconds after lever presentation), as 
would have been predicted by the contralateral value model. (There is a small interaction 
between the variables earlier in the trial, before 0.25 seconds, reflecting small differences in the 
magnitude of value modulation on contralateral versus ipsilateral trials.) Conversely, when the 
regression is re-estimated in terms of contralateral value rather than chosen value, a sustained, 
significant interaction does emerge, providing formal statistical support for the chosen value 
model; see ​Figure 3-Figure Supplement 3.  
 
We performed the same value modulation analyses on the cell bodies, rather than terminals, of 
VTA/SN::DMS neurons (​Figure 3d-f ​). This was motivated by the possibility that there may be 
changes in neural coding between DA cell bodies and terminals due to direct activation of DA 
terminals. In this case, we found very similar modulation by both chosen value and contralateral 
movement in both recording locations.  
 
To verify the robustness of these findings, we conducted further followup analyses. In one set of 
analyses, we investigated to what extent the DA signals might be tied to particular events other 
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than the lever presentation. First, we repeated our analyses​ ​on DA signals time-locked to nose 
poke event (​Figure 3-Figure Supplement 4 ​), and found the same basic pattern of effects. The 
effect is still clearest close to the average lever presentation latency, suggesting that the 
modulation of DA signals is more closely related to lever presentation. To more directly verify 
that our conclusions are independent of the specific choice event alignment, we fitted a linear 
regression model with kernels capturing the contribution of three three different events (Nose 
Poke, Lever Presentation, and Lever Press) simultaneously (​Figure 3-Figure Supplement 5​). 
The results of this multiple event regression were consistent with the simpler single-event 
regression in ​Figure 3a, d​.  
 
Next, we examined a few other factors that might have affected movement-specific activity. 
Taking advantage of the fact that the VTA/SN::DMS cell-bodies data had recordings from both 
hemispheres in three animals, we directly compared signals across hemispheres in individual 
mice and observed that the side-specific effects reversed within-animal (​Figure 3-Figure 
Supplement 6 ​). This speaks against the possibility that they might reflect animal-specific 
idiosyncrasies such as side biases. Finally, we considered whether the contralateral action 
modulation might in part reflect movement vigor rather than action value. We addressed this by 
repeating the analysis in ​Figure 3c,f, ​but including as an additional covariate the log lever-press 
latency, as a measure of the action’s vigor. For both VTA/SN::DMS terminals and cell-bodies 
data, the lever-press latency was not a strong predictor for GCaMP6f signals, and the effect of 
the original predictors largely remained the same (​Figure 3-Figure Supplement 7​).  
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Figure 3: DA neurons that project to DMS are modulated by both chosen value and movement direction. (a) 
GCaMP6f signal time-locked to lever presentation for contralateral trials (blue) and ipsilateral trials (orange), as well 
as rewarded (solid) and non-rewarded previous trial (dotted) from VTA/SN::DMS terminals. Colored fringes represent 
+/- 1 standard error from activity averaged across recording sites (n = 12). ​(b) ​GCaMP6f signal for contralateral trials 
(blue) and ipsilateral trials (orange), and further binned by the difference of Q values of chosen and unchosen action. 
Colored fringes represent +/- 1 standard error from activity averaged across recording sites (n = 12). ​(c) ​Mixed effect 
model regression on each datapoint from 3 seconds of GCaMP6f traces. Explanatory variables include the action of 
the mice (blue), the difference in Q values for chosen and unchosen actions (orange), their interaction (green), and 
an intercept. Colored fringes represent +/- 1 standard error from estimates (n = 12 recording sites). Black diamond 
represents the average latency for mice pressing the lever, with the error bars showing the spread of 80% of the 
latency values. Dots at bottom mark timepoints when the corresponding effect is significantly different from zero at 
p<.05 (small dot), p<.01 (medium dot), p<.001 (large dot). P values were corrected with Benjamini Hochberg 
procedure.​ ​(d-f) ​ Same as ​(a-e), ​except VTA/SN::DMS cell body averaged across recording sites (n = 7 ) instead of 
terminals.  

 
Direction of movement predicts DMS DA signals 
 
An additional observation supported the interpretation that the contralateral choice selectivity in 
DMS-projecting DA neurons is related to the direction of movement, and not the value of the 
choice. When the signals are time-locked to the lever press itself, there is a reversal of the 
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signal selectivity between contralateral and ipsilateral trials, shortly after the lever press (​Figure 
4​). Although body tracking is not available, this event coincided with a reversal in the animal’s 
physical movement direction, from moving toward the lever from the central nosepoke before 
the lever press, to moving back to the central reward port after the lever press. In contrast, there 
is no reversal in the value modulation at the time of the lever press. The fact that the 
side-specific  modulation (and not the value modulation) followed the mice's movement direction 
during the trial further indicates that movement direction explains the choice selectivity in these 
DA neurons, and resists explanation in terms of RPE-related signaling. 

 
Figure 4: DA neurons 
that project to DMS 
reverse their choice 
selectivity after the 
lever press, around 
the time the mice 
reverse their 
movement direction. 
(a) ​GCaMP6f signal 
from VTA/SN::DMS 
terminals time-locked 
to the lever press, for 
contralateral choice 

trials (blue) and ipsilateral choice trials (orange), as well as rewarded (solid) and non-rewarded previous trial (dotted). 
The GCaMP6f traces for each choice crosses shortly after the lever-press, corresponding to the change in the mice's 
head direction around the time of the lever press (shown schematically above the plot). Colored fringes represent +/- 
1 standard error from activity averaged across recording sites (n = 12). ​(b)​ Same as ​(a), ​ except VTA/SN::DMS cell 
body averaged across recording sites (n = 7) instead of terminals.  

Discussion 
Recent reports of qualitatively distinct DA signals - movement and RPE-related - have revived 
perennial puzzles about how the system contributes to both movement and reward, and more 
specifically raise the question whether there might be a unified computational description of both 
components in the spirit of the classic RPE models ​(Parker et al. 2016; Berke 2018; Coddington 
and Dudman 2018; Syed et al. 2016)​. Here we introduce and test one possible route to such a 
unification: action-specific RPEs, which could explain seemingly action-selective signals as 
instead reflecting RPE related to the value of those actions. To investigate this possibility, we 
dissected movement direction and value selectivity in the signals of terminals and cell bodies of 
DMS-projecting DA neurons (​Figure 3​). Contrary to the hypothesis that lateralized 
movement-related activity might reflect a RPE for contralateral value, multiple lines of evidence 
clearly indicated that the neurons instead contain distinct movement- and value-related signals, 
tied to different frames of reference. We did observe value-related signals preceding and 
following the lever press, which we did not previously analyze in the DMS signal and which are 
consistent with the anticipatory component of a classic RPE signal ​(Parker et al. 2016)​. But 
because these were modulated by the value of the chosen action, not the contralateral one, 
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they cannot explain the side-specific movement selectivity. The two signals also showed clearly 
distinct time courses; in particular, the side selectivity reversed polarity following the lever press, 
but value modulation did not.  
 
Our hypothesis that apparently movement-related DA correlates might instead reflect 
action-specific RPEs (and our approach to test it by contrasting chosen vs. action-specific 
value) may also be relevant to other reports of DAergic movement selectivity. For example, 
Syed et al. recently reported that DA release in the nucleus accumbens (NAcc) was elevated 
during “go”, rather than “no-go”, responses, alongside classic RPE-related signals ​(Syed et al. 
2016)​. This study leaves open a question analogous to the one we raise about Parker’s ​(Parker 
et al. 2016)​ DMS results: could NAcc DA instead reflect an RPE specific for “go” actions? This 
possibility would be consistent with the structure’s involvement in appetitive approach and 
invigoration ​(Parkinson et al. 2002)​, and might unify the RPE- and “go”-related activity reported 
there via an action-specific RPE (argument analogous to ​Figure 2a)​. The analyses in the Syed 
et al. study did not formally compare chosen- vs. action-specific value, and much of the 
reward-related activity reported there appears consistent with either account ​(Syed et al. 2016)​. 
However, viewed from the perspective of our current work, the key question becomes whether 
the value-related DA signals on “go” cues reverses for “no-go” cues, as would be predicted for 
an action-specific RPE. There is at least a hint (albeit significant only at one timepoint in Syed et 
al.’s Supplemental Figure 9E) that it does not do so ​(Syed et al. 2016)​. This suggests that  NAcc 
may also have parallel movement-specific and chosen value signals, which would be broadly 
confirmatory for our parallel conclusions about DMS-projecting DA neurons. 
 
The RPE account of the DA signal has long held out hope for a unifying perspective on the 
system’s dual roles in movement and reward by proposing that the system’s reward-related 
signals ultimately affect movement indirectly, either by driving learning about movement 
direction preferences ​(Montague, Dayan, and Sejnowski 1996)​ or by modulating motivation to 
act ​(Niv et al. 2007)​. This RPE theory also accounts for multiple seemingly distinct components 
of the classic DA signal, including anticipatory and reward-related signals, and signals to novel 
neutral cues. However, the present analyses clearly show that side-specific signals in DMS 
resist explanation in terms of an extended RPE account, and may instead simply reflect planned 
or ongoing movements.  
 
Specifically, our results are consistent with the longstanding suggestion that DA signals may be 
important for directly initiating movement. Such a signal may elicit or execute contralateral 
movements via differentially modulating the direct and indirect pathways out of the striatum 
(Alexander and Crutcher 1990; Collins and Frank 2014; DeLong 1990)​. The relationship 
between unilateral DA activity and contralateral movements is also supported by causal 
manipulations. For instance, classic results demonstrate that unilateral 6-hydroxydopamine 
(6-OHDA) lesions increase ipsilateral rotations ​(Costall, Naylor, and Pycock 1976; Ungerstedt 
and Arbuthnott 1970)​. Consistent with those results, a recent study reports that unilateral 
optogenetic excitation of midbrain DA neurons in mice led to contralateral rotations developed 
over the course of days ​(Saunders et al. 2018)​. Importantly, however, our own results are 
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correlational, and we cannot rule out the possibility that the particular activity we study could be 
related to a range of functions other than movement execution, such as planning or monitoring. 
Another function that is difficult to distinguish from movement execution is the motivation to 
move. Although motivation is a broad concept and difficult to operationalize fully, our results 
address two aspects of it. First, one way to quantify the motivation to act is by the action’s 
predicted value; thus, our main result is to rule out the possibility that neural activity is better 
accounted for by this motivational variable. We also show that lever press latency (arguably 
another proxy for motivation) does not explain the DA signals (​Figure 3-Figure Supplement 7​).  
 
Although the movement-related DA signal might be appropriate for execution, it is less clear 
how it might interact with the plasticity mechanisms hypothesized to be modulated by RPE 
aspects of the DA signal ​(Frank, Seeberger, and O’reilly 2004; Steinberg et al. 2013; Reynolds 
and Wickens 2002)​. For instance, how would recipient synapses distinguish an RPE component 
of the signal (appropriate for surprise-modulated learning) from an overlapping component more 
relevant to movement elicitation ​(Berke 2018)​? We have ruled out the possibility that the activity 
is actually a single RPE for action value, but there may still be other sorts of plasticity that might 
be usefully driven by a purely movement-related signal. One possibility is that plasticity in the 
dorsal striatum itself follows different rules, which might require an action rather than a 
prediction error signal ​(Saunders et al. 2018; Yttri and Dudman 2016)​ For instance, it has been 
suggested that some types of instrumental learning are correlational rather than error-driven 
(Doeller, King, and Burgess 2008)​ and, more specifically, an early model of instrumental 
learning (​(Guthrie 1935)​ recently revived by ​(Miller, Shenhav, and Ludvig 2019)​ posits that 
stimulus-response habits are not learned from an action’s rewarding consequences, as in RPE 
models, but instead by directly memorizing which actions the organism tends to select in a 
situation. Although habits are more often linked to adjacent dorsolateral striatum ​(Yin, Knowlton, 
and Balleine 2004)​, a movement signal of the sort described here might be useful to drive this 
sort of learning. Investigating this suggestion will likely require new experiments centered 
around causal manipulations of the signal. Overall, our results point to the need for an extended 
computational account that incorporates the movement direction signals as well as the RPE 
ones. 
 
Another striking aspect of the results is the co-occurrence of two distinct frames of reference in 
the signal. Lateralized movement selectivity tracks choices contralateral versus ipsilateral of the 
recorded hemisphere –appropriate for motor control–, but the value component instead relates 
to the reward expected for the chosen, versus unchosen, action. This value modulation by the 
chosen action is suitable for a classic RPE for learning “state” values (since overall value 
expectancy at any point in time is conditioned on the choices the animal has made; ​(Morris et al. 
2006)​, and also consistent with the bulk of BOLD signals in human neuroimaging, where 
value-related responding throughout dopaminergic targets tends to be organized on 
chosen-vs-unchosen lines ​(Daw et al. 2006; Boorman et al. 2009; Li and Daw 2011; O’Doherty 
2014)​.  
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At the same time, there have been persistent suggestions that given the high dimensionality of 
an organism’s action space, distinct action-specific error signals would be useful for learning 
about different actions ​(Russell and Zimdars 2003; Frank and Badre 2012; Diuk et al. 2013)​ or 
types of predictions ​(Gershman and Schoenbaum 2017; Lau, Monteiro, and Paton 2017)​. Along 
these lines, there is evidence from BOLD neuroimaging for contralateral error and value signals 
in the human brain ​(Gershman, Pesaran, and Daw 2009; Palminteri et al. 2009)​. Here, we have 
shown how a similar decomposition might explain movement-related DA signals, and also 
clarified how this hypothesis can be definitively tested. Although the current study finds no 
evidence for such laterally decomposed RPEs in DMS, the decomposition of error signals 
remains an important possibility for future work aimed at understanding heterogeneity of 
dopamine signals, including other anomalous features like ramps (Howe et al. 2013; Berke 
2018; Gershman 2014; Hamid et al. 2016; Engelhard et al. 2018; da Silva et al. 2018). Recent 
studies, for instance, have shown that midbrain DA neurons may also encode a range of 
behavioral variables, such as the mice’s position, their velocity, their view-angle, and the 
accuracy of their performance (Howe et al. 2013; da Silva et al. 2018; Engelhard et al. 2018). 
Our modeling provides a framework for understanding how these DA signals might be 
interpreted in different reference frames and how they might ultimately encode some form of 
RPEs with respect to different behavioral variables in the task. 
  
Interestingly, our results were consistent across both recording sites with DMS-projecting DA 
neurons: the cell bodies and the terminals (​Figure 3d-f, Figure 4b​). This indicates that the 
movement selectivity is not introduced in DA neurons at the terminal level, e.g. via striatal 
cholinergic interneurons or glutamatergic inputs ​(Kosillo et al. 2016)​.  
 
An important limitation of the study is the use of fiber photometry, which assesses bulk 
GCaMP6f signals at the recording site rather than resolving individual neurons. Thus it remains 
possible that individual neurons do not multiplex the two signals we observe, and that they are 
instead segregated between distinct populations. Future work should use higher resolution 
methods to examine these questions at the level of individual DA neurons. A related limitation of 
this study is the relatively coarse behavioral monitoring; notably, we infer that the reversal in 
selectivity seen in ​Figure 4​ reflects a change in movement direction, but head tracking would be 
required to verify this more directly. More generally, future work with finer instrumentation could 
usefully dissect signal components related to finer-grained movements, and examine how these 
are related to (or dissociated from) value signals. 
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Methods 
Mice and Surgeries 
 
This article reports new analysis on data originally reported by ​(Parker et al. 2016)​. We briefly 
summarize the methods from that study here. This article reports on data from 17 male mice 
expressing Cre recombinase in the tyrosine hydroxylase promoter (​Th​IRES-Cre​), from which 
GCaMP6f recordings were obtained from DA neurons via fiber photometry.  
 
In the case of DA terminal recordings, Cre-dependent GCaMP6f virus 
(AAV5-CAG-Flex-GCamp6f-WPRE-SV40; UPenn virus core, injected titer of 3.53 × 1012 pp per 
ml) was injected into the VTA/SNc, and fibers were placed in the DMS (M–L ± 1.5, A–P 0.74 
and D–V −2.4 mm), with one recording area per mouse (n = 12 recording sites). The recording 
hemisphere was counterbalanced across mice. The mice were recorded bilaterally, with the 
second site in nucleus accumbens, which is not analyzed in this paper.  
 
In the case of VTA/SN::DMS cell body recordings, Cre-dependent GCaMP6f virus 
(​AAV5-CAG-Flex-GCamp6f-WPRE-SV40; UPenn virus core, injected titer of 3.53 × 1012 pp per 
ml) ​was injected into the DMS, and fibers were placed on the cell bodies in VTA/SNc (​M–L ± 
1.4, A–P 0.74, D–V −2.6 mm​), enabling recordings from retrogradely labeled cells (n=4 mice). 
Three of the mice were recorded from both hemispheres, providing a total of n = 7 recording 
sites.  
 
One mouse was used for the GFP recordings as a control condition for VTA/SNc::DMS 
terminals recordings (​Figure 1e​).  
 
Instrumental Reversal Learning Task 
 
The recordings were obtained while the mice performed a reversal learning task in an operant 
chamber with a central nose poke, retractable levers on each side of the nose poke, and reward 
delivery in a receptacle beneath the central nose poke.  
 
Each trial began with the illumination of the center nose port. After the mouse entered the nose 
port, the two levers were presented with a delay that varied between  0-1 seconds. The mouse 
then had 10 seconds to press a lever, otherwise the trial was classified as an abandoned trial 
and excluded from analysis (this amounted to <2 % of trials for all mice). After the lever-press, 
an additional random 0-1 second delay (0.1 second intervals, uniform distribution) preceded 
either CS- with no reward delivery or CS+ with a 4µl reward of 10% sucrose in H​2​0. Reward 
outcomes were accompanied by different auditory stimulus: 0.5 seconds of white noise for CS- 
and 0.5 seconds of 5 kHz pure tone for CS+. Every trial ended with a constant 3 seconds 
inter-trial delay. 
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For the reversal learning, each of the levers either had a high probability for reward (70%) or low 
probability for reward (10%). Throughout the session, the identity of the high probability lever 
changed in a pseudorandom schedule; specifically, each block consisted of at least 10 
rewarded trials plus a random number of trials drawn from a Geometric distribution of p = 0.4 
(mean 2.5). On average, there were 23.23 +/- 7.93 trials per block and 9.67 +/- 3.66 blocks per 
session. Both reported summary statistics are mean +/- standard deviation. 
 
Data processing 
 
All fiber photometry recordings were acquired at 15 Hz. 2-6 recording sessions were obtained 
per recording site (1 session/day), and these recordings were concatenated across session for 
all analyses. On average, we had 1307.0 ± 676.01 trials per mouse (​858.09 ​± ​368.56 trials per 
mouse for VTA/SN::DMS Terminals recordings and 448.91 ​±​ 455.61 trials per mouse for 
VTA/SN::DMS Cell-bodies recordings).  
 
The signal from each recording site were post-processed with a high-pass FIR filter with a 
passband of 0.375 Hz, stopband of 0.075 Hz, and a stopband attenuation of 10 dB to remove 
baseline fluorescence and correct drift in baseline. We derived dF/F by dividing the high-pass 
filtered signal by the mean of the signal before high-pass filtering. We then z-scored dF/F for 
each recording site, with the the mean and standard error calculated for the entire recording 
from each site.  
 
The VTA/SN::DMS terminals data consisted of 10108 total trials across 12 recording sites, and 
VTA/SN::DMS cell-bodies consisted of 4938 total trials across 7 recording sites. 
 
Q Learning Mixed Effect Model 
 
We fitted a trial-by-trial Q-learning mixed effect model to the behavioral data from each of the 12 
mice on all recording sites, and combined data across mice with a hierarchical model. The 
model was initialized with a Q value of 0 for each action and updated at each trial according to: 
 

(c ) (c ) (r (c ))Qt+1 t = Qt t + α t − Qt t  
 
where  is the value for both options,  is the option chosen on trial ​t ​(lever either contralateralQ ct  
or ipsilateral to recording site), and 0 <=  <= 1 is a free learning rate parameter. The subject's 
probability to choose choice ​c ​was then given by a softmax equation: 
 

(c ) xp(β (c) tay (c, ))P t = c ∝ e · Qt + s · I ct−1  
 
where  is a free inverse temperature parameter, ​stay​ is a free parameter encoding how likelyβ  
the animal will repeat its choice from the last trial, and ​I​ is a binary indicator function for choice 
repetition (1 if ​c​ was chosen on the previous trial; 0 otherwise). The three free parameters of the 
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model were estimated separately for each subject, but jointly (in a hierarchical random effects 
model) with group-level mean and variance parameters reflecting the distribution, over the 
population, of each subject-level parameter. 
 
The parameters were estimated using Hamiltonian Monte Carlo, as implemented in the Stan 
programming language (version 2.17.1.0; ​(Carpenter et al. 2017)​). Samples from the posterior 
distribution over the parameters were extracted using the Python package PyStan ​(Carpenter et 
al. 2017)​. We ran the model with 4 chains of 1,000 iterations for each (of which the first 250 
were discarded for burn-in), and the parameter adapt_delta set to 0.99. We verified 
convergence by visual inspection and by verifying that the potential scale reduction statistic 
Rhat ​(Gelman and Rubin 1992)​ was close to 1.0 (<0.003 for all parameters) (​Table 1)​. 
 
We used the sampled parameters to compute per-trial Q values for each action, trial, and 
mouse. We calculated the difference between the Q values of the chosen action and unchosen 
action for each trial. We binned the difference of these Q values for each trial and plotted the 
average GCaMP6f time-locked to lever presentation for each bin (​Figure 3b, e​). 
 
Regression Model 
 
In ​Figure 3c,f ​, we performed a linear mixed effect model regression to predict GCaMP6f signal 
at each time point based on Q-values, choice (contralateral vs ipsilateral), their interaction, and 
an intercept. We took the difference of Q values for the chosen vs unchosen levers, then we 
standardized the difference of Q values for each mouse and each recording site. GCaMP6f was 
time-locked to lever presentation, regressing to data points 1 second before and 2 seconds after 
the time-locked event for 45 total regressions. The regression, as well as the calculation of p 
values, was performed with the MixedModels package in Julia ​(Bezanson et al. 2014)​. The p 
values were corrected for false discovery rate over the ensemble of timepoints for each 
regression variable separately, using the procedure of Benjamini and Hochberg ​(Benjamini and 
Hochberg 1995)​ via the MultipleTesting package in Julia ​(Bezanson et al. 2014)​.  
 
Multiple event Kernel Analysis 
 
In ​Figure 3-Figure Supplement 5, ​we fitted a linear regression model to determine the 
contributions to the ongoing GCaMP6f signal of three simultaneously modeled events (Nose 
poke, lever presentation, lever press). To do this, we used kernels, or sets of regressors 
covering a series of time lags covering the period from 1 second before to 2 seconds after each 
event. Each event had four kernels, corresponding to the four conditions from ​Figure 3a, c​ (all 
combinations of contralateral vs ipsilateral trials and previous reward vs no previous reward 
trials). We solved for the kernels by regressing the design matrix against GCaMP6f data using 
least squares in R with the rms package (Harrell 2018). The standard error (colored fringes) was 
calculated using rms’ robcov (cluster robust-covariance) function to correct for violations of 
ordinary least squares assumptions due to animal-by-animal clustering in the residuals.  
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Supplementary Figures 
 
 

 
Figure 1-Figure Supplement 1: Recording from VTA/SN::DMS cell bodies (n = 7 recording sites) ​( ​a​) Surgical 
schematic for recording with optical fibers from the ​GCaMP6f ​ ​VTA/SN::DMS​ cell-bodies. Projections were determined 
using viral traces. (​b​) Sample GCaMP6f traces from VTA/SN::DMS cell bodies. ​(c, d) ​Contralateral choice selectivity 
was also observed in DMS DA cell bodies ​when the signals were time-locked to nose poke (​c​) and lever presentation 
( ​d​). Colored fringes represent +/- 1 standard error from activity averaged across recording sites (n = 7).  
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Figure 3-Figure Supplement 1: Four Examples of non-Z-scored Individual Sessions of Photometry Data ​from 
VTA/SN::DMS Terminals. ​Sample, not Z-scored ​∆F/F recording from ​VTA/SN::DMS Terminal. Each row is an 
example session from a different mouse. ​Traces are time-locked to the lever presentation for contralateral trials (​left 
column​) and ipsilateral trials (​right column​). White dotted vertical line indicate lever presentation. Colorbars are 
provided for each row for each example session.  
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Figure 3-Figure Supplement 2: Four Examples of non-Z-scored Individual Sessions of Photometry Data ​from 
VTA/SN::DMS Cell-Bodies. ​Sample, not Z-scored ​∆F/F recording from ​VTA/SN::DMS Cell-bodies. Each row is an 
example session from a different mouse. ​Traces are time-locked to the lever presentation for contralateral trials (​left 
column​) and ipsilateral trials (​right column​). White dotted vertical line indicate lever presentation. Colorbars are 
provided for each row for each example session.  

Figure 3-Figure Supplement 3: 
Mi​xed effect model regression on 
GCaMP6f traces of VTA/SN::DMS 
terminals (n = 12 recording sites) 
using Q values of contralateral 
minus ipsilateral. ​Same analysis 
as ​Figure 3c ​, except explanatory 
variables include the action of the 
mice (blue), the difference in Q 
values for contralateral and 
ipsilateral choices (orange), their 

20 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/447532doi: bioRxiv preprint 

https://doi.org/10.1101/447532
http://creativecommons.org/licenses/by-nc-nd/4.0/


interaction (green), and an intercept. Colored fringes represent +/- 1 standard error from estimates (n = 12 recording 
sites). Dots at bottom mark timepoints where the corresponding effect is significantly different from zero at p<.05 
(small dot), p<.01 (medium dot), p<.001(large dot). P values were corrected with Benjamini Hochberg procedure. 

 
Figure 3-Figure Supplement 4: Analysis of DA signals time-locked to nose poke. (a) ​GCaMP6f signal 
time-locked to nose poke for contralateral trials (blue) and ipsilateral trials (orange), as well as rewarded (solid) and 
non-rewarded previous trial (dotted) from VTA/SN::DMS terminals. Colored fringes represent +/- 1 standard error 
from activity averaged across recording sites (n = 12). ​(b) ​GCaMP6f signal for contralateral trials (blue) and ipsilateral 
trials (orange), and further binned by the difference of Q values of chosen and unchosen action. Colored fringes 
represent +/- 1 standard error from activity averaged across recording sites (n = 12). ​(c) ​Mixed effect model 
regression on each datapoint from 3 seconds of GCaMP6f traces. Explanatory variables include the action of the 
mice (blue), the difference in Q values for chosen vs unchosen actions (orange), their interaction (green), and an 
intercept. Colored fringes represent +/- 1 standard error from estimates (n = 12 recording sites). Black diamond 
represents the average latency for lever presentation from nose poke, with the error bars showing the spread of 80% 
of the latency values. Dots at bottom mark timepoints when the corresponding effect is significantly different from 
zero at p<.05 (small dot), p<.01 (medium dot), p<.001 (large dot). P values were corrected with Benjamini Hochberg 
procedure.​ ​(d-f) ​ Same as ​(a-e), ​except VTA/SN::DMS cell body averaged across recording sites (n = 7) instead of 
terminals.  
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Figure 3-Figure Supplement 5: Kernels for each significant behavioral event from the multiple event kernel 
analysis (a) ​Nose poke kernel output from linear regression model using GCaMP6f from VTA/SN::DMS terminals. 
Each line is the kernel for a combination of contralateral (blue) and ipsilateral (orange) trials, as well as rewarded 
(solid) and non-rewarded (dotted) trials. Colored fringes represent +/- 1 standard error from activity averaged across 
recording sites (n = 12). Black diamond represents the average latency for lever presentation from nose poke with the 
error bars showing the spread of 80% of the latency values. ​(b)​ Lever presentation kernels, with the black diamond 
representing the average latency from lever press to lever presentation. ​(c)​ Lever press kernels, with the black 
diamond representing the average latency from CS+ or CS- to lever press. ​(d-f)​ Same as ​(a-e), ​except VTA/SN::DMS 
cell body averaged across recording sites (n = 7) instead of terminals.  
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Figure 3-Figure Supplement 6: Averaged GCaMP6f signals of left and right hemispheres recordings from 
VTA/SN::DMS cell-bodies data (n = 4 mice, 7 recording sites). ​GCaMP6f signal relative to the lever presentation 
time for contralateral trials (blue) and ipsilateral trials (orange), as well as rewarded (solid) and non-rewarded 
previous trial (dotted) from VTA/SN::DMS terminals. Colored fringes represent +/- 1 standard error from activity 
averaged across trials. Each row represents averaged data from a distinct mouse (n = 4 total), with left and right 
column representing the left and right hemisphere recordings.  
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Figure 3-Figure Supplement 7: Mixed effect model regression with latency as nuisance covariate. (a) ​Mixed 
effect model regression with log latency of lever press (red) as additional nuisance covariate for VTA/SN::DMS 
terminal data (n = 12 recording sites). As with in ​Figure 3c, f​, the mixed effect model’s other explanatory variables 
include the action of the mice (blue), the difference in Q values for chosen vs unchosen actions (orange), their 
interaction (green), and an intercept. Colored fringes represent +/- 1 standard error from estimates. Dots at bottom 
mark timepoints when the corresponding effect is significantly different from zero at p<.05 (small dot), p<.01 (medium 
dot), p<.001 (large dot). P values were corrected with Benjamini Hochberg procedure. ​(b)​ Same as ​(a), ​except 
VTA/SN::DMS cell body averaged across recording sites (n = 7) instead of terminals.  
 
 
 

 

 

 

 

 

 

 

 

 

24 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/447532doi: bioRxiv preprint 

https://doi.org/10.1101/447532
http://creativecommons.org/licenses/by-nc-nd/4.0/


References List  

Alexander, G. E., and M. D. Crutcher. 1990. “Functional Architecture of Basal Ganglia Circuits: 
Neural Substrates of Parallel Processing.” ​Trends in Neurosciences​ 13 (7): 266–71. 

Baird, L. C. 1994. “Reinforcement Learning in Continuous Time: Advantage Updating.” In 
Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94)​, 
4:2448–53 vol.4. 

Barter, Joseph W., Suellen Li, Dongye Lu, Ryan A. Bartholomew, Mark A. Rossi, Charles T. 
Shoemaker, Daniel Salas-Meza, Erin Gaidis, and Henry H. Yin. 2015. “Beyond Reward 
Prediction Errors: The Role of Dopamine in Movement Kinematics.” ​Frontiers in Integrative 
Neuroscience​ 9 (May): 39. 

Barto, A. G., R. S. Sutton, and C. W. Anderson. 1983. “Neuronlike Adaptive Elements That Can 
Solve Difficult Learning Control Problems.” ​IEEE Transactions on Systems, Man, and 
Cybernetics​ SMC-13 (5): 834–46. 

Barto, Andrew G. 1995. “1‘ 1 Adaptive Critics and the Basal Ganglia,.’” ​Models of Information 
Processing in the Basal Ganglia​, 215. 

Benjamini, Yoav, and Yosef Hochberg. 1995. “Controlling the False Discovery Rate: A Practical 
and Powerful Approach to Multiple Testing.” ​Journal of the Royal Statistical Society. Series 
B, Statistical Methodology​ 57 (1): 289–300. 

Berke, Joshua D. 2018. “What Does Dopamine Mean?” ​Nature Neuroscience​ 21 (6): 787–93. 
Bezanson, Jeff, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2014. “Julia: A Fresh 

Approach to Numerical Computing.” ​arXiv [cs.MS]​. arXiv. ​http://arxiv.org/abs/1411.1607 ​. 
Boorman, Erie D., Timothy E. J. Behrens, Mark W. Woolrich, and Matthew F. S. Rushworth. 

2009. “How Green Is the Grass on the Other Side? Frontopolar Cortex and the Evidence in 
Favor of Alternative Courses of Action.” ​Neuron​ 62 (5): 733–43. 

Carpenter, Bob, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich, Michael 
Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. “Stan: A 
Probabilistic Programming Language.” ​Journal of Statistical Software, Articles​ 76 (1): 1–32. 

Coddington, Luke T., and Joshua T. Dudman. 2018. “The Timing of Action Determines Reward 
Prediction Signals in Identified Midbrain Dopamine Neurons.” ​Nature Neuroscience​, 
October. https://doi.org/​10.1038/s41593-018-0245-7 ​. 

Cohen, Jeremiah Y., Sebastian Haesler, Linh Vong, Bradford B. Lowell, and Naoshige Uchida. 
2012. “Neuron-Type-Specific Signals for Reward and Punishment in the Ventral Tegmental 
Area.” ​Nature​ 482 (7383): 85–88. 

Collins, Anne G. E., and Michael J. Frank. 2014. “Opponent Actor Learning (OpAL): Modeling 
Interactive Effects of Striatal Dopamine on Reinforcement Learning and Choice Incentive.” 
Psychological Review​ 121 (3): 337–66. 

Costall, B., R. J. Naylor, and C. Pycock. 1976. “Non-Specific Supersensitivity of Striatal 
Dopamine Receptors after 6-Hydroxydopamine Lesion of the Nigrostriatal Pathway.” 
European Journal of Pharmacology​ 35 (2): 276–83. 

Daw, Nathaniel D., John P. O’Doherty, Peter Dayan, Ben Seymour, and Raymond J. Dolan. 
2006. “Cortical Substrates for Exploratory Decisions in Humans.” ​Nature​ 441 (7095): 
876–79. 

DeLong, M. R. 1990. “Primate Models of Movement Disorders of Basal Ganglia Origin.” ​Trends 
in Neurosciences​ 13 (7): 281–85. 

Diuk, Carlos, Karin Tsai, Jonathan Wallis, Matthew Botvinick, and Yael Niv. 2013. “Hierarchical 
Learning Induces Two Simultaneous, but Separable, Prediction Errors in Human Basal 

25 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/447532doi: bioRxiv preprint 

http://paperpile.com/b/RhkQ3n/Aufd
http://paperpile.com/b/RhkQ3n/Aufd
http://paperpile.com/b/RhkQ3n/Aufd
http://paperpile.com/b/RhkQ3n/Aufd
http://paperpile.com/b/RhkQ3n/gffa
http://paperpile.com/b/RhkQ3n/gffa
http://paperpile.com/b/RhkQ3n/gffa
http://paperpile.com/b/RhkQ3n/gffa
http://paperpile.com/b/RhkQ3n/DdkZ
http://paperpile.com/b/RhkQ3n/DdkZ
http://paperpile.com/b/RhkQ3n/DdkZ
http://paperpile.com/b/RhkQ3n/DdkZ
http://paperpile.com/b/RhkQ3n/DdkZ
http://paperpile.com/b/RhkQ3n/DdkZ
http://paperpile.com/b/RhkQ3n/DxRg
http://paperpile.com/b/RhkQ3n/DxRg
http://paperpile.com/b/RhkQ3n/DxRg
http://paperpile.com/b/RhkQ3n/DxRg
http://paperpile.com/b/RhkQ3n/DxRg
http://paperpile.com/b/RhkQ3n/FnDz
http://paperpile.com/b/RhkQ3n/FnDz
http://paperpile.com/b/RhkQ3n/FnDz
http://paperpile.com/b/RhkQ3n/FnDz
http://paperpile.com/b/RhkQ3n/66by
http://paperpile.com/b/RhkQ3n/66by
http://paperpile.com/b/RhkQ3n/66by
http://paperpile.com/b/RhkQ3n/66by
http://paperpile.com/b/RhkQ3n/66by
http://paperpile.com/b/RhkQ3n/c51B
http://paperpile.com/b/RhkQ3n/c51B
http://paperpile.com/b/RhkQ3n/c51B
http://paperpile.com/b/RhkQ3n/uDGe
http://paperpile.com/b/RhkQ3n/uDGe
http://paperpile.com/b/RhkQ3n/uDGe
http://paperpile.com/b/RhkQ3n/uDGe
http://arxiv.org/abs/1411.1607
http://paperpile.com/b/RhkQ3n/uDGe
http://paperpile.com/b/RhkQ3n/DtwJ
http://paperpile.com/b/RhkQ3n/DtwJ
http://paperpile.com/b/RhkQ3n/DtwJ
http://paperpile.com/b/RhkQ3n/DtwJ
http://paperpile.com/b/RhkQ3n/DtwJ
http://paperpile.com/b/RhkQ3n/bmcc
http://paperpile.com/b/RhkQ3n/bmcc
http://paperpile.com/b/RhkQ3n/bmcc
http://paperpile.com/b/RhkQ3n/bmcc
http://paperpile.com/b/RhkQ3n/bmcc
http://paperpile.com/b/RhkQ3n/kYaQ
http://paperpile.com/b/RhkQ3n/kYaQ
http://paperpile.com/b/RhkQ3n/kYaQ
http://paperpile.com/b/RhkQ3n/kYaQ
http://paperpile.com/b/RhkQ3n/kYaQ
http://dx.doi.org/10.1038/s41593-018-0245-7
http://paperpile.com/b/RhkQ3n/kYaQ
http://paperpile.com/b/RhkQ3n/7Aij
http://paperpile.com/b/RhkQ3n/7Aij
http://paperpile.com/b/RhkQ3n/7Aij
http://paperpile.com/b/RhkQ3n/7Aij
http://paperpile.com/b/RhkQ3n/7Aij
http://paperpile.com/b/RhkQ3n/ziwN
http://paperpile.com/b/RhkQ3n/ziwN
http://paperpile.com/b/RhkQ3n/ziwN
http://paperpile.com/b/RhkQ3n/ziwN
http://paperpile.com/b/RhkQ3n/hEO7
http://paperpile.com/b/RhkQ3n/hEO7
http://paperpile.com/b/RhkQ3n/hEO7
http://paperpile.com/b/RhkQ3n/hEO7
http://paperpile.com/b/RhkQ3n/lkRW
http://paperpile.com/b/RhkQ3n/lkRW
http://paperpile.com/b/RhkQ3n/lkRW
http://paperpile.com/b/RhkQ3n/lkRW
http://paperpile.com/b/RhkQ3n/lkRW
http://paperpile.com/b/RhkQ3n/XPLP
http://paperpile.com/b/RhkQ3n/XPLP
http://paperpile.com/b/RhkQ3n/XPLP
http://paperpile.com/b/RhkQ3n/XPLP
http://paperpile.com/b/RhkQ3n/oGlr
http://paperpile.com/b/RhkQ3n/oGlr
https://doi.org/10.1101/447532
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ganglia.” ​The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 
33 (13): 5797–5805. 

Dodson, Paul D., Jakob K. Dreyer, Katie A. Jennings, Emilie C. J. Syed, Richard Wade-Martins, 
Stephanie J. Cragg, J. Paul Bolam, and Peter J. Magill. 2016. “Representation of 
Spontaneous Movement by Dopaminergic Neurons Is Cell-Type Selective and Disrupted in 
Parkinsonism.” ​Proceedings of the National Academy of Sciences of the United States of 
America​ 113 (15): E2180–88. 

Doeller, Christian F., John A. King, and Neil Burgess. 2008. “Parallel Striatal and Hippocampal 
Systems for Landmarks and Boundaries in Spatial Memory.” ​Proceedings of the National 
Academy of Sciences of the United States of America​ 105 (15): 5915–20. 

Frank, Michael J., and David Badre. 2012. “Mechanisms of Hierarchical Reinforcement Learning 
in Corticostriatal Circuits 1: Computational Analysis.” ​Cerebral Cortex ​ 22 (3): 509–26. 

Frank, Michael J., Lauren C. Seeberger, and Randall C. O’reilly. 2004. “By Carrot or by Stick: 
Cognitive Reinforcement Learning in Parkinsonism.” ​Science​ 306 (5703): 1940–43. 

Gelman, Andrew, and Donald B. Rubin. 1992. “Inference from Iterative Simulation Using 
Multiple Sequences.” ​Statistical Science: A Review Journal of the Institute of Mathematical 
Statistics​ 7 (4): 457–72. 

Gershman, Samuel J., Bijan Pesaran, and Nathaniel D. Daw. 2009. “Human Reinforcement 
Learning Subdivides Structured Action Spaces by Learning Effector-Specific Values.” ​The 
Journal of Neuroscience: The Official Journal of the Society for Neuroscience​ 29 (43): 
13524–31. 

Gershman, Samuel J., and Geoffrey Schoenbaum. 2017. “Rethinking Dopamine Prediction 
Errors.” ​bioRxiv​. https://doi.org/​10.1101/239731 ​. 

Guthrie, E. R. 1935. ​Psychology of Learning ​. Oxford, England: Harper.  
Harrell, Frank E., Jr. 2018. rms: Regression Modeling Strategies. R package version 5.1-2. 

https://CRAN.R-project.org/package=rms 
Hart, Andrew S., Robb B. Rutledge, Paul W. Glimcher, and Paul E. M. Phillips. 2014. “Phasic 

Dopamine Release in the Rat Nucleus Accumbens Symmetrically Encodes a Reward 
Prediction Error Term.” ​The Journal of Neuroscience: The Official Journal of the Society for 
Neuroscience​ 34 (3): 698–704. 

Horvitz, J. C. 2000. “Mesolimbocortical and Nigrostriatal Dopamine Responses to Salient 
Non-Reward Events.” ​Neuroscience​ 96 (4): 651–56. 

Howe, Mark W., and D. A. Dombeck. 2016. “Rapid Signalling in Distinct Dopaminergic Axons 
during Locomotion and Reward.” ​Nature​ 535 (7613): 505–10. 

Kosillo, Polina, Yan-Feng Zhang, Sarah Threlfell, and Stephanie J. Cragg. 2016. “Cortical 
Control of Striatal Dopamine Transmission via Striatal Cholinergic Interneurons.” ​Cerebral 
Cortex ​, August. https://doi.org/​10.1093/cercor/bhw252 ​. 

Lammel, Stephan, Daniela I. Ion, Jochen Roeper, and Robert C. Malenka. 2011. 
“Projection-Specific Modulation of Dopamine Neuron Synapses by Aversive and Rewarding 
Stimuli.” ​Neuron​ 70 (5): 855–62. 

Lau, Brian, Tiago Monteiro, and Joseph J. Paton. 2017. “The Many Worlds Hypothesis of 
Dopamine Prediction Error: Implications of a Parallel Circuit Architecture in the Basal 
Ganglia.” ​Current Opinion in Neurobiology​ 46 (October): 241–47. 

Li, Jian, and Nathaniel D. Daw. 2011. “Signals in Human Striatum Are Appropriate for Policy 
Update rather than Value Prediction.” ​The Journal of Neuroscience: The Official Journal of 
the Society for Neuroscience​ 31 (14): 5504–11. 

Matsumoto, Masayuki, and Okihide Hikosaka. 2009. “Two Types of Dopamine Neuron Distinctly 
Convey Positive and Negative Motivational Signals.” ​Nature​ 459 (7248): 837–41. 

26 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/447532doi: bioRxiv preprint 

http://paperpile.com/b/RhkQ3n/oGlr
http://paperpile.com/b/RhkQ3n/oGlr
http://paperpile.com/b/RhkQ3n/oGlr
http://paperpile.com/b/RhkQ3n/oGlr
http://paperpile.com/b/RhkQ3n/jzq1
http://paperpile.com/b/RhkQ3n/jzq1
http://paperpile.com/b/RhkQ3n/jzq1
http://paperpile.com/b/RhkQ3n/jzq1
http://paperpile.com/b/RhkQ3n/jzq1
http://paperpile.com/b/RhkQ3n/jzq1
http://paperpile.com/b/RhkQ3n/jzq1
http://paperpile.com/b/RhkQ3n/lsbA
http://paperpile.com/b/RhkQ3n/lsbA
http://paperpile.com/b/RhkQ3n/lsbA
http://paperpile.com/b/RhkQ3n/lsbA
http://paperpile.com/b/RhkQ3n/lsbA
http://paperpile.com/b/RhkQ3n/ohSB
http://paperpile.com/b/RhkQ3n/ohSB
http://paperpile.com/b/RhkQ3n/ohSB
http://paperpile.com/b/RhkQ3n/ohSB
http://paperpile.com/b/RhkQ3n/6Q6a
http://paperpile.com/b/RhkQ3n/6Q6a
http://paperpile.com/b/RhkQ3n/6Q6a
http://paperpile.com/b/RhkQ3n/6Q6a
http://paperpile.com/b/RhkQ3n/d00b
http://paperpile.com/b/RhkQ3n/d00b
http://paperpile.com/b/RhkQ3n/d00b
http://paperpile.com/b/RhkQ3n/d00b
http://paperpile.com/b/RhkQ3n/d00b
http://paperpile.com/b/RhkQ3n/8ePT
http://paperpile.com/b/RhkQ3n/8ePT
http://paperpile.com/b/RhkQ3n/8ePT
http://paperpile.com/b/RhkQ3n/8ePT
http://paperpile.com/b/RhkQ3n/8ePT
http://paperpile.com/b/RhkQ3n/8ePT
http://paperpile.com/b/RhkQ3n/VKFp
http://paperpile.com/b/RhkQ3n/VKFp
http://paperpile.com/b/RhkQ3n/VKFp
http://paperpile.com/b/RhkQ3n/VKFp
http://dx.doi.org/10.1101/239731
http://paperpile.com/b/RhkQ3n/VKFp
http://paperpile.com/b/RhkQ3n/RQGH
http://paperpile.com/b/RhkQ3n/RQGH
http://paperpile.com/b/RhkQ3n/RQGH
http://paperpile.com/b/RhkQ3n/hvLi
http://paperpile.com/b/RhkQ3n/hvLi
http://paperpile.com/b/RhkQ3n/hvLi
http://paperpile.com/b/RhkQ3n/hvLi
http://paperpile.com/b/RhkQ3n/hvLi
http://paperpile.com/b/RhkQ3n/hvLi
http://paperpile.com/b/RhkQ3n/9ZYe
http://paperpile.com/b/RhkQ3n/9ZYe
http://paperpile.com/b/RhkQ3n/9ZYe
http://paperpile.com/b/RhkQ3n/9ZYe
http://paperpile.com/b/RhkQ3n/wrla
http://paperpile.com/b/RhkQ3n/wrla
http://paperpile.com/b/RhkQ3n/wrla
http://paperpile.com/b/RhkQ3n/wrla
http://paperpile.com/b/RhkQ3n/0sNj
http://paperpile.com/b/RhkQ3n/0sNj
http://paperpile.com/b/RhkQ3n/0sNj
http://paperpile.com/b/RhkQ3n/0sNj
http://paperpile.com/b/RhkQ3n/0sNj
http://dx.doi.org/10.1093/cercor/bhw252
http://paperpile.com/b/RhkQ3n/0sNj
http://paperpile.com/b/RhkQ3n/55Az
http://paperpile.com/b/RhkQ3n/55Az
http://paperpile.com/b/RhkQ3n/55Az
http://paperpile.com/b/RhkQ3n/55Az
http://paperpile.com/b/RhkQ3n/55Az
http://paperpile.com/b/RhkQ3n/iLjN
http://paperpile.com/b/RhkQ3n/iLjN
http://paperpile.com/b/RhkQ3n/iLjN
http://paperpile.com/b/RhkQ3n/iLjN
http://paperpile.com/b/RhkQ3n/iLjN
http://paperpile.com/b/RhkQ3n/o9it
http://paperpile.com/b/RhkQ3n/o9it
http://paperpile.com/b/RhkQ3n/o9it
http://paperpile.com/b/RhkQ3n/o9it
http://paperpile.com/b/RhkQ3n/o9it
http://paperpile.com/b/RhkQ3n/jq0n
http://paperpile.com/b/RhkQ3n/jq0n
http://paperpile.com/b/RhkQ3n/jq0n
http://paperpile.com/b/RhkQ3n/jq0n
https://doi.org/10.1101/447532
http://creativecommons.org/licenses/by-nc-nd/4.0/


Menegas, William, Benedicte M. Babayan, Naoshige Uchida, and Mitsuko Watabe-Uchida. 
2017. “Opposite Initialization to Novel Cues in Dopamine Signaling in Ventral and Posterior 
Striatum in Mice.” ​eLife​ 6 (January). https://doi.org/​10.7554/eLife.21886 ​. 

Miller, Kevin, Amitai Shenhav, and Elliot Ludvig. 2019. “Habits without Values.” ​Psychological 
Review​, January, 067603. 

Montague, P. R., P. Dayan, and T. J. Sejnowski. 1996. “A Framework for Mesencephalic 
Dopamine Systems Based on Predictive Hebbian Learning.” ​The Journal of Neuroscience: 
The Official Journal of the Society for Neuroscience​ 16 (5): 1936–47. 

Morris, Genela, Alon Nevet, David Arkadir, Eilon Vaadia, and Hagai Bergman. 2006. “Midbrain 
Dopamine Neurons Encode Decisions for Future Action.” ​Nature Neuroscience​ 9 (8): 
1057–63. 

Niv, Yael, Nathaniel D. Daw, Daphna Joel, and Peter Dayan. 2007. “Tonic Dopamine: 
Opportunity Costs and the Control of Response Vigor.” ​Psychopharmacology​ 191 (3): 
507–20. 

O’Doherty, John P. 2014. “The Problem with Value.” ​Neuroscience and Biobehavioral Reviews 
43 (June): 259–68. 

O’Doherty, John P., Peter Dayan, Johannes Schultz, Ralf Deichmann, Karl Friston, and 
Raymond J. Dolan. 2004. “Dissociable Roles of Ventral and Dorsal Striatum in Instrumental 
Conditioning.” ​Science​ 304 (5669): 452–54. 

Palminteri, Stefano, Thomas Boraud, Gilles Lafargue, Bruno Dubois, and Mathias Pessiglione. 
2009. “Brain Hemispheres Selectively Track the Expected Value of Contralateral Options.” 
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience​ 29 (43): 
13465–72. 

Parker, Nathan F., Courtney M. Cameron, Joshua P. Taliaferro, Junuk Lee, Jung Yoon Choi, 
Thomas J. Davidson, Nathaniel D. Daw, and Ilana B. Witten. 2016. “Reward and Choice 
Encoding in Terminals of Midbrain Dopamine Neurons Depends on Striatal Target.” ​Nature 
Neuroscience​ 19 (6): 845–54. 

Parkinson, J. A., J. W. Dalley, R. N. Cardinal, A. Bamford, B. Fehnert, G. Lachenal, N. 
Rudarakanchana, K. M. Halkerston, T. W. Robbins, and B. J. Everitt. 2002. “Nucleus 
Accumbens Dopamine Depletion Impairs Both Acquisition and Performance of Appetitive 
Pavlovian Approach Behaviour: Implications for Mesoaccumbens Dopamine Function.” 
Behavioural Brain Research​ 137 (1): 149–63. 

Reynolds, John N. J., B. I. Hyland, and J. R. Wickens. 2001. “A Cellular Mechanism of 
Reward-Related Learning.” ​Nature​ 413 (6851): 67–70. 

Reynolds, John N. J., and Jeffery R. Wickens. 2002. “Dopamine-Dependent Plasticity of 
Corticostriatal Synapses.” ​Neural Networks: The Official Journal of the International Neural 
Network Society​ 15 (4-6): 507–21. 

Roesch, Matthew R., Donna J. Calu, and Geoffrey Schoenbaum. 2007. “Dopamine Neurons 
Encode the Better Option in Rats Deciding between Differently Delayed or Sized Rewards.” 
Nature Neuroscience​ 10 (12): 1615–24. 

Russell, Stuart, and Andrew L. Zimdars. 2003. “Q-Decomposition for Reinforcement Learning 
Agents.” In ​Proceedings of the Twentieth International Conference on International 
Conference on Machine Learning​, 656–63. ICML’03. Washington, DC, USA: AAAI Press. 

Samuelson, P. A. 1938. “A Note on the Pure Theory of Consumer’s Behaviour.” ​Economica​ 5 
(17): 61–71. 

Saunders, Benjamin T., Jocelyn M. Richard, Elyssa B. Margolis, and Patricia H. Janak. 2018. 
“Dopamine Neurons Create Pavlovian Conditioned Stimuli with Circuit-Defined Motivational 
Properties.” ​Nature Neuroscience​ 21 (8): 1072–83. 

27 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/447532doi: bioRxiv preprint 

http://paperpile.com/b/RhkQ3n/qaBr
http://paperpile.com/b/RhkQ3n/qaBr
http://paperpile.com/b/RhkQ3n/qaBr
http://paperpile.com/b/RhkQ3n/qaBr
http://paperpile.com/b/RhkQ3n/qaBr
http://dx.doi.org/10.7554/eLife.21886
http://paperpile.com/b/RhkQ3n/qaBr
http://paperpile.com/b/RhkQ3n/SQjc
http://paperpile.com/b/RhkQ3n/SQjc
http://paperpile.com/b/RhkQ3n/SQjc
http://paperpile.com/b/RhkQ3n/SQjc
http://paperpile.com/b/RhkQ3n/Dv23
http://paperpile.com/b/RhkQ3n/Dv23
http://paperpile.com/b/RhkQ3n/Dv23
http://paperpile.com/b/RhkQ3n/Dv23
http://paperpile.com/b/RhkQ3n/Dv23
http://paperpile.com/b/RhkQ3n/Lpfg
http://paperpile.com/b/RhkQ3n/Lpfg
http://paperpile.com/b/RhkQ3n/Lpfg
http://paperpile.com/b/RhkQ3n/Lpfg
http://paperpile.com/b/RhkQ3n/Lpfg
http://paperpile.com/b/RhkQ3n/jYj7
http://paperpile.com/b/RhkQ3n/jYj7
http://paperpile.com/b/RhkQ3n/jYj7
http://paperpile.com/b/RhkQ3n/jYj7
http://paperpile.com/b/RhkQ3n/jYj7
http://paperpile.com/b/RhkQ3n/9wnL
http://paperpile.com/b/RhkQ3n/9wnL
http://paperpile.com/b/RhkQ3n/9wnL
http://paperpile.com/b/RhkQ3n/9wnL
http://paperpile.com/b/RhkQ3n/HDwd
http://paperpile.com/b/RhkQ3n/HDwd
http://paperpile.com/b/RhkQ3n/HDwd
http://paperpile.com/b/RhkQ3n/HDwd
http://paperpile.com/b/RhkQ3n/HDwd
http://paperpile.com/b/RhkQ3n/C7qE
http://paperpile.com/b/RhkQ3n/C7qE
http://paperpile.com/b/RhkQ3n/C7qE
http://paperpile.com/b/RhkQ3n/C7qE
http://paperpile.com/b/RhkQ3n/C7qE
http://paperpile.com/b/RhkQ3n/BPji
http://paperpile.com/b/RhkQ3n/BPji
http://paperpile.com/b/RhkQ3n/BPji
http://paperpile.com/b/RhkQ3n/BPji
http://paperpile.com/b/RhkQ3n/BPji
http://paperpile.com/b/RhkQ3n/BPji
http://paperpile.com/b/RhkQ3n/l62b
http://paperpile.com/b/RhkQ3n/l62b
http://paperpile.com/b/RhkQ3n/l62b
http://paperpile.com/b/RhkQ3n/l62b
http://paperpile.com/b/RhkQ3n/l62b
http://paperpile.com/b/RhkQ3n/l62b
http://paperpile.com/b/RhkQ3n/Cxwh
http://paperpile.com/b/RhkQ3n/Cxwh
http://paperpile.com/b/RhkQ3n/Cxwh
http://paperpile.com/b/RhkQ3n/Cxwh
http://paperpile.com/b/RhkQ3n/vrk0
http://paperpile.com/b/RhkQ3n/vrk0
http://paperpile.com/b/RhkQ3n/vrk0
http://paperpile.com/b/RhkQ3n/vrk0
http://paperpile.com/b/RhkQ3n/vrk0
http://paperpile.com/b/RhkQ3n/BR7O
http://paperpile.com/b/RhkQ3n/BR7O
http://paperpile.com/b/RhkQ3n/BR7O
http://paperpile.com/b/RhkQ3n/BR7O
http://paperpile.com/b/RhkQ3n/Dcp9
http://paperpile.com/b/RhkQ3n/Dcp9
http://paperpile.com/b/RhkQ3n/Dcp9
http://paperpile.com/b/RhkQ3n/Dcp9
http://paperpile.com/b/RhkQ3n/Dcp9
http://paperpile.com/b/RhkQ3n/Q7FV
http://paperpile.com/b/RhkQ3n/Q7FV
http://paperpile.com/b/RhkQ3n/Q7FV
http://paperpile.com/b/RhkQ3n/Q7FV
http://paperpile.com/b/RhkQ3n/8ooP
http://paperpile.com/b/RhkQ3n/8ooP
http://paperpile.com/b/RhkQ3n/8ooP
http://paperpile.com/b/RhkQ3n/8ooP
http://paperpile.com/b/RhkQ3n/8ooP
https://doi.org/10.1101/447532
http://creativecommons.org/licenses/by-nc-nd/4.0/


Schultz, W., P. Dayan, and P. R. Montague. 1997. “A Neural Substrate of Prediction and 
Reward.” ​Science​ 275 (5306): 1593–99. 

Silva, Joaquim Alves da, Fatuel Tecuapetla, Vitor Paixão, and Rui M. Costa. 2018. “Dopamine 
Neuron Activity before Action Initiation Gates and Invigorates Future Movements.” ​Nature 
554 (7691): 244–48. 

Soares, Sofia, Bassam V. Atallah, and Joseph J. Paton. 2016. “Midbrain Dopamine Neurons 
Control Judgment of Time.” ​Science​ 354 (6317): 1273–77. 

Stan Development Team. 2018. PyStan: the Python interface to Stan, Version 2.17.1.0. 
http://mc-stan.org 

Steinberg, Elizabeth E., Ronald Keiflin, Josiah R. Boivin, Ilana B. Witten, Karl Deisseroth, and 
Patricia H. Janak. 2013. “A Causal Link between Prediction Errors, Dopamine Neurons and 
Learning.” ​Nature Neuroscience​ 16 (7): 966–73. 

Syed, Emilie C. J., Laura L. Grima, Peter J. Magill, Rafal Bogacz, Peter Brown, and Mark E. 
Walton. 2016. “Action Initiation Shapes Mesolimbic Dopamine Encoding of Future 
Rewards.” ​Nature Neuroscience​ 19 (1): 34–36. 

Takahashi, Yuji, Geoffrey Schoenbaum, and Yael Niv. 2008. “Silencing the Critics: 
Understanding the Effects of Cocaine Sensitization on Dorsolateral and Ventral Striatum in 
the Context of an Actor/critic Model.” ​Frontiers in Neuroscience​ 2 (1): 86–99. 

Ungerstedt, U., and G. W. Arbuthnott. 1970. “Quantitative Recording of Rotational Behavior in 
Rats after 6-Hydroxy-Dopamine Lesions of the Nigrostriatal Dopamine System.” ​Brain 
Research​ 24 (3): 485–93. 

Ungless, Mark A., Peter J. Magill, and J. Paul Bolam. 2004. “Uniform Inhibition of Dopamine 
Neurons in the Ventral Tegmental Area by Aversive Stimuli.” ​Science​ 303 (5666): 2040–42. 

Wise, Roy A. 2004. “Dopamine, Learning and Motivation.” ​Nature Reviews. Neuroscience​ 5 (6): 
483–94. 

Yin, Henry H., Barbara J. Knowlton, and Bernard W. Balleine. 2004. “Lesions of Dorsolateral 
Striatum Preserve Outcome Expectancy but Disrupt Habit Formation in Instrumental 
Learning.” ​The European Journal of Neuroscience​ 19 (1): 181–89. 

Yttri, Eric A., and Joshua T. Dudman. 2016. “Opponent and Bidirectional Control of Movement 
Velocity in the Basal Ganglia.” ​Nature​ 533 (7603): 402–6. 

 

 

28 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/447532doi: bioRxiv preprint 

http://paperpile.com/b/RhkQ3n/doIU
http://paperpile.com/b/RhkQ3n/doIU
http://paperpile.com/b/RhkQ3n/doIU
http://paperpile.com/b/RhkQ3n/doIU
http://paperpile.com/b/RhkQ3n/VSxB
http://paperpile.com/b/RhkQ3n/VSxB
http://paperpile.com/b/RhkQ3n/VSxB
http://paperpile.com/b/RhkQ3n/VSxB
http://paperpile.com/b/RhkQ3n/VSxB
http://paperpile.com/b/RhkQ3n/RuTx
http://paperpile.com/b/RhkQ3n/RuTx
http://paperpile.com/b/RhkQ3n/RuTx
http://paperpile.com/b/RhkQ3n/RuTx
http://mc-stan.org/
http://paperpile.com/b/RhkQ3n/gNsi
http://paperpile.com/b/RhkQ3n/gNsi
http://paperpile.com/b/RhkQ3n/gNsi
http://paperpile.com/b/RhkQ3n/gNsi
http://paperpile.com/b/RhkQ3n/gNsi
http://paperpile.com/b/RhkQ3n/wCRy
http://paperpile.com/b/RhkQ3n/wCRy
http://paperpile.com/b/RhkQ3n/wCRy
http://paperpile.com/b/RhkQ3n/wCRy
http://paperpile.com/b/RhkQ3n/wCRy
http://paperpile.com/b/RhkQ3n/dL6m
http://paperpile.com/b/RhkQ3n/dL6m
http://paperpile.com/b/RhkQ3n/dL6m
http://paperpile.com/b/RhkQ3n/dL6m
http://paperpile.com/b/RhkQ3n/dL6m
http://paperpile.com/b/RhkQ3n/Nd7H
http://paperpile.com/b/RhkQ3n/Nd7H
http://paperpile.com/b/RhkQ3n/Nd7H
http://paperpile.com/b/RhkQ3n/Nd7H
http://paperpile.com/b/RhkQ3n/Nd7H
http://paperpile.com/b/RhkQ3n/3EYn
http://paperpile.com/b/RhkQ3n/3EYn
http://paperpile.com/b/RhkQ3n/3EYn
http://paperpile.com/b/RhkQ3n/3EYn
http://paperpile.com/b/RhkQ3n/aquf
http://paperpile.com/b/RhkQ3n/aquf
http://paperpile.com/b/RhkQ3n/aquf
http://paperpile.com/b/RhkQ3n/aquf
http://paperpile.com/b/RhkQ3n/9Dmq
http://paperpile.com/b/RhkQ3n/9Dmq
http://paperpile.com/b/RhkQ3n/9Dmq
http://paperpile.com/b/RhkQ3n/9Dmq
http://paperpile.com/b/RhkQ3n/9Dmq
http://paperpile.com/b/RhkQ3n/UT5N
http://paperpile.com/b/RhkQ3n/UT5N
http://paperpile.com/b/RhkQ3n/UT5N
http://paperpile.com/b/RhkQ3n/UT5N
https://doi.org/10.1101/447532
http://creativecommons.org/licenses/by-nc-nd/4.0/

