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Abstract  

In depth knowledge of the cellular states associated with normal and disease tissue 

homeostasis is critical for understanding disease etiology and uncovering therapeutic 

opportunities. Here, we used single cell RNA-seq to survey the cellular states of 

neuroepithelial-derived cells in cortical and neurogenic regions of developing and adult 

mammalian brain to compare with 38,474 cells obtained from 59 human gliomas, as 

well as pluripotent ESCs, endothelial cells, CD45+ immune cells, and non-CNS cancers. 

This analysis suggests that a significant portion of neuroepithelial-derived stem and 

progenitor cells and glioma cells that are not in G2/M or S phase exist in two states: G1 

or Neural G0, defined by expression of certain neuro-developmental genes.  In gliomas, 

higher overall Neural G0 gene expression is significantly associated with less 

aggressive gliomas, IDH1 mutation, and extended patient survival, while also anti-

correlated with cell cycle gene expression.  Knockout of genes associated with the 

Hippo/Yap and p53 pathways diminished Neural G0 in vitro, resulting in faster G1 

transit, down regulation of quiescence-associated markers, and loss of Neural G0 gene 

expression.  Thus, Neural G0 is a dynamic cellular state required for indolent cell cycles 

in neural-specified stem and progenitors poised for cell division.  As a result, Neural G0 

occupancy may be an important determinant of glioma tumor progression.   

 

Key words: neural stem cells, glioma, glioblastoma, G0, Quiescence, scRNA-seq, 

Hippo-YAP pathway, p53, CREBBP, NF2, PTPN14, TAOK1, TP53, CRISPR-Cas9, 

functional genomics. 
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INTRODUCTION (63,000 including spaces) 

Most developing and adult tissues are hierarchically organized such that tissue 

growth and maintenance is driven by the production of lineage-committed cells from 

populations of tissue-resident stem and progenitor cells (Reya et al. 2001). In adult 

tissues, stem cells are typically found in a quiescent or reversible G0 state and must re-

enter the cell cycle and divide to promote lineage commitment (Doetsch 2003; Obernier 

et al. 2018).  Their progeny, e.g., amplifying progenitors, further balance lineage 

commitment with proliferation to produce adequate numbers of lineage committed and 

terminally differentiated cells to keep pace with demand (Lin 2008). While much is 

known about specific regulatory events governing organismal development and tissue 

homeostasis, our understanding the cellular states underlying normal remains limited.  

This includes lack of a detailed picture of how cells enter, maintain, and exit quiescent-

like states.  

Moreover, many of the underlying mechanisms of human disease can be 

attributed, in one way or another, to disturbances in stem and progenitor cell 

compartments. For example, many cancers develop in maligned developmental 

hierarchies in which cancer stem-like cells give rise to proliferative progeny that 

comprise the bulk of the cancer (Dirks 2008). A more in-depth understanding of both 

normal and disease-associated cellular states could provide critical insight into disease 

etiology and new therapeutic possibilities.    

Among the model systems for stem cell biology are neural stem cells (NSCs) 

derived from the developing mammalian telencephalon (Davis and Temple 1994; Johe 

et al. 1996).  NSCs can be cultured ex vivo yet recapitulate the expansion, specification, 
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and maturation of each of the major cell types in the mammalian central nervous system 

(Pollard et al. 2006; Sun et al. 2008).  We have previously used hNSCs as non-

transformed, tissue-appropriate controls for functional genomic screens in patient 

derived glioblastoma stem-like cells (GSCs) (Danovi et al. 2013; Ding et al. 2013; 

Hubert et al. 2013; Toledo et al. 2014; Toledo et al. 2015; Ding et al. 2017). We have 

observed that when GSCs and NSCs are grown in the same ex vivo conditions, NCSs 

have longer doubling times of 40-50hrs compared to 30-40hrs for GSCs isolates.  This 

discrepancy arises from differences in G0/G1 transit times.  In NSCs, but not GSCs, 

G0/G1 transit times are dynamic and variable (e.g., ranging from 4-95hrs).  However, 

passage through the rest of the cell cycle is short and uniform, similar to GSCs (e.g., 

~12 hrs for progression through S, G2, and M (see below)). This suggests that NSCs 

adopt different cellular states during G0/G1, compared to GSCs, perhaps representing a 

fundamental difference in their underlying cell cycle regulation.  

To further investigate NSC-specific G0/G1 states, below, we employed single-cell 

RNA sequencing (scRNA-seq) analysis to create a gene expression-based phase 

classifier for their cell cycle (e.g. G1, G2, M, etc.). We then applied this classifier across 

neuroepithelial and non-neuroepithelial-derived cells and cancers. We then performed 

functional genomic screens to identify modulators of a novel G0-like state observed in 

neuroepithelial-derived cells, Neural G0.  We find that Neural G0 is a dynamic state that 

is rate-limiting for the cell cycle, which arises during neural specification and persists 

through fetal and adult neurogenesis and gliomagenesis.  

 

RESULTS  
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Identification of cell cycle phases and candidate G0 and G1 subpopulations in 

human NSCs  

 ScRNA-seq has recently emerged as a powerful tool to resolve heterogeneous 

populations of cells as well as cell cycle phases (Macosko et al. 2015; Zheng et al. 

2017).  To identify cellular gene expression states and specifically G0/G1 

subpopulations in hNSCs, we performed scRNA-seq on U5-NSCs cultured cells 

(Bressan et al. 2017a) either using bulk cultured cells or subpopulations of 

phenotypically defined G0/G1 cells (Fig. 1A). To accomplish the latter, we sorted for a 

Cdt1+NSC populations using a stably expressed mCherry gene fused to the 

ubiquitylation domains of human Cdt1 (Sakaue-Sawano et al. 2008).  When cells are in 

G1 or G0, mCherry-Cdt is stable and readily observable via FACS.  However, when 

cells are in S, G2, or M the fusion protein is potently destabilized the SCF-Skp2 

ubiquitin ligase complex. The fidelity of the reporter was confirmed by treatment of cells 

with HDAC inhibitors which arrest cells in G0/G1.  

 In total, we performed scRNA-seq on 5973 unsorted and 4562 mCherry-Cdt1+ 

sorted cells from actively dividing U5-NSC cultures (Methods). For the unsorted 

populations, we then performed unbiased cluster analysis and identified seven 

prominent clusters each defined by a set of transcriptionally enriched and depleted 

genes (Fig. 1B; Supplemental Fig. S1A; Supplemental Table S1). We categorized the 

clusters by examining: cell cycle gene expression hallmarks, gene set enrichment, 

cluster network analysis, scRNA-seq from G0/G1 sorted populations (Figs. 1B-E). We 

defined the clusters as follows: Neural G0 (17.3% of cells), G1 (36.7%), Late G1 (6.4%), 

S (7.2%), S/G2 (10.9%), G2/M (10.6%), and M/early G1 (8.4%) (Fig. 1B). Importantly, 
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the G0/G1 subpopulations were enriched in the Cdt+ scRNA-seq populations, while late 

G1, S, S/G2, and G2/M were all significantly depleted (Supplemental Fig. S1A).  

 The S, S/G2, and G2/M clusters were enriched for genes whose expression 

peaks in these phases (Cyclebase (Santos et al. 2015)) including CCNE2 in S-phase 

and CCNB1/2 in G2/M (Figs. 1E & F) and produced tightly interconnected networks of 

key cell cycle genes (Supplemental Fig. S2). This enrichment included the DNA 

replication genes PCNA, MCM3/4/5/6/7/10, GMNN, and RPA2/3 for S-phase and the 

mitosis genes CDC20, AURKA, and BUB1 during G2/M (Figs. 1E & F). 

 There were four definable G0/G1 clusters: G1, M/Early G1, Late G1 and Neural 

G0.  Despite being the largest cluster, the "G1" cluster had the smallest number of 

enriched genes, which included IGFR1 signaling genes (e.g., IGFBP3 and IGFBP5), 

and significant reductions of genes expressed in S, S/G2, and G2/M clusters (Figs. 1E 

& S1C). The M/early G1 cluster showed low but significant residual expression of M 

phase genes and enrichment for splicing factor genes, which could represent residual 

mRNA from G2/M (Figs. 1E, S1C, & S2). The Late G1 cluster was defined by genes 

important in G1 cell cycle progression, including CCND1 and MYC, and enriched for 

cholesterol biosynthesis, cell adhesion genes, and the subset of YAP target genes, 

such as CTGF and SERPINE1 (Figs. 1E, S1B, S1C, & S2). 

 Finally, the Neural G0 cluster also showed significant repression of 246 genes 

peaking in other phases of cell cycle, including suppression of CCND1 expression, 

which is an indicator of cell cycle exit (Sherr 1995) and other cell cycle regulated genes 

such as AURKB, CCNB1/2, CDC20, CDK1, and MKI67 (Figs. 1E & S1C). Moreover, the 

158 up regulated genes defining this cluster were key genes with roles in neural 
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development, including glial cell differentiation, neurogenesis, neuron differentiation, 

and oligodendrocyte differentiation (Figs. 1E, S1C, & S2; Supplemental Table SS). 

These genes included transcription factors with known roles in balancing stem cell 

identity and differentiation, including BEX1, HEY1, HOPX, OLIG2, SOX2, SOX4, and 

SOX9 (Sakamoto et al. 2003; Bergsland et al. 2006; Scott et al. 2010) (Figs. 1E & S2).  

 Network analysis of mean cluster gene expression resolved the trajectories of 

cells through the seven clusters into a pattern that fits well with cell cycle progression 

and predicted transit through G0/G1 (Figs. 1D & S2). Cells from the candidate G0 

population were linked solely to the G1 cluster, which is consistent with G0 as a cell 

cycle exit from G1. The linkages between the clusters are not directed and thus the flow 

cells may pass in either direction. However, the model is consistent with results below in 

which we show, that cultured hNSCs enter G0-like state of variable length between M 

and S-phase.  Importantly, this model of cell cycle progression was further validated by 

unique molecular identify (UMI) counts across clusters, where the counts start low in 

Neural G0 and peak in G2/M (Supplemental Fig. S1D).  UMI counts can be viewed as 

an approximation of total mRNA expression in scRNA-seq data.  Total mRNA 

expression during the cell cycle exactly follows this pattern, peaking with expression of 

Cyclin B and other mitotic genes. 

  

 

Neural G0 is enriched in neuroepithelial-derived stem and progenitor cell 

populations.  
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Comparison of our scRNA-seq cell clusters to gene expression profiles derived 

from in vivo neurogenesis samples supported our definition of the Neural G0 cluster. In 

two independent scRNA-seq analyses of adult rodent neurogenesis (Llorens-Bobadilla 

et al. 2015; Artegiani et al. 2017), the Neural G0 cluster showed most significant 

enrichment for genes defining quiescent neural stem cells and oligodendrocyte 

progenitor cells (Figs. 2A-D). These genes include, among others: CLU, HOPX, ID3, 

OLIG2, PTN, SYT11, S100B, SOX9, PTPRZ1, and TTYH1 (Fig. 2B). Interestingly, for 

our S, S/G2, G2/M, and M/early G1 cluster genes, we found significant overlap with the 

activated NSCs of Llorens-Bobadilla et al. (2015) and the NPCs of Artegiani et al. 

(2017), which are no longer quiescent (Figs. 2C and 2D).  

 Moreover, analysis of scRNA-seq of mouse embryonic stem cells (mESCs), 

representing blastocyst-stage pluripotent cells (i.e., pre-neuroepithelial cell), lacked cells 

from the Neural G0 subpopulation.  For this analysis, we used scRNA-seq data from 

mESCs that were live sorted for DNA content via Hoechst staining into G1, S-phase, 

and G2/M populations (Buettner et al. 2015). We found that our G1 category captured 

83% of their Hoechst G1 cells, our G2/M category captured 89% of their G2/M, and their 

S-phase cells were split between G1, S, and G2/M, which is consistent with their 

Hoechst S-phase gate overlapping portions of these populations (Supplemental Fig. 

S3A). However, the mESCs failed to classify into our Neural G0, Late G1, or M/early G1 

categories. This is consistent with the shorter G1 of ESCs compared to somatic cells 

(Coronado et al. 2013).  

 To further investigate how Neural G0 might arise during mammalian 

development, we applied our hNSC cell cycle classifier to the developing human 
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telencephalon. We analyzed scRNA-seq data from microdissected developing human 

cerebral cortex samples (PCW 5.85-19), which was previously used to analyze the 

spatial and temporal developmental trajectories for 11 cell types: astrocytes, 

oligodendrocyte precursor cells (OPC), microglia, radial glia (RG), intermediate 

progenitor cells, excitatory cortical neurons, ventral medial ganglionic eminence 

progenitors, inhibitory cortical interneurons, choroid plexus cells, mural cells, and 

endothelial cells (Nowakowski et al. 2017).  We classified each single cell using our cell 

cycle categories and cross tabulated with the 11 cell types (Fig. 2E).   

We found that the Neural G0 category was significantly enriched in non-dividing 

astrocytes, OPCs, and RGs (ventral, outer, and truncated), which had a Neural G0 

population ranging from 85-72% (Fig. 2E; Supplemental Table S3). The signature 

diminishes in differentiating cells where G1 becomes the dominant category 

classification (Fig. 2E):  excitatory cortical neuron lineage which originates from RGs, 

and the inhibitory cortical interneuron lineage which originate from MGE-RGs.   We also 

observe a small but significant M/Early G1 subpopulation among differentiating cells, 

suggesting that it likely captures lineage committed cells that have just completed 

mitosis.  Further, populations characterized as dividing (i.e., "div", "div1", or "div2") are 

highly enriched with S/G2 and/or G2/M classified cells, and Neural G0 and G1 are 

absent or greatly diminished.  Further, microglia, which arise from the embryonic 

mesoderm rather than neuroectoderm (Ginhoux and Garel 2018), do not classify as 

harboring Neural G0 cells, but instead are classified as G1 and low-RNA. As we show 

later the myeloid cells from the tumor core and periphery (Darmanis et al. 2017) classify 
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as low-RNA which is consistent given that microglia are macrophage like cells that 

perform an immune function in the brain. 

 These results support the notion that Neural G0 is a bona fide cellular state 

associated with non-dividing neural epithelial-derived stem and progenitors as well also 

astrocytes, which may have progenitor-like properties during development, during fetal 

and adult neurogenesis.  

 

Neural G0 is a prominent subpopulation in human glioma cells. 

Gliomas are tumors of the central nervous system which have a neuroepithelial 

cell of origin (Chen et al. 2012b; Zong et al. 2015). They contain subpopulations of cells 

with stem cells-like characteristics that include expression of markers associated with 

NSCs, OPCs, and astrocytes, which may that may contribute to progression, therapy 

resistance, and tumor recurrence (Dirks 2008; Zong et al. 2015).  Recently, scRNA-seq 

has been applied to human gliomas of different grades and subtypes to reveal 

intratumoral cellular heterogeneity (Patel et al. 2014; Tirosh et al. 2016; Darmanis et al. 

2017; Venteicher et al. 2017; Filbin et al. 2018; Neftel et al. 2019).  To address whether 

Neural G0 also exists in gliomas, we analyzed scRNA-seq data available for 59 gliomas 

from these studies (Table 1; Supplemental Table S3).  

 These tumors represent a broad range of gliomas, including: grades II, III, and 

IV, IDH1wt and mutant tumors, as well as glioma developmental subclasses (i.e., 

classical, mesenchymal, and proneural) and tumor types (i.e., astrocytoma, 

oligodendroglioma, GBM, and pediatric diffuse midline gliomas).  Our analysis revealed 

that Neural G0 and G1 are the two most prominent tumor subpopulations regardless of 
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stage (Table 1; Table S3).  The Neural G0 and G1 represent 95.5% and 2.6%, 

respectively, of stage II oligodendrogliomas, 76% and 16.4% of stage III astrocytomas, 

31-39% and 31-56% of stage IV GBMs, and 73.4% and 16.5% of diffuse midline 

gliomas (Table 1).  Developmental subtype analysis of each tumor cell further revealed 

that Neural G0 subpopulations showed strong bias against appearing in mesenchymal 

cell subpopulations in stage III and IV cancers. Overall the prevalence of the Neural G0 

state diminished as stage increased regardless of subtype (Table 1; Table S3). 

 Examining non-tumor brain cells types associated with stromal tissue available 

from Darminis et al., showed that Neural G0 populations could only be found in neuro-

epithelial derived cells such as astrocytes, OPCs, and oligodendrocytes, whereas 

CD45+ cells and endothelial cells were negative.  This was further evidenced by 

analysis of scRNA-seq data from 21 primary and metastatic head and neck cancers 

(Puram et al. 2017), where we observe that 80.3% of these tumor cells appeared in G1 

but none contain a Neural G0 classified cell (Table 1).   

 Examination of scRNA-seq data for specific Neural G0 genes expressed in 

glioma revealed that 121 Neural G0 genes were significantly enriched in at least one 

data set (Supplemental Table S4).  12 genes, in particular, showed the stronges 

intersection between data sets (Supplemental Table S4; Supplemental Fig S3B), 

including EDNRB, FABP7, GPM6A, GMP6B, HEY1, PRDX1, PTPRZ1, SCD5, and 

TTYH1. Interestingly, these genes are preferentially expressed in GBM and LGGs 

compared to other cancers (Supplemental Fig. S4).  Many have known or proposed 

roles in maintaining NSC/GSC "stemness" (EDNRB (Liu et al. 2011), PTPRZ1 

(Fujikawa et al. 2017), TTYH1 (Kim et al. 2018; Wu et al. 2019)), slow cycling GBM cells 
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(FABP7 (Hoang-Minh et al. 2018)), possible neurogenic niche functions (e.g., GMP6B 

(Choi et al. 2013)), and neuroinflammation (PRDX1 (Kim et al. 2013) and PTN 

(Fernandez-Calle et al. 2017)).  

 We next determined whether the Neural G0 gene expression would be 

associated with bulk gene expression, genetic drivers, and survival data from 681 

gliomas available in The Cancer Genome Atlas (TCGA; including both GBM and LGG).  

First, we calculated eigengenes for Neural G0 genes and cell cycle genes (GO BP term 

Mitotic Cell Cycle = GO:0000278) that could be associated with the genetic drivers and 

patient survival.  An eigengene represents the common variation across each patient 

tumor, i.e. first principal component corrected for direction if necessary.  Figures 3A and 

3B show that the Neural G0 eigengene is significantly down regulated as tumor grade 

increases.  Neural G0 eigengene expression is significantly anti-correlated (R = -0.58, 

p-value < 2.2 x 10-16) with cell cycle eigengene expression.  Moreover, there is a striking 

anticorrelation between the Neural G0 and cell cycle eigengenes across tumors, 

suggesting that the states are mutually exclusive (Fig. 3B).  

 To examine survival differences, we compared survival of patients with tumors 

exhibiting higher (top 25%) or lower (bottom 25%) Neural G0 gene expression (Figs. 3C 

and 3D).  This analysis revealed a highly significant trend that tumors with higher Neural 

G0 expression survive on average 4.6 years longer than low Neural G0 expressing 

tumors (Fig. 3D). This difference likely driven by grade enrichment, where high Neural 

G0 tumors are exclusively grade II and III in the TCGA data set, while low tumors are 

mainly grade IV (Fig 3C), which have much worse survival (Stupp et al. 2005; Claus et 

al. 2015).  Consistent with this notion, Neural G0 signature is also significantly 
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associated with IDH1/2 mutation (Supplemental Fig. S5), which are primarily found in 

lower grade glioma (Yan et al. 2009; Claus et al. 2015).  However, in a multivariate 

survival model the Neural G0 eigengene remains a significant predictor of overall 

survival even with the inclusion of the covariates (tumor grade and IDH1/2 mutation 

status), suggesting that the Neural G0 cell state is associated with patient survival 

variance independently from the common glioma survival associated covariates (tumor 

grade, IDH1/2).  

  Taken together, these results demonstrate that Neural G0 cells represent 

significant subpopulations in gliomas, which diminish by grade and are associated with 

better clinical outcomes. Thus, the results are consistent with a model whereby higher 

steady-state Neural G0 populations removes cells from the pool of cycling cells leading 

to slower tumor growth.  

  

CRISPR-Cas9 gene knockout screens identify regulators of Neural G0 in vitro.  

 We next wished to investigate whether the Neural G0 state causes slower cell 

cycles. To this end, we performed CRISPR-Cas9 screens in hNSCs for genes that 

when mutated caused a diminished Neural G0.  We reasoned that if Neural G0 

ingress/egress is rate limiting for NSC cell cycles, diminishing Neural G0 would cause 

NSCs to cycle faster.  If true, a simple pooled LV-sgRNA library outgrowth screen in 

normal culture conditions should reveal overrepresented sgRNAs that cause diminished 

Neural G0 (Fig. 4A).  

 We performed four separate CRISPR-Cas9 outgrowth screens, using three 

separate libraries, two different time points (10 days versus ~3 weeks), and two different 
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human NSC isolates, CB660 and U5 (Pollard et al. 2006; Bressan et al. 2017b) (Figs. 

4A, 4B, & S5; Supplemental Table S5).  These screens revealed dozens of candidate 

screen hits significantly enriched at the end of outgrowth period (Fig 4B).  These 

sgRNAs targeted genes found mutated across 35 different cancer (Fig. 5C) and 

validated tumor suppressor genes (Futreal et al. 2004) (Fig. 5D).  Examining the 

intersection of all of our screen data revealed five reproducible and robust proliferation-

enhancing screen hits: CREBBP, NF2, PTPN14, TAOK1, and TP53 (Fig. 4C & S5B), 

which we chose to validate further. 

 To control for off-target effects, sgRNA tiling screens for each of these genes 

were performed, whereby each gene was targeted with 138 to 466 sgRNAs tiled across 

most exons in NSCs during another outgrowth period and again resolved by sgRNA-

seq.  At least 70% of tiling sgRNAs for each candidate proliferation limiting gene were 

significantly enriched in NSCs (Supplemental Fig. S6A; Supplemental Table S5), 

whereas an sgRNA tiled gene essential for DNA replication, MCM2, showed significant 

depletion over time (Fig. 2a) and control, non-targeting (NTC) sgRNAs were largely 

inert.  KO of target genes was confirmed by Western blots (Supplemental Fig. S6B). 

 KO of CREBBP, NF2, PTPN14, TAOK1, and TP53 in hNSCs caused a 

significant proliferative advantage over control cells in a 23-day outgrowth competition 

assay, while KO of the essential gene KIF11 showed the opposite result (Fig. 4D). 

However, the competitive advantage did not appear to be based on differences in 

survival since no changes in Annexin-V staining were observed following normal 

culturing or in co-cultures, where apoptosis remained <2% regardless of the 

experimental condition (data not shown). 
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Using cell proliferation assays (Supplemental Fig. S6C-E), we found that each 

KO significantly increased cell accumulation in 48-96 hour outgrowth assays. 

Importantly, this effect was independent of cell density, as KO cells showed increased 

proliferation at both low and high densities (Supplemental Fig. S6C). Further, the 

doubling time significantly decreased for each KO, shortening from ~50 hours to 30-40 

hours (Fig. 4E), similar to two GSC isolates used in the same assay. 

   

A transient G0-like state is skipped after KO of CREBBP, NF2, PTPN14, TAOK1, or 

TP53 in NSCs 

 In order to further investigate changes in cell cycle dynamics, we utilized the 

fluorescent ubiquitination cell cycle indicator (FUCCI) system (Sakaue-Sawano et al. 

2008). In normal culture conditions, ~63% of U5-NSCs cells are in G0/G1, ~15% are in 

S/G2/M, and the remainder are transitioning between these phases (Fig. 5A).  KO of 

CREBBP, NF2, PTPN14, TAOK1, or TP53, however, caused a dramatic loss of the 

G0/G1 populations (reducing the frequency to 47-38%) and significantly lowered the 

ratio of G0/G1 to S/G2/M cells (~2-4 fold lower) (Fig. 5B,C). 

 We also measured transit time through G0/G1 and S/G2/M in individual NSCs 

using time-lapse microscopy (Figs. 5D & S7).  For G0/G1 transit times, we found that 

our control hNSCs exhibit variable G1 transit times and a wide distribution of G0/G1 

transit times in control hNSCs, from fast (4.3 hrs), medium, and extremely slow (95 hrs) 

(averaging 32.5 hrs) (Fig. 5D).  By contrast, S/G2/M transit times were much more 

uniform (~12.4 hrs) (Fig. 5D).  KO of CREBBP, NF2, PTPN14, TAOK1, or TP53 

dramatically collapsed the distributed G0/G1 transit times leading to a highly significant, 
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faster transit of <11.7 hrs in KOs (p<0.0001) (Figs. 5D & S7).  However, S/G2/M transit 

times were not significantly affected.  GSCs also exhibit collapsed and faster G0/G1 

transit times, similar to the KO hNSCs (Fig. 5D). 

 To further examine possible changes in G0/G1 dynamics, we examined 

molecular features associated with G0, G1, and late G1 (Supplemental Fig. S9A), 

including Rb phosphorylation, CDK2 activity, and p27 accumulation. In mammals, cell 

cycle ingress is governed by progressive phosphorylation of Rb by CDK4/6 and CDK2 

as cells pass through the restriction point in late G1, causing de-repression of E2F 

transcription factors (Weinberg 1995; Zetterberg et al. 1995; Sherr and McCormick 

2002a; Sherr and McCormick 2002b; Yao et al. 2008).  We observed that KO of 

CREBBP, NF2, PTPN14, TAOK1, or TP53 in U5-NSCs results in a pronounced 

increase in the intensity of phosphorylated Rb during G1, consistent with an enrichment 

for a late G1 state. 

CDK2 activity correlates with cell cycle progression; if CDK2 activity levels are 

low during G1, cells enter G0 (Spencer et al. 2013).  If CDK2 activity is intermediate 

(relative to its peak during G2/M), they progress past the restriction point and into S-

phase (Spencer et al. 2013).  Using the steady-state cytoplasmic to nuclear ratios of a 

DNA helicase B (DHB)-mVenus reporter as a readout of CDK2 activity (Hahn et al. 

2009; Spencer et al. 2013), we observed significant increases in CDK2 activity in each 

KO in G0/G1 cells (Supplemental Figs. S9C,D).  This was true either by total intensity or 

the proportion of cells with a reporter ratio greater than 1, a ratio which corresponds with 

the entrance to S-phase observed in mammary epithelium (Spencer et al. 2013).  
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Control cells averaged ~8% of G1 cells with >1 cytoplasmic:nuclear reporter ratios 

CDK2 activity, while KOs were 20-27% (Supplemental Fig. S9D). 

Another hallmark of G0/quiescence is the stabilization of p27, a G1 cyclin-

dependent kinase (CDK) inhibitor required for maintaining G0 (Coats et al. 1996; Susaki 

et al. 2007).  Consistent with loss of transient G0 cells, we observed that KO of 

CREBBP, NF2, PTPN14, TAOK1, or TP53 resulted in significant reduction of p27 levels 

in proliferating NSCs (Supplemental Fig. S9E,F). 

 Collectively, the above data demonstrate that KO of proliferation-limiting genes in 

U5-NSCs causes a cell autonomous decrease in cell cycle length with less distributed 

and faster G0/G1 transit times, an increase in the molecular features associated with 

late G1, and a reduction in the molecular features associated with G0 (Supplemental 

Fig. S9G). These data are consistent with KOs either blocking entry of cells into a 

transient G0 state or causing failure to maintain cells in G0. Therefore, we call these 

G0-skip genes. 

 

G0-skip mutants reprogram G0/G1, diminishing Neural G0 gene expression  

To further characterize G0-skip genes, we performed gene expression analysis 

of KO cells specifically in G0/G1 phase.  To this end, RNA-seq was performed on 

mCherry-CDT1+ sorted NSCs after KO, which captures both G0 and G1 subpopulations 

(Fig. 6A and Supplemental Table S6). In control NSCs, as expected, comparing G0/G1 

sorted cells to unsorted populations revealed down-regulation of genes involved in cell 

cycle regulation, DNA replication, and mitosis (Fig. 6A & Supplemental Table S7).  

Overall comparisons between the KOs and NTC U5-NSCs showed that KO of NF2 and 
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PTPN14 were most similar by unsupervised clustering as well as having the most 

overall gene changes, while TAOK1 KO was most similar to the controls (Fig. 6B).  

However, comparison of the overlapping up- or down-regulated genes showed that 

TAOK1 KO up-regulated genes were more similar to NF2 and PTPN14 KO than the 

other KOs (Supplemental Fig. S10A). 

We next evaluated whether KO of the G0 skip genes were consistent with 

previously published and suggested roles in p53 pathway (for TP53 and CREBBP) (Ito 

et al. 2001; Fischer 2017) or the Hippo-YAP pathway signaling (for NF2, PTPN14, and 

TAOK1) (Zhang et al. 2010; Lin et al. 2013; Wilson et al. 2014; Plouffe et al. 2016). 

Evaluating p53 target genes, we found that only TP53 KO significantly down-regulated 

the expression of high confidence p53 targets including: BAX, CDKN1A/p21, RRM2B, 

and ZMAT3 (Fischer 2017) (Figs. 6C & S10B). However, none of the other KOs showed 

inhibition of p53 targets or p53 itself, strongly suggesting that the other G0-skip genes 

are not acting through p53-dependent transcriptional activity. 

Evaluation of 55 conserved HIPPO-YAP pathway transcriptional targets 

(Cordenonsi et al. 2011) revealed that each KO, except for CREBBP, showed 

significant enrichment for YAP targets with NF2 KO having increased expression of the 

largest subset (Figs. 6C, S10C-E). Interestingly, NF2 KO activated one subset of YAP 

targets important in the biological process of extracellular matrix (ECM) organization, 

while TAOK1 KO activated a different subset of YAP targets important in nuclear 

chromosome segregation, such as during mitosis (Supplemental Fig. S10C-E). NF2 and 

PTPN14 KO shared the most overlap in YAP target activation, including targets 

considered universal Hippo-YAP targets (e.g., CTGF, CYR61, and SERPINE1). 
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We next used our hNSC cell cycle classifier to determine whether genes 

associated with each phase change in G0/G1 populations in after KO of CREBBP, NF2, 

PTPN14, TAOK1, or TP53.  We observed that Neural G0 were significantly down 

regulated in each KO (Fig. 6D & S11A), which included those expressed in quiescent 

NSCs and others cited above with key roles in neural development (e.g., CLU, HOPX, 

ID3, PTN, PTPRZ1, SOX2, and SOX4) (Supplemental Fig. S11B,C).   By contrast, 

genes from late G1 cluster, including, for example, CCND1 and MYC, were significantly 

up regulated in each KO, with TAOK1 KO cells additionally showing increase in cell 

cycle phases as well (Fig. 6E & S12A).   Examination of G0/G1 sorted populations from 

two GSC isolates (0131-mesenchymal and 0827-proneural) showed similar trends, with 

suppression of Neural G0 and G1 signature and higher expression of S and G2/M 

genes (Supplemental Fig. S13). 

For NSC KOs, we also performed a more in-depth analysis of transcriptional 

changes of cell cycle genes and novel gene sets (Supplemental Fig. S14). These 

included cell cycle genes that could be causal for reprograming G0/G1 dynamics, such 

as up-regulation of G1 cyclins, E2F1/2 or down-regulation of CDKN1A/p21 and 

CDKN1B/p27 (Supplemental Fig. S14A). We also noted that for both NF2 and PTPN14 

KO there was up-regulation of various Hippo-YAP pathway members, including LATS2, 

TEAD1, and YAP1, suggesting a possible feedback regulation of the pathway unique to 

NF2 and PTPN14 (Supplemental Fig. S14B)  TAOK1 KO, in contrast to other KOs, 

strongly up-regulated >40 key regulators of mitosis (e.g., AURKA, BUB1, CCNB1/2, 

CDK1, KIF11, etc.), suggesting it may act to inhibit their precocious activation in G0/G1 

or expression after completion of mitosis (Supplemental Fig. S14C).   
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CREBBP KO, uniquely among KOs, caused up-regulation of key nuclear-

encoded mitochondrial genes, including members of the NADH dehydrogenase 

complex, the succinate dehydrogenase complex, and mitochondrial DNA polymerase 

(Supplemental Fig. S14D), which are direct transcriptional regulatory targets of nuclear 

respiratory factors 1 and 2 (NRF1 and NRF2) (Kelly and Scarpulla 2004). 

Finally, to more directly confirm reprograming of G0/G1 population in a G0-skip 

mutant, we performed scRNA-seq on G0/G1-sorted hNSCs with KO of TAOK1 

(Supplemental Fig. S15). The steady-state percentage of Neural G0 and, to a lesser 

degree, G1 cells in TAOK1 KO cells is significantly diminished from 21.3% to 10.3% and 

58.9% to 53.3%, respectively (Supplemental Fig. S15B,C). However, the late G1 

population is increased (from 3.0% to 9.8%) as are cells in the M/early G1 (from 7.8% to 

15.3%) and G2/M phase (from 1.5% to 4.4%).  The expansion of the M/early G1 in 

TAOK1 KO cells could explain the increase in mitotic genes observed in the bulk G0/G1 

RNA-seq data in TAOK1 KO cells (Supplemental Fig. S15C), suggesting that TAOK1 

helps attenuate expression of mitotic genes from the previous cell cycle.   

These results strongly suggest that NSC G0-skip mutants lose a significant 

fraction of Neural G0 subpopulation and reprogram G1 transcription networks to 

promote entry into G1-S.  

 

DISCUSSION  

Here, we discovered a G0-like cellular state, Neural G0, in hNSCs and other 

neuroepithelial-derived cell types, which occurs between cytokinesis and G1 and is 

enriched for neurodevelomental gene expression.  Evidence for Neural G0 is as follows.  
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First, we observed from scRNA-seq analysis of cultured hNSCs a G0/G1 subpopulation 

distinct from other G1 and cell cycle populations (Fig. 1 and S1), which differentially 

expresses genes associated with adult quiescent NSCs, non-dividing OPCs, and neural 

differentiation (Figs. 1E, 2A-D). Second, by applying our hNSC-derived cell cycle 

classifier to scRNA-seq data from human corticogenesis, we found that Neural G0 is a 

prominent subpopulation among non-dividing stem and progenitors, including OPCs 

and radial glial cells, which was diminished and replaced by G1 cells during 

differentiation (Fig. 2E).  Third, analyzing scRNA-seq from human gliomas also revealed 

that Neural G0 is a significant non-dividing cell population, which is diminished as 

tumors become more aggressive and replaced by G1 cells (Table I; Fig. 3).  Fourth, we 

observe that Neural G0 can be ablated in vitro through genetic manipulation of at least 5 

genes in NSCs in vitro (CREBBP, NF2, PTPN14, TAOK1, or TP53), which causes 

dramatically faster G0/G1 transit times and loss of Neural G0-associated gene 

expression (Figs. 5 & 6).  Finally, Neural G0 appears to be restricted to neuroepithelial-

derived cells, as we failed to find evidence for Neural G0 subpopulations in numerous 

non-neuroeptithelial cell populations (e.g., CD45+ cells).  Taken together, these results 

demonstrate that Neural G0 is a bona fide cell cycle state in vitro and in vivo, which is 

rate-limiting for the cell cycle. 

However, Neural G0 is not a singular state. That is, Neural G0 cells found in 

different cell types (i.e., astrocytes, OPCs, RGs, and glioma cells) are not identical or 

interchangeable.  Instead, each Neural G0 cell is enriched for a portion, but not all, of 

the 158 genes present in the hNSCs' Neural G0, which helps distinguish it from G1 and 

other cell cycle phases. The happenstance use of cultured, multipotent hNSCs for our 
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cell classifier likely enabled casting a wide net for identifying other neural populations in 

G0-like states. Thereby, G0-like states for non-neuroectoderm cells might be identified 

using an alternative set of developmental markers (e.g., Mesoderm G0).  

 If Neural G0 represents a neural-specific cell cycle phase, what is its purpose?  

One possibility is that Neural G0 provides a compartment for maintenance of 

neurodevelopmental potential. That is, it allows time for reinforcing transcriptional and 

epigenetic programs associated with neurodevelopment gene expression.  Consistent 

with this possibility, Neural G0 genes are up regulated in quiescent NSCs in vivo and 

diminished during neural differentiation programs during corticogenesis (Fig. 2E) or by 

KO of G0-skip genes in CDT+ NSCs (Fig. 6).  Moreover, multiple Neural G0 genes are 

significantly enriched in NSCs and glioma Neural G0 cells which are known to help 

maintain "stemness".  For example, HEY1 and TTYH1 (e.g., Fig S3), are both are key 

players in Notch signaling pathway in NSCs and help maintain the NSC identity in vivo 

(Kim et al. 2018; Than-Trong et al. 2018).  PTN and its target PTPRZ1 also may help 

promote stemness, signaling, and proliferation of neural progenitors and glioma tumor 

cells (Fujikawa et al. 2016; Zhang et al. 2016; Fujikawa et al. 2017).  Moreover, FABP7 

expression and activity have been associated with lipid metabolism in slow-cycling GBM 

tumor cells, proposed to be responsible for tumor recurrence (Hoang-Minh et al. 2018).  

 However, other functions for Neural G0 could include: time for repair of DNA 

lesions that persist from the previous cell cycle (Arora et al. 2017; Barr et al. 2017), 

responses to oxidative stress and mitochondrial maintenance (Mohrin and Chen 2016), 

regulation of structural RNAs (e.g., rRNAs, tRNAs)(Roche et al. 2017), as well as 
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immune-modulatory functions (e.g., neuroinflammation).  Future studies will be required 

to address these and other possibilities. 

Our results have important implications for glioma biology.  First, our classifier 

provides a method for identifying G0-like subpopulations in glioma tumor cells. While 

gliomas were among the first tumors dissected by scRNA-seq (Patel et al. 2014) and 

also for in depth genomic analysis (e.g., TGCA) (TCGA 2008), scRNA-seq analysis and 

pathological examination of tumor samples has been up till now unable to distinguish 

G0 from G1 cells. In general, G0/G1 populations are defined by the absence of S, G2, 

and M markers (e.g., Ki67 expression). However, our analysis suggests that these 

populations can be readily identified. 

Second, our analysis of 59 gliomas provides unique insight into their biology.  We 

show that the proportion of Neural G0 cells in tumors correlates well with grade, patient 

survival, and proliferative state of gliomas. Outside of providing an important companion 

diagnostic to existing methods of grading gliomas, this analysis raises questions about 

the cellular composition of gliomas and the root causes of progression and responses to 

therapy.  For example, our analysis of lower grade gliomas (LGG) suggests that they 

are effectively "trapped" in Neural G0, where >93% of grade II cells categorized in 

Neural G0 (Table I).  LGGs produce longer survival times (~7yrs) but are nonetheless 

uniformly fatal after progression to high grade glioma (Claus et al. 2015). This would be 

consistent with Neural G0 acting as a barrier to progression in low grade gliomas, which 

is overcome in secondary gliomas.  Because the majority of LGGs (~80%) are 

IDH1/2mut (Yan et al. 2009)(cBioportal), it is conceivable that IDH1/2mut could promote 
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Neural G0 (e.g., perhaps through an epigenetic mechanism (Xu et al. 2011)) and slower 

initial tumor growth.  

For grade IV glioma (GBM), some studies have attempted to divide tumors up 

into fast dividing and slow-dividing cells, for example, based on DNA barcoding 

experiments which demonstrate that the slower dividing populations have higher tumor 

initiation potential and more robust responses to treatment regimens (Bao et al. 2006; 

Lan et al. 2017). These slower-dividing cells have been hypothesized to have stem cell-

like characteristics that enable regeneration of tumor subpopulations and engender 

higher capacity for repair of DNA damage (Chen et al. 2012a).  It is tempting to 

speculate that these slower dividing cells are in fact the Neural G0 cells we identify in 

GBM samples. In this scenario, Neural G0 populations would be enriched for "stem-like" 

cells required for tumor maintenance and regrowth of higher grade tumors, while G1 

populations would include their "differentiated" progeny. 

 Lastly, we found that KO of five genes, CREBBP, NF2, PTPN14, TAOK1, or 

TP53, all known or candidate tumor suppressors associated with the Hippo/Yap and 

p53 pathways, diminish Neural G0 in vitro in hNSCs.  Each KO reduced molecular 

features associated with G0-like states (e.g., hypophosphorylated Rb, low CDK2 

activity, and p27 stabilization) and dramatically reduced G0/G1 transit times, speeding 

up the cell cycle.  Moreover, bulk RNA-seq of G0/G1 populations as well as scRNA-seq 

of KOs confirmed reduction of Neural G0 genes expression and characteristic and gene 

expression changes associated with the p53 transcriptional network, Hippo-YAP 

targets, cell cycle gene regulation, and many novel targets and pathways, including 

those downstream of CREBBP and TAOK1. 
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 Collectively, our data reveals Neural G0 is cellular state shared by multiple neural 

epithelial-derived stem and progenitor cell types, which likely plays key roles in 

neurogenesis and glioma tumor development and recurrence.  

 
 
METHODS  

Cell culture 

NSC and GSC lines were grown in NeuroCult NS-A basal medium (StemCell 

Technologies) supplemented with B27 (Thermo Fisher), N2 (2x stock in Advanced 

DMEM/F-12 (Fisher) with 25 µg/mL insulin (Sigma), 100 µg/mL apo-Transferrin (Sigma), 

6 ng/mL progesterone (Sigma), 16 µg/mL putrescine (Sigma), 30 nM sodium selenite 

(Sigma), and 50 µg/mL bovine serum albumin (Sigma), and EGF and FGF-2 (20ng/mL 

each) (Peprotech) on laminin (Sigma or Trevigen) coated polystyrene plates and 

passaged according to previously published protocols(Pollard et al. 2009). Cells were 

detached from their plates using Accutase (Thermo Fisher). 293T (ATCC) cells were 

grown in 10% FBS/DMEM (Invitrogen). 

 

CRISPR-Cas9 screening 

For large-scale transduction, NSC cells were plated into T225 flasks at an appropriate 

density such that each replicate had 250-500-fold representation, using the two 

previously published CRISPR-Cas9 libraries(Shalem et al. 2014; Doench et al. 2016) 

(Addgene) or a custom synthesized sgRNA library (Twist Biosciences) targeting 1377 

genes derived from(Toledo et al. 2015). NSCs and GSCs were infected at MOI <1 for all 

cell lines. Cells were infected for 48 hours followed by selection with 1-2 µg/mL 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2019. ; https://doi.org/10.1101/446344doi: bioRxiv preprint 

https://doi.org/10.1101/446344
http://creativecommons.org/licenses/by/4.0/


 26 

(depending on the target cell type) of puromycin for 3 days.  Post-selection, a portion of 

cells were harvested as Day 0 time point. The remaining cells were then passaged in 

T225 flasks maintaining 250-500-fold representation and cultured for an additional 21-

23 days (~10-15 cell doublings) or 10 days. Genomic DNA was extracted using QiaAmp 

Blood Purification Mini or Midi kit (Qiagen).  A two-step PCR procedure was performed 

to amplify sgRNA sequence.  For the first PCR, DNA was extracted from the number of 

cells equivalent to 250-500-fold representation (screen-dependent) for each replicate (2-

4 replicates) and the entire sample was amplified for the guide region. For each sample, 

~100 separate PCR reactions (library and representation dependent) were performed 

with 1 μg genomic DNA in each reaction using Herculase II Fusion DNA Polymerase 

(Agilent) or Phusion High-Fidelity DNA Polymerase (Thermo Fisher). Afterwards, a set 

of second PCRs was performed to add on Illumina adaptors and to barcode samples, 

using 10-20ul of the product from the first PCR.  Primer sequences are in Supplemental 

Table 8.  We used a primer set to include both a variable 1-6 bp sequence to increase 

library complexity and 6 bp Illumina barcodes for multiplexing of different biological 

samples. The whole amplification was carried out with 12 cycles for the first PCR and 

18 cycles for the second PCR to maintain linear amplification.  Resulting amplicons from 

the second PCR were column purified using Monarch PCR & DNA Cleanup Kit (New 

England Biolabs; NEB) to remove genomic DNA and first round PCR product. Purified 

products were quantified (Qubit 2.0 Fluorometer; Fisher), mixed, and sequenced using 

HiSeq 2500 (Illumina).  Bowtie was used to align the sequenced reads to the 

guides(Langmead et al. 2009). The R/Bioconductor package edgeR was used to assess 

changes across various groups(Robinson et al. 2010). For the tiling library, only guides 
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that mapped once to the genome and are within the gene’s coding region were 

considered for further analysis. 

Raw and mapped data files are available at the Gene Expression Omnibus database 

(GSE117004). 

 

Individual lentiviral-sgRNA assembly for validation 

For retests, individual or pooled sgRNA were cloned into lentiCRISPR v2 plasmid.  

Briefly, DNA oligonucleotides were synthesized with sgRNA sequence flanked by the 

following: 

5’: tatatcttGTGGAAAGGACGAAACACCg 

3’: gttttagagctaGAAAtagcaagttaa 

PCR was then performed with the ArrayF and ArrayR primers (Supplemental Table 8). 

The PCR product was gel purified using the ZymoClean Gel DNA recovery kit (Zymo 

Research).  Gibson Assembly Master Mix (NEB) was used to clone the PCR product 

into lentiCRISPR v2 plasmid(Sanjana et al. 2014).  The ligated plasmid was then 

transformed into Stellar Competent cells (Clontech), and streaked onto LB agar plates.  

The resulting clones were grown up and sequence verified (GeneWiz).  

 

Lentiviral production 

For virus production, lentiCRISPR v2 plasmids(Sanjana et al. 2014) were transfected 

using polyethylenimine (Polysciences) into 293T cells along with psPAX and pMD2.G 

packaging plasmids (Addgene) to produce lentivirus. To produce lentivirus for the 

whole-genome CRISPR-Cas9 libraries, 25x150mm plates of 293T cells were seeded at 
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~15 million cells per plate.  Fresh media was added 24 hours later and viral supernatant 

harvested 24 and 48 hours after that. For screening, virus was concentrated 1000x 

following ultracentrifugation at 6800xg for 20 hours. For validation, lentivirus was used 

unconcentrated at an MOI<1. 

 

Viability and Proliferation Assays 

Cells were infected with lentiviral gene pools containing 3-4 sgRNAs per gene or with 

lentivirus containing a single sgRNA to the respective gene (Supplemental Table 8). 

Initial cell density was carefully controlled for in each experiment by counting cells using 

a Nucleocounter NC-100 (Eppendorf) and cells were always grown in subconfluent 

conditions.  For viability assays, following selection, cells were outgrown for 7-10 days, 

then harvested, counted, and plated in triplicate onto 96-well plates coated with laminin  

in dilution format starting at 1,000 cells to 3,750 cells per well (cell density depended on 

cell isolate and duration of assay). Cells were fed with fresh medium every 3-4 days.  

After 7-12 days under standard growth conditions, cell proliferative rates were 

measured using Alamar blue reagent according to manufacturer’s instructions 

(Invitrogen). For analysis, sgRNA-containing samples were normalized to their 

respective nontargeting control (NTC) samples.  For doubling time assays, cells infected 

with individual sgRNAs or NTC were routinely cultured (split every 3-5 days), and 

counted at each split (Nucleocounter NC-100; Eppendorf). The overall growth of each 

well containing an individual sgRNA was calculated and compared to the NTC well. 

Comparisons between multiple experiments were normalized. 
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Competition experiment 

NSCs were infected with lentiviral gene pools containing 3-4 sgRNAs per gene, 

puromycin selected, and mixed with NSCs infected with lentiviruses containing 

turboGFP at an approximate 1:9 ratio, respectively. Cultures were outgrown for 23 to 31 

days and flow analysis (FACS Canto; Becton Dickinson) was conducted every 7-8 days 

for GFP expression.  Flow analysis data was analyzed using FlowJo software.  For each 

sample, the GFP- population for each time point was normalized to its respective Day 0 

GFP- population and the NTC (competition index). 

 

Time-lapse microscopy 

NSCs were infected with lentiviral gene pools containing 3-4 sgRNAs per gene or with 

individual sgRNAs, puromycin selected, outgrown for >13 days, and plated onto 96-well 

plates or 24-well plates.  Plates were then inserted into the IncuCyte ZOOM (Essen 

BioScience), which was in an incubator set to normal culture conditions (37° and 5% 

CO2), and analyzed with its software.  For the cell confluency experiment, phase images 

were taken every hour for 72 hours. For the FUCCI cell cycle experiment, images were 

taken every 10-15 minutes for 72-120 hours. Cell cycle transit time for G0/G1 (mCherry-

CDT1(aa30-120)+) and S/G2/M (mAG-Geminin(aa1-110)+) was manually scored by 

three different observers in actively dividing cells (those that could be followed from 

mitosis to mitosis). Each KO was scored by at least 2 independent observers and 

consistency between scorers was checked through shared analysis of a standard. 

 

Western blotting 
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Cells were harvested, washed with PBS, and either immediately lysed or snap-frozen 

and stored at -80˚C until lysis.  Cells were lysed with modified RIPA buffer (150mM 

NaCl, 50mM Tris, pH 7.5, 2mM MgCl2, 0.1% SDS, 2mM DDT, 0.4% deoxycholate, 0.4% 

Triton X-100, 1X complete protease inhibitor cocktail (complete Mini EDTA-free, Roche) 

and 1U/µL benzonase nuclease (Novagen) at room temperature for 15 minutes.  Cell 

lysates were quantified using Pierce 660nm protein assay reagent and proteins were 

loaded onto SDS-PAGE for western blot. The Trans-Blot Turbo transfer system (Bio-

Rad) was used according to the manufacturer’s instructions.  See Supplemental Table 8 

for antibodies and dilutions. An Odyssey infrared imaging system was used to visualize 

blots (LI-COR) following the manufacturer’s instructions.  

 

Flow Cytometry 

FUCCI constructs (RIKEN, gift from Dr. Atsushi Miyawaki) were transduced into wild-

type U5-NSCs and sorted sequentially for the presence of mCherry-CDT1(aa30-120) 

and S/G2/M mAG-Geminin(aa1-110) on an FACSAria II (BD). Normal growth was 

verified post-sorting and then the FUCCI U5-NSCs were transduced with individual 

sgRNA-Cas9 (4 independent guides per gene) and selected with 1 µg/mL puromycin. 

Cells were grown out for 21 days with splitting every 3-4 days and maintaining 

equivalent densities. Cells were counted (Nucleocounter NC-100; Eppendorf) and 

plated 3 days before analysis on an LSR II (BD). Controls cultured in the same 

conditions included cells transduced with guides against 3 non-growth limiting genes, 

including GNAS1, and showed equivalent FUCCI ratios. Results were analyzed using 

FlowJo software. 
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Immunofluorescence and CDK2 Activity 

U5-NSCs were plated on acid-washed glass coverslips (phosphorylated Rb and CDK2 

activity) or 96-well imaging plates (differentiation; Corning). They were fixed overnight in 

2% paraformaldehyde (USB) at 4˚C, washed with DPBS (with calcium and magnesium) 

(Fisher), and blocked and permeabilized with 5% goat serum (Millipore), 1% bovine 

serum albumin (Sigma), and 0.1% triton X-100 (Fisher) in DPBS for 45 minutes at room 

temperature. Samples were stained with primary antibody diluted in 5% goat serum in 

DPBS overnight at 4˚C, washed with DPBS, and stained with secondary antibody 

(diluted 1:200 in 5% goat serum in DPBS) at 37˚C for 45 minutes. See Supplemental 

Table 8 for antibodies and dilutions. Samples were washed with DPBS, dyed with 100 

ng/mL 4’,6-diamidino-2-phenylindole (DAPI) diluted in DPBS for 20 minutes at room 

temperature, and washed with DPBS.  Coverslips were preserved using ProLong Gold 

Antifade Mountant (Fisher) and inverted on glass slides. For differentiation, images 

were acquired on Nikon Eclipse Ti using NIS-Elements software (Nikon).  

 

Phosphorylated Rb and CDK2 Activity Image Analysis 

Cells were transduced with mVenus-DNA helicase B (DHB) (amino acids 994–

1087)(Hahn et al. 2009) (gift from Dr. Sabrina Spencer) and the mCherry-CDT1 FUCCI 

and sorted on a FACSAria II flow cytometer (BD). Cells were outgrown to ensure normal 

growth and then transduced with individual sgRNA-Cas9. After >10 days outgrowth, 

cells were counted and plated, grown for 2 days, and stained for phosphorylated Rb and 

imaged on a TISSUEFAXS microscope (TissueGnostics), 54 fields per KO or NTC. 
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Cells were analyzed using CellProfiler (Kamentsky et al. 2011). G0/G1 nuclei were 

identified by the presence of the CDT1 FUCCI reporter (25-120 pixel diameter, 

Global/Otsu thresholding, and distinguishing clumped objects by shape). CDK2 activity 

was defined by the cytoplasmic to nuclear ratio of the mVenus-DHB reporter, with the 

cytoplasmic intensity of the DHB reporter defined as the upper quartile intensity of a 2-

pixel ring around the CDT1-defined nucleus due to the irregular shape of the U5-NSCs.  

 

p27 reporter 

The p27 reporter was constructed after (Oki et al., 2014), using a p27 allele that harbors 

two amino acid substitutions (F62A and F64A) that block binding to Cyclin/CDK 

complexes but do not interfere with its cell cycle-dependent proteolysis.  This p27K-

allele was fused to mVenus to create p27K--mVenus.  To this end, the p27 allele and 

mVenus were synthesized as gBlocks (IDT) and cloned via Gibson assembly (NEB) into 

a modified pGIPz lentiviral expression vector (Open Biosystems).  Lentivirally 

transduced cells were puromycin selected and validated using mCherry-CDT1 FUCCI 

and HDAC inhibitor treatment (48 hours of 5 µM apicidin (Cayman)) to induce G0/G1 

arrest using FACS (LSR II from Becton Dickinson and FlowJo software).   

 

Bulk RNA sequencing expression analysis 

For G0/G1 NSC, cells singly positive for mCherry-CDT1 FUCCI were sorted on a 

FACSAria II (BD) directly into TRIzol reagent (Life Technologies). For differentiating 

cells, cells were sparsely plated and cultured with growth medium without EGF or FGF-

2 for 7 days before being lysed with TRIzol reagent. For both, 2 replicates per condition 
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were harvested. RNA was extracted using Direct-zol RNA MiniPrep Plus (Zymo 

Research).  Total RNA integrity was checked and quantified using a 2200 TapeStation 

(Agilent). RNA-seq libraries were prepared using the KAPA Stranded mRNA-seq Kit 

with mRNA capture beads (KAPA Biosystems) according to the manufacturer’s 

guidelines. Library size distributions were validated using a 2200 TapeStation 

(Agilent).  Additional library QC, blending of pooled indexed libraries, and cluster 

optimization was performed using the Qubit 2.0 Fluorometer (Fisher).  RNA-seq libraries 

were pooled and sequencing was performed using an Illumina HiSeq 2500 in Rapid 

Run mode employing a paired-end, 50 base read length (PE50) sequencing strategy.  

 

Bulk RNA sequencing data analysis 

RNA-seq reads were aligned to the UCSC mm10 assembly using Tophat2 (Trapnell et 

al. 2012) and counted for gene associations against the UCSC genes database with 

HTSeq (Anders et al. 2015). Differential expression analysis was performed using 

R/Bioconductor package edgeR (Robinson et al. 2010). Samples for G0/G1 bulk RNA-

seq were collected in two batches, so batch-dependent genes were removed before 

analysis (inter-batch p-value<0.01 by Wilcoxon-Mann-Whitney). To ensure that no 

genes were eliminated that may be regulated specific to a particular knockout, genes 

with a CPM variability greater than 2-fold compared to the internal batch control and an 

expression greater than 1 CPM in at least one sample were retained. Differentially 

expressed genes (DEG) at the transcription level were found using a statistical cutoff of 

FDR < 0.05 and visualized using R/Bioconductor package pheatmap. Kolmogorov-

Smirnov test were conducted in R using the function ks.test from stats package. Raw 
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sequencing data and read count per gene data can be accessed at the NCBI Gene 

Expression Omnibus (GSE117004).   

 
Gene ontology analysis  

Gene Ontology (GO)-based enrichment tests were implemented using GOseq (v 

1.23.0)(Young et al. 2010), which corrects for gene length bias. Gene lists were also 

analyzed for pathways using the R/Bioconductor package ReactomePA (v 1.15.4)(Yu 

and He 2016). Analysis used all genes either up or down-regulated with a FDR<0.05 

compared to NTC. GO terms with adjusted P-values<0.05 were considered significantly 

enriched. Venn diagrams were generated on 

http://bioinformatics.psb.ugent.be/webtools/Venn/. 

 

Single cell RNA-sequencing Sample Preparation 

Single cell RNA-sequencing was performed using 10x Genomics' reagents, instruments, 

and protocols. Single cell RNA-Seq libraries were prepared using GemCode Single Cell 

3’ Gel Bead and Library Kit. FUCCI U5-NSCs (both with and without lentiviral TAOK1 

KO, >14 days outgrowth) were harvested and half the cells were sorted using the 

FACSAria II (BD) for cells singly positive for mCherry-CDT1 FUCCI. Sorted cells were 

kept on ice before suspensions were loaded on a GemCode Single Cell Instrument to 

generate single cell gel beads in emulsion (GEMs) (target recovery: 2500 cells).  GEM-

reverse transcription (RT) was performed in a C1000 Touch Thermal cycler (Bio-Rad) 

and after RT, GEMs were broken and the single strand cDNA cleaned up with 

DynaBeads (Fisher) and SPRIselect Reagent Kit (Beckman Coulter). cDNA was 

amplified, cleaned up and sheared to ~200bp using a Covaris M220 system (Covaris). 
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Indexed sequencing libraries were constructed using the reagents in the GemCode 

Single Cell 3’ Library Kit, following these steps: 1) end repair and A-tailing; 2) adapter 

ligation; 3) post-ligation cleanup with SPRIselect; and 4) sample index PCR and 

cleanup. Library size distributions were validated  for quality control using a 2200 

TapeStation (Agilent). The barcoded sequencing libraries were quantified by a Qubit 2.0 

Fluorometer (Fisher) and sequenced using HiSeq 2500 (Illumina) with the following read 

lengths: 98bp Read1, 14bp I7 Index, 8bp I5 Index and 10bp Read2. Sequencing data 

can be accessed at the NCBI Gene Expression Omnibus (GSE117004).  

 

 scRNA-seq Analysis 

CellRanger (10x Genomics) was used to align, quantify, and provide basic quality 

control metrics for the scRNA-seq data. Using Seurat version 2.2.1, the scRNA-seq 

data from wild-type U5 cells and sgTAOK1 knock-out cells were merged and analyzed. 

Both scRNA-seq data were loaded as counts, normalized, and then scaled while taking 

into account both percent of mitochondria and the number of UMIs per cell as 

covariates. The union of the top 1,000 most variant genes from each dataset were used 

in canonical correlation analysis (CCA) to merge the two datasets via alignment of their 

subspace. We then identified clusters of cells using a shared nearest neighbor (SNN) 

modularity optimization-based clustering algorithm. Marker genes for each cluster were 

identified as differentially expressed genes, and the determination of 8 clusters was 

based on the discovery of strong markers for 6 of the eight clusters (both the G1 and 

low RNA clusters did not have significantly upregulated marker genes). Identity of 

clusters was determined primarily through the expression of cyclins and cyclin-
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dependent kinases, and secondarily through the function of other marker genes. A tSNE 

visualization was generated with a perplexity setting of 23. 

 Network analysis was used to determine the trajectories of cells through the cell 

cycle. First, the cluster centroids (mean expression for each gene across all the cells 

from a cluster) were used to compute the Canberra distance measure. In a cycle like a 

cell cycle, it is expected that on average there would be 2 edges between each cell 

cycle state. A distance cutoff of 240 led to 2.28 connections per cluster was used to turn 

the distance matrix into a network (Futreal et al. 2004).  

 Network analysis of the clusters was performed using the STRING database 

(Szklarczyk et al. 2017) and visualized using Cytoscape software. Transcription factors 

were identified according to TFcheckpoint (Chawla et al. 2013).  

 

Hypergeometric Analysis and Representation Factor Calculations 

Hypergeometric tests (Johnson et al. 2005) were carried out in R using function phyper 

(stat.ethz.ch/R-manual/R-devel/library/stats/html/Hypergeometric.html). Gene lists were 

pre-filtered for the shared genes in each analysis to get the total gene population size, 

(i.e., 2739 genes for single cell analysis that had greater than 3 counts per cell in at 

least 10 cells and removing batch-effected genes for G0/G1 bulk RNA-sequencing).  

 Representation factors were calculated according to (Kim et al. 2001). The 

representation factor shows whether genes from one list (list A) are enriched in another 

list (list B), assuming that genes behave independently.  

 

Statistics and Reproducibility 
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Data are presented as the mean or median ± standard deviation (SD) or standard error 

of the mean (SEM), as specified in the figure legends. Statistics were performed using 

GraphPad Prism 7.0 or analysis-specific functions in R.  All statistical tests are specified 

in figure legends. The number of independent experiments is indicated in the figures, 

figure legends, or Methods. 
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Fig. 1: Gene Expression Map of Cell Cycle and Candidate G0 and G1 

Subpopulations using Single Cell RNA-seq in hNSCs 

A, Overview of the selection scheme used for isolating G0/G1-enriched and bulk 

cultured hNSCs for scRNA-seq. 

B, Transcriptional clusters of unsorted U5-NSCs derived through an unbiased shared 

nearest neighbor (SNN) modularity and visualized through a t-Distributed Stochastic 

Neighbor Embedding (tSNE) comparison.  

C, Proportion of cells found in each cluster for the WT U5-NSCs. 

D, Network derived from Canberra distance measures shows connections between the 

cell cycle clusters. 

E, Heat map of the relative expression (row-wise z-score) for the top 10 non-redundant 

genes for each prominent cluster in WT U5-NSCs and gene ontology analysis of the up-

regulated genes defining each cluster. BP = biological process; R = Reactome; MF = 

molecular function; CC = cellular component; n/a = non-applicable (gene list derived in 

this paper). Featured gene ontology groups selected based on significance (p-adj.<.01), 

representation, and/or non-redundancy. Full cluster-defining gene list is in Supplemental 

Table S1 and full gene ontology and reactome analysis is in Supplemental Table S2. 
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Fig. 2: Comparison of hNSC cell cycle classifier with other neuroepithelial-derived 

cell populations. 

A, Model of the cell cycle of cultured hNSCs based on single cell transcriptomes. 

B, Overlap of the Neural G0 cluster with single cell transcriptomic profiles of quiescent 

neural stem cells (qNSCs) and activated (aNSC) NSCs/neural progenitors from adult 

rodent hippocampal niche(Llorens-Bobadilla et al. 2015; Artegiani et al. 2017). 

Significance assessed using hypergeometric analysis. OPC = oligodendrocyte 

progenitor. 

C, D, Significance of overlap of the neurogenesis cell subpopulation-defining genes in 

the early neurogenic lineage from two murine single cell RNA-sequencing studies 

compared to single cell cluster definitions (up-regulated genes) from unsorted U5-

hNSCs grown in culture. Clusters presented in order of increasing activation with 

quiescent neural stem cells on the left and proliferating progenitors on the right. 

Significance assessed though hypergeometric analysis. RF = representation factor.  

E, Application of the hNSCs cell cycle classifier to scRNA-seq data from the developing 

human telencephalon (from (Nowakowski et al. 2017)).  RG = radial glia, div = dividing. 

All cell type abbreviations are available in Table S3. Red asterisks indicate cells derived 

from the excitatory cortical neuron lineage, which originate from radial glial cells.  Blue 

asterisks indicate cells from inhibitory cortical interneuron lineage.  
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Fig. 3: Neural G0 gene expression in 641 human gliomas.  

A, Relative Neural G0 eigengene expression between grade II, III, and IV tumors 

(TCGA; LGG and GBM). An eigengene represents the common variation across each 

patient tumor for the Neural G0 genes, i.e. first principal component corrected for 

direction if necessary. All pairwise Student's t-tests comparisons had p-values <0.003. 

B, Comparison of cell cycle and Neural G0 eigengene expression in each glioma. Each 

tumor is colored by its grade (green = II, red = III, and purple = IV). 

C, Differences in the distribution of tumor grade between tumors with top 25% and 

bottom 25% of Neural G0 eigengene expression. 

D, Kaplan Meier survival plot of tumors with top 25% and bottom 25% of Neural G0 

eigengene expression of Neural G0 genes.  A Fleming-Harrington survival p-value was 

used to determine significance.  
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Fig. 4: CRISPR-Cas9 gene knockout screens to identify candidate Neural G0 

regulating genes in hNSCs. 

A, Schematic of CRISPR-Cas9 knockout screen design. 

B, Enrichment of guide DNA following 21 days outgrowth post-selection using GECKO 

library (n=2). Colored guides are enriched (z-score>2; green) or depleted (z-score<2; 

red) with false discovery rate (FDR<0.05). Statistical source data provided in 

Supplementary Table S6. 

C, Overlap of screen hits between the four CRISPR-Cas9 screens. For all screens, hits 

were defined as genes having multiple guides with FDR<.01 and z-score >2. For 

Brunello library, there were additional requirements of at least one guide with z-score >3 

and at least 20 reads at Day 0. CREBBP, NF2, PTPN14, TAOK1, and TP53 were 

defined as hits in every screen.  

D, Flow analysis of U5-NSC:GFP with LV-sgRNA:Cas9 retest pools competing with 

wild-type (WT) U5-NSC over a 23 day outgrowth with ~10% initial proportion (n=3). 

Competition index refers to the relative increase in %GFP+ compared with initial 

proportion and mean sgNTC. 

E, Doubling time measurements (>14 days post-selection) in U5-NSCs or GSCs after 3-

5 days outgrowth. n³3, as noted in bars for each guide.  The data are presented as the 

mean ± standard deviation (SD). Significance was assessed using a two-tailed student’s 

t-test. 
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Fig. 5: Reduction of G0/G1 Transit Time in NSCs after KO of CREBBP, NF2, 

PTPN14, TAOK1, or TP53 

A, Representative contour plot of flow cytometry for Fucci (Sakaue-Sawano et al. 2008) 

in U5-NSCs after targeting of a non-growth limiting (NGL) control gene, GNAS1. Values 

are similar to wild-type and NTC U5-NSCs under similar culture conditions. The system 

relies on cell-cycle dependent degradation of fluorophores using the degrons from 

CDT1 (amino acids (aa) 30-120) (present in G0 and G1; mCherry) and geminin (aa1-

110) (present in S, G2, and M; monomeric Azami-Green (mAG)). 

B, Representative contour maps of flow cytometry for Fucci following loss of NF2, 

PTPN14, TAOK1, CREBBP, and TP53. 

C, Ratio of G0/G1 (mCherry-CDT1+) to S/G2/M (mAG-Geminin+) from (A) and (B). 

Values are mean from 4 individually-tested LV guides per gene at 21 days post-

selection. 

D, G0/G1 and S/G2/M transit times using time-lapse microscopy and Fucci. Differences 

in G0/G1 are statistically significant with p<0.0001 for targeted U5-NSCs and p=0.0006 

for GSC-131 compared to NTC.  

The data are presented as the mean ± SD. Significance was assessed using a two-

tailed student’s t-test (C) or Mann-Whitney test (D). 
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Fig. 6: Transcriptional Reprogramming of G0/G1 Following Loss of G0-skip Genes 

A, Schematic of G0/G1 sorting for gene expression analysis: mCherry-CDT1+ U5-NSCs 

(red box), heat maps of the significantly altered genes (FDR<0.05) between WT 

unsorted U5-NSCs and NTC and WT G0/G1 U5-NSCs, and gene ontology analysis 

(Young et al. 2010) of some of the top biological processes down-regulated and 

reactome groups (Yu and He 2016) up-regulated in the G0/G1 sorted cells.  Full list in 

Supplementary Tables S10 & S11. 

B, Dendrogram of unbiased hierarchical clustering of gene expression from G0/G1-

sorted U5-NSCs with the number genes up (green) and down (red) regulated 

(FDR<0.05) in each KO compared to NTC. Complete results in Supplementary Table 

S10. 

C, Heat map of log2FC compared to NTC for key genes changed in G0/G1 in following 

loss of TP53, NF2/PTPN14, TAOK1, and/or CREBBP, including genes from TP53 

targets, YAP targets, the cell cycle, Hippo signaling, and electron transport genes. 

White dots indicate FDR<0.05. 

D-E, Significance of overlap of the down (D) and up (E) regulated genes from bulk RNA-

sequencing of G0/G1 sorted cells with the single cell cluster definitions (up-regulated 

genes). Significance assessed though hypergeometric analysis. RF = representation 

factor. 
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