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Abstract Phototrophic microorganisms are promising resources for green biotechnology.13

Compared to heterotrophic microorganisms, however, the cellular economy of phototrophic14

growth is still insufficiently understood. We provide a quantitative analysis of light-limited,15

light-saturated, and light-inhibited growth of the cyanobacterium Synechocystis sp. PCC 6803 using16

a reproducible cultivation setup. We report key physiological parameters, including growth rate, cell17

size, and photosynthetic activity over a wide range of light intensities. Intracellular proteins were18

quantified to monitor proteome allocation as a function of growth rate. Among other physiological19

adaptations, we identify an upregulation of the translational machinery and downregulation of light20

harvesting components with increasing light intensity and growth rate. The resulting growth laws21

are discussed in the context of a coarse-grained model of phototrophic growth and available data22

obtained by a comprehensive literature search. Our insights into quantitative aspects of23

cyanobacterial adaptations to different growth rates have implications to understand and optimize24

photosynthetic productivity.25

26

Introduction27

Cyanobacteria are key primary producers in many ecosystems and are an integral part of the global28

biogeochemical carbon and nitrogen cycles. Due to their fast growth rates, high productivity and29

amenability to genetic manipulations, cyanobacteria are considered as promising host organisms for30

synthesis of renewable bioproducts from atmospheric CO2 (Al-Haj et al., 2016; Zavřel et al., 2016),31

and serve as important model organisms to understand and improve photosynthetic productivity.32

Understanding the cellular limits of photosynthetic productivity in cyanobacteria, however,33

requires quantitative data about cellular physiology and growth: accurate accounting is central34

to understand the organization, growth and proliferation of cells (Vázquez-Laslop and Mankin,35

2014). While quantitative insight into the cellular economy of phototrophic microorganisms is36

still scarce, the cellular economy of heterotrophic growth has been studied extensively—starting37

with the seminal works of Monod, Neidhardt, and others (Neidhardt et al., 1990; Neidhardt, 1999;38

Jun et al., 2018) to more recent quantitative studies of microbial resource allocation (Molenaar39

et al., 2009; Klumpp et al., 2009; Scott et al., 2010; Scott and Hwa, 2011; Bosdriesz et al., 2015;40

Maitra and Dill, 2015; Weiße et al., 2015). In response to changing environments, heterotrophic41
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microorganisms are known to differentially allocate their resources: with increasing growth rate,42

heterotrophic microorganisms typically exhibit upregulation of ribosomes and other proteins43

related to translation and protein synthesis (Scott et al., 2010;Molenaar et al., 2009; Peebo et al.,44

2015), exhibit complex changes in transcription profiles, e.g. (Klumpp et al., 2009;Matsumoto et al.,45

2013), and increase cell size (Kafri et al., 2016). The molecular limits of heterotrophic growth have46

been described thoroughly (Kafri et al., 2016; Erickson et al., 2017; Scott et al., 2014; Metzl-Raz47

et al., 2017; Klumpp et al., 2013).48

In contrast, only few studies so far have addressed the limits of cyanobacterial growth from an49

experimental perspective (Bernstein et al., 2016; Yu et al., 2015; Abernathy et al., 2017; Ungerer50

et al., 2018; Jahn et al., 2018). Of particular interest were the adaptations that enable fast pho-51

toautotrophic growth (Bernstein et al., 2016; Yu et al., 2015; Abernathy et al., 2017; Ungerer et al.,52

2018). The cyanobacterium with the highest known photoautotrophic growth rate, growing with a53

doubling time of up to TD ∼ 1.5h, is the strain Synechococcus elongatus UTEX 2973 (Ungerer et al.,54

2018). Compared to its closest relative, Synechococcus elongatus PCC 7942, the strain shows several55

physiological adaptations, such as higher PSI and cytochrome b6f content per cell (Ungerer et al.,56

2018), lower metabolite pool in central metabolism, less glycogen accumulation, and higher NADPH57

concentrations and higher energy charge (relative ATP ratio over ADP and AMP) (Abernathy et al.,58

2017). Recently, a study of the primary transcriptome of Synechococcus elongatus UTEX 2973 re-59

ported the increased transcription of genes associated with central metabolic pathways, repression60

of phycobilisome genes, and accelerated glycogen accumulation rates in high light compared to low61

light conditions (Tan et al., 2018).62

While these studies point to strain-specific differences and are important for characterizing non-63

model microbial metabolism (Abernathy et al., 2017), the general principles of resource allocation64

in photoautotrophic metabolism and the laws of phototrophic growth are still poorly understood.65

Therefore, the aim of this study is to provide a consistent quantitative dataset of cyanobacterial66

physiology and protein abundance for a range of different light intensities and growth rates—and67

put the data into the context of published values obtained by a comprehensive literature search68

as well as into the context of a recent model of photosynthetic resource allocation (Faizi et al.,69

2018). To this end, we chose the widely used model strain Synechocystis sp. PCC 6803 (Synechocystis70

hereafter). Since Synechocystis exhibits significant variations with respect to both genotype (Ikeuchi71

and Tabata, 2001) and phenotype (Morris et al., 2016; Zavřel et al., 2017), we chose the substrain72

GT-L, a strain that has a documented stable phenotype for at least four years preceding this73

study. All data are obtained under highly reproducible and controlled experimental conditions,74

using flat-panel photobioreactors (Nedbal et al., 2008) within an identical setup as in the previous75

studies (Zavřel et al., 2015b).76

The data obtained in this work provide a resource for quantitative insight into the allocation of77

cellular components during light-limited, light-saturated, and photoinhibited growth. In dependence78

of the light intensity and growth rate, we monitor key physiological properties, such as changes in79

cell size, dry weight, gas exchange (both CO2 and O2), as well as changes in abundance of pigments,80

DNA, total protein, and glycogen. Using proteomics, we show that ∼ 57% (779 out of 1356 identified81

proteins) proteins changed their abundance in dependence of growth rate, whereas the rest was82

independent of growth rate. A detailed analysis of changes in individual protein fractions revealed83

phototrophic "growth laws": abundances of proteins associated with light harvesting decreased84

with increasing light intensity and growth rate, whereas abundances of proteins associated with85

translation and biosynthesis increased with increasing light intensity and growth rate—which is in86

good agreement with recent computational models of cyanobacterial resource allocation (Burnap,87

2015; Rügen et al., 2015;Mueller et al., 2017; Reimers et al., 2017; Faizi et al., 2018).88
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Results89

Establishing a controlled and reproducible cultivation setup90

The Synechocystis substrain GT-L (Zavřel et al., 2015b) was cultivated in flat panel photobioreactors91

(Figure 1A) using at least 5 independent reactors in a quasi-continuous (turbidostat) regime (Fig-92

ure 1B), with red light intensities of 27.5−1100 µmol(photons) m−2s−1, supplemented with a blue light93

intensity of 27.5 µmol(photons) m−2s−1. The addition of blue light avoids possible growth limitations94

in the absence of short wavelength photons (Golden, 1995). Steady-state specific growth rates in95

turbidostat mode were calculated from monitoring the optical density measured at a wavelength of96

680 nm (OD680) as well as from the rate of depletion of spare cultivation medium (as measured by97

top loading balances). Both methods resulted in similar average values (Figure 1C). Estimation of98

the specific growth rates based on the medium depletion, however, exhibited higher variance. For99

further analysis, therefore, only values obtained from the OD680 signal are reported.100

The measured specific growth rates increased from � = 0.025 ± 0.002 h−1 to � = 0.104 ± 0.009 h−1101

(corresponding to doubling times of TD ≈ 27.7h − 6.9h) with increasing light intensities up to 660102

µmol(photons)m−2s−1 of red light. For higher light intensities the cultures exhibited photoinhibition—103

a reduction of the specific growth rate induced by high light intensities. Under the highest intensity of104

1100 µmol(photons) m−2s−1, the specific growth rate decreased to � = 0.093±0.011 h−1, corresponding105

to a doubling time of TD = 7.5 h (Figure 1C-D). The growth curve is consistent with previous106

measurements of cyanobacterial growth (Zavřel et al., 2015b; Cordara et al., 2018) and can be107

subdivided into three phases: light-limited, light-saturated, and photoinhibited growth.108

The cultivation conditions, with (red) light intensity as the only variable, were highly controlled109

and reproducible. Temperature (32◦C) and CO2 concentration in the sparging gas (0.5%) were set110

to saturate Synechocystis growth in the exponential phase (OD680 = 0.60 − 0.66), as established in a111

previous study (Zavřel et al., 2015b). Refilling rate of selected nutrients (including Na, N, S, Ca, Mg,112

P and Fe) during the turbidostat cultivation was sufficient to prevent potential growth limitation by113

lack of any of these nutrients: see Figure 1 - Figure supplement 1 for further details (the elemental114

composition of Synechocystis cells considered for the calculations was based on data available in115

the literature).116

The experimental setup, including the photobioreactor setup, light quality and intensity, tem-117

perature, composition of cultivation medium, CO2 concentration in the sparging gas, bubbling and118

stirring rate was identical to the setup used in previous studies for this substrain (Zavřel et al.,119

2015b, 2017). We therefore could evaluate the stability of the Synechocystis sp. PCC 6803 GT-L120

phenotype throughout a four year period (2013 - 2017). Figure 1D and 1E show a comparison of121

the specific growth rates, as well as photosynthetic and respiration rates, from several previous122

studies (Zavřel et al., 2015b, 2017) and as yet unpublished data.123

Photosynthesis and respiration increase with light intensity and growth rate124

The cultivation setup included a probe to monitor dissolved oxygen (dO2) in the cultivation medium125

and a gas analyzing unit to measure CO2 in the gas efflux. Online measurements of gas exchange126

rates allowed to assess dark respiration rates (measured as O2 uptake rate during a 5 minutes127

dark period, see Materials and Methods for further details) as well as photosynthetic activity (gross128

O2 release rate and net CO2 uptake rate). Both photosynthetic activity and dark respiration rates129

increased with increasing light intensity (Figure 1E, Figure 2C-F).130

Between a light intensity of 27.5 and 880 µmol(photons) m−2s−1, the gross photosynthetic activity131

(O2 release) increased from 30.5±5.7 µmol(O2) mmol (Chl)
−1 s−1 to 251.6±49.4 µmol(O2) mmol (Chl)

−1
132

s−1 , and the dark respiration rate increased from 5.5 ± 2.7 µmol(O2) mmol (Chl)
−1 s−1 to 40.9 ± 14.6133

µmol(O2) mmol (Chl)
−1 s−1 (Figure 1E).134

Of particular interest were changes in gas exchange as a function of the specific growth rate.135

Figure 2C-D show gas exchange rates as a function of the specific growth rate per gram cellular dry136

weight (gDW), as well as per cell. Relative to gDW, O2 release increased from 1.96 ± 0.69mmol (O2)137
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Figure 1. Experimental setup and evaluation of Synechocystis sp. PCC 6803 (substrain GT-L) phenotype stability. Panel A: Photobioreactor setup.
Cultures were cultivated in a flat-panel photobioreactor vessel (400 mL) in a turbidostat regime according to Zavřel et al. (2015b). Dilution of
actively growing culture was based on measurements of optical density at 680 nm (OD680). Inflow air and CO2 were mixed in a gas mixing unit, the

sparging gas flow rate was controlled by a gas analyzing unit. Sparging gas was moistened in a humidifier and, after bubbling through the

photobioreactor vessel, separated from the waste culture via a liquid trap. CO2 concentration in the output gas was measured by an infrared

sensor according to Červený et al. (2009). All other parameters were set as described in Nedbal et al. (2008) and Červený et al. (2009). Panel B:
Representative measurement of the OD680 signal (black lines) within a turbidostat cultivation under increasing red light intensity (supplemented

with low intensity of blue light). Calculation of specific growth rates (blue circles) is detailed in Materials and Methods. Panel C: Calculation of

growth rates from the OD680 signal and from top loading balances that monitored depletion rate of a spare cultivation medium (source data are

available in Figure 1 - Source data 1). Panel D: Comparison of specific growth rates using an identical experimental setup throughout four

successive years 2013 - 2017 (source data are available in Figure 1 - Source data 2). Panel E: Rates of gross photosynthesis and dark respiration,

measured as O2 evolution and consumption rates directly within the photobioreactor vessel throughout 5 min of light and dark periods in 2016 -

2017 (this study) and in 2015 - 2017 (Zavřel et al., 2017). The dashed line represents a P-I curve fit of data from this study according to Platt T. ,
Gallegos C.L., Harrison W.G. (1980). Source data are available in Figure 1 - Source data 3. Figure 1C: n = 6 - 11, Figure 1D: n = 3 - 11, Figure 1E: n = 4 -
6. Error bars (Figure 1C-1E) represent standard deviations.

Figure 1–Figure supplement 1. Uptake and refilling rates of selected nutrients during the quasi-continuous cultivation.
Figure 1–source data 1. Source data for Figure 1C.
Figure 1–source data 2. Source data for Figure 1D.
Figure 1–source data 3. Source data for Figure 1E.
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gDW−1 h−1 to 5.92 ± 1.26mmol (O2) gDW
−1 h−1 for an increase of growth rate from � = 0.025 ± 0.002138

h−1 to � = 0.099±0.013 (Figure 2C). Dark respiration rate (O2 consumption) increased from 0.35±0.12139

mmol (O2) gDW
−1 h−1 to 0.96±0.21mmol (O2) gDW

−1 h−1 (Figure 2E-F). Net CO2 uptake rate increased140

from 0.78 ± 0.37mmol (CO2) gDW
−1 h−1 to 4.01 ± 0.50mmol (CO2) gDW

−1 h−1 (Figure 2E).141

The measured gas exchange rates correspond to a photosynthesis:respiration (P:R) ratio (gross142

O2 release relative to consumption) between 5.6 ± 3.0 and 7.5 ± 2.5. The photosynthetic quotient143

PQ (net O2 release:CO2 fixation) ranged from PQ = 2.1 ± 0.5 to PQ = 1.1 ± 0.4. The changes of both144

parameters (P:R and PQ) with respect to growth rate were not statistically significant (Kruskal-Wallis145

test: P:R ratio: p − value = 0.88, PQ: p − value = 0.12).146

Cellmorphology and composition acclimate to changes in light intensity and growth147

rate148

Culture samples were harvested under different light intensities to investigate the allocation of149

key cellular components as a function of growth rate. Cellular parameters included cell count, cell150

size, cell dry mass, as well as concentrations of glycogen, total protein, total DNA, phycocyanin,151

allophycocyanin, chlorophyll a, and carotenoids. The results (data normalized per gDW as well152

as per cell) are summarized in Figure 2 as a function of the specific growth rate, the results as a153

function of light intensity are summarized in Figure 2 - Figure supplement 1.154

With increasing growth rate, the volume and weight of Synechocystis cells increased (Figure 2A-B).155

The cell diameter increased from 1.96±0.03 µm to 2.19±0.03 µm, and slightly decreased again under156

photoinhibition. Since Synechocystis has a spherical cell shape, the estimated diameters correspond157

to cell volumes ranging from 3.97 µm3 to 5.49 µm3 (Figure 2A). Changes in cell volume were reflected158

in changes in cellular dry weight. Dry weight per cell increased from 5.3±1.7 pg cell−1 for the slowest159

specific growth rate to 11.3±2.3 pg cell−1 at the maximal growth rate. Under photoinhibition, cellular160

dry weight again decreased to 8.6 ± 2.6 pg cell−1 (Figure 2B, Figure 2 - Figure supplement 1). The161

ratio of cellular dry weight to cell volume showed no significant change for different growth rates162

(Kruskal-Wallis test: p − value = 0.077).163

The amount of glycogen per gDW increased with increasing growth rate, from 84 ± 28mg gDW−1
164

to 199 ± 35 mg gDW−1 for the maximal growth rate, and further increased to 229 ± 72 mg gDW−1
165

under conditions of photoinhibition (Figure 2G). These values correspond to an increase of glycogen166

per cell from 440 ± 79 fg cell−1 to 2329 ± 504 fg cell−1 (Figure 2H).167

In contrast, the protein content per gDW decreased with increasing growth rate. Protein content168

per cell, however, did not change significantly for different light intensities and growth rates (Kruskal-169

Wallis test: p − value = 0.076). The absolute values of protein content were between 402 ± 144 and170

227 ± 6mg gDW−1 (Figure 2I), and between 2144 ± 482 and 2937 ± 466 fg cell−1 (Figure 2J).171

Changes in DNA content were only estimated in relative units and are reported relative to the172

DNA content at the lowest growth rate. With increasing growth rate, the DNA content normalized173

per gDW decreased to 51 ± 11% of the initial value (Figure 2I). The (relative) DNA content per cell,174

however, increased with increasing growth rate up to 137 ± 19% of its initial value. Under conditions175

of photoinhibition, the relative DNA content per cell decreased again to 94 ± 29% of the initial value176

(Figure 2J).177

Relative to gDW, the amounts of phycobiliproteins, chlorophyll a and carotenoids decreased178

with increasing growth rate. Under conditions of photoinhibition, we observed additional reduction179

of these pigments per gDW (Figure 2K,M). When considering the concentrations per cell, however,180

the respective amounts initially increased with increasing growth rates, and decreased again under181

conditions of photoinhibition. Overall, pigment content decreased with increasing light intensity182

(irrespective of normalization), with the exception of carotenoids which exhibited a slight increase183

per cell as a function of light intensity. The changes of pigment amounts as a function of growth184

rate (relative to gDW as well as per cell) were significant (Kruskal-Wallis test: p − value < 0.05, see185

Materials and Methods for further details). The absolute amounts of phycocyanin were between186

86.4 ± 30.7 and 26.5 ± 7.5mg gDW−1, corresponding to 172 ± 29 and 620 ± 63 fg cell−1 (Figure 2K,L),187
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the amounts of allophycocyanin were between 14.8 ± 5.3 and 6.7 ± 1.9mg gDW−1, corresponding188

to 57 ± 10 and 123 ± 15 fg cell−1 (Figure 2K,L). The absolute amounts of chlorophyll a were between189

16 ± 5.2 and 5.8 ± 1.6 mg gDW−1, corresponding to a range between 50 ± 10 and 96 ± 14 fg cell−1190

(Figure 2M,N), the absolute amounts of carotenoids were between 4.4 ± 0.7 and 2.6 ± 0.5mg gDW−1,191

corresponding to a range between 22 ± 3 and 29 ± 6 fg cell−1 (Figure 2M,N).192

To put the data into context, we conducted a comprehensive literature research with respect193

to reported physiological parameters of Synechocystis sp. PCC 6803. The results are summarized194

in Figure 2 - Figure supplement 2, and the data include also meta information on experimental195

conditions. Overall, the values obtained in this study are in good agreement with the previously196

reported values. Individual parameters, however, exhibit high variability due to the wide range of197

different experimental conditions.198

Proteome allocation as a function of growth rate199

Culture samples for 6 light intensities were harvested to obtain quantitative proteome profiles200

using mass spectrometry, with 5 biological replicates for each light intensity. We chose a label-free201

quantification (LFQ) approach to access relative and absolute protein amounts. Here, the peptide202

precursor ion intensities (MS1) were used for protein quantification. The results of the proteomics203

analysis are summarized in Figure 3. We identified 1356 proteins (the complete list is provided in204

Figure 3 - Source data 1). Of these, the (relative) abundances of 779 proteins (57%) significantly205

changed with growth rate (Kruskal-Wallis test: p − value < 0.05), the (relative) abundances of the206

remaining 577 proteins (43%) were independent of growth rate. We obtained functional annotation207

for all 1356 proteins using the Gene Ontology (GO) database (Ashburner et al., 2000). Of the 779208

growth-dependent proteins, 450 were annotated with non-trivial categories (excluding categories209

such as unknown or putative), of the 577 growth-independent proteins, 303 were annotated with210

non-trivial categories. To facilitate the analysis, the functional annotation was mapped to a subset211

GO slim (higher level GO terms, Klopfenstein et al. (2018)), which resulted in 40 distinct GO terms212

(each protein might be associated with more than one annotation). Significant differences (Fisher’s213

exact test, p − value < 0.05) between growth-dependent and growth-independent annotations are214

summarized in Table 1. Growth-dependent proteins exhibited an over-representation of categories215

such as Translation, Protein folding, Cell division and Photosynthesis, among others.216

To allow for a more detailed analysis of growth-dependent proteins, the changes in abundance of217

the 779 proteins were grouped into 7 clusters using k-means clustering (Figure 3 - Figure supplement218

3). The number of clusters was determined using the elbow method. The identified clusters219

corresponded either to upregulation (cluster 1 and 6), or downregulation of protein abundance with220

growth rate (cluster 2, 5, 7) or more complex changes (cluster 3 and 4). The results of the clustering221

analysis are summarized in Figure 3, along with an annotation matrix that highlights the prevalent222

function (GO slim) categories for each cluster. The growth-dependent proteins encompass 37223

distinct annotations mapped to GO slim categories.224

Cluster 1 (192 proteins) and 6 (41 proteins) exhibit increasing abundance for increasing light225

intensity and growth rate. Prevalent annotations are biosynthetic processes, such as cellular nitrogen226

compound metabolic processes, cellular amino acid metabolic processes, as well as, for cluster 1,227

translation. Cluster with low variation (Cluster 2, 218 proteins) and cluster with ambiguous shapes228

(cluster 4, 124 proteins) exhibit a similar set of categories as cluster 1 and 6. In contrast, both clusters229

that exhibit a clear decrease with increasing light intensity and growth rate (cluster 5, 65 proteins230

and cluster 7, 79 proteins) are both annotated with photosynthesis as the highest-ranking annotation.231

Finally, cluster 3 (2 proteins) exhibits a sharp upregulation during photoinhibition, with both proteins232

annotated with the categories transport and transmembrane processes.233

We note that, similar to some of the physiological properties as shown in Figure 2, the abun-234

dances of clusters 1, 3, 4, 6 and 7 exhibited a characteristic "kink" at high growth rates corresponding235

to a sharp up- or downregulation under photoinhibition.236
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Figure 2. Variations in morphology and composition of Synechocystis cells with changing growth rate. Under increasing light intensity and changing
growth rate, the following parameters were estimated: cellular volume (A) and dry weight (B), gross photosynthesis (C, D) and dark respiration (E, F),

and content of glycogen (G, H), proteins, DNA (I, J), phycobiliproteins (K, L), chlorophyll a and carotenoids (M, N). The data are plotted relative to
cellular dry weight (C, E, G, I, K, M) as well as per cell (D, F, H, J, L, N). DNA content was normalized to its initial value after standardization per dry

weight and per cell, the measurement was only semi-quantitative. All values represent averages from 3 − 11 independent biological replicates, error
bars represent standard deviations. If error bars are not visible (panel A), the standard deviation was too small for visualization. Within each figure,

data points are displayed in three different color shades to reflect (from bright to dark) light-limited, light-saturated and light-inhibited growth.

Data plotted as a function of light intensity are available in Figure 2 - Figure supplement 1. Comparison with data available in the literature is

summarized in Figure 2 - Figure supplement 2.

Figure 2–Figure supplement 1. Allocation of key cellular resources as a function of light intensity
Figure 2–Figure supplement 2. Comparison of the values measured in this study with data reported in the literature.
Figure 2–source data 1. Source data for Figure 2.
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Figure 3. Synechocystis proteome allocation as a function of growth rate. Panel A: The workflow. Samples were harvested and analyzed by mass
spectrometry (the proteomics dataset is available in Figure 3 - Source data 1). A Kruskal-Wallis test was used to distinguish between

growth-dependent and growth-independent proteins. 779 growth-dependent and 577 growth-independent proteins were identified. Panel B:
Clustering analysis. Based on k-means clustering analysis (Figure 3 - Figure supplement 3), the 779 growth-dependent proteins were separated into
7 clusters. Gray dashed lines represent protein abundances as medians of 5 biological replicates, normalized by the respective means. Blue dashed
lines represent centroids of the respective clusters. Panel C: Proteins were annotated using the GO classes, the matrix represents the annotation

mapped to GO slim categories. Proteins can be associated to several GO slim categories. The highest ranking annotation per cluster is highlighted

in dark blue.

Figure 3–source data 1. Proteomics dataset.
Figure 3–Figure supplement 1. List of growth-dependent proteins.
Figure 3–Figure supplement 2. List of growth-independent proteins.
Figure 3–Figure supplement 3. Elbow method for the identification of an appropriate number of clusters (grey dashed line at 7 clusters).
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Table 1. Gene Ontology (GO) slim categories (Klopfenstein et al., 2018) with the amount of associated
growth-dependent and independent proteins. A complete list of the GO slim categories is provided in

Table1-source data 1. Here, only categories that exhibit a significant difference (Fisher’s exact test,

p − value < 0.05) between growth-dependent and independent groups are listed. Shown is the number of
annotations per category.

Gene Ontology categories Growth dependent Growth independent

Translation 40 13

Transport 36 14

Photosynthesis 36 8

Catabolic process 32 4

Protein folding 14 3

Cell division 12 0

Cell wall organization or biogenesis 10 1

Cell cycle 9 0

Table 1–source data 1. List of all 40 GO slim categories with the respective amounts of growth-dependent and
growth-independent proteins (and their cluster associations).

Visualization of functional annotation using proteomaps237

To complement the clustering analysis, we used the proteomaps software (www.proteomaps.net,238

Liebermeister et al. (2014)) to visualize the relative abundances of the identified proteins for differ-239

ent light conditions. To this end, iBAQ intensities were used as an approximation for quantitative240

protein amounts. Here, the measured precursor ion intensities (MS1) for each individual protein241

are summed up and divided by the number of theoretically observable peptides for the respective242

protein. The number of theoretically observable peptides is calculated for each protein by an in243

silico digestion of the respective database sequence and only peptides between 6 and 30 amino244

acids in length are considered for the calculations. We emphasize that, while iBAQ intensities are245

roughly proportional to the molar amounts of the proteins, iBAQ intensities only refer to identified246

proteins and do not reflect the whole proteome: the sum of all proteins used for the generation of247

proteomaps is based on identified proteins only, with the unidentified proteins being neglected.248

Therefore, the proportionality factor could change from sample to sample, and the intensities are249

interpreted only as approximations that provide insight into the expected overall abundances.250

Figure 4 shows proteomaps for three distinct growth regimes: light-limited growth at 27.5251

µmol(photons)m−2s−1 (specific growth rate � = 0.025 h−1), light-saturated growth at 440 µmol(photons)252

m−2s−1 (specific growth rate � = 0.104 h−1), and photoinhibited growth at 1100 µmol(photons) m−2s−1253

(specific growth rate � = 0.093 h−1). The full set of proteomaps is available in Figure 4 - Figure sup-254

plement 1.255

The proteomaps (annotated using Cyanobase (Fujisawa et al., 2017) mapped to custom KEGG256

annotation) show similar trends as the clustering analysis: upregulation of proteins associated257

with translational processes and ribosomes with increasing light intensity and growth rate, and258

downregulation of photosynthetic and light harvesting proteins with increasing light intensity and259

growth rate.260

A coarse-grained model provides insight into proteome allocation261

To interpret the experimental results on cyanobacterial physiology, we made use of a semi-262

quantitative resource allocation model of cyanobacterial phototrophic growth. The model was263

adopted from Faizi et al. (2018) and is summarized in Figure 5. In brief, the model includes264

coarse-grained proteome fractions for cellular processes related to growth, including carbon uptake265

T , metabolism M , photosynthesis P , and ribosomes R. The model describes light-dependent266

cyanobacterial growth at saturating conditions of external inorganic carbon. Compared to the267

original model from Faizi et al. (2018), we now include a growth-independent protein fraction Q268

9 of 28

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2018. ; https://doi.org/10.1101/446179doi: bioRxiv preprint 

https://doi.org/10.1101/446179
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

Light-limited growth

light intensity

gr
ow

th
 ra

te

µ = 0.025 [ h-1 ]

light intensity

gr
ow

th
 ra

te µ = 0.104 [ h-1 ]

light intensity

gr
ow

th
 ra

te µ = 0.093 [ h-1 ]

Light-saturated growth Light-inhibited growth

Figure 4. Proteomaps of proteome reallocation in Synechocystis under light-limited (27.5 µmol(photons)
m−2s−1), light-saturated (440 µmol(photons) m−2s−1) and photoinhibited growth (1100 µmol(photons) m−2s−1).

Each tile represents a single protein. The tiles are arranged and coloured according to Cyanobase annotation

such that larger regions correspond to the functional categories. The tile sizes represent relative protein

abundances. The proteomaps were generated using the platform available at

http://bionic-vis.biologie.uni-greifswald.de/ (Version 1, Liebermeister et al. (2014)). Proteomaps of levels 2, 3
and 4 (that correspond to two successive levels of functional categories and to the level of individual proteins)

from 6 light conditions are available in Figure 4 - supplement 1.

Figure 4–Figure supplement 1. Proteomaps of levels 2, 3 and 4.

that accounts for half of the proteome mass. All further (minor) modifications and changes in the269

model definition are detailed in Materials and Methods.270

Following Faizi et al. (2018), all kinetic parameters were sourced from the primary literature,271

except the parameters for the photosynthetic cross section, photosynthetic turnover rate, and272

the rate constant for photoinhibition (see Materials and Methods for further details). These 3273

parameters were fitted numerically, such that the predicted maximal growth rate � (Figure 1C-D)274

matched the experimental values (Figure 5B). The stoichiometry and energy requirements for275

biosynthesis were approximated using a genome-scale model (Knoop et al., 2013). No proteomics276

data were used during model parametrization and fitting. All parameters and model definitions are277

provided in Figure 5 - Figure supplement 1.278

Evaluation of the model is based on the assumption of (evolutionary) optimality. That is,279

the model is solved using an optimization algorithm that maximizes the specific growth rate �280

as a function of protein allocation. In this way, the model is able to predict how the coarse-281

grained proteome fractions are optimally allocated with increasing light intensity (Figure 5B). These282

predictions provide a reference to which the experimental data can be compared. We emphasize283

that such a comparison does not presuppose that proteome allocation in Synechocystis is necessarily284

optimal.285

The model predictions are shown in Figure 6, together with data from the experimental analysis.286

The protein fraction associated with biosynthesis (M ), as well as the ribosomal fraction (R), increase-287

with increasing growth rate—in accordance with known growth laws of heterotrophic growth (Scott288

et al., 2010; Weiße et al., 2015). In contrast, the protein fraction associated with photosynthe-289

sis (P , light harvesting and photosystems) decreases with increasing light intensity and growth290

rate. We highlight that the predicted growth laws exhibit a characteristic ’kink’ under conditions of291

photoinhibition—a feature that is different from all reported growth laws for heterotrophic growth.292
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Figure 5. Panel A: A coarse-grained model of phototrophic growth, adopted from Faizi et al. (2018). The model describes optimal proteome
allocation under conditions of (i) light-limited, (ii) light-saturated and (iii) light-inhibited growth. Coarse-grained cellular processes include passive

(vd ) and active import (vt) of external inorganic carbon cxi , conversion of inorganic carbon ci into amino acids aa (vm), light harvesting and provision
of cellular energy by photosynthesis (v1 and v2), as well as maintenance and photodamage (mv and vi). Amino acids are translated into
coarse-grained protein fractions for transport (T ), metabolism (M ), ribosomes (R), photosynthetic electron transport (P ), as well as a
growth-independent proteome fraction Q. Translation is limited by the amount of available ribosomes R. Panel B: The model reproduces the
measured growth curve (Figure 1C-D) as a function of light intensity. Shown are the specific growth rate �, as well as the main proteome fractions,
ribosome R, photosynthetic electron transport P, and metabolism M, as a function of light intensity.

Figure 5–Figure supplement 1. Summary of the proteome allocation model.

Testing protein allocation using immunoblotting analysis293

In addition to large-scale proteomics, we tested the changes of selected proteins as a function of294

growth rate using immunoblotting analysis. Specifically, we measured the abundances of PsaC295

(an essential component of PSI), PsbA (the D1 protein of PSII), the RuBisCO subunit RbcL, and the296

ribosomal proteins S1 and L1 under increasing growth rate. Additionally, the absolute amounts of297

PsbA, PsaC, and RbcL proteins were estimated by serial dilution of protein standards (see Materials298

and Methods for details).299

The immunoblotting results are summarized in Figure 6C, together with the model predictions300

and selected proteomics data. Overall, the trends confirm the results of the previous sections—and301

correspond to the changes obtained from the protein allocation model. The ribosomal proteins302

S1 and L1 increased with increasing growth rate, with a characteristic upwards ’kink’ under pho-303

toinhibition. The relative amount of PsbA, the D1 protein of PSII, decreased with increasing growth304

rate, with a characteristic downward ’kink’ under photoinhibition (albeit less pronounced than for305

ribosomal proteins). PsaC associated to PSI followed a similar trend but with high variance. In306

contrast to the overall behavior of proteins associated with metabolism, the RuBisCO subunit RbcL307

exhibited a (slight) increase for increasing growth rates, in accordance with the model predictions308

(Figure 6C).309

Quantitative evaluation of selected protein complexes310

Using the combined data of iBAQ intensities and quantification by immunoblotting and mass311

spectrometry, allows us to provide estimates of absolute amounts of selected protein complexes in312

Synechocystis cells. The results are summarized in Table 2, details of the calculations are listed in313

Table 2-Source data 1.314

The most abundant proteins in Synechocystis cells were proteins associated to photosynthesis315
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Figure 6. Changes in protein abundance as a function of specific growth rate compared to the predictions
obtained from a computational model of proteome allocation. Panel A: Schematic representation of ribosome,

photosynthetic units and metabolic enzyme classes considered in the proteome allocation model. Panel B:

Relative proteomics data (LFQ, label-free quantification intensities, left axes, mean fold change ± SD) of protein
classes in comparison with the model predictions (grey lines, right axes). Panel C: Relative protein abundances

obtained by immunoblotting analysis for selected proteins (left axes, median fold change ± SD) in comparison
with coarse-grained model predictions (grey lines, right axes). Experimental values represent averages from 5
independent experiments, the error bars represent standard deviations. Panels B-C: The experimental data

points are displayed in three different color shading to reflect (from bright to dark) light-limited, light-saturated

and light-inhibited growth. The full dataset of the immunoblotting analysis is provided in Figure 6 - Source data

1 and Figure 6 - Figure supplement 1. The list of proteins considered for ribosome, photosynthetic unit and

metabolic enzyme classes is listed in Figure 6 - source data 2.

Figure 6–source data 1. Results of the immunoblotting analysis.
Figure 6–source data 2. List of proteins considered for ribosome, photosynthetic unit and metabolic enzyme
classes.

Figure 6–Figure supplement 1. Immunoblots and a list of antibodies used for the immunoblotting analysis.
Figure 6–Figure supplement 2. Influence of constant enzyme fractions in the model on cellular growth rate.
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Table 2. Quantification of selected protein complexes in Synechocystis cells. Protein abundances were estimated as molecules per cell, as inferred
from mass spectrometry, immunoblotting and spectrophotometric analysis. The stoichiometries of protein complexes were based on Uniprot

(www.uniprot.org, UniProt Consortium (2018)) and RCSB (www.rcsb.org, Berman et al. (2000)) databases. Protein abundances are not precise
estimates but indicate ranges. The range in the second column reflects the minimal and maximal protein amounts estimated across all light

intensities studied in this work. Estimation of protein abundances is detailed in Table 2-Source data 1, a list of all proteins is provided in Table

2-Source data 2. The experimental conditions of (Moal and Lagoutte, 2012) are comparable to the conditions used in this study with the exception
of high light used here and distinct Synechocystis substrains (Figure 2 - Figure supplement 2).

Protein complex Molecules per cell Method Stoichiometry Reference

Elongation factor 179000-274000 Proteomics TufA This study

Phosphoglycerate kinase 45000 - 73000 Proteomics Pgk This study

Ribosome small subunit 36000 - 66000 Proteomics Rps1A,1B,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U This study

Phycobilisome (phycocyanin) 12000 - 23000 Proteomics ((CpcA,B)18 ,C1,C2,D,G)6 This study

26000 - 66000 Spectrophotometry This study

Photosystem I 31000 - 63000 Proteomics (PsaA,B,C,D,E,F,I,J,K,L,M,X)3 This study

96000 Spetroscopy (Keren et al., 2004)
540000 Spetroscopy (Moal and Lagoutte, 2012)

Ribosome large subunit 33000 - 54000 Proteomics RplA,B,C,D,E,F,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y, RpmA,B,C,E,F,G,H,I,J This study

Transketolase 31000 - 50000 Proteomics TktA2 This study

PII signal transducing protein 36000 - 46000 Proteomics GlnB3 This study

Photosystem II 23000 - 46000 Proteomics (PsbA1,A2,B,C,D,E,F,H,I,J,K,L,M,N,O,T,U,V,X,Y,Z, Ycf12)2 This study

17000 - 29000 Immunoblotting This study

100000 Spetroscopy (Moal and Lagoutte, 2012)
RuBisCO 26000 - 43000 Proteomics (RbcL, RbcS)8 This study

39000 - 63000 Immunoblotting This study

Ferredoxin-NADP reductase (FNR) 33000 - 42000 Proteomics PetH This study

140000 Immunoblotting (Moal and Lagoutte, 2012)
D-fructose 1,6-bisphosphatase class 2 29000 - 36000 Proteomics Slr20944 This study

Phycobilisome (allophycocyanin) 19000 - 38000 Proteomics (ApcA,B)34 ,C6 ,D2 ,E6 ,F2 This study

9000 - 19000 Spectrophotometry This study

G3P dehydrogenase 21000 - 32000 Proteomics Gap24 This study

Plastocyanin 15000 - 29000 Proteomics PetE This study

Superoxide dismutase [Fe] 14000 - 25000 Proteomics SodB2 This study

Orange carotenoid protein 15000 - 24000 Proteomics Slr19632 This study

RNA polymerase 8000 - 15000 Proteomics RpoA2 ,B,C1,C2,D,E,F This study

Cytochrome b6/f 8000 - 15000 Proteomics (PetA,B,C2,D,G,L,M,N)2 This study

Chaperonine GroEL 7000 - 13000 Proteomics GroL114 This study

Ribosome recycling factor 6000 - 7000 Proteomics Frr This study

Phosphoglycerate dehydrogenase 3000 - 5000 Proteomics SerA4 This study

Pyruvate dehydrogenase 3000 - 4000 Proteomics (PdhA, PdhB)2 This study

Glutamine synthetase 2000 - 4000 Proteomics GlnA12 This study

Isocitrate dehydrogenase 2000 - 3000 Proteomics Icd2 This study

Glycogen synthase 2000 - 3000 Proteomics GlgA1 This study

DNA polymerase III 1000 - 2000 Proteomics DnaN2 This study

Pyruvate kinase 1000 - 2000 Proteomics Pyk24 This study

Acetyl-coenzyme A carboxylase 1000 Proteomics AccB, AccC, AccA2 ,ACCD2 This study

Carbonic anhydrase 400 - 700 Proteomics IcfA6 This study

Acetyl-coenzyme A reductase 300 - 600 Proteomics PhaB4 This study

Circadian clock proteins KaiA / KaiB / KaiC 200 - 500 Proteomics KaiA2 / KaiB4 / KaiC6 This study

Table 2–source data 1. Calculations of selected protein complex copies in Synechocystis cells.
Table 2–source data 2. List of all proteins quantified by proteomics measurements in Synechocystis cells.

and carbon fixation, in particular proteins related to phycobilisomes, photosystems and RuBisCO.316

Aside from protein complexes, the most abundant monomeric protein was the elongation factor Tu317

(TufA) with approximately 2 − 3 ⋅ 105 copies per cell. Abundances of photosynthetic proteins were318

generally one to two orders of magnitude lower, similar to ribosomal and other proteins, including319

phosphoglycerate kinase, transketolase, PII signal transducing protein, ferredoxin-NADP reductase,320

D-fructose 1,6-bisphosphatase, glyceraldehyde-3-phosphate dehydrogenase, plastocyanin, super-321

oxide dismutase, orange carotenoid protein, RNA polymerase, cytochrome b6f and chaperonine322

GroEL.323

Table 2 also includes several previous estimates of protein abundances. We note that a direct324

comparison is challenging due to differences in cultivation conditions, including type of cultivation325

and cultivation vessel, cultivation media, irradiance, temperature, aeration, pH and the particu-326

lar Synechocystis substrain (see Figure 2 - Figure supplement 2 for further details on particular327

experimental conditions).328

Discussion329

Quantitative resource allocation in cyanobacteria330

Cyanobacteria are increasingly important host organisms for green biotechnology, but as yet insight331
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into resource allocation of these organisms is restricted to few studies (Abernathy et al., 2017;332

Burnap, 2015; Faizi et al., 2018; Jahn et al., 2018). The scarcity of data is partially due to the fact333

that a quantitative experimental assessment of phototrophic growth is subject to a number of334

technical difficulties and standardized cultivation conditions are not available. The diversity of335

culture conditions used in the literature (summarized in Figure 2 - Figure supplement 2) makes336

a direct comparison of the literature data difficult and often key parameters, such as specific337

growth rate, spectral properties of the light source, vessel geometry or gas exchange rates are not338

reported in sufficient detail. The premise of this study was therefore to use a highly reproducible339

cultivation setup that enables stable culture conditions in turbidostat mode and to provide a broad340

characterization of physiological parameters that can be compared to reported literature values.341

The results, interpreted in the context of a coarse-grained computational model of cyanobacterial342

resource allocation, provide further understanding of resource allocation and the cellular protein343

economy during light-limited, light-saturated and light-inhibited cyanobacterial growth.344

Maximal growth rates and glycogen accumulation345

The maximal specific growth rates of Synechocystis GT-L obtained in this study (Figure 1C, D) were346

similar to the maximal growth rates of other Synechocystis substrains reported in previous stud-347

ies (Touloupakis et al., 2015; Nguyen and Rittmann, 2016; Du et al., 2016; Jahn et al., 2018). While348

individual Synechocystis substrains can be more sensitive to high light (Zavřel et al., 2017), the349

agreement with previously reported values suggests an upper limit of Synechocystis growth in350

buffered BG-11 medium. However, van Alphen et al. (2018) recently reported a specific growth351

rate of 0.16h−1 (TD = 4.3h) using BG-11 medium with modified iron source and chelating agents.352

This finding suggests that the standard composition of BG-11 medium still induces a growth limita-353

tion, even though in our study the total concentration of iron and other elements refilled during354

the turbidostat cultivation was sufficient to fully saturate Synechocystis growth (Figure 1 - Figure355

supplement 1).356

A sub-maximal specific growth rate in buffered BG-11 medium might also relate to the increase357

in glycogen content with increasing light intensity and growth rate (Figure 2G, H). The relative358

amounts of glycogen in Synechocystis observed in this study were well within values reported in359

the literature (Figure 2-Figure supplement 2). However, from the perspective of optimal resource360

allocation, glycogen accumulation is seemingly suboptimal, since the required energy and carbon361

is stored and not utilized to enhance growth. Various growth limitations are known to induce362

accumulation of storage products, including glycogen (Monshupanee and Incharoensakdi, 2014),363

and a recent study showed that glycogen plays an important role in energy balancing and energy364

homeostasis in Synechocystis (Cano et al., 2018). We therefore hypothesize that the observed365

increase in glycogen content, in the absence of other stress factors, is consistent with a limitation366

in buffered BG-11 medium. This hypothesis is also supported by varying amounts of glycogen367

reported for the fast-growing strain Synechococcus elongatus UTEX 2973: while Abernathy et al.368

(2017) only report 1.5 ± 0.5% glycogen of dry weight under fastest growth conditions, Ungerer et al.369

(2018) report a drastic increase in glycogen content when entering the linear growth phase, and370

Tan et al. (2018) report up to 54.9% glycogen of dry weight under high light conditions (but unknown371

growth rate) — suggesting that glycogen accumulation is indicative of growth limitation by other372

factors than light and carbon availability.373

The true growth limit of Synechocystis (and other cyanobacteria) remains an open question.374

Compared to the fast growing strain Synechococcus elongatus UTEX 2973, the strain used in this375

study showed substantially lower carbon partitioning into protein content (23-40% of dry weight,376

compared to 50% in Synechococcus 2973), and increased carbon partitioning into glycogen (8.4-377

22.9% of dry weight, compared to 1.5% in Synechococcus 2973 during the fastest growth (Abernathy378

et al., 2017)). The Synechocystis substrain GT-L used here also maintained a lower PSI/PSII ratio379

(1.35 compared to 2 - 3.5 in Synechococcus 7942 and even higher in Synechococcus 2973 (Ungerer380

et al., 2018)) and did not increase the amount of electron transport carriers such as plastocyanin381
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(Kruskal-Wallis test: p − value = 0.731) or cytochrome b6f (Kruskal-Wallis test: p − value = 0.493) with382

increasing light intensity and growth rate. All these factors may contribute to relatively slower383

growth compared to the fastest growing cyanobacteria. In particular, the recent studies of Ungerer384

et al. (2018) and Abernathy et al. (2017) demonstrate how just a few mutations in genetically very385

similar strains can lead to dramatic growth differences — differences that are likely due to different,386

but as yet not fully understood, cellular strategies in resource allocation. We note, however, that387

the main goal of our study was not to maximize cyanobacterial growth per se, but to understand388

resource allocation in a widely used model strain.389

We also note that many of the commonly used strains, including substrains of Synechocystis sp.390

PCC 6803, have been maintained in laboratories and in culture collections for extended periods of391

time, andmay have therefore acquiredmutations that enhance viability in the lab, but concomitantly392

reduce maximal growth rates. Indeed, an instance where a cyanobacterial model strain appears to393

have lost, through laboratory domestication, behaviors that are important in a natural environment394

was recently reported (Yang et al., 2018).395

Cell morphology and variability of physiological parameters396

Overall, the morphology and range of physiological data obtained in this study were in good397

agreement with previously published values for Synechocystis (see Figure 2 - Figure supplement398

1 and Table 2 for detailed comparison). The cell diameter and volume (Figure 2A, B) were well399

within the range of values reported in the literature (Lea-Smith et al., 2016; Zavřel et al., 2017;400

Rosana et al., 2012). Likewise, the photosynthetic quotient PQ was well within values reported in401

the literature (Zavřel et al., 2017; Shastri and Morgan, 2005) and did not vary significantly with402

growth rate. The total protein content reported here (23 − 40% of gDW, Figure 2I) was lower than in403

several previous studies (Touloupakis et al., 2015; Shastri and Morgan, 2005).404

As noted above, variability in physiological parameters observed in the literature (Figure 2 - Figure405

supplement 1, Table 2) can often be attributed to differences in cultivation setup, including selection406

of particular Synechocystis substrain (Morris et al., 2016; Zavřel et al., 2017). Additionally, the choice407

of analytical technique can affect the results, especially with respect to absolute quantification.408

We are aware of limitations of some techniques used in this work, including glycogen estimation409

(where the extracellular polymeric substances can potentially lead to overestimation of glycogen410

content), proteins extraction (where some proteins, especially those with transmembrane domains,411

could be potentially extracted with reduced efficiency), total protein quantification (where bovine412

serum albumin, used as a protein standard, does not have to represent cyanobacterial proteins413

properly), quantification of individual proteins (where the mass spectrometer ionization efficiency414

could potentially be affected for proteins with lower amount of charged amino acid), relative DNA415

estimation by flow cytometry (where penetration of SYBR® Green I solution to the cells as well416

as SYBR® Green I binding to RNA could both potentially differ under increasing light intensity), or417

phycobiliproteins determination (where proteomics analysis resulted in two times higher values418

than spectrophotometric analysis, Table 2). Nevertheless, even taken these technical limitations into419

account, the quantities reported here fit well into the previously reported ranges of Synechocystis420

physiology (Figure 2 - Figure supplement 1, Table 2), as well as to the predictions of the proteome421

allocation model (Figure 6).422

Trends in physiological parameters423

Of particular interest were the trends of physiological parameters with respect to increasing424

light intensity and growth rate. Almost all identified parameters showed significant changes in425

dependence of light intensity and growth rate, including cell size (diameter and volume , Figure 2A),426

gas exchange rates (Figure 2C-F), as well as glycogen (Figure 2G-H), DNA and pigment content427

(Figure 2K-N). Trends in physiological parameters were consistent with previous studies. The428

increase in gas exchange (O2 release and basal respiration) has been observed previously (Zavřel429

et al., 2015b, 2017). Likewise, the increase in cellular size with growth rate (Figure 2A) has been430
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reported in Synechocystis (Zavřel et al., 2017; Cordara et al., 2018) as well as in bacteria, yeast or431

mammalian cells (Aldea et al., 2017). Light was also shown to affect DNA content (ploidy level) in432

Synechocystis (Zerulla et al., 2016), however, no study of DNA content change with growth rate is433

available to date.434

Reduction of light harvesting pigments under high light is well documented in the literature.435

Interestingly, we found upregulation of chlorophyll a, phycobilins and both PSII and PSI proteins436

synthesis in Synechocystis cells in the initial part of the growth curve (i.e. between light intensities437

of 27.5 − 220 µmol(photons) m−2s−1, Figure 2L, N, Figure 6C). Similar trends have been described in438

Synechocystis (Zavřel et al., 2017) as well as in other cyanobacteria and algae (Kumar et al., 2011;439

Wu et al., 2015). Different from most previous studies, the range of light intensities tested here440

also included conditions of photoinhibition. In several parameters, in particular glycogen content441

(Figure 2G-H) or pigment content (Figure 2K-N), we observed a characteristic "kink", i.e., a sharp in-442

or decrease of the respective abundances. This finding emphasizes photoinhibition as a distinct443

growth regime and distinguishes phototrophic growth laws from their heterotrophic counterparts.444

Our findings also emphasize the need to specify to which reference value the particular changes445

are reported. Typically, values in the literature are reported relative to optical density as a proxy446

for cellular dry weight—making a direct comparison between experimental conditions difficult.447

Furthermore, if cellular composition or cell size changes, these changes do not necessarily translate448

into corresponding changes per cell or per protein content.449

Proteome allocation with growth rate450

Beyond physiological parameters, we followed the global proteome allocation as a function of451

growth rate. The most pronounced changes in proteome with increasing light intensity and growth452

rate were related to upregulation of translational proteins and downregulation of photosynthetic453

proteins (Table 1, Figure 6). The upregulation of proteins related to translation (Figure 6B-C) is454

consistent with well-established growth laws for heterotrophic growth. In particular, E. coli shows455

consistently increased proteome investment into translation-related proteins with increasing growth456

rate (Peebo et al., 2015). Unique for photosynthetic organisms, we observed a decrease of (relative)457

allocation to proteins annotated with photosynthesis (Figure 6B-C). These results are also consistent458

with a recent study from Jahn et al. (2018). Likewise, the observed decrease is also in agreement459

with predictions from resource-allocation models (Burnap, 2015; Faizi et al., 2018), even for rather460

simple models that do not consider photoinhibition (Burnap, 2015). While the RbcL subunit of461

RuBisCo showed a slight increase with increasing growth rate (Figure 6C), we observed no general462

upregulation of metabolic proteins with increasing growth rate (Figure 6B)—an important deviation463

from known growth rate relations (Molenaar et al., 2009). This finding indicates that the metabolic464

capacity itself is sufficient for high growth rates, even under conditions where lack of light input limits465

faster growth. We hypothesize that the most pronounced changes with changing light intensity are466

observed for proteins related to translation and photosynthesis due to two facts: Firstly, translation467

is typically limited by ribosomal capacity, requiring an upregulation of translational capacity with468

faster growth rates. In addition, the short half-life of the D1 protein requires the cell to adjust the469

translational capacity at high light intensities. Secondly, overcapacity of light harvesting may give470

rise to detrimental effects, such as increased cellular (photo-)damage. In comparison, overcapacity471

in the metabolic dark reaction does not entail obvious detrimental consequences (other than the472

loss of the invested resources) and therefore might be under less evolutionary pressure to change473

with changing light intensity. We can further corroborate this hypothesis in silico using the proteome474

allocation model: by artificially forcing a constant mass fraction of a proteome class, we are able to475

evaluate the impact of such sub-optimal adaptation on the specific growth rate as a function of476

light intensities. While constant mass fractions of ribosomal and photosynthetic proteins results in477

a marked deviation in the specific growth rate, a constant metabolic fraction only results in a minor478

deviation (Figure 6-Figure supplement 2).479
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Interpretation of the results in the context of a coarse-grained model480

The coarse-grained model of phototrophic growth allows us to interpret the physiological and481

proteomic changes in the context of (optimal) protein allocation. We emphasize that the model was482

not constructed or parametrized to reproduce certain observed behavior – rather it represents an483

independent null-hypothesis that provides information about the expected changes in proteome484

fractions with increasing growth rate under the assumption of (evolutionary) optimality. In line with485

models of heterotrophic growth (Molenaar et al., 2009;Weiße et al., 2015), the model predicts an486

increase in allocation of ribosomal proteins as a function of growth rate (Figure 6B-C). Different to487

heterotrophic models, however, the model also predicts a characteristic upward "kink" under condi-488

tions of photoinhibition. The relative proteomics data confirms this behavior, including the "kink" at489

high light intensities (Figure 6B-C). The sharp upregulation of ribosomes in the model is due to the490

increased turnover of proteins subject to photodamage. As previously noted in (Faizi et al., 2018),491

the model is likely to overestimate this effect, due to the fact that within the model, photodamage492

is exclusively related to an increase in protein turnover. We expect that in Synechocystis also other493

repair mechanisms are active, resulting in a less pronounced upregulation of ribosomes and energy494

usage elsewhere. Indeed, the observed upregulation in the data is less pronounced than in the495

model simulations (Figure 6B-C). Furthermore, the model predicts a downregulation of the light496

harvesting machinery with increasing light intensity (Figure 5B) and growth rates (Figure 6B-C).497

The relative proteome allocation confirms this trend, including again the predicted "kink" when498

entering photoinhibition (Figure 6B-C). Interestingly, the characteristic "kinks" were not observed in499

the recent study of Jahn et al. (2018) — possibly because the experimental condition used therein500

only considered a single light condition in the photo-inhibited growth regime.501

Finally, as for models of heterotrophic growth, the model predicts an increase in the proteome502

fraction related to metabolic processes with increasing growth rate (Figure 6B-C). The metabolic pro-503

teome fraction, in particular enzymes related to a genome-scale metabolic reconstruction (Knoop504

et al., 2013), did not exhibit such a clear upregulation with the exception of the RbcL protein (a505

subunit of RuBisCo) that increased in relative abundance with increasing growth rate (Figure 6C).506

We note that, different from our results, the recent study of Jahn et al. (2018) reported an increase507

in the metabolic proteome fraction with increasing light intensity, albeit also less than expected508

compared to the computational growth model.509

There are several possible reasons for discrepancies between the model predictions and ob-510

served data. In the case of metabolic proteins, a possible factor, besides the hypothesis outlined511

above, is that the enzymatic reactions are typically not only limited by enzyme abundance, but512

also by substrate availability. That is, substrate concentration below the respective Michaelis513

half-saturation constants imply a (seemingly) superfluous enzyme capacity — and hence less re-514

quirement to regulate enzyme abundance as a function of growth rate. In addition, discrepancies515

between model and observed data can be expected when other factors play a role in resource516

allocation, such as diurnal light availability (Reimers et al., 2017) or bet-hedging (i.e. a trade-off517

between a reduction in growth rate in the present condition in exchange for resource allocation518

into proteins that are potentially beneficial in future conditions).519

Conclusions520

Despite the importance of cyanobacteria as photosynthetic model organisms and as host organisms521

for green biotechnology, as yet only few studies have addressed quantitative growth properties522

and resource allocation even for well characterized model strains. The goal of this study was523

therefore to close this gap with respect to knowledge and interpretation of key physiological524

parameters of the cyanobacterial model strain Synechocystis sp. PCC 6803 in dependence of light525

intensity and growth rate. We focused on light as the only variable environmental parameter –526

and identified trends in key physiological parameters and proteome allocation as a function of527

growth rate. The interpretation of data was facilitated by a coarse-grained computational model528

of cyanobacterial resource allocation and the data was put into the context of data available in529
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the literature, obtained by a comprehensive literature research. Overall, the resulting growth laws530

(decrease of proteome fraction associated with light harvesting and increase of proteome fraction531

associated with translation and biosynthesis with increasing light intensity and growth rate) is532

in good agreement with previous theoretical (Burnap, 2015; Faizi et al., 2018) and experimental533

studies (Jahn et al., 2018).534

Light, however, is not the only factor that affects photoautotrophic growth. Further studies535

are required to identify growth limitation under different environmental conditions, in particular536

limitations induced by other biotechnologically or environmentally relevant macro- or micronutri-537

ents. Ultimately, such studies will also have to take into account the diversity of cyanobacterial538

metabolism (Beck et al., 2018). As indicated by the rather minor genetic differences between539

strains with vastly different growth rates, we expect that differences in many biotechnologically540

relevant parameters between strains are indeed a consequence of different strategies in resource541

allocation — making further studies of cellular accounting a key prerequisite for successful green542

biotechnology. The proposed reproducible cultivation setup and the coarse-grained computational543

model used in this study provide a suitable framework and reference to facilitate and to contribute544

to such studies.545

Materials and Methods546

Inoculum cultures547

Synechocystis sp. PCC 6803 GT-L was obtained from Prof. D. A. Los (Timiryazev Institute of Plant548

Physiology, Moscow, RU). The strain was cultivated in BG-11 medium (Stanier et al., 1971) supple-549

mented with 17 mM HEPES (Carl Roth, Karlsruhe, Germany, pKa = 7.5). pH of the buffered BG-11550

was adjusted to 8.2. The inoculum cultures were precultivated in 250-mL Erlenmeyer flasks on a551

standard orbital shaker (120 rpm) in a cultivation chamber tempered at 25◦C under an average552

illumination of 110 µmol(photons) m−2s−1 (provided by cool white light LEDs) and under 1% CO2 in553

the atmosphere.554

Photobioreactor555

Growth experiments were performed in flat panel photobioreactors, described in detail previ-556

ously (Nedbal et al., 2008). The illumination in the photobioreactors was designed as a chessboard557

configuration of red and blue LEDs (red: �max ≈ 633 nm, �1∕2 ≈ 20 nm, Luxeon LXHLPD09; blue:558

�max ≈ 445 nm, �1∕2 ≈ 20 nm, Luxeon LXHL-PR09; all manufactured by Future Lighting Solutions,559

Montreal, QC, Canada). Spectral characteristics of the LEDs are shown in Zavřel et al. (2015b). The560

photobioreactor continuously measured optical density (OD) by an inbuilt densitometer and steady-561

state pigment fluorescence emission yield by an inbuilt fluorometer (both described in Nedbal562

et al. (2008)). Dissolved O2 was monitored by the InPro6800 electrode, culture temperature and pH563

were monitored by the InPro3253 electrode (all manufactured by Mettler-Toledo Inc., Columbus,564

OH, USA). Culture homogenization was secured by the inflow gas bubbling with a rate of 200 mL565

min−1, complemented by rotations of a magnetic stirrer bar (�5 × 35 mm, 210 rpm) in a vertical566

plane. All other photobioreactor accessories were the same as described in (Zavřel et al., 2015b).567

The photobioreactor setup is visualized in Figure 1A.568

Experimental setup569

Growth characterization was performed in a quasi-continuous regime as described previously (Za-570

vřel et al., 2015b). Briefly, the exponentially growing Synechocystis cells were maintained in a defined571

range of optical density (measured at 680 nm, OD680) by controlled dilution of the culture suspen-572

sion with fresh buffered BG-11 medium (turbidostat). The optical density was measured by the573

photobioreactor instrument base, and the OD680 range was set to 0.60 - 0.66, which corresponded574

to approximately 2 – 4 x 107 cells mL−1. Starting OD680 of all cultures was 0.1 - 0.2, which corre-575

sponded to approximately 2 - 4 x 106 cells mL−1. Once the culture density reached OD680 0.66, the576
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quasi-continuous cultivation setup was initiated by starting automated cultures dilution within the577

selected OD680 range. Under each light condition, the cultures were growing for at least 24 hours.578

This period was long enough to reach growth stability, i.e. to acclimate the cells to the specific579

condition. The principal of quasi-continuous cultivation is represented in Figure 1B.580

During the quasi-continuous experiments, Synechocystiswas cultivated under red light intensities581

of 27.5 – 1000 µmol(photons) m−2s−1. The cultures were always supplemented with low intensity582

of blue light (27.5 µmol(photons) m−2s−1) in order to avoid growth limitation by complete absence583

of short wavelength photons (Golden, 1995). Cultivation temperature was set to 32◦C, and the584

experiments were performed under a CO2 concentration of 5000 ppm in the sparging gas (secured585

by the Gas Mixing System GMS 150, Photon System Instruments Ltd., Brno, CZ).586

Analytical methods587

Growth rates determination588

Specific growth rates � were evaluated from an increase of OD680 signal as recorded by the photo-589

bioreactor during the quasi-continuous cultivation (after the growth stabilized under each particular590

light intensity), according to Zavřel et al. (2015b):591

� =
ln

OD680 t2
OD680 t1

t2 − t1
, (1)

where OD680 t1 and OD680 t2 represent optical densities measured at 680 nm in times t1 and t2,592

respectively. As an alternative method, specific growth rates were determined from depletion593

of spare cultivation medium, as measured by top loading balances (Ind231, Mettler-Toledo Inc.,594

Columbus, OH, USA, Figure 1C), according to the following equation:595

� =
f
V
, (2)

where f represents average flow rate of spare cultivation medium and V represents volume of596

the culture suspension in the photobioreactor.597

Determination of photosynthesis and respiration rates598

The oxygen evolution rates as a sum of all oxygen fluxes between Synechocystis cells and cultivation599

media (net photosynthesis, NP) and dark respiration rates (R) were determined from the signal of600

dO2 electrode in the photobioreactor vessel by turning off aeration for 10 min, through 5 min light601

and 5 min dark periods, according to Červený et al. (2009). Gross photosynthesis rates (rates of602

oxygen production by water splitting, GP) were calculated as: GP = NP + R (photorespiration and603

other processes were neglected for the GP calculations).604

Carbon uptake (net CO2 uptake rate as a sum of all CO2 fluxes between Synechocystis cells605

and cultivation media) was determined from the steady-state values of CO2 concentration in the606

photobioreactor output gas, as measured by the Gas Analyzing System (Photon System Instruments607

Ltd., Brno, CZ, described in detail in Červený et al. (2009)).608

Pigment content measurements609

Content of chlorophyll a, carotenoids and phycobilisomes was measured spectrophotometrically610

following the protocols of Zavřel et al. (2015a) and Zavřel et al. (2018a).611

Measurements of glycogen, cell size and DNA content612

Content of glycogen was measured spectrophotometrically, following the protocol of Zavřel et al.613

(2018b). Cellular dry weight was measured using XA105DR analytical balances (Mettler Tolledo,614

Greifensee, CH). Cell count was measured with the Cellometer Auto M10 (Nexcelom Bioscience,615

Lawrence, MA, USA).616
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Cell size was determined using the ImageStream MkII imaging flow cytometer (Amnis Corp.,617

Seattle, WA, USA). Right after harvesting from the photobioreactor, 500 µL of the culture suspension618

was centrifuged (4 000 g, 4 min, 25◦C), supernatant was discarded, pellet was resuspended in 0.25%619

glutaraldehyde solution and the samples were incubated for 10 min at laboratory temperature.620

The fixed cells were stored in -80◦C until further processing (up to 2 months in total). For further621

analysis, the samples were thawed on ice for 2 hours, and they were kept at laboratory temperature622

in dark for additional 30 min after thawing (after 20 min, 5 µL of SYBR® Green I solution was623

added to each sample for DNA content estimation; for details see the next paragraph). During the624

cytometric analysis, only bright field images were collected by the imaging flow cytometer. Gating625

of the measured populations was applied to discriminate: a) focused objects (using combination of626

both RMS gradient and Treshold Mask features of IDEAS® software), and b) round objects (width/627

length ratio between 0.9 – 1.0). The imaging flow cytometer was calibrated with non-fluorescent628

microspheres (1 – 15 µm, Thermo Fisher Scientific, WalthamMA, USA) and the results were validated629

with the light microscope Axio Imager 2 (Carl Zeiss, Oberkochen, DE). During the cytometric analysis,630

also chlorophyll fluorescence (excitation: 488 nm, detection: 480 - 560 nm) and phycobilisomes631

fluorescence (excitation: 642 nm, detection: 642 nm - 745 nm) were measured to validate selection632

of the cells within all measured objects.633

DNA content was measured in the same samples as the cell size. After the samples thawing on634

ice for 2 hours and at laboratory temperature for 20 min (see the previous paragraph for details), 5635

µL of SYBR® Green I solution (Thermo Fisher Scientific, Waltham, MA USA, diluted 1:100 in DMSO)636

was added to 500 µL of the culture suspension to mark cellular DNA, and the samples were further637

incubated for 10 min in the dark at laboratory temperature. During the cytometric analysis, a 488638

nm argon laser was used to excite both SYBR® Green I and chlorophyll a, and another 642 nm laser639

was used to excite phycobilisomes. To identify Synechocystis cells within all measured objects, the640

same gating as described in the previous paragraph was used.641

Protein extraction642

Protein extraction was performed according to Brown et al. (2008) with modifications. For each643

sample, 90 mL of the culture suspension was withdrawn from the photobioreactor, centrifuged (4644

000 ×g, 5 min, 32◦C), supernatant was partially discarded (leaving 0.5 - 1 ml of liquid in the original645

50 mL conical tube) and the pellet was resuspended and transferred to 1.5 mL Eppendorf tube.646

The tubes were centrifuged (20 000 x g, 4 min, 32◦C), supernatants were completely discarded647

and the tubes were stored at -80◦C until further processing (up to 4 months). All following steps648

of protein isolation were performed at 4◦C. The frozen pellets were resuspended in 0.8 mL of a649

protein extraction buffer (50 mM Tris-HCl (pH 7.6); 2 mM EDTA; 10 mM MgCl2; 250 mM sucrose, 1%650

of protease inhibitor cocktail P9599, Sigma-Aldrich, St. Louis, MO, USA). The mixture was transferred651

to 2mL tubes with a rubber o-ring (containing 0.5 mL of sand and glass beads) and the cells652

were disrupted by 6 x 30 s homogenization pulses on the laboratory mixer (BeadBug Microtube653

Homogenizer, Benchmark Scientific, Sayreville, NJ, USA). Between each pulse, the samples were654

kept on ice. After the first step of homogenization, the samples were shortly centrifuged, 200 µL of655

10% SDS was added to each tube (to reach the final concentration of 2%), and the samples were656

mixed and frozen in liquid nitrogen. Right after freezing, the cells were additionally sonicated in657

an ultrasound bath with ice until thawing (6 cycles, between each cycle the samples were frozen658

in liquid nitrogen). After ultrasound homogenization, the samples were centrifuged (10 000 x g, 3659

min, 4◦C) to remove unbroken cells and cell debris, and 500 µL of the supernatant protein fraction660

was transferred to a new 1.5 mL Eppendorf tube. The total protein concentration was measured in661

triplicates with a bicinchoninic acid assay kit (BCA1-1KT, Sigma-Aldrich, USA) by the method of Smith662

et al. (1985) using bovine serum albumin (A7906, Sigma-Aldrich, USA) as a standard. The samples663

were used for both immunoblotting and proteomics measurements.664
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Immunoblotting protein analysis665

Immunoblotting and protein quantification was done according to Brown et al. (2008) with modifi-666

cations. 100 µl of each sample was diluted with equal volume of 2x loading buffer (100 mM Tris-HCl667

(pH 7.6); 20 mM DTT, 4% SDS 0.02% bromphenol blue, 20% glycerol), denatured for 20 min at 37◦C668

and centrifuged (10 000 x g, 20 min, laboratory temperature) before loading. Samples containing 4669

µg of total protein were separated in 12.5% (for detection of RbcL, S1, L1) or 15% (for detection of D1,670

PsaC) 0.75 mm thick polyacrylamide mini gels by SDS-PAGE at 200 V for 40-50 min in a MiniProtean671

Tetra Cell (Bio-Rad, Hercules, CA, USA). Separated proteins were transferred to 45 µm nitrocellulose672

membranes (Hybond-C Extra, GE Healthcare Life Sciences, Chicago, Il, USA) using the Trans-Blot673

Turbo Transfer system (BioRad, Hercules, CA, USA) at 25 V, 1.0 A, laboratory temperature, and cycle674

duration of 30 min. The nitrocellulose membranes were blocked immediately after transfer in675

TBST-G buffer (10 mM Tris-HCl (pH7.6); 150 mM NaCl; 0.05% (v/v) Tween-20; 1% cold-water fish676

gelatin) for 2h at laboratory temperature. Primary antibodies diluted in TBST-G buffer were used677

according to recommendations of the manufacturer. The list of primary antibodies is provided678

in Figure 6-Figure supplement 1. After incubation of the membranes in the primary antibody679

solutions for 1h at laboratory temperature, the solutions were poured off and the membranes were680

briefly rinsed and washed 3 times for 15 min in TBST buffer at laboratory temperature. For signal681

detection, the membranes were incubated with goat anti-rabbit immunoglobulin G horseradish682

peroxidase conjugated antibodies diluted 1:75000 in TBST buffer for 1 h at laboratory temperature.683

Membranes were washed as described above and developed with Clarity Western ECL Substrate684

(Bio-Rad, Hercules, CA, USA) according to the manufacturer’s instructions. Images of the blots were685

obtained using a Gel Doc XR+ system (Bio-Rad, Hercules, CA, USA).686

Intensity of protein bands on immunoblots was estimated by densitometric analysis with the687

Image Lab 5.1 software (Bio-Rad, Hercules, CA, USA). The protein concentrations were quantified as688

relative to the lowest light intensity (27.5 µmol(photons) m−2s−1). In addition, absolute amounts of689

PsbA, PsaC, and RbcL proteins were estimated from standard curves prepared by serial dilutions690

of corresponding standard proteins. The list of protein standards is provided in Figure 6-Figure691

supplement 1.692

Quantitative proteomics693

Protein lysates of 5 individually grown replicate samples per group (27.5-55-110-220-440-1100694

µmol(photons) m−2s−1) were prepared for mass spectrometric analysis by shortly stacking 5 µg695

proteins per sample in a 4-12% Bis-Tris sodium dodecyl sulfate (SDS)-polyacrylamide gel (Thermo696

Scientific, Darmstadt, Germany) over a 4 mm running distance. Proteins were further processed697

as described previously (Poschmann et al., 2014). Briefly, gels were subjected to a silver staining698

protein containing bands cut out from the gel, destained, washed, reduced with dithiothreitol and699

alkylated with iodoacetamide. Subsequently, proteins were digested for 16 h at 37◦C with 0.1 µg700

trypsin (Serva, Heidelberg, Germany), peptides were extracted from the gel and after drying in701

a vacuum concentrator resuspended in 0.1% trifluoroacetic acid. 500 ng of sobulized peptides702

per sample were then analyzed by a liquid chromatography (Ultimate 3000 Rapid Separation703

Liquid Chromatography system, RSLC, Thermo Fisher Scientific, Dreieich, Germany) coupled with704

quantitative mass spectrometry. First, peptides were loaded for 10 minutes at a flow rate of 6 µl/min705

on a trap column (Acclaim PepMap100 trap column, 3 µm C18 particle size, 100 Å pore size, 75 µm706

inner diameter, 2 cm length, Thermo Fisher Scientific, Dreieich, Germany) using 0.1 % trifluoroacetic707

acid as mobile phase. Subsequently, peptides were separated at 60◦C on an analytical column708

(Acclaim PepMapRSLC, 2 µm C18 particle size, 100 Å pore size, 75 µm inner diameter, 25 cm length,709

Thermo Scientific, Dreieich, Germany) at a flow rate of 300 nl/min using a 2 h gradient from 4 to710

40% solvent B (solvent A: 0.1% (v/v) formic acid in water, solvent B: 0.1% (v/v) formic acid, 84% (v/v)711

acetonitrile in water).712

Separated peptides were injected via distal coated SilicaTip emitters (New Objective, Woburn,713

MA, USA) into a Q Exactive plus Orbitrap mass spectrometer (Thermo Fisher Scientific, Dreieich,714
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Germany) online coupled via a nanosource electrospray interface. The mass spectrometer was715

operated in data dependent positive mode with a capillary temperature of 250◦C and spray voltage716

set to 1 400 V. First, full scans were recorded in profile mode at a resolution of 70 000 over a717

scan range from 350 to 2 000 m/z. Ions were accumulated for a maximum of 80 ms and the718

target value for automatic gain control was set to 3 000 000. Second, a maximum of ten two- or719

threefold charged precursor ions were selected within a 2m/z window using the build in quadrupole,720

fragmented via higher-energy collisional dissociation and fragments analyzed in the Orbitrap over721

a maximal scan range from 200 to 2 000 m/z at a resolution of 17 500. Here, the automatic gain722

control was set to 100 000 and the maximum ion time was 60 ms. For the next 100 s already723

fragmented precursors were excluded from further analysis.724

Peptide and protein identification725

For peptide and protein identification and quantification the MaxQuant software suite (version726

1.6.1.0, MPI for Biochemistry, Planegg, Germany) was used with standard parameters if not other-727

wise stated. For database searches 3507 protein entries from the UP000001425 Synechocystis sp.728

strain PCC 6803 downloaded on the 20th of November 2017 from the UniProtKB were considered.729

Searches were conducted using following parameters: carbamidomethylation at cysteines as fixed730

and oxidation at methionine and N-terminal protein acetylation as variable modification, false731

discovery rate on peptide and protein level 1%, match between runs enabled as well as label-free732

quantification and iBAQ, tryptic cleavage specificity with a maximum of two missed cleavage sites.733

A first search was conducted with a precursor mass tolerance of 20 ppm and after recalibration by734

MaxQuant, 4.5 ppm precursor mass tolerances were applied. The mass tolerances for fragment735

spectra signals were set to 20 ppm.736

Quantitative information for identified proteins was further processed within the Perseus737

framework (version 1.6.1.1, MPI for Biochemistry, Planegg, Germany). Here, only non-contaminant738

proteins identified with at least two different peptides were considered. Additionally, all proteins739

were filtered out which - in at least one group – did not show any missing values in the label-free740

quantification data which then was used after log2 transformation for statistical analysis and741

relative protein amount comparisons between the different light intensity groups. Calculations of742

protein stoichiometries and comparison to quantitative protein data derived from other methods743

was done on absolute quantitative data based on iBAQ intensities. First, iBAQ intensities were744

normalized on the sum iBAQ intensities of four proteins (Q55806, P72587, P73505, Q59978) showing745

a small standard deviation, similar intensity range and ratio close to 1 between the mean intensities746

of the 27.5 and 1100 µmol(photons) m−2s−1 group. Second, a calibration of absolute intensities747

was performed using the PsaC Western blot data (mean of 104 fmol/µl). The mass spectrometry748

proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaíno749

et al., 2016) partner repository with the dataset identifier PXD009626.750

Proteomaps751

For generating proteomaps, the version 1.0 of the visualization tool at www.proteomaps.net752

(Liebermeister et al., 2014) was used, choosing absolute quantitative values and Synechocystis sp.753

6803 as organism. To be compatible with the proteomaps tool, the mass spectrometric data was754

searched against the 3661 entries from the GCA_000009725.1 protein dataset from CyanoBase755

downloaded on 22th January 2018.756

Statistical analysis757

Kruskal-Wallis test758

For the identification of cellular resources that significantly changed with growth rate (including759

each single protein out of total 1356 identified proteins), we performed a Kruskal-Wallis test (Python760

scipy.stats module) for each resource (null hypothesis was that the median of all compared groups761

is equal) and did a pair-by-pair comparison of two conditions in each case. For the test we compared762
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only those measurements with at least 3 samples. Cellular components and proteins determined763

as significantly changing with light intensity and growth rate were those that had at least one pair764

that differed significantly with a p − value < 0.05.765

Fisher’s exact test766

We further performed a Fisher’s exact test to investigate which of the GO categories filtered out767

from the proteomics dataset are significantly associated to growth related proteins. For this test768

we used the GO slim categories. Therefore, we classified the 1356 proteins into growth dependent769

(779 proteins) and independent groups (577 proteins). The second classification criterion referred770

to being in one specific gene ontology group or not. The test was then performed for each GO slim771

category. An imbalance for one GO slim category, between the amount of growth-dependent and772

growth-independent proteins, was determined as significant for a p − value < 0.05.773

A coarse-grained proteome allocation model774

Model overview775

The previously published model of proteome allocation of Faizi et al. (2018) was extended with a776

growth-independent protein class Q that accounts for approximately half of the proteome. The777

growth-dependent proteome is comprised of transporter (T), ribosomes (R), metabolic enzymes (M)778

and photosynthetic units (P). Furthermore, protein degradation and an energy maintenance term779

were added, resulting in a basal energy expenditure. A description of the modified model with all780

reaction rates and parameters is provided in Figure 5 and Figure 5-Figure supplement 1.781

The proteome allocation model gives rise to an optimization problem. We assume that the782

objective of a unicellular organism is to maximize its growth rate while the proteome mass remains783

constant. The maximization of the cellular growth rate, for a given external condition, is achieved784

by re-adjusting the amount of ribosomes that are delegated to translate a specific protein. The785

optimization problem was solved using the APMonitor Optimization Suite (Hedengren et al., 2014)786

with the steady-state optimization mode and the IPOPT (Interior Point Optimizer) solver option. The787

python interface was used to run the model.788

Model parametrization and fitting789

The model describes growth per cellular dry weight. Cell size only affects the estimated parameter

for diffusion of inorganic carbon. For simplicity, the diffusion parameter is set constant (with

a cell diameter of approximately 2 µM). Parameters were as in (Faizi et al., 2018) and sourced
from the primary literature. Only three parameters � (turnover rate of the photosynthetic unit),
kd (photodamage) and � (effective absorption cross-section) were then fitted to the measured
growth rates. No protein data were used in the fitting. Parameter estimation was done for an

external inorganic carbon concentration of cxi = 100 mM (c
x
i saturated condition). To minimize the

computational effort, a pre-defined set of values for these parameters was specified prior to fitting,

� = {50, 75, 100} , (3)

kd = {5 ⋅ 10−7, 6 ⋅ 10−7, ..., 4 ⋅ 10−6, 5 ⋅ 10−6} , (4)

� = {0.1, 0.2, ..., 0.9, 1} . (5)

To select the best fit, the negative logarithm of the likelihood was calculated for each parameter set:790

791

l(�) =
∑

i

(yi(�) − xi)2

e2i
+ log(2 ⋅ � ⋅ e2i ), (6)

where xi represents the here measured growth rates with their uncertainties ei and yi(�) the792

simulated growth rates calculated with the model parameters �. The best fit l(�) = -51.46, was793

obtained with � = 75 s−1, kd = 10−6 and � = 0.7 nm2. Compared to the original model, the addition of794

the growth-independent protein fraction enhances the energy demand of the cell, and increases the795
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turnover rate and absorption cross-section of the photosystem. We emphasize that the purpose of796

the model was not to provide an exact fit to the data, but to guide the interpretation of the results.797

Impact of non-adaptive protein fractions on the estimated growth rate798

To investigate the potential influence of a constant (non-adaptive) proteinmass fraction of Ribosome,799

Photosynthetic unit, and Metabolic proteins classes (as shown in Figure 6) on the predicted growth800

rate, an additional constraint was added to the optimization problem, such that the concentration801

of the respective protein class is802

[Z] =
'Z ⋅Dc

nZ
, (7)

whereDc is the cell density (in units of amino acids per cell), nZ determines the length of the enzyme803

Z, and 'Z is the (constant) mass fraction of the protein class Z. In addition, to account for the fact804

that proteins can be de- or activated (by post-translational modifications such as phophorylation),805

an additional variable �Z was introduced that determines the amount of active enzymes (such that806

the amount of catalytically active enzyme Za is [Za] = �Z ⋅ [Z]). The growth rate is then optimized807

using the remaining protein classes, as well as the parameter �Z as variables. The value for the808

constant protein fraction was set such that it corresponds to the mass fraction of the respective809

protein class at the highest growth rate.810
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Figure 1–Figure supplement 1. Uptake and refilling rates of selected nutrients during the quasi-
continuous cultivation.

1003

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2018. ; https://doi.org/10.1101/446179doi: bioRxiv preprint 

https://doi.org/10.1101/446179
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

0

1000

2000

3000

G
ly

co
ge

n 
[fg

 c
el

l-1
]

H

Glycogen

0.0

0.5

1.0

1.5

2.0

0

1000

2000

3000

4000

DN
A 

pe
r c

el
l

[r
el

. t
o 

in
i�

al
]

Pr
ot

ei
ns

 [f
g 

ce
ll-1

]

J

Proteins
DNA

0

40

80

120

160

0

200

400

600

800

Al
lo

ph
yc

oc
ya

ni
n 

[fg
 c

el
l-1

]

Ph
yc

oc
ya

ni
n 

[fg
 c

el
l-1

] L

Phycocyanin
Allophycocyanin

0

10

20

30

40

0

40

80

120

160

0 400 800 1200

Ca
ro

te
no

id
s [

fg
 c

el
l-1

]

Ch
lo

ro
ph

yl
la

[fg
 c

el
l-1

]

Red light intensity 
[µmol(photons) m-2 s-1]

N

Chlorophyll a
Carotenoids

-16.0

-12.0

-8.0

-4.0

0.0

0 400 800 1200

Da
rk

 re
sp

ira
�o

n
[fm

ol
 O

2
ce

ll-1
 h

-1
]

Red light intensity 
[µmol(photons) m-2 s-1]

F

Respira�on

0

50

100

150

200

250

300

G
ly

co
ge

n 
[m

g 
g DW

-1
] G

Glycogen

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0

100

200

300

400

500

600

DN
A 

 p
er

 D
W

[r
el

. t
o 

in
i�

al
]

Pr
ot

ei
ns

 [m
g 

g DW
-1

] I

Proteins
DNA

0

5

10

15

20

0

20

40

60

80

100

120

Al
lo

ph
yc

oc
ya

ni
n 

[m
g 

g DW
-1

]

Ph
yc

oc
ya

ni
n 

[m
g 

g DW
-1

] K

Phycocyanin
Allophycocyanin

0

2

4

6

0

5

10

15

20

0 400 800 1200

Ca
ro

te
no

id
s [

m
g 

g DW
-1

]

Ch
lo

ro
ph

yl
l a

[m
g 

g DW
-1

]

Red light intensity 
[µmol(photons) m-2 s-1]

M

Chlorophyll a
Carotenoids

-1.6

-1.2

-0.8

-0.4

0.0

0 400 800 1200

Da
rk

 re
sp

ira
�o

n
[m

m
ol

 O
2

g DW
-1

 h
-1

]

Red light intensity 
[µmol(photons) m-2 s-1]

E

Respira�on

0

2

4

6

0

2

4

6

8

  N
et

 p
ho

to
sy

nt
he

sis
[m

m
ol

 C
O

2
g DW

-1
 h

-1
]

G
ro

ss
 p

ho
to

sy
nt

he
sis

[m
m

ol
 O

2
g DW

-1
 h

-1
] C

Phot. O2
Phot. CO2

0

20

40

60

0

20

40

60

80

100

  N
et

 p
ho

to
sy

nt
he

sis
[fm

ol
 C

O
2

ce
ll-1

 h
-1

]

G
ro

ss
  p

ho
to

sy
nt

he
sis

[fm
ol

 O
2

ce
ll-1

 h
-1

]

Phot. O2
Phot. CO2

D

0

2

4

6

8

0 400 800 1200

Ce
ll 

vo
lu

m
e 

[µ
m

3 ]

Red light intensity 
[µmol(photons) m-2 s-1]

A

Cell volume

Cell morphology

Photosynthesis, respira�on

Cell composi�on

0

4

8

12

16

0 400 800 1200

Ce
llu

la
r d

ry
 w

ei
gh

t 
[p

g 
ce

ll-1
]

Red light intensity 
[µmol(photons) m-2 s-1]

B

Cell weight

Normaliza�on per cellular dry weight Normaliza�on per cell

Normaliza�on per cellular dry weight Normaliza�on per cell

Figure 2–Figure supplement 1. Allocation of key cellular resources as a function of light intensity
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Figure 2–Figure supplement 2. Comparison of the values measured in this study with data
reported in the literature.
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Figure 3–Figure supplement 1. List of growth-dependent proteins.
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Figure 3–Figure supplement 2. List of growth-independent proteins.
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Figure 3–Figure supplement 3. Elbow method for the identification of an appropriate number of
clusters (grey dashed line at 7 clusters).
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Figure 4–Figure supplement 1. Proteomaps of levels 2, 3 and 4.

1009

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2018. ; https://doi.org/10.1101/446179doi: bioRxiv preprint 

https://doi.org/10.1101/446179
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

        

REFERENCES 
1. Faizi M, Zavrel T, Loureiro C, Cerveny J, Steuer R (2018). A model of optimal protein allocation during phototrophic growth. Biosystems 

166: 26-36. 
2. Mangan NM, Brenner MP (2014). Systems analysis of the CO2 concentrating mechanism in cyanobacteria. eLife 3: p. e02043. 
3. Dornmair K, Overath P, Jähnig F (1989). Fast measurement of galactoside transport by lactose permease. J Biol Chem 26(1): 342-346. 
4. Omata T, Takahashi Y, Yamaguchi O, Nishimura T (2002). Structure, function and regulation of the cyanobacterial high-affinity bicarbo-

nate transporter, BCT1. Funct Plant Biol 29(3): 151-159. 
5. Marcus Y, Altman-Gueta H, Finkler A, Gurevitz M (2005). Mutagenesis at two distinct phosphate-binding sites unravels their differential 

roles in regulation of Rubisco activation and catalysis. J Bacteriol 187 (12): 222-4228. 
6. Bremer H, Dennis P (2008). Modulation of chemical composition and other parameters of the cell at Dif- ferent Exponential Growth Ra-

tes. EcoSal Plus, 3(1).  
7. Maier T, Schmidt A, Güell M, Kühner S, Gavin AC, Aebersold R, Serrano L (2011). Quantification of mRNA and protein and integration 

with protein turnover in a bacterium. Mol Syst Biol 7: 511. 
8. Knoop H, Gründel M, Zilliges Y, Lehmann R, Hoffmann S, Lockau W, Steuer R (2013). Flux balance analysis of cyanobacterial metabo-

lism: the metabolic network of Synechocystis sp. PCC 6803. PLoS Comput Biol 9(6): e1003081.

max
β, X, μ

μ

s . t . d [X ]
d t

− μ ⋅ X = 0 ,

∑
j

βj = 1 , ∀j ∈ 𝔼 : βj ≥ 0 ,

∑
j

nj ⋅ [ j ] + [a a ] + [ci]
mc

= Dc ,

nQ ⋅ [Q ] = 0.5 ⋅ Dc ,
𝔼 = {R , Q , P, T, M } ,
X = [c i , a a , e, Q , Po, P*, T, M , R ]T ∈ ℝ+ .

d [ci]
d t

= vd + vt − mc ⋅ vm ,
d [a a ]

d t
= vm + nP ⋅ vi − ∑

j
nj ⋅ γj + dp ⋅ ∑

j
nj ⋅ [ j ] ,

d [z ]
d t

= γz − dP ⋅ [z ] ,
d [Po]

d t
= γP − v1 + v2 − dp ⋅ [Po] ,

d [P*]
d t

= v1 − v2 − vi − dp ⋅ [P*] ,
d [e]
d t

= mϕ ⋅ v2 − vt − mμ ⋅ vm − mγ ⋅ ∑
j

nj ⋅ γj − mv ⋅ [e]
10 + [e] ,

∀j ∈ 𝔼 , ∀z ∈ 𝔼∖P .

vd = Pm ⋅ Acell
Vcell

⋅ (NA ⋅ Vcell ⋅ [c x
i ] − [ci]) ,

vt = [T ] ⋅ k t
cat ⋅ [c x

i ]
Kt + [c x

i ] ⋅ [e]
Ke + [e] ,

vm = [M ] ⋅ k m
cat ⋅ [ci]

Km + [ci]
⋅ [e]

Ke + [e] ,

γj = [R ] ⋅ βj ⋅ γma x
nj

⋅ [a a ]
Ka + [a a ] ⋅ [e]

Ke + [e] ,

v1 = σ ⋅ l i g h t ⋅ [Po] ,
v2 = τ ⋅ [P*] ,
vi = kd ⋅ σ ⋅ l i g h t ⋅ [P*] ,

∀j ∈ 𝔼 .

parameter definition value source
Pm cell membrane permeability to inorganic carbon 0.108 [ dm h-1 ] (2)
Acell cell surface area 1.26 · 10-9 [ dm2 cell-1 ] This study
Vcell cell volume 4.19 · 10-15 [ dm3 cell-1 ] This study
NA Avogadro constant 6.022 · 1023 [ mol-1 ]
ktcat maximal import rate 43560 [ h-1 ] (3)
Kt half-saturation constant of the transporter enzyme 15 [ μM ] (4)
kmcat maximal metabolic rate 32700 [ h-1 ] (5)
Km half-saturation constant of the metabolic enzyme 2441560 [ molecules cell-1 ] (5)
γmax maximal translation rate 79200 [ aa h-1 molecules-1 ] (6)
Ka, Ke half-saturation constant of amino acids and energy units for each reaction 10000 [ molecules cell-1 ] (1)
dp protein half-life 1/23 [ h-1 ] (7)
σ effective absorption cross-section of the photosynthetic unit 0.7 [ nm2 ] This study
τ maximal turnover rate of the photosynthetic unit 270000 [ h-1 ] This study
kd rate constant for photodamdage 10-6 This study
mv energy maintenance rate 7 · 109 [ molecules cell-1 h-1 ] (8)
Dc average cell density (protein mass per cell) 1.4 · 1010 [ aa cell-1 ] (1)
nR ribosome length 7358 [ aa molecule-1 ] (1)
nQ average protein length for house-keeping proteins 300 [ aa molecule-1 ] This study
nP length of one photosynthetic unit 95451 [ aa molecule-1 ] (1)
nT transporter length 1681 [ aa molecule-1 ] (1)
nM length of one metabolic enzyme complex 28630 [ aa molecule-1 ] (1)
mα amount of energy units consumed to create one amino acid 45 (1)
mc average carbon chain length of an amino acid 5 (1)
mγ amount of energy units needed for one translational elongation step 3 (1)
mΦ amount of energy units produced during photosynthesis 8 (1)

Proteome Allocation Problem ODE System Reaction Rates

SMALL—SCALE PROTEOME ALLOCATION MODEL FOR PHOTOTROPHIC GROWTH

Figure 5–Figure supplement 1. Summary of the proteome allocation model.
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Table 1. List of antibodies used in this study.  

 

Antibody Agrisera catalogue 

number 

Dilution Protein apparent MW   

Rabbit Anti-RbcL (Rubisco large subunit, form I and form II)  AS03 037 1:5000 52.5 kDa 

Rabbit Anti-PsaC (PSI-C core subunit of photosystem I) AS10 939 1:1000  9 kDa 

Rabbit Anti-PsbA (D1 protein of PSII, C-terminal) AS05 084 1:10000  28-30 kDa 

Rabbit Anti-S1 (30S ribosomal protein S1) AS08 309 1:2000  35 kDa 

Rabbit Anti-L1 (50S ribosomal protein L1) AS11 1738 1:1000  25 kDa 

 

 

 

Table 2. List of protein standards used in this study. 

Standard Agrisera catalogue number Protein apparent MW   Concentrations   

Purified spinach RbcL  AS01 017S 52.7 kDa 0.375, 0.75, 1.5 pmol 

Recombinant PsaC from Synechocystis PCC 6803 AS04 042S 11.5 kDa   0.075, 0.3, 0.6 pmol 

Recombinant PsbA from Synechocystis PCC 6803 AS01 016S 41.5 kDa  0.125, 0.5, 1 pmol 

 

Figure 6–Figure supplement 1. Immunoblots and a list of antibodies used for the immunoblotting
analysis.
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A Constant ribosomal (R) mass fraction of 4 %

B Constant photosynthetic unit (P) mass fraction of 36 %

C Constant metabolic enzyme (M) mass fraction of 9.2 %

Figure 6–Figure supplement 2. Influence of constant enzyme fractions in the model on cellular
growth rate.
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