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Abstract Phototrophic microorganisms are promising resources for green biotechnology.
Compared to heterotrophic microorganisms, however, the cellular economy of phototrophic
growth is still insufficiently understood. We provide a quantitative analysis of light-limited,
light-saturated, and light-inhibited growth of the cyanobacterium Synechocystis sp. PCC 6803 using
a reproducible cultivation setup. We report key physiological parameters, including growth rate, cell
size, and photosynthetic activity over a wide range of light intensities. Intracellular proteins were
quantified to monitor proteome allocation as a function of growth rate. Among other physiological
adaptations, we identify an upregulation of the translational machinery and downregulation of light
harvesting components with increasing light intensity and growth rate. The resulting growth laws
are discussed in the context of a coarse-grained model of phototrophic growth and available data
obtained by a comprehensive literature search. Our insights into quantitative aspects of
cyanobacterial adaptations to different growth rates have implications to understand and optimize
photosynthetic productivity.

Introduction
Cyanobacteria are key primary producers in many ecosystems and are an integral part of the global
biogeochemical carbon and nitrogen cycles. Due to their fast growth rates, high productivity and
amenability to genetic manipulations, cyanobacteria are considered as promising host organisms for
synthesis of renewable bioproducts from atmospheric CO, (Al-Haj et al., 2016; Zaviel et al., 2016),
and serve as important model organisms to understand and improve photosynthetic productivity.
Understanding the cellular limits of photosynthetic productivity in cyanobacteria, however,
requires quantitative data about cellular physiology and growth: accurate accounting is central
to understand the organization, growth and proliferation of cells (Vdzquez-Laslop and Mankin,
2014). While quantitative insight into the cellular economy of phototrophic microorganisms is
still scarce, the cellular economy of heterotrophic growth has been studied extensively—starting
with the seminal works of Monod, Neidhardt, and others (Neidhardt et al., 1990; Neidhardt, 1999,
Jun et al., 2018) to more recent quantitative studies of microbial resource allocation (Molenaar
et al., 2009; Klumpp et al., 2009; Scott et al., 2010; Scott and Hwa, 2011; Bosdriesz et al., 2015;
Maitra and Dill, 2015; Weife et al., 2015). In response to changing environments, heterotrophic
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microorganisms are known to differentially allocate their resources: with increasing growth rate,
heterotrophic microorganisms typically exhibit upregulation of ribosomes and other proteins
related to translation and protein synthesis (Scott et al., 2070; Molenaar et al., 2009; Peebo et al.,
2015), exhibit complex changes in transcription profiles, e.g. (Klumpp et al., 2009; Matsumoto et al.,
2013), and increase cell size (Kafri et al., 2016). The molecular limits of heterotrophic growth have
been described thoroughly (Kafri et al., 2016; Erickson et al., 2017; Scott et al., 2014; Metzl-Raz
etal., 2017; Klumpp et al., 2013).

In contrast, only few studies so far have addressed the limits of cyanobacterial growth from an
experimental perspective (Bernstein et al., 2016; Yu et al., 2015; Abernathy et al., 2017; Ungerer
et al., 2018; Jahn et al., 2018). Of particular interest were the adaptations that enable fast pho-
toautotrophic growth (Bernstein et al., 2016; Yu et al., 2015; Abernathy et al., 2017; Ungerer et al.,
2018). The cyanobacterium with the highest known photoautotrophic growth rate, growing with a
doubling time of up to T, ~ 1.5h, is the strain Synechococcus elongatus UTEX 2973 (Ungerer et al.,
2018). Compared to its closest relative, Synechococcus elongatus PCC 7942, the strain shows several
physiological adaptations, such as higher PSI and cytochrome b, f content per cell (Ungerer et al.,
2018), lower metabolite pool in central metabolism, less glycogen accumulation, and higher NADPH
concentrations and higher energy charge (relative ATP ratio over ADP and AMP) (Abernathy et al.,
2017). Recently, a study of the primary transcriptome of Synechococcus elongatus UTEX 2973 re-
ported the increased transcription of genes associated with central metabolic pathways, repression
of phycobilisome genes, and accelerated glycogen accumulation rates in high light compared to low
light conditions (Tan et al., 2018).

While these studies point to strain-specific differences and are important for characterizing non-
model microbial metabolism (Abernathy et al., 2017), the general principles of resource allocation
in photoautotrophic metabolism and the laws of phototrophic growth are still poorly understood.
Therefore, the aim of this study is to provide a consistent quantitative dataset of cyanobacterial
physiology and protein abundance for a range of different light intensities and growth rates—and
put the data into the context of published values obtained by a comprehensive literature search
as well as into the context of a recent model of photosynthetic resource allocation (Faizi et al.,
2018). To this end, we chose the widely used model strain Synechocystis sp. PCC 6803 (Synechocystis
hereafter). Since Synechocystis exhibits significant variations with respect to both genotype (lkeuchi
and Tabata, 2007) and phenotype (Morris et al., 2016; Zavrel et al., 2017), we chose the substrain
GT-L, a strain that has a documented stable phenotype for at least four years preceding this
study. All data are obtained under highly reproducible and controlled experimental conditions,
using flat-panel photobioreactors (Nedbal et al., 2008) within an identical setup as in the previous
studies (Zavrel et al., 2015b).

The data obtained in this work provide a resource for quantitative insight into the allocation of
cellular components during light-limited, light-saturated, and photoinhibited growth. In dependence
of the light intensity and growth rate, we monitor key physiological properties, such as changes in
cell size, dry weight, gas exchange (both CO, and O,), as well as changes in abundance of pigments,
DNA, total protein, and glycogen. Using proteomics, we show that ~ 57% (779 out of 1356 identified
proteins) proteins changed their abundance in dependence of growth rate, whereas the rest was
independent of growth rate. A detailed analysis of changes in individual protein fractions revealed
phototrophic "growth laws": abundances of proteins associated with light harvesting decreased
with increasing light intensity and growth rate, whereas abundances of proteins associated with
translation and biosynthesis increased with increasing light intensity and growth rate—which is in
good agreement with recent computational models of cyanobacterial resource allocation (Burnap,
2015; Riigen et al., 2015; Mueller et al., 2017; Reimers et al., 2017; Faizi et al., 2018).
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Results

Establishing a controlled and reproducible cultivation setup

The Synechocystis substrain GT-L (Zavrel et al., 2015b) was cultivated in flat panel photobioreactors
(Figure 1A) using at least 5 independent reactors in a quasi-continuous (turbidostat) regime (Fig-
ure 1B), with red light intensities of 27.5—1100 pmol(photons) m=2s~!, supplemented with a blue light
intensity of 27.5 pmol(photons) m=2s-!. The addition of blue light avoids possible growth limitations
in the absence of short wavelength photons (Golden, 1995). Steady-state specific growth rates in
turbidostat mode were calculated from monitoring the optical density measured at a wavelength of
680 nm (ODgy,) as well as from the rate of depletion of spare cultivation medium (as measured by
top loading balances). Both methods resulted in similar average values (Figure 1C). Estimation of
the specific growth rates based on the medium depletion, however, exhibited higher variance. For
further analysis, therefore, only values obtained from the OD, signal are reported.

The measured specific growth rates increased from u = 0.025 + 0.002 h=! to x = 0.104 + 0.009 h~!
(corresponding to doubling times of T,, ~ 27.7h — 6.9h) with increasing light intensities up to 660
pmol(photons) m=2s-! of red light. For higher light intensities the cultures exhibited photoinhibition—
areduction of the specific growth rate induced by high light intensities. Under the highest intensity of
1100 pmol(photons) m~2s~!, the specific growth rate decreased to u = 0.093+0.011 h~!, corresponding
to a doubling time of T, = 7.5 h (Figure 1C-D). The growth curve is consistent with previous
measurements of cyanobacterial growth (Zavrel et al., 2015b; Cordara et al., 2018) and can be
subdivided into three phases: light-limited, light-saturated, and photoinhibited growth.

The cultivation conditions, with (red) light intensity as the only variable, were highly controlled
and reproducible. Temperature (32°C) and CO, concentration in the sparging gas (0.5%) were set
to saturate Synechocystis growth in the exponential phase (ODgg, = 0.60 — 0.66), as established in a
previous study (Zavrel et al., 2015b). Refilling rate of selected nutrients (including Na, N, S, Ca, Mg,
P and Fe) during the turbidostat cultivation was sufficient to prevent potential growth limitation by
lack of any of these nutrients: see Figure 1 - Figure supplement 1 for further details (the elemental
composition of Synechocystis cells considered for the calculations was based on data available in
the literature).

The experimental setup, including the photobioreactor setup, light quality and intensity, tem-
perature, composition of cultivation medium, CO, concentration in the sparging gas, bubbling and
stirring rate was identical to the setup used in previous studies for this substrain (Zavrel et al.,
2015h, 2017). We therefore could evaluate the stability of the Synechocystis sp. PCC 6803 GT-L
phenotype throughout a four year period (2013 - 2017). Figure 1D and 1E show a comparison of
the specific growth rates, as well as photosynthetic and respiration rates, from several previous
studies (Zavrel et al., 2015b, 2017) and as yet unpublished data.

Photosynthesis and respiration increase with light intensity and growth rate

The cultivation setup included a probe to monitor dissolved oxygen (dO,) in the cultivation medium
and a gas analyzing unit to measure CO, in the gas efflux. Online measurements of gas exchange
rates allowed to assess dark respiration rates (measured as O, uptake rate during a 5 minutes
dark period, see Materials and Methods for further details) as well as photosynthetic activity (gross
O, release rate and net CO, uptake rate). Both photosynthetic activity and dark respiration rates
increased with increasing light intensity (Figure 1E, Figure 2C-F).

Between a light intensity of 27.5 and 880 pmol(photons) m=2s~!, the gross photosynthetic activity
(O, release) increased from 30.5 + 5.7 pmol(0,) mmol (Chl)~! s~! to 251.6 +49.4 ymol(O,) mmol (Chl)~!
s~!, and the dark respiration rate increased from 5.5 + 2.7 pmol(O,) mmol (Chl)~' s~! t0 40.9 + 14.6
pmol(O,) mmol (Chl)~! st (Figure 1E).

Of particular interest were changes in gas exchange as a function of the specific growth rate.
Figure 2C-D show gas exchange rates as a function of the specific growth rate per gram cellular dry
weight (gDW), as well as per cell. Relative to gDW, O, release increased from 1.96 + 0.69 mmol (O,)

3 0f 28


https://doi.org/10.1101/446179
http://creativecommons.org/licenses/by/4.0/

bIORXIV preprint doi: https //doi. org/lO 1101/446179 this version posted December 27, 2018. The copyrlght holder for this preprlnt (WhICh was

A LiQuID - C
‘ TRAP T 016
OUTPUT GAS —» 23 o
FRESH MEDIUM —> WASTE CULTURE —> z i d o
L0.12
% &
m.w 56 6 £0.08 $
?:""‘” ssoe PO O] g $
i v A ®
'Y , v 2 FLOW CONTROLLER | 1 g0 oD,
PERISTALTIC P o gCO, ANALYZER ‘E. gO 00 A Balances
= o wn Y. L e e
PUMP _ < ——t - 0 200 400 600 800 1000 1200
FILTER CULTIVATION | INPUT GAS T : 8 —— 8 ¢ Light intensity [ME m2 5]
MEDIUM 0D detector L& J HUMIDIFIER v : a-a _ 016
oeoo D = 1
A A < % 0.12
AIR + CO, MIXING UNIT < 1 $ R &
€008 | ; B
\é\:JALiTUERE 2,0'0004 7&@ OThis study
© 0.04 3
BALANCES PHOTOBIOREACTOR €777 % | Azavieletal, 2015
O Unpublished data, 2015-2016
&S00 +———7FF—FFF—F———
B 0 200 400 600 800 1000 1200
-2 -1 -2 -1 -2 -1 -2 -1 -2 -1
016 27.5 pEm?s 55 HEm?s 220 uEm? s 440 pPEm? s 1100 pE m? s - Light intensity [ME m s1]
—0.12 ] ] ] ] Z § 7 300 4 -
= 0.08 ] 1 CERETEes| :ngm =] _“n 250 |Gross photosynthesis )
*004 6000 00| POPOOON 1 ] : 8 201 o
0.00 1+ R £ = 150 &
>
20.70 T T ] a g 100 1 (o2 OThis study
2066 ] ] £= 50 4 o Zaviel etal.,, 2017
- 1 1 1 €S o0 e
[= bl ] 4 2 2 50 dpark respiration ¢ ©
©0.58 é’g-loo‘w‘pwwww
0 6 12 18 240 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 6 12 18 24 0 200 400 600 800 1000 1200
Time [hours] Light intensity [UE m2s1]

Figure 1. Experimental setup and evaluation of Synechocystis sp. PCC 6803 (substrain GT-L) phenotype stability. Panel A: Photobioreactor setup.
Cultures were cultivated in a flat-panel photobioreactor vessel (400 mL) in a turbidostat regime according to Zavrel et al. (2015b). Dilution of
actively growing culture was based on measurements of optical density at 680 nm (ODgg,). Inflow air and CO, were mixed in a gas mixing unit, the
sparging gas flow rate was controlled by a gas analyzing unit. Sparging gas was moistened in a humidifier and, after bubbling through the
photobioreactor vessel, separated from the waste culture via a liquid trap. CO, concentration in the output gas was measured by an infrared
sensor according to ferveny et al. (2009). All other parameters were set as described in Nedbal et al. (2008) and ferveny et al. (2009). Panel B:
Representative measurement of the ODgy, signal (black lines) within a turbidostat cultivation under increasing red light intensity (supplemented
with low intensity of blue light). Calculation of specific growth rates (blue circles) is detailed in Materials and Methods. Panel C: Calculation of
growth rates from the ODgg, signal and from top loading balances that monitored depletion rate of a spare cultivation medium (source data are
available in Figure 1 - Source data 1). Panel D: Comparison of specific growth rates using an identical experimental setup throughout four
successive years 2013 - 2017 (source data are available in Figure 1 - Source data 2). Panel E: Rates of gross photosynthesis and dark respiration,
measured as O, evolution and consumption rates directly within the photobioreactor vessel throughout 5 min of light and dark periods in 2016 -
2017 (this study) and in 2015 - 2017 (Zavrel et al., 2017). The dashed line represents a P-I curve fit of data from this study according to Platt T.,
Gallegos C.L., Harrison W.G. (1980). Source data are available in Figure 1 - Source data 3. Figure 1C: n=6- 11, Figure 1D: n=3- 11, Figure 1TE:n =4 -
6. Error bars (Figure 1C-1E) represent standard deviations.

Figure 1-Figure supplement 1. Uptake and refilling rates of selected nutrients during the quasi-continuous cultivation.
Figure 1-source data 1. Source data for Figure 1C.
Figure 1-source data 2. Source data for Figure 1D.
Figure 1-source data 3. Source data for Figure 1E.
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gDW-! h=!t0 5.92 + 1.26 mmol (O,) gDW-! h=! for an increase of growth rate from u = 0.025 + 0.002
h=! to u = 0.099+0.013 (Figure 2C). Dark respiration rate (O, consumption) increased from 0.35+0.12
mmol (O,) gDW-! h-! to 0.96+0.21 mmol (O,) gDW-! h-! (Figure 2E-F). Net CO, uptake rate increased
from 0.78 + 0.37 mmol (CO,) gDW-! h=! to 4.01 + 0.50 mmol (CO,) gDW-! h-! (Figure 2E).

The measured gas exchange rates correspond to a photosynthesis:respiration (P:R) ratio (gross
O, release relative to consumption) between 5.6 + 3.0 and 7.5 + 2.5. The photosynthetic quotient
PQ (net O, release:CO, fixation) ranged from PQ =2.1 + 0.5 to PQ = 1.1 + 0.4. The changes of both
parameters (P:R and PQ) with respect to growth rate were not statistically significant (Kruskal-Wallis
test: P:R ratio: p — value = 0.88, PQ: p — value = 0.12).

Cell morphology and composition acclimate to changes in light intensity and growth
rate

Culture samples were harvested under different light intensities to investigate the allocation of
key cellular components as a function of growth rate. Cellular parameters included cell count, cell
size, cell dry mass, as well as concentrations of glycogen, total protein, total DNA, phycocyanin,
allophycocyanin, chlorophyll 4, and carotenoids. The results (data normalized per gDW as well
as per cell) are summarized in Figure 2 as a function of the specific growth rate, the results as a
function of light intensity are summarized in Figure 2 - Figure supplement 1.

With increasing growth rate, the volume and weight of Synechocystis cells increased (Figure 2A-B).
The cell diameter increased from 1.96 +0.03 ym to 2.19+0.03 pm, and slightly decreased again under
photoinhibition. Since Synechocystis has a spherical cell shape, the estimated diameters correspond
to cell volumes ranging from 3.97 pm? to 5.49 pm? (Figure 2A). Changes in cell volume were reflected
in changes in cellular dry weight. Dry weight per cell increased from 5.3 + 1.7 pg cell~! for the slowest
specific growth rate to 11.3+2.3 pg cell~! at the maximal growth rate. Under photoinhibition, cellular
dry weight again decreased to 8.6 + 2.6 pg cell~! (Figure 2B, Figure 2 - Figure supplement 1). The
ratio of cellular dry weight to cell volume showed no significant change for different growth rates
(Kruskal-Wallis test: p — value = 0.077).

The amount of glycogen per gDW increased with increasing growth rate, from 84 + 28 mg gDW-!
to 199 + 35 mg gDW-! for the maximal growth rate, and further increased to 229 + 72 mg gDW-!
under conditions of photoinhibition (Figure 2G). These values correspond to an increase of glycogen
per cell from 440 + 79 fg cell~! to 2329 + 504 fg cell~! (Figure 2H).

In contrast, the protein content per gDW decreased with increasing growth rate. Protein content
per cell, however, did not change significantly for different light intensities and growth rates (Kruskal-
Wallis test: p — value = 0.076). The absolute values of protein content were between 402 + 144 and
227 + 6 mg gDW-! (Figure 21), and between 2144 + 482 and 2937 + 466 fg cell~! (Figure 2J).

Changes in DNA content were only estimated in relative units and are reported relative to the
DNA content at the lowest growth rate. With increasing growth rate, the DNA content normalized
per gDW decreased to 51 + 11% of the initial value (Figure 21). The (relative) DNA content per cell,
however, increased with increasing growth rate up to 137 + 19% of its initial value. Under conditions
of photoinhibition, the relative DNA content per cell decreased again to 94 + 29% of the initial value
(Figure 2)).

Relative to gDW, the amounts of phycobiliproteins, chlorophyll « and carotenoids decreased
with increasing growth rate. Under conditions of photoinhibition, we observed additional reduction
of these pigments per gDW (Figure 2K,M). When considering the concentrations per cell, however,
the respective amounts initially increased with increasing growth rates, and decreased again under
conditions of photoinhibition. Overall, pigment content decreased with increasing light intensity
(irrespective of normalization), with the exception of carotenoids which exhibited a slight increase
per cell as a function of light intensity. The changes of pigment amounts as a function of growth
rate (relative to gDW as well as per cell) were significant (Kruskal-Wallis test: p — value < 0.05, see
Materials and Methods for further details). The absolute amounts of phycocyanin were between
86.4 +30.7 and 26.5 + 7.5 mg gDW~!, corresponding to 172 + 29 and 620 + 63 fg cell~! (Figure 2K,L),
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the amounts of allophycocyanin were between 14.8 +5.3 and 6.7 + 1.9 mg gDW~!, corresponding
to 57 + 10 and 123 + 15 fg cell~! (Figure 2K,L). The absolute amounts of chlorophyll a were between
16 +£5.2 and 5.8 + 1.6 mg gDW~!, corresponding to a range between 50 + 10 and 96 + 14 fg cell~!
(Figure 2M,N), the absolute amounts of carotenoids were between 4.4 + 0.7 and 2.6 + 0.5 mg gDW~!,
corresponding to a range between 22 + 3 and 29 + 6 fg cell~! (Figure 2M,N).

To put the data into context, we conducted a comprehensive literature research with respect
to reported physiological parameters of Synechocystis sp. PCC 6803. The results are summarized
in Figure 2 - Figure supplement 2, and the data include also meta information on experimental
conditions. Overall, the values obtained in this study are in good agreement with the previously
reported values. Individual parameters, however, exhibit high variability due to the wide range of
different experimental conditions.

Proteome allocation as a function of growth rate

Culture samples for 6 light intensities were harvested to obtain quantitative proteome profiles
using mass spectrometry, with 5 biological replicates for each light intensity. We chose a label-free
quantification (LFQ) approach to access relative and absolute protein amounts. Here, the peptide
precursor ion intensities (MS1) were used for protein quantification. The results of the proteomics
analysis are summarized in Figure 3. We identified 1356 proteins (the complete list is provided in
Figure 3 - Source data 1). Of these, the (relative) abundances of 779 proteins (57%) significantly
changed with growth rate (Kruskal-Wallis test: p — value < 0.05), the (relative) abundances of the
remaining 577 proteins (43%) were independent of growth rate. We obtained functional annotation
for all 1356 proteins using the Gene Ontology (GO) database (Ashburner et al., 2000). Of the 779
growth-dependent proteins, 450 were annotated with non-trivial categories (excluding categories
such as unknown or putative), of the 577 growth-independent proteins, 303 were annotated with
non-trivial categories. To facilitate the analysis, the functional annotation was mapped to a subset
GO slim (higher level GO terms, Klopfenstein et al. (2018)), which resulted in 40 distinct GO terms
(each protein might be associated with more than one annotation). Significant differences (Fisher’s
exact test, p — value < 0.05) between growth-dependent and growth-independent annotations are
summarized in Table 1. Growth-dependent proteins exhibited an over-representation of categories
such as Translation, Protein folding, Cell division and Photosynthesis, among others.

To allow for a more detailed analysis of growth-dependent proteins, the changes in abundance of
the 779 proteins were grouped into 7 clusters using k-means clustering (Figure 3 - Figure supplement
3). The number of clusters was determined using the elbow method. The identified clusters
corresponded either to upregulation (cluster 1 and 6), or downregulation of protein abundance with
growth rate (cluster 2, 5, 7) or more complex changes (cluster 3 and 4). The results of the clustering
analysis are summarized in Figure 3, along with an annotation matrix that highlights the prevalent
function (GO slim) categories for each cluster. The growth-dependent proteins encompass 37
distinct annotations mapped to GO slim categories.

Cluster 1 (192 proteins) and 6 (41 proteins) exhibit increasing abundance for increasing light
intensity and growth rate. Prevalent annotations are biosynthetic processes, such as cellular nitrogen
compound metabolic processes, cellular amino acid metabolic processes, as well as, for cluster 1,
translation. Cluster with low variation (Cluster 2, 218 proteins) and cluster with ambiguous shapes
(cluster 4, 124 proteins) exhibit a similar set of categories as cluster 1 and 6. In contrast, both clusters
that exhibit a clear decrease with increasing light intensity and growth rate (cluster 5, 65 proteins
and cluster 7, 79 proteins) are both annotated with photosynthesis as the highest-ranking annotation.
Finally, cluster 3 (2 proteins) exhibits a sharp upregulation during photoinhibition, with both proteins
annotated with the categories transport and transmembrane processes.

We note that, similar to some of the physiological properties as shown in Figure 2, the abun-
dances of clusters 1, 3, 4, 6 and 7 exhibited a characteristic "kink" at high growth rates corresponding
to a sharp up- or downregulation under photoinhibition.
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Figure 2. Variations in morphology and composition of Synechocystis cells with changing growth rate. Under increasing light intensity and changing
growth rate, the following parameters were estimated: cellular volume (A) and dry weight (B), gross photosynthesis (C, D) and dark respiration (E, F),
and content of glycogen (G, H), proteins, DNA (1, J), phycobiliproteins (K, L), chlorophyll a and carotenoids (M, N). The data are plotted relative to
cellular dry weight (C, E, G, |, K, M) as well as per cell (D, F, H, J, L, N). DNA content was normalized to its initial value after standardization per dry
weight and per cell, the measurement was only semi-quantitative. All values represent averages from 3 — 11 independent biological replicates, error
bars represent standard deviations. If error bars are not visible (panel A), the standard deviation was too small for visualization. Within each figure,
data points are displayed in three different color shades to reflect (from bright to dark) light-limited, light-saturated and light-inhibited growth.
Data plotted as a function of light intensity are available in Figure 2 - Figure supplement 1. Comparison with data available in the literature is
summarized in Figure 2 - Figure supplement 2.

Figure 2-Figure supplement 1. Allocation of key cellular resources as a function of light intensity
Figure 2-Figure supplement 2. Comparison of the values measured in this study with data reported in the literature.
Figure 2-source data 1. Source data for Figure 2.
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Figure 3. Synechocystis proteome allocation as a function of growth rate. Panel A: The workflow. Samples were harvested and analyzed by mass
spectrometry (the proteomics dataset is available in Figure 3 - Source data 1). A Kruskal-Wallis test was used to distinguish between
growth-dependent and growth-independent proteins. 779 growth-dependent and 577 growth-independent proteins were identified. Panel B:
Clustering analysis. Based on k-means clustering analysis (Figure 3 - Figure supplement 3), the 779 growth-dependent proteins were separated into
7 clusters. Gray dashed lines represent protein abundances as medians of 5 biological replicates, normalized by the respective means. Blue dashed
lines represent centroids of the respective clusters. Panel C: Proteins were annotated using the GO classes, the matrix represents the annotation
mapped to GO slim categories. Proteins can be associated to several GO slim categories. The highest ranking annotation per cluster is highlighted
in dark blue.

Figure 3-source data 1. Proteomics dataset.

Figure 3-Figure supplement 1. List of growth-dependent proteins.

Figure 3-Figure supplement 2. List of growth-independent proteins.

Figure 3-Figure supplement 3. Elbow method for the identification of an appropriate number of clusters (grey dashed line at 7 clusters).
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Table 1. Gene Ontology (GO) slim categories (Klopfenstein et al., 2018) with the amount of associated
growth-dependent and independent proteins. A complete list of the GO slim categories is provided in
Table1-source data 1. Here, only categories that exhibit a significant difference (Fisher’s exact test,

p — value < 0.05) between growth-dependent and independent groups are listed. Shown is the number of
annotations per category.

Gene Ontology categories Growth dependent  Growth independent
Translation 40 13
Transport 36 14
Photosynthesis 36 8
Catabolic process 32 4

Protein folding 14 3

Cell division 12 0

Cell wall organization or biogenesis 10 1

Cell cycle 9 0

Table 1-source data 1. List of all 40 GO slim categories with the respective amounts of growth-dependent and
growth-independent proteins (and their cluster associations).

Visualization of functional annotation using proteomaps

To complement the clustering analysis, we used the proteomaps software (www.proteomaps.net,
Liebermeister et al. (2014)) to visualize the relative abundances of the identified proteins for differ-
ent light conditions. To this end, iBAQ intensities were used as an approximation for quantitative
protein amounts. Here, the measured precursor ion intensities (MS1) for each individual protein
are summed up and divided by the number of theoretically observable peptides for the respective
protein. The number of theoretically observable peptides is calculated for each protein by an in
silico digestion of the respective database sequence and only peptides between 6 and 30 amino
acids in length are considered for the calculations. We emphasize that, while iBAQ intensities are
roughly proportional to the molar amounts of the proteins, iBAQ intensities only refer to identified
proteins and do not reflect the whole proteome: the sum of all proteins used for the generation of
proteomaps is based on identified proteins only, with the unidentified proteins being neglected.
Therefore, the proportionality factor could change from sample to sample, and the intensities are
interpreted only as approximations that provide insight into the expected overall abundances.

Figure 4 shows proteomaps for three distinct growth regimes: light-limited growth at 27.5
pumol(photons) m=2s~! (specific growth rate x4 = 0.025 h~'), light-saturated growth at 440 umol(photons)
m~2s~! (specific growth rate 4 = 0.104 h~!), and photoinhibited growth at 1100 pmol(photons) m=2s-!
(specific growth rate u = 0.093 h=!). The full set of proteomaps is available in Figure 4 - Figure sup-
plement 1.

The proteomaps (annotated using Cyanobase (Fujisawa et al., 2017) mapped to custom KEGG
annotation) show similar trends as the clustering analysis: upregulation of proteins associated
with translational processes and ribosomes with increasing light intensity and growth rate, and
downregulation of photosynthetic and light harvesting proteins with increasing light intensity and
growth rate.

A coarse-grained model provides insight into proteome allocation

To interpret the experimental results on cyanobacterial physiology, we made use of a semi-
quantitative resource allocation model of cyanobacterial phototrophic growth. The model was
adopted from Faizi et al. (2018) and is summarized in Figure 5. In brief, the model includes
coarse-grained proteome fractions for cellular processes related to growth, including carbon uptake
T, metabolism M, photosynthesis P, and ribosomes R. The model describes light-dependent

cyanobacterial growth at saturating conditions of external inorganic carbon. Compared to the
original model from Faizi et al. (2018), we now include a growth-independent protein fraction Q0
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Figure 4. Proteomaps of proteome reallocation in Synechocystis under light-limited (27.5 pmol(photons)
m~2s71), light-saturated (440 pymol(photons) m~2s~!) and photoinhibited growth (1100 pmol(photons) m=2s1).
Each tile represents a single protein. The tiles are arranged and coloured according to Cyanobase annotation
such that larger regions correspond to the functional categories. The tile sizes represent relative protein
abundances. The proteomaps were generated using the platform available at
http://bionic-vis.biologie.uni-greifswald.de/ (Version 1, Liebermeister et al. (2014)). Proteomaps of levels 2, 3
and 4 (that correspond to two successive levels of functional categories and to the level of individual proteins)
from 6 light conditions are available in Figure 4 - supplement 1.

Figure 4-Figure supplement 1. Proteomaps of levels 2, 3 and 4.

that accounts for half of the proteome mass. All further (minor) modifications and changes in the
model definition are detailed in Materials and Methods.

Following Faizi et al. (2018), all kinetic parameters were sourced from the primary literature,
except the parameters for the photosynthetic cross section, photosynthetic turnover rate, and
the rate constant for photoinhibition (see Materials and Methods for further details). These 3
parameters were fitted numerically, such that the predicted maximal growth rate u (Figure 1C-D)
matched the experimental values (Figure 5B). The stoichiometry and energy requirements for
biosynthesis were approximated using a genome-scale model (Knoop et al., 2013). No proteomics
data were used during model parametrization and fitting. All parameters and model definitions are
provided in Figure 5 - Figure supplement 1.

Evaluation of the model is based on the assumption of (evolutionary) optimality. That is,
the model is solved using an optimization algorithm that maximizes the specific growth rate u
as a function of protein allocation. In this way, the model is able to predict how the coarse-
grained proteome fractions are optimally allocated with increasing light intensity (Figure 5B). These
predictions provide a reference to which the experimental data can be compared. We emphasize
that such a comparison does not presuppose that proteome allocation in Synechocystis is necessarily
optimal.

The model predictions are shown in Figure 6, together with data from the experimental analysis.
The protein fraction associated with biosynthesis (M), as well as the ribosomal fraction (R), increase-
with increasing growth rate—in accordance with known growth laws of heterotrophic growth (Scott
et al., 2010; Weife et al., 2015). In contrast, the protein fraction associated with photosynthe-
sis (P, light harvesting and photosystems) decreases with increasing light intensity and growth
rate. We highlight that the predicted growth laws exhibit a characteristic 'kink’ under conditions of
photoinhibition—a feature that is different from all reported growth laws for heterotrophic growth.
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Figure 5. Panel A: A coarse-grained model of phototrophic growth, adopted from Faizi et al. (2018). The model describes optimal proteome
allocation under conditions of (i) light-limited, (ii) light-saturated and (iii) light-inhibited growth. Coarse-grained cellular processes include passive
(vg) and active import (v,) of external inorganic carbon ¢, conversion of inorganic carbon ¢; into amino acids aa (v,,), light harvesting and provision
of cellular energy by photosynthesis (v; and v,), as well as maintenance and photodamage (m, and v;). Amino acids are translated into
coarse-grained protein fractions for transport (T'), metabolism (M), ribosomes (R), photosynthetic electron transport (P), as well as a
growth-independent proteome fraction Q. Translation is limited by the amount of available ribosomes R. Panel B: The model reproduces the
measured growth curve (Figure 1C-D) as a function of light intensity. Shown are the specific growth rate y, as well as the main proteome fractions,
ribosome R, photosynthetic electron transport P, and metabolism M, as a function of light intensity.

Figure 5-Figure supplement 1. Summary of the proteome allocation model.

23 Testing protein allocation using immunoblotting analysis

204 In addition to large-scale proteomics, we tested the changes of selected proteins as a function of
205 growth rate using immunoblotting analysis. Specifically, we measured the abundances of PsaC
26 (an essential component of PSI), PsbA (the D1 protein of PSIl), the RuBisCO subunit RbcL, and the
207 ribosomal proteins S1 and L1 under increasing growth rate. Additionally, the absolute amounts of
208 PsbA, PsaC, and RbcL proteins were estimated by serial dilution of protein standards (see Materials
299 and Methods for details).

300 The immunoblotting results are summarized in Figure 6C, together with the model predictions
s and selected proteomics data. Overall, the trends confirm the results of the previous sections—and
32 correspond to the changes obtained from the protein allocation model. The ribosomal proteins
;3 ST and L1 increased with increasing growth rate, with a characteristic upwards 'kink’ under pho-
304 toinhibition. The relative amount of PsbA, the D1 protein of PSII, decreased with increasing growth
305 rate, with a characteristic downward 'kink’ under photoinhibition (albeit less pronounced than for
s ribosomal proteins). PsaC associated to PSI followed a similar trend but with high variance. In
307 contrast to the overall behavior of proteins associated with metabolism, the RuBisCO subunit RbcL
38 exhibited a (slight) increase for increasing growth rates, in accordance with the model predictions
309 (Figure 6C).

;0 Quantitative evaluation of selected protein complexes

s Using the combined data of iBAQ intensities and quantification by immunoblotting and mass
312 spectrometry, allows us to provide estimates of absolute amounts of selected protein complexes in
313 Synechocystis cells. The results are summarized in Table 2, details of the calculations are listed in
314 Table 2-Source data 1.

315 The most abundant proteins in Synechocystis cells were proteins associated to photosynthesis
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Figure 6. Changes in protein abundance as a function of specific growth rate compared to the predictions
obtained from a computational model of proteome allocation. Panel A: Schematic representation of ribosome,
photosynthetic units and metabolic enzyme classes considered in the proteome allocation model. Panel B:
Relative proteomics data (LFQ, label-free quantification intensities, left axes, mean fold change + SD) of protein
classes in comparison with the model predictions (grey lines, right axes). Panel C: Relative protein abundances
obtained by immunoblotting analysis for selected proteins (left axes, median fold change + SD) in comparison
with coarse-grained model predictions (grey lines, right axes). Experimental values represent averages from 5
independent experiments, the error bars represent standard deviations. Panels B-C: The experimental data
points are displayed in three different color shading to reflect (from bright to dark) light-limited, light-saturated
and light-inhibited growth. The full dataset of the immunoblotting analysis is provided in Figure 6 - Source data
1 and Figure 6 - Figure supplement 1. The list of proteins considered for ribosome, photosynthetic unit and
metabolic enzyme classes is listed in Figure 6 - source data 2.

Figure 6-source data 1. Results of the immunoblotting analysis.

Figure 6-source data 2. List of proteins considered for ribosome, photosynthetic unit and metabolic enzyme
classes.

Figure 6-Figure supplement 1. Immunoblots and a list of antibodies used for the immunoblotting analysis.
Figure 6-Figure supplement 2. Influence of constant enzyme fractions in the model on cellular growth rate.
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Table 2. Quantification of selected protein complexes in Synechocystis cells. Protein abundances were estimated as molecules per cell, as inferred
from mass spectrometry, immunoblotting and spectrophotometric analysis. The stoichiometries of protein complexes were based on Uniprot
(www.uniprot.org, UniProt Consortium (2018)) and RCSB (www.rcsb.org, Berman et al. (2000)) databases. Protein abundances are not precise
estimates but indicate ranges. The range in the second column reflects the minimal and maximal protein amounts estimated across all light
intensities studied in this work. Estimation of protein abundances is detailed in Table 2-Source data 1, a list of all proteins is provided in Table
2-Source data 2. The experimental conditions of (Moal and Lagoutte, 2012) are comparable to the conditions used in this study with the exception
of high light used here and distinct Synechocystis substrains (Figure 2 - Figure supplement 2).

Protein complex Molecules per cell Method Stoichiometry Reference
Elongation factor 179000-274000 Proteomics TufA This study
Phosphoglycerate kinase 45000 - 73000 Proteomics Pgk This study
Ribosome small subunit 36000 - 66000 Proteomics Rps1A,1B,B,C,D,E,FG,H,1JKLM,N,OPQR,STU This study
Phycobilisome (phycocyanin) 12000 - 23000 Proteomics ((CpcA,B);3.C1,C2,D,G)g This study
26000 - 66000 Spectrophotometry This study
Photosystem | 31000 - 63000 Proteomics (PsaA,B,C,D,E,F1J,KLMX)3 This study
96000 Spetroscopy (Keren et al., 2004)
540000 Spetroscopy (Moal and Lagoutte, 2012)
Ribosome large subunit 33000 - 54000 Proteomics RplA,B,C,D,E,F1JKLM,N,0PQRSTUVWXY, RomABCEFGH,IJ This study
Transketolase 31000 - 50000 Proteomics TktAy This study
PlI signal transducing protein 36000 - 46000 Proteomics GInB3 This study
Photosystem Il 23000 - 46000 Proteomics (PsbA1,A2,B,C,D,E,FH,LJKLMN,OTUVXY,Z Ycf12), This study
17000 - 29000 Immunoblotting This study
100000 Spetroscopy (Moal and Lagoutte, 2012)
RuBisCO 26000 - 43000 Proteomics (RbcL, RbcS)g This study
39000 - 63000 Immunoblotting This study
Ferredoxin-NADP reductase (FNR) 33000 - 42000 Proteomics PetH This study
140000 Immunoblotting (Moal and Lagoutte, 2012)
D-fructose 1,6-bisphosphatase class 2 29000 - 36000 Proteomics SIr20944 This study
Phycobilisome (allophycocyanin) 19000 - 38000 Proteomics (ApcA,B)34.C4,D7,E6.Fp This study
9000 - 19000 Spectrophotometry This study
G3P dehydrogenase 21000 - 32000 Proteomics Gap2, This study
Plastocyanin 15000 - 29000 Proteomics PetE This study
Superoxide dismutase [Fe] 14000 - 25000 Proteomics SodB, This study
Orange carotenoid protein 15000 - 24000 Proteomics SIr1963, This study
RNA polymerase 8000 - 15000 Proteomics RpoA;,B,C1,C2,DEF This study
Cytochrome b6/f 8000 - 15000 Proteomics (PetA,B,C2,D,G,L,M,N) This study
Chaperonine GroEL 7000 - 13000 Proteomics GroLTy4 This study
Ribosome recycling factor 6000 - 7000 Proteomics Frr This study
Phosphoglycerate dehydrogenase 3000 - 5000 Proteomics SerAy This study
Pyruvate dehydrogenase 3000 - 4000 Proteomics (PdhA, PdhB), This study
Glutamine synthetase 2000 - 4000 Proteomics GInA |, This study
Isocitrate dehydrogenase 2000 - 3000 Proteomics lcdy This study
Glycogen synthase 2000 - 3000 Proteomics GlgA1 This study
DNA polymerase III 1000 - 2000 Proteomics DnaN, This study
Pyruvate kinase 1000 - 2000 Proteomics Pyk24 This study
Acetyl-coenzyme A carboxylase 1000 Proteomics AccB, AccC, AccAy ACCD, This study
Carbonic anhydrase 400 - 700 Proteomics IcfAg This study
Acetyl-coenzyme A reductase 300 - 600 Proteomics PhaBy This study
Circadian clock proteins KaiA / KaiB / KaiC 200 - 500 Proteomics KaiA, / KaiBy / KaiCg This study

Table 2-source data 1. Calculations of selected protein complex copies in Synechocystis cells.
Table 2-source data 2. List of all proteins quantified by proteomics measurements in Synechocystis cells.

316 and carbon fixation, in particular proteins related to phycobilisomes, photosystems and RuBisCO.
317 Aside from protein complexes, the most abundant monomeric protein was the elongation factor Tu
a1z (TufA) with approximately 2 — 3 - 10° copies per cell. Abundances of photosynthetic proteins were
319 generally one to two orders of magnitude lower, similar to ribosomal and other proteins, including
20 phosphoglycerate kinase, transketolase, Pll signal transducing protein, ferredoxin-NADP reductase,
sz D-fructose 1,6-bisphosphatase, glyceraldehyde-3-phosphate dehydrogenase, plastocyanin, super-
322 oxide dismutase, orange carotenoid protein, RNA polymerase, cytochrome b, f and chaperonine
323 GroEL.

324 Table 2 also includes several previous estimates of protein abundances. We note that a direct
325 comparison is challenging due to differences in cultivation conditions, including type of cultivation
326 and cultivation vessel, cultivation media, irradiance, temperature, aeration, pH and the particu-
327 lar Synechocystis substrain (see Figure 2 - Figure supplement 2 for further details on particular
328 experimental conditions).

129 Discussion

;0 Quantitative resource allocation in cyanobacteria
33 Cyanobacteria are increasingly important host organisms for green biotechnology, but as yet insight
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into resource allocation of these organisms is restricted to few studies (Abernathy et al., 2017;
Burnap, 2015; Faizi et al., 2018; Jahn et al., 2018). The scarcity of data is partially due to the fact
that a quantitative experimental assessment of phototrophic growth is subject to a number of
technical difficulties and standardized cultivation conditions are not available. The diversity of
culture conditions used in the literature (summarized in Figure 2 - Figure supplement 2) makes
a direct comparison of the literature data difficult and often key parameters, such as specific
growth rate, spectral properties of the light source, vessel geometry or gas exchange rates are not
reported in sufficient detail. The premise of this study was therefore to use a highly reproducible
cultivation setup that enables stable culture conditions in turbidostat mode and to provide a broad
characterization of physiological parameters that can be compared to reported literature values.
The results, interpreted in the context of a coarse-grained computational model of cyanobacterial
resource allocation, provide further understanding of resource allocation and the cellular protein
economy during light-limited, light-saturated and light-inhibited cyanobacterial growth.

Maximal growth rates and glycogen accumulation

The maximal specific growth rates of Synechocystis GT-L obtained in this study (Figure 1C, D) were
similar to the maximal growth rates of other Synechocystis substrains reported in previous stud-
ies (Touloupakis et al., 2015; Nguyen and Rittmann, 2016; Du et al., 2016; Jahn et al., 2018). While
individual Synechocystis substrains can be more sensitive to high light (Zavrel et al., 2017), the
agreement with previously reported values suggests an upper limit of Synechocystis growth in
buffered BG-11 medium. However, van Alphen et al. (2018) recently reported a specific growth
rate of 0.16h~! (T, = 4.3h) using BG-11 medium with modified iron source and chelating agents.
This finding suggests that the standard composition of BG-11 medium still induces a growth limita-
tion, even though in our study the total concentration of iron and other elements refilled during
the turbidostat cultivation was sufficient to fully saturate Synechocystis growth (Figure 1 - Figure
supplement 1).

A sub-maximal specific growth rate in buffered BG-11 medium might also relate to the increase
in glycogen content with increasing light intensity and growth rate (Figure 2G, H). The relative
amounts of glycogen in Synechocystis observed in this study were well within values reported in
the literature (Figure 2-Figure supplement 2). However, from the perspective of optimal resource
allocation, glycogen accumulation is seemingly suboptimal, since the required energy and carbon
is stored and not utilized to enhance growth. Various growth limitations are known to induce
accumulation of storage products, including glycogen (Monshupanee and Incharoensakdi, 2014),
and a recent study showed that glycogen plays an important role in energy balancing and energy
homeostasis in Synechocystis (Cano et al., 2018). We therefore hypothesize that the observed
increase in glycogen content, in the absence of other stress factors, is consistent with a limitation
in buffered BG-11 medium. This hypothesis is also supported by varying amounts of glycogen
reported for the fast-growing strain Synechococcus elongatus UTEX 2973: while Abernathy et al.
(2017) only report 1.5 + 0.5% glycogen of dry weight under fastest growth conditions, Ungerer et al.
(2018) report a drastic increase in glycogen content when entering the linear growth phase, and
Tan et al. (2018) report up to 54.9% glycogen of dry weight under high light conditions (but unknown
growth rate) — suggesting that glycogen accumulation is indicative of growth limitation by other
factors than light and carbon availability.

The true growth limit of Synechocystis (and other cyanobacteria) remains an open question.
Compared to the fast growing strain Synechococcus elongatus UTEX 2973, the strain used in this
study showed substantially lower carbon partitioning into protein content (23-40% of dry weight,
compared to 50% in Synechococcus 2973), and increased carbon partitioning into glycogen (8.4-
22.9% of dry weight, compared to 1.5% in Synechococcus 2973 during the fastest growth (Abernathy
et al., 2017)). The Synechocystis substrain GT-L used here also maintained a lower PSI/PSII ratio
(1.35 compared to 2 - 3.5 in Synechococcus 7942 and even higher in Synechococcus 2973 (Ungerer
et al., 2018)) and did not increase the amount of electron transport carriers such as plastocyanin
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(Kruskal-Wallis test: p — value = 0.731) or cytochrome b, f (Kruskal-Wallis test: p — value = 0.493) with
increasing light intensity and growth rate. All these factors may contribute to relatively slower
growth compared to the fastest growing cyanobacteria. In particular, the recent studies of Ungerer
et al. (2018) and Abernathy et al. (2017) demonstrate how just a few mutations in genetically very
similar strains can lead to dramatic growth differences — differences that are likely due to different,
but as yet not fully understood, cellular strategies in resource allocation. We note, however, that
the main goal of our study was not to maximize cyanobacterial growth per se, but to understand
resource allocation in a widely used model strain.

We also note that many of the commonly used strains, including substrains of Synechocystis sp.
PCC 6803, have been maintained in laboratories and in culture collections for extended periods of
time, and may have therefore acquired mutations that enhance viability in the lab, but concomitantly
reduce maximal growth rates. Indeed, an instance where a cyanobacterial model strain appears to
have lost, through laboratory domestication, behaviors that are important in a natural environment
was recently reported (Yang et al., 2018).

Cell morphology and variability of physiological parameters

Overall, the morphology and range of physiological data obtained in this study were in good
agreement with previously published values for Synechocystis (see Figure 2 - Figure supplement
1 and Table 2 for detailed comparison). The cell diameter and volume (Figure 2A, B) were well
within the range of values reported in the literature (Lea-Smith et al., 2016; Zavrel et al., 2017;
Rosana et al., 2012). Likewise, the photosynthetic quotient PQ was well within values reported in
the literature (Zavrel et al., 2017; Shastri and Morgan, 2005) and did not vary significantly with
growth rate. The total protein content reported here (23 — 40% of gDW, Figure 2I) was lower than in
several previous studies (Touloupakis et al., 2015; Shastri and Morgan, 2005).

As noted above, variability in physiological parameters observed in the literature (Figure 2 - Figure
supplement 1, Table 2) can often be attributed to differences in cultivation setup, including selection
of particular Synechocystis substrain (Morris et al., 2016; Zavrel et al., 2017). Additionally, the choice
of analytical technique can affect the results, especially with respect to absolute quantification.
We are aware of limitations of some techniques used in this work, including glycogen estimation
(where the extracellular polymeric substances can potentially lead to overestimation of glycogen
content), proteins extraction (where some proteins, especially those with transmembrane domains,
could be potentially extracted with reduced efficiency), total protein quantification (where bovine
serum albumin, used as a protein standard, does not have to represent cyanobacterial proteins
properly), quantification of individual proteins (where the mass spectrometer ionization efficiency
could potentially be affected for proteins with lower amount of charged amino acid), relative DNA
estimation by flow cytometry (where penetration of SYBR® Green | solution to the cells as well
as SYBR® Green | binding to RNA could both potentially differ under increasing light intensity), or
phycobiliproteins determination (where proteomics analysis resulted in two times higher values
than spectrophotometric analysis, Table 2). Nevertheless, even taken these technical limitations into
account, the quantities reported here fit well into the previously reported ranges of Synechocystis
physiology (Figure 2 - Figure supplement 1, Table 2), as well as to the predictions of the proteome
allocation model (Figure 6).

Trends in physiological parameters

Of particular interest were the trends of physiological parameters with respect to increasing
light intensity and growth rate. Almost all identified parameters showed significant changes in
dependence of light intensity and growth rate, including cell size (diameter and volume , Figure 2A),
gas exchange rates (Figure 2C-F), as well as glycogen (Figure 2G-H), DNA and pigment content
(Figure 2K-N). Trends in physiological parameters were consistent with previous studies. The
increase in gas exchange (O, release and basal respiration) has been observed previously (Zaviel
et al., 2015b, 2017). Likewise, the increase in cellular size with growth rate (Figure 2A) has been
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reported in Synechocystis (Zavrel et al., 2017; Cordara et al., 2018) as well as in bacteria, yeast or
mammalian cells (Aldea et al., 2017). Light was also shown to affect DNA content (ploidy level) in
Synechocystis (Zerulla et al., 2016), however, no study of DNA content change with growth rate is
available to date.

Reduction of light harvesting pigments under high light is well documented in the literature.
Interestingly, we found upregulation of chlorophyll a, phycobilins and both PSIl and PSI proteins
synthesis in Synechocystis cells in the initial part of the growth curve (i.e. between light intensities
of 27.5 — 220 uymol(photons) m=2s~!, Figure 2L, N, Figure 6C). Similar trends have been described in
Synechocystis (Zavrel et al., 2017) as well as in other cyanobacteria and algae (Kumar et al., 2011;
Wu et al., 2015). Different from most previous studies, the range of light intensities tested here
also included conditions of photoinhibition. In several parameters, in particular glycogen content
(Figure 2G-H) or pigment content (Figure 2K-N), we observed a characteristic "kink", i.e., a sharp in-
or decrease of the respective abundances. This finding emphasizes photoinhibition as a distinct
growth regime and distinguishes phototrophic growth laws from their heterotrophic counterparts.

Our findings also emphasize the need to specify to which reference value the particular changes
are reported. Typically, values in the literature are reported relative to optical density as a proxy
for cellular dry weight—making a direct comparison between experimental conditions difficult.
Furthermore, if cellular composition or cell size changes, these changes do not necessarily translate
into corresponding changes per cell or per protein content.

Proteome allocation with growth rate

Beyond physiological parameters, we followed the global proteome allocation as a function of
growth rate. The most pronounced changes in proteome with increasing light intensity and growth
rate were related to upregulation of translational proteins and downregulation of photosynthetic
proteins (Table 1, Figure 6). The upregulation of proteins related to translation (Figure 6B-C) is
consistent with well-established growth laws for heterotrophic growth. In particular, E. coli shows
consistently increased proteome investment into translation-related proteins with increasing growth
rate (Peebo et al., 2015). Unique for photosynthetic organisms, we observed a decrease of (relative)
allocation to proteins annotated with photosynthesis (Figure 6B-C). These results are also consistent
with a recent study from Jahn et al. (2018). Likewise, the observed decrease is also in agreement
with predictions from resource-allocation models (Burnap, 2015; Faizi et al., 2018), even for rather
simple models that do not consider photoinhibition (Burnap, 2015). While the RbcL subunit of
RuBisCo showed a slight increase with increasing growth rate (Figure 6C), we observed no general
upregulation of metabolic proteins with increasing growth rate (Figure 6B)—an important deviation
from known growth rate relations (Molenaar et al., 2009). This finding indicates that the metabolic
capacity itself is sufficient for high growth rates, even under conditions where lack of light input limits
faster growth. We hypothesize that the most pronounced changes with changing light intensity are
observed for proteins related to translation and photosynthesis due to two facts: Firstly, translation
is typically limited by ribosomal capacity, requiring an upregulation of translational capacity with
faster growth rates. In addition, the short half-life of the D1 protein requires the cell to adjust the
translational capacity at high light intensities. Secondly, overcapacity of light harvesting may give
rise to detrimental effects, such as increased cellular (photo-)damage. In comparison, overcapacity
in the metabolic dark reaction does not entail obvious detrimental consequences (other than the
loss of the invested resources) and therefore might be under less evolutionary pressure to change
with changing light intensity. We can further corroborate this hypothesis in silico using the proteome
allocation model: by artificially forcing a constant mass fraction of a proteome class, we are able to
evaluate the impact of such sub-optimal adaptation on the specific growth rate as a function of
light intensities. While constant mass fractions of ribosomal and photosynthetic proteins results in
a marked deviation in the specific growth rate, a constant metabolic fraction only results in a minor
deviation (Figure 6-Figure supplement 2).
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Interpretation of the results in the context of a coarse-grained model

The coarse-grained model of phototrophic growth allows us to interpret the physiological and
proteomic changes in the context of (optimal) protein allocation. We emphasize that the model was
not constructed or parametrized to reproduce certain observed behavior - rather it represents an
independent null-hypothesis that provides information about the expected changes in proteome
fractions with increasing growth rate under the assumption of (evolutionary) optimality. In line with
models of heterotrophic growth (Molenaar et al., 2009; Weif3e et al., 2015), the model predicts an
increase in allocation of ribosomal proteins as a function of growth rate (Figure 6B-C). Different to
heterotrophic models, however, the model also predicts a characteristic upward "kink" under condi-
tions of photoinhibition. The relative proteomics data confirms this behavior, including the "kink" at
high light intensities (Figure 6B-C). The sharp upregulation of ribosomes in the model is due to the
increased turnover of proteins subject to photodamage. As previously noted in (Faizi et al., 2018),
the model is likely to overestimate this effect, due to the fact that within the model, photodamage
is exclusively related to an increase in protein turnover. We expect that in Synechocystis also other
repair mechanisms are active, resulting in a less pronounced upregulation of ribosomes and energy
usage elsewhere. Indeed, the observed upregulation in the data is less pronounced than in the
model simulations (Figure 6B-C). Furthermore, the model predicts a downregulation of the light
harvesting machinery with increasing light intensity (Figure 5B) and growth rates (Figure 6B-C).
The relative proteome allocation confirms this trend, including again the predicted "kink" when
entering photoinhibition (Figure 6B-C). Interestingly, the characteristic "kinks" were not observed in
the recent study of Jahn et al. (2018) — possibly because the experimental condition used therein
only considered a single light condition in the photo-inhibited growth regime.

Finally, as for models of heterotrophic growth, the model predicts an increase in the proteome
fraction related to metabolic processes with increasing growth rate (Figure 6B-C). The metabolic pro-
teome fraction, in particular enzymes related to a genome-scale metabolic reconstruction (Knoop
et al., 2013), did not exhibit such a clear upregulation with the exception of the RbcL protein (a
subunit of RuBisCo) that increased in relative abundance with increasing growth rate (Figure 6C).
We note that, different from our results, the recent study of Jahn et al. (2018) reported an increase
in the metabolic proteome fraction with increasing light intensity, albeit also less than expected
compared to the computational growth model.

There are several possible reasons for discrepancies between the model predictions and ob-
served data. In the case of metabolic proteins, a possible factor, besides the hypothesis outlined
above, is that the enzymatic reactions are typically not only limited by enzyme abundance, but
also by substrate availability. That is, substrate concentration below the respective Michaelis
half-saturation constants imply a (seemingly) superfluous enzyme capacity — and hence less re-
quirement to regulate enzyme abundance as a function of growth rate. In addition, discrepancies
between model and observed data can be expected when other factors play a role in resource
allocation, such as diurnal light availability (Reimers et al., 2017) or bet-hedging (i.e. a trade-off
between a reduction in growth rate in the present condition in exchange for resource allocation
into proteins that are potentially beneficial in future conditions).

Conclusions

Despite the importance of cyanobacteria as photosynthetic model organisms and as host organisms
for green biotechnology, as yet only few studies have addressed quantitative growth properties
and resource allocation even for well characterized model strains. The goal of this study was
therefore to close this gap with respect to knowledge and interpretation of key physiological
parameters of the cyanobacterial model strain Synechocystis sp. PCC 6803 in dependence of light
intensity and growth rate. We focused on light as the only variable environmental parameter -
and identified trends in key physiological parameters and proteome allocation as a function of
growth rate. The interpretation of data was facilitated by a coarse-grained computational model
of cyanobacterial resource allocation and the data was put into the context of data available in
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the literature, obtained by a comprehensive literature research. Overall, the resulting growth laws
(decrease of proteome fraction associated with light harvesting and increase of proteome fraction
associated with translation and biosynthesis with increasing light intensity and growth rate) is
in good agreement with previous theoretical (Burnap, 2015; Faizi et al., 2018) and experimental
studies (Jahn et al., 2018).

Light, however, is not the only factor that affects photoautotrophic growth. Further studies
are required to identify growth limitation under different environmental conditions, in particular
limitations induced by other biotechnologically or environmentally relevant macro- or micronutri-
ents. Ultimately, such studies will also have to take into account the diversity of cyanobacterial
metabolism (Beck et al., 2018). As indicated by the rather minor genetic differences between
strains with vastly different growth rates, we expect that differences in many biotechnologically
relevant parameters between strains are indeed a consequence of different strategies in resource
allocation — making further studies of cellular accounting a key prerequisite for successful green
biotechnology. The proposed reproducible cultivation setup and the coarse-grained computational
model used in this study provide a suitable framework and reference to facilitate and to contribute
to such studies.

Materials and Methods

Inoculum cultures

Synechocystis sp. PCC 6803 GT-L was obtained from Prof. D. A. Los (Timiryazev Institute of Plant
Physiology, Moscow, RU). The strain was cultivated in BG-11 medium (Stanier et al., 1971) supple-
mented with 17 mM HEPES (Carl Roth, Karlsruhe, Germany, pK, = 7.5). pH of the buffered BG-11
was adjusted to 8.2. The inoculum cultures were precultivated in 250-mL Erlenmeyer flasks on a
standard orbital shaker (120 rpm) in a cultivation chamber tempered at 25°C under an average
illumination of 110 pmol(photons) m=2s~! (provided by cool white light LEDs) and under 1% CO, in
the atmosphere.

Photobioreactor
Growth experiments were performed in flat panel photobioreactors, described in detail previ-
ously (Nedbal et al., 2008). The illumination in the photobioreactors was designed as a chessboard
conﬁguration of red and blue LEDs (red: 4,,, ~ 633 nm, 4,,, ~ 20 nm, Luxeon LXHLPDQ9; blue:
Amax 445 nM, 4, & 20 nm, Luxeon LXHL-PROY; all manufactured by Future Lighting Solutions,
Montreal, QC, Canada). Spectral characteristics of the LEDs are shown in Zavrel et al. (2015b). The
photobioreactor continuously measured optical density (OD) by an inbuilt densitometer and steady-
state pigment fluorescence emission yield by an inbuilt fluorometer (both described in Nedbal
et al. (2008)). Dissolved O, was monitored by the InPro6800 electrode, culture temperature and pH
were monitored by the InPro3253 electrode (all manufactured by Mettler-Toledo Inc., Columbus,
OH, USA). Culture homogenization was secured by the inflow gas bubbling with a rate of 200 mL
min~!, complemented by rotations of a magnetic stirrer bar (¢5 x 35 mm, 210 rpm) in a vertical
plane. All other photobioreactor accessories were the same as described in (Zaviel et al., 2015b).
The photobioreactor setup is visualized in Figure 1A.

Experimental setup

Growth characterization was performed in a quasi-continuous regime as described previously (Za-
vrel et al., 2015b). Briefly, the exponentially growing Synechocystis cells were maintained in a defined
range of optical density (measured at 680 nm, OD,) by controlled dilution of the culture suspen-
sion with fresh buffered BG-11 medium (turbidostat). The optical density was measured by the
photobioreactor instrument base, and the ODgg, range was set to 0.60 - 0.66, which corresponded
to approximately 2 - 4 x 107 cells mL~!. Starting ODg, of all cultures was 0.1 - 0.2, which corre-
sponded to approximately 2 - 4 x 10° cells mL~!. Once the culture density reached OD, 0.66, the
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quasi-continuous cultivation setup was initiated by starting automated cultures dilution within the
selected ODg, range. Under each light condition, the cultures were growing for at least 24 hours.
This period was long enough to reach growth stability, i.e. to acclimate the cells to the specific
condition. The principal of quasi-continuous cultivation is represented in Figure 1B.

During the quasi-continuous experiments, Synechocystis was cultivated under red light intensities
of 27.5 - 1000 pmol(photons) m=2s~!, The cultures were always supplemented with low intensity
of blue light (27.5 pmol(photons) m=2s~!) in order to avoid growth limitation by complete absence
of short wavelength photons (Golden, 1995). Cultivation temperature was set to 32°C, and the
experiments were performed under a CO, concentration of 5000 ppm in the sparging gas (secured
by the Gas Mixing System GMS 150, Photon System Instruments Ltd., Brno, CZ).

Analytical methods

Growth rates determination

Specific growth rates u were evaluated from an increase of ODg, signal as recorded by the photo-
bioreactor during the quasi-continuous cultivation (after the growth stabilized under each particular
light intensity), according to Zavrel et al. (2015b):

ODsyy) ¢
In——=2
ODsg 1,

#=ﬁ, Mm

where ODg, ,, and ODg, ,, represent optical densities measured at 680 nmin times t; and t,,
respectively. As an alternative method, specific growth rates were determined from depletion
of spare cultivation medium, as measured by top loading balances (Ind231, Mettler-Toledo Inc.,
Columbus, OH, USA, Figure 1C), according to the following equation:

u="1 )

where f represents average flow rate of spare cultivation medium and V represents volume of
the culture suspension in the photobioreactor.

Determination of photosynthesis and respiration rates

The oxygen evolution rates as a sum of all oxygen fluxes between Synechocystis cells and cultivation
media (net photosynthesis, NP) and dark respiration rates (R) were determined from the signal of
dO, electrode in the photobioreactor vessel by turning off aeration for 10 min, through 5 min light
and 5 min dark periods, according to Cerveny et al. (2009). Gross photosynthesis rates (rates of
oxygen production by water splitting, GP) were calculated as: GP = NP + R (photorespiration and
other processes were neglected for the GP calculations).

Carbon uptake (net CO, uptake rate as a sum of all CO, fluxes between Synechocystis cells
and cultivation media) was determined from the steady-state values of CO, concentration in the
photobioreactor output gas, as measured by the Gas Analyzing System (Photon System Instruments
Ltd., Brno, CZ, described in detail in C‘erveny et al. (2009)).

Pigment content measurements
Content of chlorophyll a, carotenoids and phycobilisomes was measured spectrophotometrically
following the protocols of Zavrel et al. (2015a) and Zavrel et al. (2018a).

Measurements of glycogen, cell size and DNA content

Content of glycogen was measured spectrophotometrically, following the protocol of Zaviel et al.
(2018b). Cellular dry weight was measured using XA105DR analytical balances (Mettler Tolledo,
Greifensee, CH). Cell count was measured with the Cellometer Auto M10 (Nexcelom Bioscience,
Lawrence, MA, USA).
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Cell size was determined using the ImageStream Mkll imaging flow cytometer (Amnis Corp.,
Seattle, WA, USA). Right after harvesting from the photobioreactor, 500 pL of the culture suspension
was centrifuged (4 000 g, 4 min, 25°C), supernatant was discarded, pellet was resuspended in 0.25%
glutaraldehyde solution and the samples were incubated for 10 min at laboratory temperature.
The fixed cells were stored in -80°C until further processing (up to 2 months in total). For further
analysis, the samples were thawed on ice for 2 hours, and they were kept at laboratory temperature
in dark for additional 30 min after thawing (after 20 min, 5 pL of SYBR® Green | solution was
added to each sample for DNA content estimation; for details see the next paragraph). During the
cytometric analysis, only bright field images were collected by the imaging flow cytometer. Gating
of the measured populations was applied to discriminate: a) focused objects (using combination of
both RMS gradient and Treshold Mask features of IDEAS® software), and b) round objects (width/
length ratio between 0.9 - 1.0). The imaging flow cytometer was calibrated with non-fluorescent
microspheres (1 - 15 um, Thermo Fisher Scientific, Waltham MA, USA) and the results were validated
with the light microscope Axio Imager 2 (Carl Zeiss, Oberkochen, DE). During the cytometric analysis,
also chlorophyll fluorescence (excitation: 488 nm, detection: 480 - 560 nm) and phycobilisomes
fluorescence (excitation: 642 nm, detection: 642 nm - 745 nm) were measured to validate selection
of the cells within all measured objects.

DNA content was measured in the same samples as the cell size. After the samples thawing on
ice for 2 hours and at laboratory temperature for 20 min (see the previous paragraph for details), 5
pL of SYBR® Green | solution (Thermo Fisher Scientific, Waltham, MA USA, diluted 1:100 in DMSO)
was added to 500 pL of the culture suspension to mark cellular DNA, and the samples were further
incubated for 10 min in the dark at laboratory temperature. During the cytometric analysis, a 488
nm argon laser was used to excite both SYBR® Green | and chlorophyll a, and another 642 nm laser
was used to excite phycobilisomes. To identify Synechocystis cells within all measured objects, the
same gating as described in the previous paragraph was used.

Protein extraction

Protein extraction was performed according to Brown et al. (2008) with modifications. For each
sample, 90 mL of the culture suspension was withdrawn from the photobioreactor, centrifuged (4
000 xg, 5 min, 32°C), supernatant was partially discarded (leaving 0.5 - 1 ml of liquid in the original
50 mL conical tube) and the pellet was resuspended and transferred to 1.5 mL Eppendorf tube.
The tubes were centrifuged (20 000 x g, 4 min, 32°C), supernatants were completely discarded
and the tubes were stored at -80°C until further processing (up to 4 months). All following steps
of protein isolation were performed at 4°C. The frozen pellets were resuspended in 0.8 mL of a
protein extraction buffer (50 mM Tris-HCl (pH 7.6); 2 mM EDTA; 10 mM MgCl,; 250 mM sucrose, 1%
of protease inhibitor cocktail P9599, Sigma-Aldrich, St. Louis, MO, USA). The mixture was transferred
to 2mL tubes with a rubber o-ring (containing 0.5 mL of sand and glass beads) and the cells
were disrupted by 6 x 30 s homogenization pulses on the laboratory mixer (BeadBug Microtube
Homogenizer, Benchmark Scientific, Sayreville, NJ, USA). Between each pulse, the samples were
kept on ice. After the first step of homogenization, the samples were shortly centrifuged, 200 pL of
10% SDS was added to each tube (to reach the final concentration of 2%), and the samples were
mixed and frozen in liquid nitrogen. Right after freezing, the cells were additionally sonicated in
an ultrasound bath with ice until thawing (6 cycles, between each cycle the samples were frozen
in liquid nitrogen). After ultrasound homogenization, the samples were centrifuged (10 000 x g, 3
min, 4°C) to remove unbroken cells and cell debris, and 500 pL of the supernatant protein fraction
was transferred to a new 1.5 mL Eppendorf tube. The total protein concentration was measured in
triplicates with a bicinchoninic acid assay kit (BCA1-1KT, Sigma-Aldrich, USA) by the method of Smith
et al. (1985) using bovine serum albumin (A7906, Sigma-Aldrich, USA) as a standard. The samples
were used for both immunoblotting and proteomics measurements.
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Immunoblotting protein analysis

Immunoblotting and protein quantification was done according to Brown et al. (2008) with modifi-
cations. 100 pl of each sample was diluted with equal volume of 2x loading buffer (100 mM Tris-HCl
(pH 7.6); 20 mM DTT, 4% SDS 0.02% bromphenol blue, 20% glycerol), denatured for 20 min at 37°C
and centrifuged (10 000 x g, 20 min, laboratory temperature) before loading. Samples containing 4
pg of total protein were separated in 12.5% (for detection of RbcL, S1, L1) or 15% (for detection of D1,
PsaC) 0.75 mm thick polyacrylamide mini gels by SDS-PAGE at 200 V for 40-50 min in a MiniProtean
Tetra Cell (Bio-Rad, Hercules, CA, USA). Separated proteins were transferred to 45 pm nitrocellulose
membranes (Hybond-C Extra, GE Healthcare Life Sciences, Chicago, Il, USA) using the Trans-Blot
Turbo Transfer system (BioRad, Hercules, CA, USA) at 25V, 1.0 A, laboratory temperature, and cycle
duration of 30 min. The nitrocellulose membranes were blocked immediately after transfer in
TBST-G buffer (10 mM Tris-HCl (pH7.6); 150 mM NacCl; 0.05% (v/v) Tween-20; 1% cold-water fish
gelatin) for 2h at laboratory temperature. Primary antibodies diluted in TBST-G buffer were used
according to recommendations of the manufacturer. The list of primary antibodies is provided
in Figure 6-Figure supplement 1. After incubation of the membranes in the primary antibody
solutions for 1h at laboratory temperature, the solutions were poured off and the membranes were
briefly rinsed and washed 3 times for 15 min in TBST buffer at laboratory temperature. For signal
detection, the membranes were incubated with goat anti-rabbit immunoglobulin G horseradish
peroxidase conjugated antibodies diluted 1:75000 in TBST buffer for 1 h at laboratory temperature.
Membranes were washed as described above and developed with Clarity Western ECL Substrate
(Bio-Rad, Hercules, CA, USA) according to the manufacturer’s instructions. Images of the blots were
obtained using a Gel Doc XR+ system (Bio-Rad, Hercules, CA, USA).

Intensity of protein bands on immunoblots was estimated by densitometric analysis with the
Image Lab 5.1 software (Bio-Rad, Hercules, CA, USA). The protein concentrations were quantified as
relative to the lowest light intensity (27.5 pmol(photons) m=2s~!). In addition, absolute amounts of
PsbA, PsaC, and RbcL proteins were estimated from standard curves prepared by serial dilutions
of corresponding standard proteins. The list of protein standards is provided in Figure 6-Figure
supplement 1.

Quantitative proteomics
Protein lysates of 5 individually grown replicate samples per group (27.5-55-110-220-440-1100
pmol(photons) m=2s-!) were prepared for mass spectrometric analysis by shortly stacking 5 pg
proteins per sample in a 4-12% Bis-Tris sodium dodecyl sulfate (SDS)-polyacrylamide gel (Thermo
Scientific, Darmstadt, Germany) over a 4 mm running distance. Proteins were further processed
as described previously (Poschmann et al., 2014). Briefly, gels were subjected to a silver staining
protein containing bands cut out from the gel, destained, washed, reduced with dithiothreitol and
alkylated with iodoacetamide. Subsequently, proteins were digested for 16 h at 37°C with 0.1 pg
trypsin (Serva, Heidelberg, Germany), peptides were extracted from the gel and after drying in
a vacuum concentrator resuspended in 0.1% trifluoroacetic acid. 500 ng of sobulized peptides
per sample were then analyzed by a liquid chromatography (Ultimate 3000 Rapid Separation
Liquid Chromatography system, RSLC, Thermo Fisher Scientific, Dreieich, Germany) coupled with
quantitative mass spectrometry. First, peptides were loaded for 10 minutes at a flow rate of 6 pl/min
on a trap column (Acclaim PepMap100 trap column, 3 um C18 particle size, 100 A pore size, 75 pm
inner diameter, 2 cm length, Thermo Fisher Scientific, Dreieich, Germany) using 0.1 % trifluoroacetic
acid as mobile phase. Subsequently, peptides were separated at 60°C on an analytical column
(Acclaim PepMapRSLC, 2 um C18 particle size, 100 A pore size, 75 pm inner diameter, 25 cm length,
Thermo Scientific, Dreieich, Germany) at a flow rate of 300 nl/min using a 2 h gradient from 4 to
40% solvent B (solvent A: 0.1% (v/v) formic acid in water, solvent B: 0.1% (v/v) formic acid, 84% (v/v)
acetonitrile in water).

Separated peptides were injected via distal coated SilicaTip emitters (New Objective, Woburn,
MA, USA) into a Q Exactive plus Orbitrap mass spectrometer (Thermo Fisher Scientific, Dreieich,
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Germany) online coupled via a nanosource electrospray interface. The mass spectrometer was
operated in data dependent positive mode with a capillary temperature of 250°C and spray voltage
set to 1 400 V. First, full scans were recorded in profile mode at a resolution of 70 000 over a
scan range from 350 to 2 000 m/z. lons were accumulated for a maximum of 80 ms and the
target value for automatic gain control was set to 3 000 000. Second, a maximum of ten two- or
threefold charged precursor ions were selected within a 2 m/z window using the build in quadrupole,
fragmented via higher-energy collisional dissociation and fragments analyzed in the Orbitrap over
a maximal scan range from 200 to 2 000 m/z at a resolution of 17 500. Here, the automatic gain
control was set to 100 000 and the maximum ion time was 60 ms. For the next 100 s already
fragmented precursors were excluded from further analysis.

Peptide and protein identification

For peptide and protein identification and quantification the MaxQuant software suite (version
1.6.1.0, MPI for Biochemistry, Planegg, Germany) was used with standard parameters if not other-
wise stated. For database searches 3507 protein entries from the UP000001425 Synechocystis sp.
strain PCC 6803 downloaded on the 20th of November 2017 from the UniProtKB were considered.
Searches were conducted using following parameters: carbamidomethylation at cysteines as fixed
and oxidation at methionine and N-terminal protein acetylation as variable modification, false
discovery rate on peptide and protein level 1%, match between runs enabled as well as label-free
quantification and iBAQ, tryptic cleavage specificity with a maximum of two missed cleavage sites.
A first search was conducted with a precursor mass tolerance of 20 ppm and after recalibration by
MaxQuant, 4.5 ppm precursor mass tolerances were applied. The mass tolerances for fragment
spectra signals were set to 20 ppm.

Quantitative information for identified proteins was further processed within the Perseus
framework (version 1.6.1.1, MPI for Biochemistry, Planegg, Germany). Here, only non-contaminant
proteins identified with at least two different peptides were considered. Additionally, all proteins
were filtered out which - in at least one group - did not show any missing values in the label-free
quantification data which then was used after log2 transformation for statistical analysis and
relative protein amount comparisons between the different light intensity groups. Calculations of
protein stoichiometries and comparison to quantitative protein data derived from other methods
was done on absolute quantitative data based on iBAQ intensities. First, iBAQ intensities were
normalized on the sum iBAQ intensities of four proteins (Q55806, P72587, P73505, Q59978) showing
a small standard deviation, similar intensity range and ratio close to 1 between the mean intensities
of the 27.5 and 1100 pymol(photons) m~2s~! group. Second, a calibration of absolute intensities
was performed using the PsaC Western blot data (mean of 104 fmol/pl). The mass spectrometry
proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaino
et al., 2016) partner repository with the dataset identifier PXD009626.

Proteomaps

For generating proteomaps, the version 1.0 of the visualization tool at www.proteomaps.net
(Liebermeister et al., 2014) was used, choosing absolute quantitative values and Synechocystis sp.
6803 as organism. To be compatible with the proteomaps tool, the mass spectrometric data was
searched against the 3661 entries from the GCA_000009725.1 protein dataset from CyanoBase
downloaded on 22th January 2018.

Statistical analysis

Kruskal-Wallis test

For the identification of cellular resources that significantly changed with growth rate (including
each single protein out of total 1356 identified proteins), we performed a Kruskal-Wallis test (Python
scipy.stats module) for each resource (null hypothesis was that the median of all compared groups
is equal) and did a pair-by-pair comparison of two conditions in each case. For the test we compared
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only those measurements with at least 3 samples. Cellular components and proteins determined
as significantly changing with light intensity and growth rate were those that had at least one pair
that differed significantly with a p — value < 0.05.

Fisher's exact test

We further performed a Fisher’s exact test to investigate which of the GO categories filtered out
from the proteomics dataset are significantly associated to growth related proteins. For this test
we used the GO slim categories. Therefore, we classified the 1356 proteins into growth dependent
(779 proteins) and independent groups (577 proteins). The second classification criterion referred
to being in one specific gene ontology group or not. The test was then performed for each GO slim
category. An imbalance for one GO slim category, between the amount of growth-dependent and
growth-independent proteins, was determined as significant for a p — value < 0.05.

A coarse-grained proteome allocation model

Model overview

The previously published model of proteome allocation of Faizi et al. (20718) was extended with a
growth-independent protein class Q that accounts for approximately half of the proteome. The
growth-dependent proteome is comprised of transporter (T), ribosomes (R), metabolic enzymes (M)
and photosynthetic units (P). Furthermore, protein degradation and an energy maintenance term
were added, resulting in a basal energy expenditure. A description of the modified model with all
reaction rates and parameters is provided in Figure 5 and Figure 5-Figure supplement 1.

The proteome allocation model gives rise to an optimization problem. We assume that the
objective of a unicellular organism is to maximize its growth rate while the proteome mass remains
constant. The maximization of the cellular growth rate, for a given external condition, is achieved
by re-adjusting the amount of ribosomes that are delegated to translate a specific protein. The
optimization problem was solved using the APMonitor Optimization Suite (Hedengren et al., 2014)
with the steady-state optimization mode and the IPOPT (Interior Point Optimizer) solver option. The
python interface was used to run the model.

Model parametrization and fitting

The model describes growth per cellular dry weight. Cell size only affects the estimated parameter
for diffusion of inorganic carbon. For simplicity, the diffusion parameter is set constant (with
a cell diameter of approximately 2 uM). Parameters were as in (Faizi et al., 2018) and sourced
from the primary literature. Only three parameters r (turnover rate of the photosynthetic unit),
k, (photodamage) and ¢ (effective absorption cross-section) were then fitted to the measured
growth rates. No protein data were used in the fitting. Parameter estimation was done for an
external inorganic carbon concentration of c* = 100 mM (c* saturated condition). To minimize the
computational effort, a pre-defined set of values for these parameters was specified prior to fitting,

7 = {50,75,100} , (3)
k,=1{5-107,6-107,..,4-1075,5. 107} , (4)
6=1{0.1,02,..,09,1}. (5)

To select the best fit, the negative logarithm of the likelihood was calculated for each parameter set:

VAN
0=y WTX) +log(2- 7 - ), (6)

where x; represents the here measured growth rates with their uncertainties ¢, and y,(9) the
simulated growth rates calculated with the model parameters 6. The best fit /(8) = -51.46, was
obtained with r =75 s7!, k, = 1075 and ¢ = 0.7 nm?2. Compared to the original model, the addition of
the growth-independent protein fraction enhances the energy demand of the cell, and increases the

23 of 28


https://doi.org/10.1101/446179
http://creativecommons.org/licenses/by/4.0/

bIORXIV preprint doi: https //doi. org/lO 1101/446179 this version posted December 27, 2018. The copyrlght holder for this preprlnt (WhICh was

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835
836
837
838

839
840

Vld"\\J_.C’Ipt OISR Gl SIS E

turnover rate and absorption cross-section of the photosystem. We emphasize that the purpose of
the model was not to provide an exact fit to the data, but to guide the interpretation of the results.

Impact of non-adaptive protein fractions on the estimated growth rate

To investigate the potential influence of a constant (non-adaptive) protein mass fraction of Ribosome,
Photosynthetic unit, and Metabolic proteins classes (as shown in Figure 6) on the predicted growth
rate, an additional constraint was added to the optimization problem, such that the concentration
of the respective protein class is

- D
[z)= 22~ (7)

nz

where D, is the cell density (in units of amino acids per cell), n, determines the length of the enzyme
Z, and ¢, is the (constant) mass fraction of the protein class Z. In addition, to account for the fact
that proteins can be de- or activated (by post-translational modifications such as phophorylation),
an additional variable «, was introduced that determines the amount of active enzymes (such that
the amount of catalytically active enzyme Z, is [Z,] = a, - [Z]). The growth rate is then optimized
using the remaining protein classes, as well as the parameter a, as variables. The value for the
constant protein fraction was set such that it corresponds to the mass fraction of the respective
protein class at the highest growth rate.
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Ratio of the requi selected elements b s dthe el Elemental composition of Synechocystis cells
by the f a spare culture medi i i in this study. based on data available in the literature.
Red light intensity [uE m?s™] 28 55 1m0 | 20 | 40 | eeo | 880 | 1100 Content in cell [% of DW]
Na 02% | 04% | 04% | 05% | 04% | 04% | 05% | 05% 8611 Maximal value
—— Element 1 i Reference
N 6.1% | 9.6% | 10.8% | 12.9% | 9.7% | 116% | 14.4% | 12.7% [mgl’]  Min Max recorded
Mg 16.8% 26.4% 29.7% 35.6% 26.7% 31.9% 39.7% 35.1% in the literature
s 9.4% | 14.7% | 16.6% | 19.9% | 14.9% | 17.8% | 222% | 19.6% Na 4134 0.1 0.8 08 etal. 2016
ca 204% | 31.9% | 36.0% | 431% | 32.4% | 38.6% | 481% | 425% 80 12 Zaviel etal. 2017
Fe 40.3% | 63.1% | 71.2% | 85.1% | 64.0% | 76.4% | 95.1% | 83.9% 100 1.1 Touloupakis et al. 2015
P 33.3% | 52.2% | 58.9% | 70.5% | 52.9% | 63.2% | 78.7% | 69.5% N 269 102 15 125 Touloupakis et al. 2016
113 113 Shastri and Morgan 2005
Estimated uptake rates of selected elements by Synechocystis cells during the turbidostat cultivation [mg L™ h’]. 125 Kim etal. 2011
The i based on di of cellular dry wei d specific growth rates in this study, 7.1 7.7 Blom 2014
and on maximal ion of particular el i biomass as recorded in the literature. 04 08 Zaviel etal. 2017
Red light intensity [uE m?s"] 275 | 55 110 | 220 [ as0 [ e60 | 880 | 1100 s 0o % 04 08 Touloupakis etal. 2015
Na 003 | 005 | 008 | 014 | 018 | 021 | 020 | 047 04 04 : Touloupakis et al. 2016
N 042 | 080 | 127 | 223 | 289 | 337 | 318 | 269 07 Kim etal. 2011
Mg 003 [ 007 [ 010 [ 018 | 024 | 028 | 026 [ 02 ca 98 03 17 17 tal. 2016
s 003 | 005 [ 008 [ 014 [ 018 | 021 | 020 [ 017 Mg 74 04 10 10 tal. 2016
ca 006 | 011 [ 017 | 030 | 038 | 045 | 042 | 036 3 54 15 15 Kim etal. 2011
Fe 001 | 003 [ 004 | 007 [ 009 | 011 | 010 | 009 e 1 01 04 04 Cheng and He 2014
[ 005 | 010 | 015 | 027 | 035 | 040 | 038 | 032 - 04 - Kim etal. 2011

Refilling rates of selected elements during Synechocystis cultivation

m(he i based on data from this study [mg L h"].

Red light intensity [uf m?s] 275 | 55 10 | 220 [ aa0 [ ee0 | 880 | 1100

Na 1152 | 1408 | 1971 | 2801 | 4990 | 4878 | 3699 | 3545

N 683 | 841 | 1177 | 17.26 | 2980 | 2913 | 22.09 | 2117

Mg 021 | 025 | 035 | 052 | 089 | 087 | 066 | 063

s 028 | 034 | 048 | 070 | 121 | 118 | 089 | 0386

ca 027 | 033 | 047 | 069 | 118 | 116 | 088 | 084

Fe 003 | 004 | 006 | 008 | 014 | 014 | 011 | 010

[ 015 | 018 | 026 | 038 | 065 | 064 | 049 | 047

1003
Weights of selected elements i is cells, based on directly measured cellular dry weight in this study,

and on maximal ion of particular elements i is biomass as recorded in the literature [mg L h”].
Red light intensity [ m?s”] 2725 | 55 10 | 220 [ 440 [ e0 | 880 | 1100

Na 104 | 131 | 137 | 173 | 175 | 205 | 203 | 182

N 165 | 207 | 216 | 274 | 277 | 325 | 320 | 289

Mg 136 | 171 | 178 | 226 | 228 | 268 | 264 | 238

s 103 | 129 | 135 | 171 | 173 | 203 | 200 | 180

ca 219 | 275 | 287 | 364 | 367 | 431 | 426 | 383

Fe 053 | 066 | 069 | 088 | 089 | 104 | 103 | 092

P 198 248 259 3.29 3.32 3.90 3.85 3.46

Parar of is cultures as measured during the turbi i in this study.

Red light intensity
used in this study [pE m™s™]
Specific growth rate
measured in this study [h"]
Flow rate of spare cultivation

275 55 110 220 440 660 880 | 1100

0025 | 0.039 | 0059 | 0081 | 0104 | 0104 | 0.099 | 0.093

_ - o 0028 | 0034 | 0048 | 0070 | 0.121 | 0118 | 0089 | 0086
media measured in this study [h”]

Dry weight of Synecocystis cells

132 166 173 220 1 260 256 231

measured in this study [mg L]
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Figure 1-Figure supplement 1. Uptake and refilling rates of selected nutrients during the quasi-
continuous cultivation.
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1010

SMALL-SCALE PROTEOME ALLOCATION MODEL FOR PHOTOTROPHIC GROWTH

parameter definition value source
Pm cell membrane permeability to inorganic carbon 0.108 [dm h-1] (2)
Acel cell surface area 1.26 - 109 [dm2 cell' ] This study
Vel cell volume 4.19-1015 [dms cell' ] This study
Na Avogadro constant 6.022 - 1023 [mol' ]
Klcat maximal import rate 43560 [h1] 3)
Kt half-saturation constant of the transporter enzyme 15[uM] (4)
KMcat maximal metabolic rate 32700 [h1] 5)
Km half-saturation constant of the metabolic enzyme 2441560 [ molecules cell-']  (5)
Yrmax maximal translation rate 79200 [ aa h-' molecules']  (6)
Ka, Ke half-saturation constant of amino acids and energy units for each reaction 10000 [ molecules cell-1] (1)
dp protein half-life 1/23[h1] (7)
o effective absorption cross-section of the photosynthetic unit 0.7 [nm2] This study
T maximal turnover rate of the photosynthetic unit 270000 [h] This study
Ka rate constant for photodamdage 106 This study
my energy maintenance rate 7 -10° [ molecules cell-*h-1]  (8)
Dc average cell density (protein mass per cell) 1.4-10%" [aacell'] (1)
NR ribosome length 7358 [ aa molecule! ] (1)
Na average protein length for house-keeping proteins 300 [ aa molecule '] This study
ne length of one photosynthetic unit 95451 [ aa molecule ] (1)
nr transporter length 1681 [ aa molecule ] (1)
nm length of one metabolic enzyme complex 28630 [ aa molecule ] (1)
Ma amount of energy units consumed to create one amino acid 45 (1)
Me average carbon chain length of an amino acid 5 (1)
my amount of energy units needed for one translational elongation step 3 (1)
Mo amount of energy units produced during photosynthesis 8 (1)
Proteome Allocation Problem ODE System Reaction Rates
@ =Vvg+ve—mg- v, - ‘3“ X .
P e ap AT etm Y = Py N Ve -1 = (D)
2K x oo, d[aa] STp P Zf G+ dp: Z (e v =IT1-k,, - o ol
dt Cal K +[cf] Ke+lel
Z =1 VR A2 0 dfgzx]:’z“‘P’[“‘ v = M1 K7 1 B _
. are) 5 Km +1cil Ke +1el
E [1]+[aa]+f De., ar CPTh P, =(r) g tmax,_Teal _ _F1L_
J d[P¥) nj  Kg+laal Ke+lel
ng-[01=05-D, . ST visdpe P, vi=o-light -[P°],
={R,Q,P,TM}, dle] my - le] vy =1 -[P*],
—lehaa,e,0, PO PeT M RIT Ry, . dr PRI MM T ;"f'yf_ 10+l ’ v,-2= kd~[n ~}ighr P,
Vj €E ,Vz €E\P. Vj€E.
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Figure 5-Figure supplement 1. Summary of the proteome allocation model.
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Table 1. List of antibodies used in this study.

Antibody Agrisera catalogue Dilution | Protein apparent MW
number

Rabbit Anti-RbcL (Rubisco large subunit, form I and form I1) AS03 037 1:5000 |52.5kDa

Rabbit Anti-PsaC (PSI-C core subunit of photosystem 1) AS10 939 1:1000 |9kDa

Rabbit Anti-PsbA (D1 protein of PSII, C-terminal) ASO05 084 1:10000 | 28-30 kDa

Rabbit Anti-S1 (30S ribosomal protein S1) AS08 309 1:2000 | 35kDa

Rabbit Anti-L1 (50S ribosomal protein L1) AS11 1738 1:1000 | 25 kDa

Table 2. List of protein standards used in this study.

Standard

Agrisera catalogue number

Protein apparent MW

Concentrations

Purified spinach RbcL

AS01017S

52.7 kDa

0.375, 0.75, 1.5 pmol

Recombinant PsaC from Synechocystis PCC 6803 | AS04 042S

11.5 kDa

0.075, 0.3, 0.6 pmol

Recombinant PsbA from Synechocystis PCC 6803 | AS01 016S

41.5 kDa

0.125, 0.5, 1 pmol

Figure 6-Figure supplement 1. Immunoblots and a list of antibodies used for the immunoblotting
analysis.
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Figure 6-Figure supplement 2. Influence of constant enzyme fractions in the model on cellular
growth rate.
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