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Abstract

In depth knowledge of the cellular states associated with normal and disease tissue
homeostasis is critical for understanding disease etiology and uncovering therapeutic
opportunities. Here, we used single cell RNA-seq to survey the cellular states of
neuroepithelial-derived cells in cortical and neurogenic regions of developing and adult
mammalian brain to compare with 38,474 cells obtained from 59 human gliomas, as
well as pluripotent ESCs, endothelial cells, CD45+ immune cells, and non-CNS cancers.
This analysis suggests that a significant portion of neuroepithelial-derived stem and
progenitor cells and glioma cells that are not in G2/M or S phase exist in two states: G1
or Neural GO, defined by expression of certain neuro-developmental genes. In gliomas,
higher overall Neural GO gene expression is significantly associated with less
aggressive gliomas, IDH1 mutation, and extended patient survival, while also anti-
correlated with cell cycle gene expression. Knockout of genes associated with the
Hippo/Yap and p53 pathways diminished Neural GO in vitro, resulting in faster G1
transit, down regulation of quiescence-associated markers, and loss of Neural GO gene
expression. Thus, Neural GO is a dynamic cellular state required for indolent cell cycles
in neural-specified stem and progenitors poised for cell division. As a result, Neural GO

occupancy may be an important determinant of glioma tumor progression.

Key words: neural stem cells, glioma, glioblastoma, GO, Quiescence, scRNA-seq,
Hippo-YAP pathway, p53, CREBBP, NF2, PTPN14, TAOK1, TP53, CRISPR-Cas9,

functional genomics.
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INTRODUCTION (63,000 including spaces)

Most developing and adult tissues are hierarchically organized such that tissue
growth and maintenance is driven by the production of lineage-committed cells from
populations of tissue-resident stem and progenitor cells (Reya et al. 2001). In adult
tissues, stem cells are typically found in a quiescent or reversible GO state and must re-
enter the cell cycle and divide to promote lineage commitment (Doetsch 2003; Obernier
et al. 2018). Their progeny, e.g., amplifying progenitors, further balance lineage
commitment with proliferation to produce adequate numbers of lineage committed and
terminally differentiated cells to keep pace with demand (Lin 2008). While much is
known about specific regulatory events governing organismal development and tissue
homeostasis, our understanding the cellular states underlying normal remains limited.
This includes lack of a detailed picture of how cells enter, maintain, and exit quiescent-
like states.

Moreover, many of the underlying mechanisms of human disease can be
attributed, in one way or another, to disturbances in stem and progenitor cell
compartments. For example, many cancers develop in maligned developmental
hierarchies in which cancer stem-like cells give rise to proliferative progeny that
comprise the bulk of the cancer (Dirks 2008). A more in-depth understanding of both
normal and disease-associated cellular states could provide critical insight into disease
etiology and new therapeutic possibilities.

Among the model systems for stem cell biology are neural stem cells (NSCs)
derived from the developing mammalian telencephalon (Davis and Temple 1994; Johe

et al. 1996). NSCs can be cultured ex vivo yet recapitulate the expansion, specification,
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and maturation of each of the major cell types in the mammalian central nervous system
(Pollard et al. 2006; Sun et al. 2008). We have previously used hNSCs as non-
transformed, tissue-appropriate controls for functional genomic screens in patient
derived glioblastoma stem-like cells (GSCs) (Danovi et al. 2013; Ding et al. 2013;
Hubert et al. 2013; Toledo et al. 2014; Toledo et al. 2015; Ding et al. 2017). We have
observed that when GSCs and NSCs are grown in the same ex vivo conditions, NCSs
have longer doubling times of 40-50hrs compared to 30-40hrs for GSCs isolates. This
discrepancy arises from differences in GO/G1 transit times. In NSCs, but not GSCs,
GO0/G1 transit times are dynamic and variable (e.g., ranging from 4-95hrs). However,
passage through the rest of the cell cycle is short and uniform, similar to GSCs (e.g.,
~12 hrs for progression through S, G2, and M (see below)). This suggests that NSCs
adopt different cellular states during G0/G1, compared to GSCs, perhaps representing a
fundamental difference in their underlying cell cycle regulation.

To further investigate NSC-specific GO/G1 states, below, we employed single-cell
RNA sequencing (scRNA-seq) analysis to create a gene expression-based phase
classifier for their cell cycle (e.g. G1, G2, M, etc.). We then applied this classifier across
neuroepithelial and non-neuroepithelial-derived cells and cancers. We then performed
functional genomic screens to identify modulators of a novel GO-like state observed in
neuroepithelial-derived cells, Neural GO. We find that Neural GO is a dynamic state that
is rate-limiting for the cell cycle, which arises during neural specification and persists

through fetal and adult neurogenesis and gliomagenesis.

RESULTS
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Identification of cell cycle phases and candidate GO and G1 subpopulations in
human NSCs

ScRNA-seq has recently emerged as a powerful tool to resolve heterogeneous
populations of cells as well as cell cycle phases (Macosko et al. 2015; Zheng et al.
2017). To identify cellular gene expression states and specifically GO/G1
subpopulations in hNSCs, we performed scRNA-seq on U5-NSCs cultured cells
(Bressan et al. 2017a) either using bulk cultured cells or subpopulations of
phenotypically defined GO/G1 cells (Fig. 1A). To accomplish the latter, we sorted for a
Cdt1*NSC populations using a stably expressed mCherry gene fused to the
ubiquitylation domains of human Cdt1 (Sakaue-Sawano et al. 2008). When cells are in
G1 or GO, mCherry-Cdt is stable and readily observable via FACS. However, when
cells are in S, G2, or M the fusion protein is potently destabilized the SCF-Skp2
ubiquitin ligase complex. The fidelity of the reporter was confirmed by treatment of cells
with HDAC inhibitors which arrest cells in GO/G1.

In total, we performed scRNA-seq on 5973 unsorted and 4562 mCherry-Cdt1*
sorted cells from actively dividing U5-NSC cultures (Methods). For the unsorted
populations, we then performed unbiased cluster analysis and identified seven
prominent clusters each defined by a set of transcriptionally enriched and depleted
genes (Fig. 1B; Supplemental Fig. S1A; Supplemental Table S1). We categorized the
clusters by examining: cell cycle gene expression hallmarks, gene set enrichment,
cluster network analysis, scRNA-seq from G0/G1 sorted populations (Figs. 1B-E). We
defined the clusters as follows: Neural GO (17.3% of cells), G1 (36.7%), Late G1 (6.4%),

S (7.2%), S/G2 (10.9%), G2/M (10.6%), and M/early G1 (8.4%) (Fig. 1B). Importantly,
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the GO/G1 subpopulations were enriched in the Cdt+ scRNA-seq populations, while late
G1, S, S/G2, and G2/M were all significantly depleted (Supplemental Fig. S1A).

The S, S/G2, and G2/M clusters were enriched for genes whose expression
peaks in these phases (Cyclebase (Santos et al. 2015)) including CCNEZ2 in S-phase
and CCNB1/2 in G2/M (Figs. 1E & F) and produced tightly interconnected networks of
key cell cycle genes (Supplemental Fig. S2). This enrichment included the DNA
replication genes PCNA, MCM3/4/5/6/7/10, GMNN, and RPA2/3 for S-phase and the
mitosis genes CDC20, AURKA, and BUB1 during G2/M (Figs. 1E & F).

There were four definable GO/G1 clusters: G1, M/Early G1, Late G1 and Neural
GO0. Despite being the largest cluster, the "G1" cluster had the smallest number of
enriched genes, which included IGFR1 signaling genes (e.g., IGFBP3 and IGFBPS),
and significant reductions of genes expressed in S, S/G2, and G2/M clusters (Figs. 1E
& S1C). The M/early G1 cluster showed low but significant residual expression of M
phase genes and enrichment for splicing factor genes, which could represent residual
mRNA from G2/M (Figs. 1E, S1C, & S2). The Late G1 cluster was defined by genes
important in G1 cell cycle progression, including CCND1 and MYC, and enriched for
cholesterol biosynthesis, cell adhesion genes, and the subset of YAP target genes,
such as CTGF and SERPINE1 (Figs. 1E, S1B, S1C, & S2).

Finally, the Neural GO cluster also showed significant repression of 246 genes
peaking in other phases of cell cycle, including suppression of CCND1 expression,
which is an indicator of cell cycle exit (Sherr 1995) and other cell cycle regulated genes
such as AURKB, CCNB1/2, CDC20, CDK1, and MKI67 (Figs. 1E & S1C). Moreover, the

158 up regulated genes defining this cluster were key genes with roles in neural
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development, including glial cell differentiation, neurogenesis, neuron differentiation,
and oligodendrocyte differentiation (Figs. 1E, S1C, & S2; Supplemental Table SS).
These genes included transcription factors with known roles in balancing stem cell
identity and differentiation, including BEX1, HEY1, HOPX, OLIG2, SOX2, SOX4, and
SOX9 (Sakamoto et al. 2003; Bergsland et al. 2006; Scott et al. 2010) (Figs. 1E & S2).
Network analysis of mean cluster gene expression resolved the trajectories of
cells through the seven clusters into a pattern that fits well with cell cycle progression
and predicted transit through G0/G1 (Figs. 1D & S2). Cells from the candidate GO
population were linked solely to the G1 cluster, which is consistent with GO as a cell
cycle exit from G1. The linkages between the clusters are not directed and thus the flow
cells may pass in either direction. However, the model is consistent with results below in
which we show, that cultured hNSCs enter GO-like state of variable length between M
and S-phase. Importantly, this model of cell cycle progression was further validated by
unique molecular identify (UMI) counts across clusters, where the counts start low in
Neural GO and peak in G2/M (Supplemental Fig. S1D). UMI counts can be viewed as
an approximation of total mMRNA expression in scRNA-seq data. Total mMRNA
expression during the cell cycle exactly follows this pattern, peaking with expression of

Cyclin B and other mitotic genes.

Neural GO is enriched in neuroepithelial-derived stem and progenitor cell

populations.
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Comparison of our scRNA-seq cell clusters to gene expression profiles derived
from in vivo neurogenesis samples supported our definition of the Neural GO cluster. In
two independent scRNA-seq analyses of adult rodent neurogenesis (Llorens-Bobadilla
et al. 2015; Artegiani et al. 2017), the Neural GO cluster showed most significant
enrichment for genes defining quiescent neural stem cells and oligodendrocyte
progenitor cells (Figs. 2A-D). These genes include, among others: CLU, HOPX, ID3,
OLIG2, PTN, SYT11, S100B, SOX9, PTPRZ1, and TTYH1 (Fig. 2B). Interestingly, for
our S, S/G2, G2/M, and M/early G1 cluster genes, we found significant overlap with the
activated NSCs of Llorens-Bobadilla et al. (2015) and the NPCs of Artegiani et al.
(2017), which are no longer quiescent (Figs. 2C and 2D).

Moreover, analysis of scRNA-seq of mouse embryonic stem cells (MESCs),
representing blastocyst-stage pluripotent cells (i.e., pre-neuroepithelial cell), lacked cells
from the Neural GO subpopulation. For this analysis, we used scRNA-seq data from
mESCs that were live sorted for DNA content via Hoechst staining into G1, S-phase,
and G2/M populations (Buettner et al. 2015). We found that our G1 category captured
83% of their Hoechst G1 cells, our G2/M category captured 89% of their G2/M, and their
S-phase cells were split between G1, S, and G2/M, which is consistent with their
Hoechst S-phase gate overlapping portions of these populations (Supplemental Fig.
S3A). However, the mESCs failed to classify into our Neural GO, Late G1, or M/early G1
categories. This is consistent with the shorter G1 of ESCs compared to somatic cells
(Coronado et al. 2013).

To further investigate how Neural GO might arise during mammalian

development, we applied our hNSC cell cycle classifier to the developing human
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telencephalon. We analyzed scRNA-seq data from microdissected developing human
cerebral cortex samples (PCW 5.85-19), which was previously used to analyze the
spatial and temporal developmental trajectories for 11 cell types: astrocytes,
oligodendrocyte precursor cells (OPC), microglia, radial glia (RG), intermediate
progenitor cells, excitatory cortical neurons, ventral medial ganglionic eminence
progenitors, inhibitory cortical interneurons, choroid plexus cells, mural cells, and
endothelial cells (Nowakowski et al. 2017). We classified each single cell using our cell
cycle categories and cross tabulated with the 11 cell types (Fig. 2E).

We found that the Neural GO category was significantly enriched in non-dividing
astrocytes, OPCs, and RGs (ventral, outer, and truncated), which had a Neural GO
population ranging from 85-72% (Fig. 2E; Supplemental Table S3). The signature
diminishes in differentiating cells where G1 becomes the dominant category
classification (Fig. 2E): excitatory cortical neuron lineage which originates from RGs,
and the inhibitory cortical interneuron lineage which originate from MGE-RGs. We also
observe a small but significant M/Early G1 subpopulation among differentiating cells,
suggesting that it likely captures lineage committed cells that have just completed
mitosis. Further, populations characterized as dividing (i.e., "div", "div1", or "div2") are
highly enriched with S/G2 and/or G2/M classified cells, and Neural GO and G1 are
absent or greatly diminished. Further, microglia, which arise from the embryonic
mesoderm rather than neuroectoderm (Ginhoux and Garel 2018), do not classify as
harboring Neural GO cells, but instead are classified as G1 and low-RNA. As we show

later the myeloid cells from the tumor core and periphery (Darmanis et al. 2017) classify
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as low-RNA which is consistent given that microglia are macrophage like cells that
perform an immune function in the brain.

These results support the notion that Neural GO is a bona fide cellular state
associated with non-dividing neural epithelial-derived stem and progenitors as well also
astrocytes, which may have progenitor-like properties during development, during fetal

and adult neurogenesis.

Neural GO is a prominent subpopulation in human glioma cells.

Gliomas are tumors of the central nervous system which have a neuroepithelial
cell of origin (Chen et al. 2012b; Zong et al. 2015). They contain subpopulations of cells
with stem cells-like characteristics that include expression of markers associated with
NSCs, OPCs, and astrocytes, which may that may contribute to progression, therapy
resistance, and tumor recurrence (Dirks 2008; Zong et al. 2015). Recently, scRNA-seq
has been applied to human gliomas of different grades and subtypes to reveal
intratumoral cellular heterogeneity (Patel et al. 2014; Tirosh et al. 2016; Darmanis et al.
2017; Venteicher et al. 2017; Filbin et al. 2018; Neftel et al. 2019). To address whether
Neural GO also exists in gliomas, we analyzed scRNA-seq data available for 59 gliomas
from these studies (Table 1; Supplemental Table S3).

These tumors represent a broad range of gliomas, including: grades I, lll, and
IV, IDH1wt and mutant tumors, as well as glioma developmental subclasses (i.e.,
classical, mesenchymal, and proneural) and tumor types (i.e., astrocytoma,
oligodendroglioma, GBM, and pediatric diffuse midline gliomas). Our analysis revealed

that Neural GO and G1 are the two most prominent tumor subpopulations regardless of
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stage (Table 1; Table S3). The Neural GO and G1 represent 95.5% and 2.6%,
respectively, of stage Il oligodendrogliomas, 76% and 16.4% of stage Il astrocytomas,
31-39% and 31-56% of stage IV GBMs, and 73.4% and 16.5% of diffuse midline
gliomas (Table 1). Developmental subtype analysis of each tumor cell further revealed
that Neural GO subpopulations showed strong bias against appearing in mesenchymal
cell subpopulations in stage Ill and IV cancers. Overall the prevalence of the Neural GO
state diminished as stage increased regardless of subtype (Table 1; Table S3).

Examining non-tumor brain cells types associated with stromal tissue available
from Darminis et al., showed that Neural GO populations could only be found in neuro-
epithelial derived cells such as astrocytes, OPCs, and oligodendrocytes, whereas
CD45+ cells and endothelial cells were negative. This was further evidenced by
analysis of scRNA-seq data from 21 primary and metastatic head and neck cancers
(Puram et al. 2017), where we observe that 80.3% of these tumor cells appeared in G1
but none contain a Neural GO classified cell (Table 1).

Examination of scRNA-seq data for specific Neural GO genes expressed in
glioma revealed that 121 Neural GO genes were significantly enriched in at least one
data set (Supplemental Table S4). 12 genes, in particular, showed the stronges
intersection between data sets (Supplemental Table S4; Supplemental Fig S3B),
including EDNRB, FABP7, GPM6A, GMP6B, HEY1, PRDX1, PTPRZ1, SCD5, and
TTYH1. Interestingly, these genes are preferentially expressed in GBM and LGGs
compared to other cancers (Supplemental Fig. S4). Many have known or proposed
roles in maintaining NSC/GSC "stemness" (EDNRB (Liu et al. 2011), PTPRZ1

(Fujikawa et al. 2017), TTYH1 (Kim et al. 2018; Wu et al. 2019)), slow cycling GBM cells
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(FABP7 (Hoang-Minh et al. 2018)), possible neurogenic niche functions (e.g., GMP6B
(Choi et al. 2013)), and neuroinflammation (PRDX1 (Kim et al. 2013) and PTN
(Fernandez-Calle et al. 2017)).

We next determined whether the Neural GO gene expression would be
associated with bulk gene expression, genetic drivers, and survival data from 681
gliomas available in The Cancer Genome Atlas (TCGA; including both GBM and LGG).
First, we calculated eigengenes for Neural GO genes and cell cycle genes (GO BP term
Mitotic Cell Cycle = GO:0000278) that could be associated with the genetic drivers and
patient survival. An eigengene represents the common variation across each patient
tumor, i.e. first principal component corrected for direction if necessary. Figures 3A and
3B show that the Neural GO eigengene is significantly down regulated as tumor grade
increases. Neural GO eigengene expression is significantly anti-correlated (R = -0.58,
p-value < 2.2 x 10°'%) with cell cycle eigengene expression. Moreover, there is a striking
anticorrelation between the Neural GO and cell cycle eigengenes across tumors,
suggesting that the states are mutually exclusive (Fig. 3B).

To examine survival differences, we compared survival of patients with tumors
exhibiting higher (top 25%) or lower (bottom 25%) Neural GO gene expression (Figs. 3C
and 3D). This analysis revealed a highly significant trend that tumors with higher Neural
GO expression survive on average 4.6 years longer than low Neural GO expressing
tumors (Fig. 3D). This difference likely driven by grade enrichment, where high Neural
GO tumors are exclusively grade Il and Ill in the TCGA data set, while low tumors are
mainly grade IV (Fig 3C), which have much worse survival (Stupp et al. 2005; Claus et

al. 2015). Consistent with this notion, Neural GO signature is also significantly
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associated with IDH1/2 mutation (Supplemental Fig. S5), which are primarily found in
lower grade glioma (Yan et al. 2009; Claus et al. 2015). However, in a multivariate
survival model the Neural GO eigengene remains a significant predictor of overall
survival even with the inclusion of the covariates (tumor grade and IDH1/2 mutation
status), suggesting that the Neural GO cell state is associated with patient survival
variance independently from the common glioma survival associated covariates (tumor
grade, IDH1/2).

Taken together, these results demonstrate that Neural GO cells represent
significant subpopulations in gliomas, which diminish by grade and are associated with
better clinical outcomes. Thus, the results are consistent with a model whereby higher
steady-state Neural GO populations removes cells from the pool of cycling cells leading

to slower tumor growth.

CRISPR-Cas9 gene knockout screens identify regulators of Neural GO in vitro.

We next wished to investigate whether the Neural GO state causes slower cell
cycles. To this end, we performed CRISPR-Cas9 screens in hNSCs for genes that
when mutated caused a diminished Neural GO. We reasoned that if Neural GO
ingress/egress is rate limiting for NSC cell cycles, diminishing Neural GO would cause
NSCs to cycle faster. If true, a simple pooled LV-sgRNA library outgrowth screen in
normal culture conditions should reveal overrepresented sgRNAs that cause diminished
Neural GO (Fig. 4A).

We performed four separate CRISPR-Cas9 outgrowth screens, using three

separate libraries, two different time points (10 days versus ~3 weeks), and two different
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human NSC isolates, CB660 and U5 (Pollard et al. 2006; Bressan et al. 2017b) (Figs.
4A, 4B, & S5; Supplemental Table S5). These screens revealed dozens of candidate
screen hits significantly enriched at the end of outgrowth period (Fig 4B). These
sgRNAs targeted genes found mutated across 35 different cancer (Fig. 5C) and
validated tumor suppressor genes (Futreal et al. 2004) (Fig. 5D). Examining the
intersection of all of our screen data revealed five reproducible and robust proliferation-
enhancing screen hits: CREBBP, NF2, PTPN14, TAOK1, and TP53 (Fig. 4C & S5B),
which we chose to validate further.

To control for off-target effects, sgRNA tiling screens for each of these genes
were performed, whereby each gene was targeted with 138 to 466 sgRNAs tiled across
most exons in NSCs during another outgrowth period and again resolved by sgRNA-
seq. Atleast 70% of tiling sgRNAs for each candidate proliferation limiting gene were
significantly enriched in NSCs (Supplemental Fig. S6A; Supplemental Table S5),
whereas an sgRNA tiled gene essential for DNA replication, MCM2, showed significant
depletion over time (Fig. 2a) and control, non-targeting (NTC) sgRNAs were largely
inert. KO of target genes was confirmed by Western blots (Supplemental Fig. S6B).

KO of CREBBP, NF2, PTPN14, TAOK1, and TP53 in hNSCs caused a
significant proliferative advantage over control cells in a 23-day outgrowth competition
assay, while KO of the essential gene KIF11 showed the opposite result (Fig. 4D).
However, the competitive advantage did not appear to be based on differences in
survival since no changes in Annexin-V staining were observed following normal
culturing or in co-cultures, where apoptosis remained <2% regardless of the

experimental condition (data not shown).
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Using cell proliferation assays (Supplemental Fig. S6C-E), we found that each
KO significantly increased cell accumulation in 48-96 hour outgrowth assays.
Importantly, this effect was independent of cell density, as KO cells showed increased
proliferation at both low and high densities (Supplemental Fig. S6C). Further, the
doubling time significantly decreased for each KO, shortening from ~50 hours to 30-40

hours (Fig. 4E), similar to two GSC isolates used in the same assay.

A transient G0-like state is skipped after KO of CREBBP, NF2, PTPN14, TAOK1, or
TP53 in NSCs

In order to further investigate changes in cell cycle dynamics, we utilized the
fluorescent ubiquitination cell cycle indicator (FUCCI) system (Sakaue-Sawano et al.
2008). In normal culture conditions, ~63% of U5-NSCs cells are in G0/G1, ~15% are in
S/G2/M, and the remainder are transitioning between these phases (Fig. 5A). KO of
CREBBP, NF2, PTPN14, TAOK1, or TP53, however, caused a dramatic loss of the
GO0/G1 populations (reducing the frequency to 47-38%) and significantly lowered the
ratio of GO/G1 to S/G2/M cells (~2-4 fold lower) (Fig. 5B,C).

We also measured transit time through G0/G1 and S/G2/M in individual NSCs
using time-lapse microscopy (Figs. 5D & S7). For G0/G1 transit times, we found that
our control hANSCs exhibit variable G1 transit times and a wide distribution of GO/G1
transit times in control hNSCs, from fast (4.3 hrs), medium, and extremely slow (95 hrs)
(averaging 32.5 hrs) (Fig. 5D). By contrast, S/G2/M transit times were much more
uniform (~12.4 hrs) (Fig. 5D). KO of CREBBP, NF2, PTPN14, TAOK1, or TP53

dramatically collapsed the distributed G0/G1 transit times leading to a highly significant,

15


https://doi.org/10.1101/446344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/446344; this version posted November 9, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

faster transit of <11.7 hrs in KOs (p<0.0001) (Figs. 5D & S7). However, S/G2/M transit
times were not significantly affected. GSCs also exhibit collapsed and faster GO/G1
transit times, similar to the KO hNSCs (Fig. 5D).

To further examine possible changes in GO/G1 dynamics, we examined
molecular features associated with GO, G1, and late G1 (Supplemental Fig. S9A),
including Rb phosphorylation, CDK2 activity, and p27 accumulation. In mammals, cell
cycle ingress is governed by progressive phosphorylation of Rb by CDK4/6 and CDK2
as cells pass through the restriction point in late G1, causing de-repression of E2F
transcription factors (Weinberg 1995; Zetterberg et al. 1995; Sherr and McCormick
2002a; Sherr and McCormick 2002b; Yao et al. 2008). We observed that KO of
CREBBP, NF2, PTPN14, TAOK1, or TP53 in U5-NSCs results in a pronounced
increase in the intensity of phosphorylated Rb during G1, consistent with an enrichment
for a late G1 state.

CDK2 activity correlates with cell cycle progression; if CDK2 activity levels are
low during G1, cells enter GO (Spencer et al. 2013). If CDK2 activity is intermediate
(relative to its peak during G2/M), they progress past the restriction point and into S-
phase (Spencer et al. 2013). Using the steady-state cytoplasmic to nuclear ratios of a
DNA helicase B (DHB)-mVenus reporter as a readout of CDK2 activity (Hahn et al.
2009; Spencer et al. 2013), we observed significant increases in CDK2 activity in each
KO in GO/G1 cells (Supplemental Figs. S9C,D). This was true either by total intensity or
the proportion of cells with a reporter ratio greater than 1, a ratio which corresponds with

the entrance to S-phase observed in mammary epithelium (Spencer et al. 2013).
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Control cells averaged ~8% of G1 cells with >1 cytoplasmic:nuclear reporter ratios
CDK2 activity, while KOs were 20-27% (Supplemental Fig. S9D).

Another hallmark of GO/quiescence is the stabilization of p27, a G1 cyclin-
dependent kinase (CDK) inhibitor required for maintaining GO (Coats et al. 1996; Susaki
et al. 2007). Consistent with loss of transient GO cells, we observed that KO of
CREBBP, NF2, PTPN14, TAOK1, or TP53 resulted in significant reduction of p27 levels
in proliferating NSCs (Supplemental Fig. S9E,F).

Collectively, the above data demonstrate that KO of proliferation-limiting genes in
U5-NSCs causes a cell autonomous decrease in cell cycle length with less distributed
and faster GO/G1 transit times, an increase in the molecular features associated with
late G1, and a reduction in the molecular features associated with GO (Supplemental
Fig. S9G). These data are consistent with KOs either blocking entry of cells into a
transient GO state or causing failure to maintain cells in GO. Therefore, we call these

GO-skip genes.

GO0-skip mutants reprogram G0/G1, diminishing Neural GO gene expression

To further characterize GO-skip genes, we performed gene expression analysis
of KO cells specifically in GO/G1 phase. To this end, RNA-seq was performed on
mCherry-CDT1+ sorted NSCs after KO, which captures both GO and G1 subpopulations
(Fig. 6A and Supplemental Table S6). In control NSCs, as expected, comparing G0/G1
sorted cells to unsorted populations revealed down-regulation of genes involved in cell
cycle regulation, DNA replication, and mitosis (Fig. 6A & Supplemental Table S7).

Overall comparisons between the KOs and NTC U5-NSCs showed that KO of NF2 and
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PTPN14 were most similar by unsupervised clustering as well as having the most
overall gene changes, while TAOK7 KO was most similar to the controls (Fig. 6B).
However, comparison of the overlapping up- or down-regulated genes showed that
TAOK1 KO up-regulated genes were more similar to NF2 and PTPN14 KO than the
other KOs (Supplemental Fig. S10A).

We next evaluated whether KO of the GO skip genes were consistent with
previously published and suggested roles in p53 pathway (for TP53 and CREBBP) (Ito
et al. 2001; Fischer 2017) or the Hippo-YAP pathway signaling (for NF2, PTPN14, and
TAOKT) (Zhang et al. 2010; Lin et al. 2013; Wilson et al. 2014; Plouffe et al. 2016).
Evaluating p53 target genes, we found that only TP53 KO significantly down-regulated
the expression of high confidence p53 targets including: BAX, CDKN1A/p21, RRM2B,
and ZMAT3 (Fischer 2017) (Figs. 6C & S10B). However, none of the other KOs showed
inhibition of p53 targets or p53 itself, strongly suggesting that the other GO-skip genes
are not acting through p53-dependent transcriptional activity.

Evaluation of 55 conserved HIPPO-YAP pathway transcriptional targets
(Cordenonsi et al. 2011) revealed that each KO, except for CREBBP, showed
significant enrichment for YAP targets with NF2 KO having increased expression of the
largest subset (Figs. 6C, S10C-E). Interestingly, NF2 KO activated one subset of YAP
targets important in the biological process of extracellular matrix (ECM) organization,
while TAOK1 KO activated a different subset of YAP targets important in nuclear
chromosome segregation, such as during mitosis (Supplemental Fig. S10C-E). NF2 and
PTPN14 KO shared the most overlap in YAP target activation, including targets

considered universal Hippo-YAP targets (e.g., CTGF, CYR61, and SERPINET).
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We next used our hNSC cell cycle classifier to determine whether genes
associated with each phase change in GO/G1 populations in after KO of CREBBP, NF2,
PTPN14, TAOK1, or TP53. We observed that Neural GO were significantly down
regulated in each KO (Fig. 6D & S11A), which included those expressed in quiescent
NSCs and others cited above with key roles in neural development (e.g., CLU, HOPX,
ID3, PTN, PTPRZ1, SOX2, and SOX4) (Supplemental Fig. S11B,C). By contrast,
genes from late G1 cluster, including, for example, CCND1 and MYC, were significantly
up regulated in each KO, with TAOK7 KO cells additionally showing increase in cell
cycle phases as well (Fig. 6E & S12A). Examination of GO/G1 sorted populations from
two GSC isolates (0131-mesenchymal and 0827-proneural) showed similar trends, with
suppression of Neural GO and G1 signature and higher expression of S and G2/M
genes (Supplemental Fig. S13).

For NSC KOs, we also performed a more in-depth analysis of transcriptional
changes of cell cycle genes and novel gene sets (Supplemental Fig. S14). These
included cell cycle genes that could be causal for reprograming G0/G1 dynamics, such
as up-regulation of G1 cyclins, E2F1/2 or down-regulation of CDKN1A/p21 and
CDKN1B/p27 (Supplemental Fig. S14A). We also noted that for both NF2 and PTPN14
KO there was up-regulation of various Hippo-YAP pathway members, including LATS2,
TEAD1, and YAP1, suggesting a possible feedback regulation of the pathway unique to
NF2 and PTPN14 (Supplemental Fig. S14B) TAOK1 KO, in contrast to other KOs,
strongly up-regulated >40 key regulators of mitosis (e.g., AURKA, BUB1, CCNB1/2,
CDK1, KIF11, efc.), suggesting it may act to inhibit their precocious activation in G0/G1

or expression after completion of mitosis (Supplemental Fig. S14C).
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CREBBP KO, uniquely among KOs, caused up-regulation of key nuclear-
encoded mitochondrial genes, including members of the NADH dehydrogenase
complex, the succinate dehydrogenase complex, and mitochondrial DNA polymerase
(Supplemental Fig. S14D), which are direct transcriptional regulatory targets of nuclear
respiratory factors 1 and 2 (NRF1 and NRF2) (Kelly and Scarpulla 2004).

Finally, to more directly confirm reprograming of GO/G1 population in a GO-skip
mutant, we performed scRNA-seq on G0/G1-sorted hNSCs with KO of TAOK1
(Supplemental Fig. S15). The steady-state percentage of Neural GO and, to a lesser
degree, G1 cells in TAOK1 KO cells is significantly diminished from 21.3% to 10.3% and
58.9% to 53.3%, respectively (Supplemental Fig. S15B,C). However, the late G1
population is increased (from 3.0% to 9.8%) as are cells in the M/early G1 (from 7.8% to
15.3%) and G2/M phase (from 1.5% to 4.4%). The expansion of the M/early G1 in
TAOK1 KO cells could explain the increase in mitotic genes observed in the bulk GO/G1
RNA-seq data in TAOK7 KO cells (Supplemental Fig. S15C), suggesting that TAOK1
helps attenuate expression of mitotic genes from the previous cell cycle.

These results strongly suggest that NSC GO-skip mutants lose a significant
fraction of Neural GO subpopulation and reprogram G1 transcription networks to

promote entry into G1-S.

DISCUSSION
Here, we discovered a GO-like cellular state, Neural GO, in hNSCs and other
neuroepithelial-derived cell types, which occurs between cytokinesis and G1 and is

enriched for neurodevelomental gene expression. Evidence for Neural GO is as follows.
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First, we observed from scRNA-seq analysis of cultured hNSCs a G0/G1 subpopulation
distinct from other G1 and cell cycle populations (Fig. 1 and S1), which differentially
expresses genes associated with adult quiescent NSCs, non-dividing OPCs, and neural
differentiation (Figs. 1E, 2A-D). Second, by applying our hNSC-derived cell cycle
classifier to scRNA-seq data from human corticogenesis, we found that Neural GO is a
prominent subpopulation among non-dividing stem and progenitors, including OPCs
and radial glial cells, which was diminished and replaced by G1 cells during
differentiation (Fig. 2E). Third, analyzing scRNA-seq from human gliomas also revealed
that Neural GO is a significant non-dividing cell population, which is diminished as
tumors become more aggressive and replaced by G1 cells (Table I; Fig. 3). Fourth, we
observe that Neural GO can be ablated in vitro through genetic manipulation of at least 5
genes in NSCs in vitro (CREBBP, NF2, PTPN14, TAOK1, or TP53), which causes
dramatically faster GO/G1 transit times and loss of Neural G0-associated gene
expression (Figs. 5 & 6). Finally, Neural GO appears to be restricted to neuroepithelial-
derived cells, as we failed to find evidence for Neural GO subpopulations in numerous
non-neuroeptithelial cell populations (e.g., CD45+ cells). Taken together, these results
demonstrate that Neural GO is a bona fide cell cycle state in vitro and in vivo, which is
rate-limiting for the cell cycle.

However, Neural GO is not a singular state. That is, Neural GO cells found in
different cell types (i.e., astrocytes, OPCs, RGs, and glioma cells) are not identical or
interchangeable. Instead, each Neural GO cell is enriched for a portion, but not all, of
the 158 genes present in the hNSCs' Neural GO, which helps distinguish it from G1 and

other cell cycle phases. The happenstance use of cultured, multipotent hNSCs for our
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cell classifier likely enabled casting a wide net for identifying other neural populations in
GO-like states. Thereby, GO-like states for non-neuroectoderm cells might be identified
using an alternative set of developmental markers (e.g., Mesoderm GO0).

If Neural GO represents a neural-specific cell cycle phase, what is its purpose?
One possibility is that Neural GO provides a compartment for maintenance of
neurodevelopmental potential. That is, it allows time for reinforcing transcriptional and
epigenetic programs associated with neurodevelopment gene expression. Consistent
with this possibility, Neural GO genes are up regulated in quiescent NSCs in vivo and
diminished during neural differentiation programs during corticogenesis (Fig. 2E) or by
KO of GO-skip genes in CDT+ NSCs (Fig. 6). Moreover, multiple Neural GO genes are
significantly enriched in NSCs and glioma Neural GO cells which are known to help
maintain "stemness". For example, HEY1 and TTYH1 (e.g., Fig S3), are both are key
players in Notch signaling pathway in NSCs and help maintain the NSC identity in vivo
(Kim et al. 2018; Than-Trong et al. 2018). PTN and its target PTPRZ1 also may help
promote stemness, signaling, and proliferation of neural progenitors and glioma tumor
cells (Fujikawa et al. 2016; Zhang et al. 2016; Fujikawa et al. 2017). Moreover, FABP7
expression and activity have been associated with lipid metabolism in slow-cycling GBM
tumor cells, proposed to be responsible for tumor recurrence (Hoang-Minh et al. 2018).

However, other functions for Neural GO could include: time for repair of DNA
lesions that persist from the previous cell cycle (Arora et al. 2017; Barr et al. 2017),
responses to oxidative stress and mitochondrial maintenance (Mohrin and Chen 2016),

regulation of structural RNAs (e.g., rRNAs, tRNAs)(Roche et al. 2017), as well as
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immune-modulatory functions (e.g., neuroinflammation). Future studies will be required
to address these and other possibilities.

Our results have important implications for glioma biology. First, our classifier
provides a method for identifying GO-like subpopulations in glioma tumor cells. While
gliomas were among the first tumors dissected by scRNA-seq (Patel et al. 2014) and
also for in depth genomic analysis (e.g., TGCA) (TCGA 2008), scRNA-seq analysis and
pathological examination of tumor samples has been up till now unable to distinguish
GO from G1 cells. In general, GO/G1 populations are defined by the absence of S, G2,
and M markers (e.g., Ki67 expression). However, our analysis suggests that these
populations can be readily identified.

Second, our analysis of 59 gliomas provides unique insight into their biology. We
show that the proportion of Neural GO cells in tumors correlates well with grade, patient
survival, and proliferative state of gliomas. Outside of providing an important companion
diagnostic to existing methods of grading gliomas, this analysis raises questions about
the cellular composition of gliomas and the root causes of progression and responses to
therapy. For example, our analysis of lower grade gliomas (LGG) suggests that they
are effectively "trapped" in Neural GO, where >93% of grade Il cells categorized in
Neural GO (Table ). LGGs produce longer survival times (~7yrs) but are nonetheless
uniformly fatal after progression to high grade glioma (Claus et al. 2015). This would be
consistent with Neural GO acting as a barrier to progression in low grade gliomas, which
is overcome in secondary gliomas. Because the majority of LGGs (~80%) are

IDH1/2mut (Yan et al. 2009)(cBioportal), it is conceivable that IDH1/2mut could promote
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Neural GO (e.g., perhaps through an epigenetic mechanism (Xu et al. 2011)) and slower
initial tumor growth.

For grade IV glioma (GBM), some studies have attempted to divide tumors up
into fast dividing and slow-dividing cells, for example, based on DNA barcoding
experiments which demonstrate that the slower dividing populations have higher tumor
initiation potential and more robust responses to treatment regimens (Bao et al. 2006;
Lan et al. 2017). These slower-dividing cells have been hypothesized to have stem cell-
like characteristics that enable regeneration of tumor subpopulations and engender
higher capacity for repair of DNA damage (Chen et al. 2012a). It is tempting to
speculate that these slower dividing cells are in fact the Neural GO cells we identify in
GBM samples. In this scenario, Neural GO populations would be enriched for "stem-like"
cells required for tumor maintenance and regrowth of higher grade tumors, while G1
populations would include their "differentiated" progeny.

Lastly, we found that KO of five genes, CREBBP, NF2, PTPN14, TAOK1, or
TP53, all known or candidate tumor suppressors associated with the Hippo/Yap and
p53 pathways, diminish Neural GO in vitro in hNSCs. Each KO reduced molecular
features associated with GO-like states (e.g., hypophosphorylated Rb, low CDK2
activity, and p27 stabilization) and dramatically reduced G0/G1 transit times, speeding
up the cell cycle. Moreover, bulk RNA-seq of GO/G1 populations as well as scRNA-seq
of KOs confirmed reduction of Neural GO genes expression and characteristic and gene
expression changes associated with the p53 transcriptional network, Hippo-YAP
targets, cell cycle gene regulation, and many novel targets and pathways, including

those downstream of CREBBP and TAOK1.
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Collectively, our data reveals Neural GO is cellular state shared by multiple neural
epithelial-derived stem and progenitor cell types, which likely plays key roles in

neurogenesis and glioma tumor development and recurrence.

METHODS

Cell culture

NSC and GSC lines were grown in NeuroCult NS-A basal medium (StemCell
Technologies) supplemented with B27 (Thermo Fisher), N2 (2x stock in Advanced
DMEM/F-12 (Fisher) with 25 ug/mL insulin (Sigma), 100 ug/mL apo-Transferrin (Sigma),
6 ng/mL progesterone (Sigma), 16 ug/mL putrescine (Sigma), 30 nM sodium selenite
(Sigma), and 50 ug/mL bovine serum albumin (Sigma), and EGF and FGF-2 (20ng/mL
each) (Peprotech) on laminin (Sigma or Trevigen) coated polystyrene plates and
passaged according to previously published protocols(Pollard et al. 2009). Cells were
detached from their plates using Accutase (Thermo Fisher). 293T (ATCC) cells were

grown in 10% FBS/DMEM (Invitrogen).

CRISPR-Cas9 screening

For large-scale transduction, NSC cells were plated into T225 flasks at an appropriate
density such that each replicate had 250-500-fold representation, using the two
previously published CRISPR-Cas9 libraries(Shalem et al. 2014; Doench et al. 2016)
(Addgene) or a custom synthesized sgRNA library (Twist Biosciences) targeting 1377
genes derived from(Toledo et al. 2015). NSCs and GSCs were infected at MOI <1 for all

cell lines. Cells were infected for 48 hours followed by selection with 1-2 ng/mL
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(depending on the target cell type) of puromycin for 3 days. Post-selection, a portion of
cells were harvested as Day 0 time point. The remaining cells were then passaged in
T225 flasks maintaining 250-500-fold representation and cultured for an additional 21-
23 days (~10-15 cell doublings) or 10 days. Genomic DNA was extracted using QiaAmp
Blood Purification Mini or Midi kit (Qiagen). A two-step PCR procedure was performed
to amplify sgRNA sequence. For the first PCR, DNA was extracted from the number of
cells equivalent to 250-500-fold representation (screen-dependent) for each replicate (2-
4 replicates) and the entire sample was amplified for the guide region. For each sample,
~100 separate PCR reactions (library and representation dependent) were performed
with 1 ug genomic DNA in each reaction using Herculase |l Fusion DNA Polymerase
(Agilent) or Phusion High-Fidelity DNA Polymerase (Thermo Fisher). Afterwards, a set
of second PCRs was performed to add on lllumina adaptors and to barcode samples,
using 10-20ul of the product from the first PCR. Primer sequences are in Supplemental
Table 8. We used a primer set to include both a variable 1-6 bp sequence to increase
library complexity and 6 bp Illumina barcodes for multiplexing of different biological
samples. The whole amplification was carried out with 12 cycles for the first PCR and
18 cycles for the second PCR to maintain linear amplification. Resulting amplicons from
the second PCR were column purified using Monarch PCR & DNA Cleanup Kit (New
England Biolabs; NEB) to remove genomic DNA and first round PCR product. Purified
products were quantified (Qubit 2.0 Fluorometer; Fisher), mixed, and sequenced using
HiSeq 2500 (lllumina). Bowtie was used to align the sequenced reads to the
guides(Langmead et al. 2009). The R/Bioconductor package edgeR was used to assess

changes across various groups(Robinson et al. 2010). For the tiling library, only guides
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that mapped once to the genome and are within the gene’s coding region were
considered for further analysis.
Raw and mapped data files are available at the Gene Expression Omnibus database

(GSE117004).

Individual lentiviral-sgRNA assembly for validation
For retests, individual or pooled sgRNA were cloned into lentiCRISPR v2 plasmid.
Briefly, DNA oligonucleotides were synthesized with sgRNA sequence flanked by the
following:

5’: tatatcttGTGGAAAGGACGAAACACCg

3’: gttttagagctaGAAAtagcaagttaa
PCR was then performed with the ArrayF and ArrayR primers (Supplemental Table 8).
The PCR product was gel purified using the ZymoClean Gel DNA recovery kit (Zymo
Research). Gibson Assembly Master Mix (NEB) was used to clone the PCR product
into lentiCRISPR v2 plasmid(Sanjana et al. 2014). The ligated plasmid was then
transformed into Stellar Competent cells (Clontech), and streaked onto LB agar plates.

The resulting clones were grown up and sequence verified (GeneWiz).

Lentiviral production

For virus production, lentiCRISPR v2 plasmids(Sanjana et al. 2014) were transfected
using polyethylenimine (Polysciences) into 293T cells along with psPAX and pMD2.G
packaging plasmids (Addgene) to produce lentivirus. To produce lentivirus for the

whole-genome CRISPR-Cas9 libraries, 25x150mm plates of 293T cells were seeded at
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~15 million cells per plate. Fresh media was added 24 hours later and viral supernatant
harvested 24 and 48 hours after that. For screening, virus was concentrated 1000x
following ultracentrifugation at 6800xg for 20 hours. For validation, lentivirus was used

unconcentrated at an MOI<1.

Viability and Proliferation Assays

Cells were infected with lentiviral gene pools containing 3-4 sgRNAs per gene or with
lentivirus containing a single sgRNA to the respective gene (Supplemental Table 8).
Initial cell density was carefully controlled for in each experiment by counting cells using
a Nucleocounter NC-100 (Eppendorf) and cells were always grown in subconfluent
conditions. For viability assays, following selection, cells were outgrown for 7-10 days,
then harvested, counted, and plated in triplicate onto 96-well plates coated with laminin
in dilution format starting at 1,000 cells to 3,750 cells per well (cell density depended on
cell isolate and duration of assay). Cells were fed with fresh medium every 3-4 days.
After 7-12 days under standard growth conditions, cell proliferative rates were
measured using Alamar blue reagent according to manufacturer’s instructions
(Invitrogen). For analysis, sgRNA-containing samples were normalized to their
respective nontargeting control (NTC) samples. For doubling time assays, cells infected
with individual sgRNAs or NTC were routinely cultured (split every 3-5 days), and
counted at each split (Nucleocounter NC-100; Eppendorf). The overall growth of each
well containing an individual sgRNA was calculated and compared to the NTC well.

Comparisons between multiple experiments were normalized.
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Competition experiment

NSCs were infected with lentiviral gene pools containing 3-4 sgRNAs per gene,
puromycin selected, and mixed with NSCs infected with lentiviruses containing
turboGFP at an approximate 1:9 ratio, respectively. Cultures were outgrown for 23 to 31
days and flow analysis (FACS Canto; Becton Dickinson) was conducted every 7-8 days
for GFP expression. Flow analysis data was analyzed using FlowJo software. For each
sample, the GFP- population for each time point was normalized to its respective Day 0

GFP- population and the NTC (competition index).

Time-lapse microscopy

NSCs were infected with lentiviral gene pools containing 3-4 sgRNAs per gene or with
individual sgRNAs, puromycin selected, outgrown for >13 days, and plated onto 96-well
plates or 24-well plates. Plates were then inserted into the IncuCyte ZOOM (Essen
BioScience), which was in an incubator set to normal culture conditions (37° and 5%
CO2), and analyzed with its software. For the cell confluency experiment, phase images
were taken every hour for 72 hours. For the FUCCI cell cycle experiment, images were
taken every 10-15 minutes for 72-120 hours. Cell cycle transit time for GO/G1 (mCherry-
CDT1(aa30-120)+) and S/G2/M (mAG-Geminin(aa1-110)+) was manually scored by
three different observers in actively dividing cells (those that could be followed from
mitosis to mitosis). Each KO was scored by at least 2 independent observers and

consistency between scorers was checked through shared analysis of a standard.

Western blotting
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Cells were harvested, washed with PBS, and either immediately lysed or snap-frozen
and stored at -80°C until lysis. Cells were lysed with modified RIPA buffer (150mM
NaCl, 50mM Tris, pH 7.5, 2mM MgClz, 0.1% SDS, 2mM DDT, 0.4% deoxycholate, 0.4%
Triton X-100, 1X complete protease inhibitor cocktail (complete Mini EDTA-free, Roche)
and 1U/uL benzonase nuclease (Novagen) at room temperature for 15 minutes. Cell
lysates were quantified using Pierce 660nm protein assay reagent and proteins were
loaded onto SDS-PAGE for western blot. The Trans-Blot Turbo transfer system (Bio-
Rad) was used according to the manufacturer’s instructions. See Supplemental Table 8
for antibodies and dilutions. An Odyssey infrared imaging system was used to visualize

blots (LI-COR) following the manufacturer’s instructions.

Flow Cytometry

FUCCI constructs (RIKEN, gift from Dr. Atsushi Miyawaki) were transduced into wild-
type U5-NSCs and sorted sequentially for the presence of mCherry-CDT1(aa30-120)
and S/G2/M mAG-Geminin(aa1-110) on an FACSAria Il (BD). Normal growth was
verified post-sorting and then the FUCCI U5-NSCs were transduced with individual
sgRNA-Cas9 (4 independent guides per gene) and selected with 1 ug/mL puromycin.
Cells were grown out for 21 days with splitting every 3-4 days and maintaining
equivalent densities. Cells were counted (Nucleocounter NC-100; Eppendorf) and
plated 3 days before analysis on an LSR Il (BD). Controls cultured in the same
conditions included cells transduced with guides against 3 non-growth limiting genes,
including GNAS1, and showed equivalent FUCCI ratios. Results were analyzed using

FlowdJo software.
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Immunofluorescence and CDK2 Activity

U5-NSCs were plated on acid-washed glass coverslips (phosphorylated Rb and CDK2
activity) or 96-well imaging plates (differentiation; Corning). They were fixed overnight in
2% paraformaldehyde (USB) at 4°C, washed with DPBS (with calcium and magnesium)
(Fisher), and blocked and permeabilized with 5% goat serum (Millipore), 1% bovine
serum albumin (Sigma), and 0.1% triton X-100 (Fisher) in DPBS for 45 minutes at room
temperature. Samples were stained with primary antibody diluted in 5% goat serum in
DPBS overnight at 4°C, washed with DPBS, and stained with secondary antibody
(diluted 1:200 in 5% goat serum in DPBS) at 37°C for 45 minutes. See Supplemental
Table 8 for antibodies and dilutions. Samples were washed with DPBS, dyed with 100
ng/mL 4’,6-diamidino-2-phenylindole (DAPI) diluted in DPBS for 20 minutes at room
temperature, and washed with DPBS. Coverslips were preserved using ProLong Gold
Antifade Mountant (Fisher) and inverted on glass slides. For differentiation, images

were acquired on Nikon Eclipse Ti using NIS-Elements software (Nikon).

Phosphorylated Rb and CDK2 Activity Image Analysis

Cells were transduced with mVenus-DNA helicase B (DHB) (amino acids 994—
1087)(Hahn et al. 2009) (gift from Dr. Sabrina Spencer) and the mCherry-CDT1 FUCCI
and sorted on a FACSAria Il flow cytometer (BD). Cells were outgrown to ensure normal
growth and then transduced with individual sgRNA-Cas9. After >10 days outgrowth,
cells were counted and plated, grown for 2 days, and stained for phosphorylated Rb and

imaged on a TISSUEFAXS microscope (TissueGnostics), 54 fields per KO or NTC.
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Cells were analyzed using CellProfiler (Kamentsky et al. 2011). GO/G1 nuclei were
identified by the presence of the CDT1 FUCCI reporter (25-120 pixel diameter,
Global/Otsu thresholding, and distinguishing clumped objects by shape). CDK2 activity
was defined by the cytoplasmic to nuclear ratio of the mVenus-DHB reporter, with the
cytoplasmic intensity of the DHB reporter defined as the upper quartile intensity of a 2-

pixel ring around the CDT1-defined nucleus due to the irregular shape of the U5-NSCs.

p27 reporter

The p27 reporter was constructed after (Oki et al., 2014), using a p27 allele that harbors
two amino acid substitutions (F62A and F64A) that block binding to Cyclin/CDK
complexes but do not interfere with its cell cycle-dependent proteolysis. This p27K-
allele was fused to mVenus to create p27K-mVenus. To this end, the p27 allele and
mVenus were synthesized as gBlocks (IDT) and cloned via Gibson assembly (NEB) into
a modified pGIPz lentiviral expression vector (Open Biosystems). Lentivirally
transduced cells were puromycin selected and validated using mCherry-CDT1 FUCCI
and HDAC inhibitor treatment (48 hours of 5 uM apicidin (Cayman)) to induce G0/G1

arrest using FACS (LSR Il from Becton Dickinson and FlowJo software).

Bulk RNA sequencing expression analysis

For GO/G1 NSC, cells singly positive for mCherry-CDT1 FUCCI were sorted on a
FACSAria Il (BD) directly into TRIzol reagent (Life Technologies). For differentiating
cells, cells were sparsely plated and cultured with growth medium without EGF or FGF-

2 for 7 days before being lysed with TRIzol reagent. For both, 2 replicates per condition
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were harvested. RNA was extracted using Direct-zol RNA MiniPrep Plus (Zymo
Research). Total RNA integrity was checked and quantified using a 2200 TapeStation
(Agilent). RNA-seq libraries were prepared using the KAPA Stranded mRNA-seq Kit
with mRNA capture beads (KAPA Biosystems) according to the manufacturer’s
guidelines. Library size distributions were validated using a 2200 TapeStation

(Agilent). Additional library QC, blending of pooled indexed libraries, and cluster
optimization was performed using the Qubit 2.0 Fluorometer (Fisher). RNA-seq libraries
were pooled and sequencing was performed using an Illlumina HiSeq 2500 in Rapid

Run mode employing a paired-end, 50 base read length (PE50) sequencing strategy.

Bulk RNA sequencing data analysis

RNA-seq reads were aligned to the UCSC mm10 assembly using Tophat2 (Trapnell et
al. 2012) and counted for gene associations against the UCSC genes database with
HTSeq (Anders et al. 2015). Differential expression analysis was performed using
R/Bioconductor package edgeR (Robinson et al. 2010). Samples for GO/G1 bulk RNA-
seq were collected in two batches, so batch-dependent genes were removed before
analysis (inter-batch p-value<0.01 by Wilcoxon-Mann-Whitney). To ensure that no
genes were eliminated that may be regulated specific to a particular knockout, genes
with a CPM variability greater than 2-fold compared to the internal batch control and an
expression greater than 1 CPM in at least one sample were retained. Differentially
expressed genes (DEG) at the transcription level were found using a statistical cutoff of
FDR < 0.05 and visualized using R/Bioconductor package pheatmap. Kolmogorov-

Smirnov test were conducted in R using the function ks.test from stats package. Raw
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sequencing data and read count per gene data can be accessed at the NCBI Gene

Expression Omnibus (GSE117004).

Gene ontology analysis

Gene Ontology (GO)-based enrichment tests were implemented using GOseq (v
1.23.0)(Young et al. 2010), which corrects for gene length bias. Gene lists were also
analyzed for pathways using the R/Bioconductor package ReactomePA (v 1.15.4)(Yu
and He 2016). Analysis used all genes either up or down-regulated with a FDR<0.05
compared to NTC. GO terms with adjusted P-values<0.05 were considered significantly
enriched. Venn diagrams were generated on

http://bioinformatics.psb.ugent.be/webtools/Venn/.

Single cell RNA-sequencing Sample Preparation

Single cell RNA-sequencing was performed using 10x Genomics' reagents, instruments,
and protocols. Single cell RNA-Seq libraries were prepared using GemCode Single Cell
3’ Gel Bead and Library Kit. FUCCI U5-NSCs (both with and without lentiviral TAOK1
KO, >14 days outgrowth) were harvested and half the cells were sorted using the
FACSAria Il (BD) for cells singly positive for mCherry-CDT1 FUCCI. Sorted cells were
kept on ice before suspensions were loaded on a GemCode Single Cell Instrument to
generate single cell gel beads in emulsion (GEMSs) (target recovery: 2500 cells). GEM-
reverse transcription (RT) was performed in a C1000 Touch Thermal cycler (Bio-Rad)
and after RT, GEMs were broken and the single strand cDNA cleaned up with
DynaBeads (Fisher) and SPRIselect Reagent Kit (Beckman Coulter). cDNA was

amplified, cleaned up and sheared to ~200bp using a Covaris M220 system (Covaris).
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Indexed sequencing libraries were constructed using the reagents in the GemCode
Single Cell 3’ Library Kit, following these steps: 1) end repair and A-tailing; 2) adapter
ligation; 3) post-ligation cleanup with SPRIselect; and 4) sample index PCR and
cleanup. Library size distributions were validated for quality control using a 2200
TapeStation (Agilent). The barcoded sequencing libraries were quantified by a Qubit 2.0
Fluorometer (Fisher) and sequenced using HiSeq 2500 (lllumina) with the following read
lengths: 98bp Read1, 14bp 17 Index, 8bp 15 Index and 10bp Read2. Sequencing data

can be accessed at the NCBI Gene Expression Omnibus (GSE117004).

scRNA-seq Analysis

CellRanger (10x Genomics) was used to align, quantify, and provide basic quality
control metrics for the scRNA-seq data. Using Seurat version 2.2.1, the scRNA-seq
data from wild-type U5 cells and sgTAOK1 knock-out cells were merged and analyzed.
Both scRNA-seq data were loaded as counts, normalized, and then scaled while taking
into account both percent of mitochondria and the number of UMIs per cell as
covariates. The union of the top 1,000 most variant genes from each dataset were used
in canonical correlation analysis (CCA) to merge the two datasets via alignment of their
subspace. We then identified clusters of cells using a shared nearest neighbor (SNN)
modularity optimization-based clustering algorithm. Marker genes for each cluster were
identified as differentially expressed genes, and the determination of 8 clusters was
based on the discovery of strong markers for 6 of the eight clusters (both the G1 and
low RNA clusters did not have significantly upregulated marker genes). Identity of

clusters was determined primarily through the expression of cyclins and cyclin-
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dependent kinases, and secondarily through the function of other marker genes. A tSNE
visualization was generated with a perplexity setting of 23.

Network analysis was used to determine the trajectories of cells through the cell
cycle. First, the cluster centroids (mean expression for each gene across all the cells
from a cluster) were used to compute the Canberra distance measure. In a cycle like a
cell cycle, it is expected that on average there would be 2 edges between each cell
cycle state. A distance cutoff of 240 led to 2.28 connections per cluster was used to turn
the distance matrix into a network (Futreal et al. 2004).

Network analysis of the clusters was performed using the STRING database
(Szklarczyk et al. 2017) and visualized using Cytoscape software. Transcription factors

were identified according to TFcheckpoint (Chawla et al. 2013).

Hypergeometric Analysis and Representation Factor Calculations
Hypergeometric tests (Johnson et al. 2005) were carried out in R using function phyper
(stat.ethz.ch/R-manual/R-devel/library/stats/html/Hypergeometric.html). Gene lists were
pre-filtered for the shared genes in each analysis to get the total gene population size,
(i.e., 2739 genes for single cell analysis that had greater than 3 counts per cell in at
least 10 cells and removing batch-effected genes for GO/G1 bulk RNA-sequencing).
Representation factors were calculated according to (Kim et al. 2001). The
representation factor shows whether genes from one list (list A) are enriched in another

list (list B), assuming that genes behave independently.

Statistics and Reproducibility
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Data are presented as the mean or median + standard deviation (SD) or standard error
of the mean (SEM), as specified in the figure legends. Statistics were performed using
GraphPad Prism 7.0 or analysis-specific functions in R. All statistical tests are specified
in figure legends. The number of independent experiments is indicated in the figures,

figure legends, or Methods.
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Fig. 1: Gene Expression Map of Cell Cycle and Candidate GO and G1
Subpopulations using Single Cell RNA-seq in hNSCs

A, Overview of the selection scheme used for isolating G0/G1-enriched and bulk
cultured hNSCs for scRNA-seq.

B, Transcriptional clusters of unsorted U5-NSCs derived through an unbiased shared
nearest neighbor (SNN) modularity and visualized through a t-Distributed Stochastic
Neighbor Embedding (tSNE) comparison.

C, Proportion of cells found in each cluster for the WT U5-NSCs.

D, Network derived from Canberra distance measures shows connections between the
cell cycle clusters.

E, Heat map of the relative expression (row-wise z-score) for the top 10 non-redundant
genes for each prominent cluster in WT U5-NSCs and gene ontology analysis of the up-
regulated genes defining each cluster. BP = biological process; R = Reactome; MF =
molecular function; CC = cellular component; n/a = non-applicable (gene list derived in
this paper). Featured gene ontology groups selected based on significance (p-adj.<.01),
representation, and/or non-redundancy. Full cluster-defining gene list is in Supplemental

Table S1 and full gene ontology and reactome analysis is in Supplemental Table S2.
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Fig. 2: Comparison of hNSC cell cycle classifier with other neuroepithelial-derived
cell populations.

A, Model of the cell cycle of cultured hNSCs based on single cell transcriptomes.

B, Overlap of the Neural GO cluster with single cell transcriptomic profiles of quiescent
neural stem cells (QNSCs) and activated (aNSC) NSCs/neural progenitors from adult
rodent hippocampal niche(Llorens-Bobadilla et al. 2015; Artegiani et al. 2017).
Significance assessed using hypergeometric analysis. OPC = oligodendrocyte
progenitor.

C, D, Significance of overlap of the neurogenesis cell subpopulation-defining genes in
the early neurogenic lineage from two murine single cell RNA-sequencing studies
compared to single cell cluster definitions (up-regulated genes) from unsorted U5-
hNSCs grown in culture. Clusters presented in order of increasing activation with
quiescent neural stem cells on the left and proliferating progenitors on the right.
Significance assessed though hypergeometric analysis. RF = representation factor.

E, Application of the hNSCs cell cycle classifier to scRNA-seq data from the developing
human telencephalon (from (Nowakowski et al. 2017)). RG = radial glia, div = dividing.
All cell type abbreviations are available in Table S3. Red asterisks indicate cells derived
from the excitatory cortical neuron lineage, which originate from radial glial cells. Blue

asterisks indicate cells from inhibitory cortical interneuron lineage.


https://doi.org/10.1101/446344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/446344; this version posted November 9, 2019. The copyright holder for this preprint (which was

H otertified by peer review) is the author/funder,
Figurg®2 " )

A

M/
Early G1

G1

C

Neural GO 1
G1 1

Late G1 1

S o

S/G2 A
G2/M 4
M/Early G1 1

100
80
60
40
20

% Cells

Astrocyte mE————
OPC msssssssssssssnm
oljem
e |
iGem |

G2/M

SIG2

Late G1

Neurogenesis Clusters

(Llorens-Bobadilla et al. 2015)

who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Neural GO Cluster Overlap with Mouse Neurogenesis

gNSC1 gNSC2 aNSC1 aNSC2

gNSC1 gNSC2 aNSC1 aNSC2
p=1.34e-7 =1.94e-7 =.74 (n.s. p=1(n.s.)
- O
<O
E=] = C4ORF3 TTV2B Lllorens-Bobadilla et al. (2015)
325 CA2  LAMP2
c o CNP QK TADPT
oz DHRS7 SHISA4 Grves | | GPMsA SRIICKs  NOVAT SERPINE2
O c FTH1 _SPARCI PON2 METRN 2 OLIG2  ~spRy1
- s ponz TR ADM4  PAPSS1  TRaFa
c COLIA3  PCSKIN 1g000m1
3 : G Ltwan sSoxe o P! IGFBP7  S100B  rgpaNg
TMEMS9| | SYT11
& T | com e soxo TIMP4 MARCKS _ SCRG1
€ 5 | HOPX MALAT1 TMEMSG
i%, 5 ID3 MFGES_TTvH1 Artegiani et al. (2017)
NSCs OPCs Neural
p=4.83e-9 p=3.04e-8 Progenitors
p=.90 (n.s.)
D Neurogenesis Clusters
(Artegiani et al. 2017)
log10 pvalue log10 pvalue
Neural GO 1 . . 12
60
G1 1 o 9
40 6
Late G1 1 o
20 3
S 4 (]
® 5.0 ® 20
®s G2 . ® 5o
@ 0o M/Early G1 ° @0
NSCs OPCs NPCs

scRNA-seq analysis of the developing human telencephalon

[se}
z
w

c
&
o
*

- M- NN 0N
EEs8csPESS
S5Zuz3835
gelodizzEg
P
* *
m G1/other
mS

* EN-PFC2
* EN-PFC1

®m Nerual/GO
m S/G2

—

nG1

Mural
* IN-CTX-CGE2
IN-STR

Choro

RGdiv2
* IN-CTX-CGE1

* EN-V1-1
Endothelial
* nEN-early

d

—

* nIN5

* IN-CTX-MGE

mG2/M

> <
Late G1

mM/Early G1

RG-earl
* IN-CTX-MGE2
* nl
% nIN
* NIN2
IPC-div1
RGdiv1

* nIN3

Microglia E——
MGE-RG2 s —
MGE4{PC3 I
MGE{PC2 i

MGE4PC1

MGE div n
|PC-div2 N


https://doi.org/10.1101/446344
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/446344; this version posted November 9, 2019. The copyright holder for this preprint (which was
Tablemorl:ertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

g E § o~ s 2
Data set Tumor Type * o z *
GSE70630 Il IDH1™-0 6 <0.1 95.5 2.6 0.1 1.0 0.6 4112
CL 0 95.7 2.7 <0.1 0.9 0.4 1208
MS 0.2 93.5 4.7 0.1 0.4 0.3 933
PN 0 96.3 1.5 0.2 1.3 0.7 1971
GSE89567 I IDH1™"-A 7 0.9 76.0 16.4 0.2 1.6 1.5 6341
CL <0.1 89.8 4.3 0.2 2.3 2.7 1595
MS 3.3 28.5 55.8 0 0.3 0.4 1599
PN 0 93.2 2.5 0.4 1.9 1.5 3147
GSEB84465 IV IDH" 4 131 311 52.5 0.6 1.2 0.9 1029
CL 7.2 38.7 514 0.6 0.7 1.1 706
MS 35.5 2.4 59.7 0 0 0 124
PN 201 221 51.8 1.0 3.5 0.5 199
GSE57872 IV IDH" 6 1.7 34.2 56.3 0.5 5.7 1.2 403
CL 0.7 48.9 42.2 0.7 6.7 0.7 135
MS 3.9 13.2 81.6 0 1.3 0 152
PN 0 43.1 414 0.9 10.3 3.4 116
GSE131928 IV IDH" 31 124 39.0 30.9 0.1 4.8 7.7 24131
CL 0.1 14.5 5.8 0.1 2.1 3.6 6512
MS 7.5 5.9 19.8 0.1 0.7 1.1 9143
PN 4.7 18.5 5.3 0.2 2.1 3.0 8475
GSE102130 DMG H3K27M 6 0.7 73.4 16.5 1.6 4 31 2458
CL 0 79.0 14.3 0.3 1.8 3.3 391
MS 0.9 66.7 20.9 0.2 3.5 3 541
PN 0 69.6 9.8 0.9 10.0 8.1 1526
GSE103322 HNSCC 21 2.5 0 80.3 6.6 21 9.9 2161

Table I: Percentage of glioma tumor cells defined by hNSCs cell cycle
classifier. O = oligodendroglioma; A = astrocytoma; DMG = Diffuse midline
glioma; HNSCC = head and neck squamous cell carcinoma; CL = classical
subtype; MS = mesenchymal subtype; PN = proneural subtype.
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Fig. 3: Neural GO gene expression in 641 human gliomas.

A, Relative Neural GO eigengene expression between grade Il, Ill, and IV tumors
(TCGA; LGG and GBM). An eigengene represents the common variation across each
patient tumor for the Neural GO genes, i.e. first principal component corrected for
direction if necessary. All pairwise Student's t-tests comparisons had p-values <0.003.
B, Comparison of cell cycle and Neural GO eigengene expression in each glioma. Each
tumor is colored by its grade (green = Il, red = lll, and purple = V).

C, Differences in the distribution of tumor grade between tumors with top 25% and
bottom 25% of Neural GO eigengene expression.

D, Kaplan Meier survival plot of tumors with top 25% and bottom 25% of Neural GO
eigengene expression of Neural GO genes. A Fleming-Harrington survival p-value was

used to determine significance.
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Fig. 4: CRISPR-Cas9 gene knockout screens to identify candidate Neural GO
regulating genes in hNSCs.

A, Schematic of CRISPR-Cas9 knockout screen design.

B, Enrichment of guide DNA following 21 days outgrowth post-selection using GECKO
library (n=2). Colored guides are enriched (z-score>2; green) or depleted (z-score<2;
red) with false discovery rate (FDR<0.05). Statistical source data provided in
Supplementary Table S6.

C, Overlap of screen hits between the four CRISPR-Cas9 screens. For all screens, hits
were defined as genes having multiple guides with FDR<.01 and z-score >2. For
Brunello library, there were additional requirements of at least one guide with z-score >3
and at least 20 reads at Day 0. CREBBP, NF2, PTPN14, TAOK1, and TP53 were
defined as hits in every screen.

D, Flow analysis of U5-NSC:GFP with LV-sgRNA:Cas9 retest pools competing with
wild-type (WT) U5-NSC over a 23 day outgrowth with ~10% initial proportion (n=3).
Competition index refers to the relative increase in %GFP+ compared with initial
proportion and mean sgNTC.

E, Doubling time measurements (>14 days post-selection) in U5-NSCs or GSCs after 3-
5 days outgrowth. n>3, as noted in bars for each guide. The data are presented as the
mean * standard deviation (SD). Significance was assessed using a two-tailed student’s

t-test.
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Fig. 5: Reduction of GO/G1 Transit Time in NSCs after KO of CREBBP, NF2,
PTPN14, TAOK1, or TP53

A, Representative contour plot of flow cytometry for Fucci (Sakaue-Sawano et al. 2008)
in U5-NSCs after targeting of a non-growth limiting (NGL) control gene, GNAS1. Values
are similar to wild-type and NTC U5-NSCs under similar culture conditions. The system
relies on cell-cycle dependent degradation of fluorophores using the degrons from
CDT1 (amino acids (aa) 30-120) (present in GO and G1; mCherry) and geminin (aa1-
110) (present in S, G2, and M; monomeric Azami-Green (mAG)).

B, Representative contour maps of flow cytometry for Fucci following loss of NF2,
PTPN14, TAOK1, CREBBP, and TP53.

C, Ratio of GO/G1 (mCherry-CDT1+) to S/G2/M (mAG-Geminin+) from (A) and (B).
Values are mean from 4 individually-tested LV guides per gene at 21 days post-
selection.

D, GO/G1 and S/G2/M transit times using time-lapse microscopy and Fucci. Differences
in GO/G1 are statistically significant with p<0.0001 for targeted U5-NSCs and p=0.0006
for GSC-131 compared to NTC.

The data are presented as the mean + SD. Significance was assessed using a two-

tailed student’s t-test (C) or Mann-Whitney test (D).
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Fig. 6: Transcriptional Reprogramming of G0/G1 Following Loss of G0-skip Genes
A, Schematic of GO/G1 sorting for gene expression analysis: mCherry-CDT1+ U5-NSCs
(red box), heat maps of the significantly altered genes (FDR<0.05) between WT
unsorted U5-NSCs and NTC and WT GO0/G1 U5-NSCs, and gene ontology analysis
(Young et al. 2010) of some of the top biological processes down-regulated and
reactome groups (Yu and He 2016) up-regulated in the GO/G1 sorted cells. Full list in
Supplementary Tables S10 & S11.

B, Dendrogram of unbiased hierarchical clustering of gene expression from G0/G1-
sorted U5-NSCs with the number genes up (green) and down (red) regulated
(FDR<0.05) in each KO compared to NTC. Complete results in Supplementary Table
S10.

C, Heat map of log2FC compared to NTC for key genes changed in GO/G1 in following
loss of TP53, NF2/PTPN14, TAOK1, and/or CREBBP, including genes from TP53
targets, YAP targets, the cell cycle, Hippo signaling, and electron transport genes.
White dots indicate FDR<0.05.

D-E, Significance of overlap of the down (D) and up (E) regulated genes from bulk RNA-
sequencing of GO/G1 sorted cells with the single cell cluster definitions (up-regulated
genes). Significance assessed though hypergeometric analysis. RF = representation

factor.
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