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SUMMARY 

 

Single-cell RNA sequencing (scRNA-seq) plays a pivotal role in our understanding of 

cellular heterogeneity. Current analytical workflows are driven by categorizing principles 

that consider cells as individual entities and classify them into complex taxonomies. We 

have devised a conceptually different computational framework based on a holistic view, 

where single-cell datasets are used to infer global, large-scale regulatory networks. We 

developed correlation metrics that are specifically tailored to single-cell data, and then 

generated, validated and interpreted single-cell-derived regulatory networks from organs 

and perturbed systems, such as diabetes and Alzheimer’s disease. Using advanced 

tools from graph theory, we computed an unbiased quantification of a gene’s biological 

relevance, and accurately pinpointed key players in organ function and drivers of 

diseases. Our approach detected multiple latent regulatory changes that are invisible to 

single-cell workflows based on clustering or differential expression analysis. In summary, 

we have established the feasibility and value of regulatory network analysis using 

scRNA-seq datasets, which significantly broadens the biological insights that can be 

obtained with this leading technology. 
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INTRODUCTION 

 

scRNA-seq is the leading technology for exploring tissue heterogeneity, unravelling the 

dynamics of differentiation, and quantifying transcriptional stochasticity. scRNA-seq data 

are being used to answer increasingly demanding biological questions, which has driven 

the development in recent years of an array of computational tools for scRNA-seq 

analysis (Zappia et al., 2018). Currently, these tools focus on improving features such 

as clustering, retrieving marker genes, and exploring differentiation trajectories (Zappia 

et al., 2018). These scenarios are inspired by a dividing, fragmenting principle, where 

each cell is an independent identity that must can be categorized into different types or 

stages of increasing hierarchical complexity. This is illustrated by recent large-scale cell 

atlases that often reach hundreds of stratified (sub)clusters (Zeisel et al., 2018). This has 

undoubtedly improved our understanding of cell diversity in various biological contexts. 

However, we hypothesize that a very different approach, inspired by a unifying rather 

than dividing ideal, would add a novel layer of information that would significantly 

increase the knowledge gained from single-cell datasets.    

Gene expression is tightly regulated by networks of transcription factors, cofactors and 

signaling molecules. Understanding these networks is a major goal in modern 

computational biology, as it will allow us to pinpoint crucial factors that determine 

phenotype in healthy systems as well as in disease (Emmert-Streib et al., 2014; 

Thompson et al., 2015). Unraveling the determinants of a given phenotype provides 

mechanistic insights into causal dependencies in complex cellular systems. Potentially, 

single-cell information offers the opportunity to derive a global regulatory network (Fiers 

et al., 2018). Traditional approaches to transcriptome profiling, namely microarray and 

RNA-seq of pooled cells, have been successfully used to infer and characterize 

regulatory networks, with a recent example using 9,435 bulk RNA-seq samples to 

decode tissue-specific regulatory networks (Sonawane et al., 2017). To date, there are 

only small-scale efforts to derive regulatory networks from single-cell transcriptomics 

data, and these efforts have been restricted to specific network properties (Guo et al., 

2015; Lim et al., 2016). This seems unexpected given that single-cell sequencing is the 

ideal technology for monitoring real interactions between genes in individual cells. 

However, single-cell data is undermined by a series of technical limitations, such as drop-

out events (expressed genes undetected by scRNA-seq) and a high level of noise, which 

have made it difficult to infer regulatory networks using this type of data (Chen and Mar, 

2018). 

In this paper, we demonstrate the feasibility and value of regulatory network analysis 

using scRNA-seq datasets. We present a novel correlation metric that can detect gene-
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to-gene correlations that are otherwise hidden by technical limitations. We apply this new 

metric to generate global, large scale regulatory networks for 11 mouse organs (Tabula 

Muris Consortium et al., 2018), for pancreas tissue from healthy individuals and patients 

with type 2 diabetes (Segerstolpe et al., 2016), and for a mouse model of Alzheimer's 

disease (Keren-Shaul et al., 2017). We then validate the resulting networks at multiple 

levels to confirm the reliability of the reconstruction. Next, we analyze the networks using 

state-of-the-art tools borrowed from graph theory, such as node centralities and 

dynamical properties. Finally, we integrate network-driven results with standard analyses 

such as clustering and differential expression analysis, and show that key regulators of 

healthy and diseased systems can only be identified by using holistic, network-based 

approaches. Together, our results represent the first complete, validated, high-

throughput and disease-centered application of single-cell regulatory network analysis, 

significantly increasing the knowledge gained from this leading technology.  

 

 

RESULTS 

 

Inferring regulatory networks from large-scale single-cell transcriptomics 

We initially set out to develop a reliable approach for inferring global regulatory networks 

from single-cell data (Fig. 1). To generate a regulatory network starting from expression 

data, we require a robust measure of correlation between genes. Unlike in RNA-seq from 

pools of cells (bulk), single-cell data is inherently noisy and highly sparse, which prevents 

the effective use of standard metrics such as Pearson, Spearman or Cosine correlation, 

or even mutual information (Methods). Hence, we conceived a novel correlation measure 

based on bigSCale (Iacono et al., 2018), a computational framework used to analyze 

single-cell data. Briefly, instead of searching for relationships using the original variables, 

namely (normalized) expression counts, we compute the correlations between 

transformed variables, in which expression counts are replaced by Z-scores. These Z-

scores are derived from an unsupervised analysis based on iterative differential 

expression (DE) between small clusters of cells (Methods). To compute Z-scores, we 

exploit a probabilistic model of the noise that considers all sources of variability in single-

cell data. Thereby, this approach can detect correlations that would otherwise be 

concealed by drop-out events and other technical artifacts. When applied to a scRNA-

seq dataset of 7,697 microglia cells (Keren-Shaul et al., 2017), bigSCale identified 

933,936 significant gene-to-gene correlations (Pearson >0.8), a gain of almost 40,000-
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fold compared to normalized UMI count data (only 24 correlations, Fig. 2A,B). This large 

increase in the number of detected correlations is supported by a radically  

 

 
 

Figure 1. Overview of the computational framework. A change of variable (from expression values to Z-
score) is used to detect otherwise hidden correlations between genes in single-cell datasets, ultimately 
allowing us to infer the global regulatory network. Network properties are characterized using concepts from 
graph theory. We generated, compared and characterized the networks of 11 organs in the mouse (tabula 
muris), of pancreas from healthy and type 2 diabetes human subjects, and of a mouse model of Alzheimer's 
disease. 
 

different distribution in the Z-score compared to that for the UMIs/reads space (Fig. 2A). 

When applied to seven additional datasets generated using different scRNA-seq 

techniques (Fluidigm C1, 10x Genomics Chromium, MARS-seq, Smart-seq2), with 

different sequencing depths and from different tissue sources (Iacono et al., 2018; 

Tabula Muris Consortium et al., 2018; Zeisel et al., 2015), the bigSCale metric 

consistently outperformed standard approaches, suggesting that it is a valid universal 

correlation metric for scRNA-seq data (Fig. 2C). 
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Figure 2. A metric tailored to single-cell data allows detection of hidden correlations. (A) Distribution 
of Pearson correlations ρp in normalized expression data (7697 microglia cells) or in the Z-score space. We 
detect only 24 correlations |ρp|>0.8 in the first scenario, but almost one million |ρp|>0.8 in the Z-score space. 
(B) Examples of correlations using either expression values or Z-score transformed data (ρp Pearson, ρc 
Cosine, ρs Spearman). Due to drop-out events and other artifacts, the positive correlation between Mmp25 
and Ankrd22 is only exposed using Z-scores. Similarly for the negative correlation between Samd9l and 
Cx3cr1. (C) Comparison of detected correlations |ρp|>0.8 using either original expression values or Z-score 
transformed data across different scRNA-seq technologies, sequencing depths (from 625 (Keren-Shaul et 
al., 2017) to 6480 (Iacono et al., 2018) average detected genes per cell)  and source material. (D) An 
adaptive correlation cutoff and GO annotations are used to infer the regulatory networks from correlation 
data. (E) Example of the validation of Eomes neighbors in the brain network. For each edge, we compute 
fold enrichment (proportional to edge width, highest Otx2 with 9.87, lowest Adcy7 with 0.83) and a p-value 
(labels). In the case of Eomes, all edges but one (Adcy7) are validated with p<0.05. (F) Overall distribution 
of edge-wise fold enrichment in the brain network is biased towards positive values, suggesting that 
neighboring genes are regulated together in perturbed systems. (G) Brain network, percentage of validated 
edges with p<0.05 (y-axis) filtered by the number of GSEA occurrences (x-axis). Some genes have few 
occurrences, which are less likely to yield significant p-values in the Fisher’s exact test. Higher percentages 
of validated (p<0.05) edges are obtained by considering only edges with high occurrences.  
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After identifying gene-to-gene correlations, an adaptive threshold is applied to retain only 

significant correlations (Methods). This adaptivity equalizes the effects of different cell 

numbers and coverage, and other technical features of scRNA-seq datasets. The 

retained correlations then become the weighted edges of the regulatory network, with 

either positive or negative signs. In the final step, gene ontology (GO) information is used 

to subset the network to “regulators of gene expression”, in order to retain only putative 

causal (regulatory) relationships (Methods) (Fig. 2D). Note that using external 

information (e.g. GO) is an established method for refining networks (Cheng et al., 2009; 

Tuncay et al., 2007; Zhang et al., 2008). To determine the importance of a given gene in 

a single-cell regulatory network and its underlying biological system, we applied 

advanced analytical tools from the field of graph theory. These tools allow us to quantify 

the biological relevance of a gene using various measures of centrality, namely degree, 

betweenness, closeness, pagerank and eigenvalues (Fig. 1). For example, 

betweenness centrality identifies regulatory bottlenecks, i.e. genes crucial for the flow of 

information; closeness centrality identifies genes situated in a central position in a 

network and eigenvalue centrality indicates highly influential genes whose signal quickly 

spreads throughout the network.  

 

Single-cell regulatory networks identify essential and specific genes for organ 

function 

To evaluate the value of using large-scale regulatory networks inferred from single cells 

to aid biological interpretation of scRNA-seq datasets, we first applied our framework to 

a single-cell resolved mouse organ atlas (Tabula Muris Consortium et al., 2018). We 

generated regulatory networks from 11 organs: endoderm (lung, pancreas, intestine), 

mesoderm (heart, fat, spleen, bladder, bone marrow) and ectoderm (skin, brain, 

mammary glands). The adaptive correlation threshold required to normalize batch effects 

such as sequencing depth or cell numbers reached high values for all organs (ρthresh>0.9, 

Table 1), which confirms the significance of selected correlations. Inferred networks had 

a scale-free topology (a structure conferring fault-tolerant behavior, Fig.  S1), which is in 

line with previous findings in manually curated networks (Albert, 2005; Balaji et al., 2006; 

Noort et al., 2004). We next sought to validate our predicted regulatory edges. We 

reasoned that when the system is perturbed all pairs of genes linked by an undirected 

edge should be activated/deactivated together. Thus, we used the Gene Set Enrichment 

Analysis (GSEA) database, which contains an extensive collection of experimental 

signatures representing perturbations in different biological systems (Methods). We 
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performed a proportional test (Fisher’s exact test) to quantify the co-occurrence of 

neighboring genes in GSEA experimental signatures, 

thereby testing the significance of each individual edge in the network (Fig. 2E). In the 

brain network, the edges (23,492) showed an overall distribution bias toward positive 

fold-enrichment and significant p-values, which supports our inferred regulatory links 

(Fig. 2F,G). Specifically, 34% of the edges were validated (p<0.05), and this percentage 

increased when we considered only the edges whose genes are present in many GSEA 

signatures (Fig. 2G). In fact, 100% of the edges were validated when considering only 

genes appearing in at least 360 signatures. The results were similar for the other 10 

mouse organ networks (Fig. S2A). 

We found that specific global properties differed markedly across organ-specific 

networks while other properties remained largely homogeneous (Table 1). For example, 

we observed diverse signaling complexities (ratio edges/node), this being lowest in the 

heart (2.28 edges per node) and highest in bone marrow (15.13 edges per node). In 

contrast, the percentage of “regulators of gene expression” (nodes actively regulating 

the expression of other nodes) was very stable across all tissues (26-28%). Notably, 

genes that were central in the different measures showed marginal overlap (Fig. 3A, Fig. 

S3,4), which suggests that conceptually different centralities quantifies distinct types of 

biological importance and provide mutually complementary information. To confirm the 

importance of central regulatory genes in the biological system, we calculated their 

enrichment among experimentally validated essential genes (Online GEne Essentiality 

(OGEE) database); knockdown of these genes causes lethal or infertile phenotypes in 

Mus musculus (methods). For all centrality metrics, gene centrality was proportional to 

biological essentiality (Fig. 3B,C), which supports the reliability of our networks and the 

validity of applying node centrality theories to single-cell data. Pagerank centrality was 

the best predictor of gene essentiality, and was the most consistent measure across 

organs (Fig. 3D). Eigenvalue was the worst predictor, its performance possibly 

depending on the network structure (Fig. S5). Next, to assess genes’ organ-specific 

centrality and how this relates to biological functions, we compared the centrality of 

genes across organs. In 11 regulatory networks we identified genes that were central for 

single or multiple mouse organs (Fig. 3E, Fig. S2B). Genes that were central in multiple 

organs appeared more essential than organ-specific genes (Fig. 3G, Fig. S2C). In line 

with this, shared central genes were associated with general housekeeping functions 

(e.g. gene expression or metabolic processes), whereas organ-specific central genes 

were associated with organ-specific processes (GO enrichment, Fig. 3H). Examples 

include epidermis development in the skin (p<3.2x10-5), regulation of blood vessel 

diameter in the heart (p<4.1x10-5) and regulation of neuron apoptotic process in the brain 
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(p<5.8x10-4). Importantly, regulatory network analysis provided biologically relevant 

information not captured by gene expression levels alone. In fact, most organ-specific 

central genes are not up-regulated in their respective organs (Fig. 3F). This implies that 

gene expression levels are not an adequate measure of the importance of such genes 

for their underlying biological system. Overall, our framework for single-cell network 

analysis was capable of exposing functional regulatory structures and key genes that are 

undetectable by current computational strategies. We believe that this approach will be 

very valuable and broadly applicable for interpreting healthy and diseased complex 

biological systems. For the latter, regulatory networks will allow us to detect the 

molecular fingerprints of perturbations and to identify key driver genes for disease. 

 

 

Table 1. Overview of specifications for inferred regulatory networks. In order: the adaptive correlation 
threshold set to retain significant correlations. Number of cells, edges. Percentage of edges between 
regulators of transcription (RT) and of edges with negative sign. Amount of nodes and their percentage being 
RT. Ratio edges/node (E/N), number of connected components, average and maximum shortest paths. 
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Figure 3. Regulatory networks inferred from 11 organs of the mouse body. (A) Marginal overlap of 
genes of different centralities in the brain network (top 20% genes). Additional organs in Fig. S4. (B) Visual 
representation the mammary gland network, in which node size is proportional to pagerank centrality. The 
top five central nodes (red color) are all genes classified by OGEE as biologically essential. (C) Genes (2403) 
of the mammary gland regulatory network sorted by centrality. Increasing centrality corresponds to higher 
biological essentiality for all centrality measures. (D) Genes sorted according to their pagerank centrality. 
High centrality (roughly top 10% of genes) corresponds to high biological essentiality. (E) The central genes 
(here, pagerank, top 20%) of each organ classified by their multiplicity. Multiplicity=1 means that they are 
central only in that organ, whereas multiplicity=2(3+) means that they are also central in additional organs 
(total of 2, or 3 or more, organs). Additional organs in Fig. S2B. (F) Analysis of genes which are i) central in 
at least one organ (pagerank) and ii) up-regulated in one organ compared to others. Intriguingly, most of the 
genes central in a given organ are expressed to a significantly higher extent (p<0.05) in a different organ. 
Additional organs in Fig. S2D. (G) Radar plot of the pagerank essentiality score for the central genes of each 
organ (top 20%), partitioned in either organ-specific or shared (multiplicity 3+). The latter have higher 
biological essentiality and reach a significant p-value for all organs (random permutations, p<0.005; Fig. 
S2C). (H) Heatmap of GO enrichments using pagerank centrality. 
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Altered regulatory network architecture in pancreas from type 2 diabetes (T2D) 

patients  

We considered that regulatory networks and gene centralities would be particularly 

informative about latent disease-related regulatory changes that are invisible to current 

analytical approaches. Thus, we generated healthy and T2D regulatory networks for 

2,491 single-cell transcriptomes from diabetes patients and controls (Segerstolpe et al., 

2016). First, we studied disease-related changes in pagerank centrality, a metric 

originally conceived to rank the popularity of websites. Nodes with high pagerank 

centrality indicate “popular” genes involved in multiple regulatory pathways. We 

hypothesized that genes with altered pagerank centrality would represent T2D regulatory 

changes with high functional impact on disease pathology. We found 162 genes with 

significantly increased pagerank centrality in T2D, despite showing equal expression 

levels (p>0.05) in T2D patients and healthy controls (Fig. 4A,B). In addition, we detected 

10 genes, including insulin (INS), with increased pagerank that were significantly down-

regulated in T2D (p<0.05). Consistent with known disease pathology, insulin was the 

most down -regulated gene (p<2.2x10-264), but had significantly higher pagerank 

centrality (from 0.3 to 0.9; Fig. 4A,B). This shows that insulin is a crucial limiting factor in 

the T2D network, and further emphasizes its pivotal role for the disease. Next, we used 

GO and GSEA to confirm the importance of the 172 genes with increased pagerank for 

pancreas function. Gene set enrichment supported their role in diabetes 

pathophysiology, as illustrated by the overrepresentation of terms such as “onset of 

diabetes in the young” signature (p<0.016; Fig. 4C). Genes showing changes in the 

remaining centralities (eigenvalues, closeness, betweenness, degree) were also 

enriched in diabetes-related functions, further highlighting the value of our method for 

interpreting scRNA-seq data (Table S1). 

Finally, we identified genes with a simultaneous increase or decrease in the five 

centralities, which we expect to drive essential regulatory changes in T2D. We detected 

4 (6) genes with repeated increased (decreased) centrality, most of which have 

previously been linked to diabetes pathology (Fig. 4D,E) (Guan et al., 2018; Kuo et al., 

2016; Li et al., 2003; Omatsu et al., 2014; Qiu et al., 2016; Teran-Garcia et al., 2007; 

Zhao et al., 2018; Zhu et al., 2013). For example, ARRB2, a gene with a demonstrated 

role in β cell development (Ravier et al., 2014), showed no differential expression 

(p>0.05) but was simultaneously decreased in all six centrality measures. This is 

particularly remarkable because β cells were the most deregulated cell type in the 

original analysis (Segerstolpe et al., 2016), which, however did not detect the importance 

of ARRB2 this context. This further supports the notion that generating global regulatory 
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networks from single-cell data provides important insights into the pathological 

mechanisms of diseases. 
 

 
 
Figure 4. Changes in centralities and dynamical properties in the pancreas of type 2 diabetes (T2D). 
(A) Network from healthy and T2D subjects, in which node size is proportional to its pagerank centrality. In 
red, the nodes which are present in both networks and have higher pagerank in T2D (84 nodes). (B) Violin 
plots, p-values and ranking in differential expression in healthy vs. T2D tissue using all cells (1313 control 
cells vs 1178 T2D cells). (C) GO and GSEA enrichments showing overrepresentation of diabetes-related 
functions in nodes with increased pagerank. (D-E) Several of the genes showing simultaneous decrease (D) 
or increase (E) of the five centralities have been implicated in diabetes. (F-G) Degree of the monotonicity 
(residual negative edges) was 37 for control (F) and 53 for T2D (G). Nodes carrying residual negative edges 
are highlighted in the networks plots. 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2018. ; https://doi.org/10.1101/446104doi: bioRxiv preprint 

https://doi.org/10.1101/446104
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Monotone behavior of healthy and diseased pancreatic tissue 

Dynamical behavior is perhaps the most important aspect of biological modeling, and 

describes how systems respond to input or perturbation. Biological regulatory networks 

have been suggested to display nearly monotone behaviors (Iacono and Altafini, 2010; 

Iacono et al., 2010), i.e. the prevalence of predictable, bounded trajectories over 

“chaotic”, oscillatory behaviors. Generally, abundant negative signs (negative 

correlations between genes) favor non-monotone behaviors. A social network is an 

intuitive parallel of this, in that unfriendly relationships (negative signs) increase social 

tension and decrease social monotonicity (Facchetti et al., 2011). We considered it 

interesting to assess whether our scRNA-seq-derived regulatory networks preserve the 

near-to-monotone behavior previously found in manually curated networks (Iacono and 

Altafini, 2010; Soranzo et al., 2012). The T2D regulatory network possessed more 

negative edges than the healthy counterpart, suggesting that diabetes causes an 

increase in chaotic signaling in the pancreas. 

Computing the distance to monotonicity (how many negative edges must be removed to 

achieve monotonicity) of large networks is a complex, NP-hard (non-deterministic 

polynomial-time) problem, for which there are only approximate solutions. We used a 

greedy heuristic based on gauge transformations and previously shown to be the most 

accurate solution for large networks (Iacono et al., 2010). As expected from the number 

of negative edges, the T2D network was less monotone than the healthy network 

(53/52035=0.101% compared to 37/48549=0.076% residual negative edges, 

respectively) (Fig. 4F,G). The nodes carrying these residual negative signs have 

potentially chaotic effects in the dynamic behavior of the network. Herein, we identified 

these potentially chaotic transcription regulators in healthy (DDX5) and T2D (NDFIP1, 

TAF9B and CREBL2) networks (Fig. 4F,G). However, both networks were extremely 

close to monotone, in comparison to previously reported regulatory networks (Yeast 

3.8%, E.coli 11.2% residual negative edges) (Iacono et al., 2010). Hence, the decrease 

in monotonicity in T2D was not sufficient to suggest that diabetes induces “chaotic” 

signaling in the pancreas. Nevertheless, this approach illustrates the potential for going 

beyond clustering-based phenotype analysis of single cells, allowing us to infer 

advanced system properties, such as dynamical behaviors of organs in health and 

disease. While we did not observe increased “chaotic” signaling in T2D, is it still intriguing 

to speculate that this is the case in other diseases. 

 

Network-driven interpretation of differentially expressed genes 

Differential expression (DE) is the backbone of most analytical pipelines for RNA-seq. A 

typical challenge is to interpret differentially expressed genes and identify functionally 
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important events. This is generally achieved by i) focusing on the genes with most 

significant p-value, ii) integrating external databases (GO or GSEA) to elucidate key 

genes and pathways, or iii) using personal knowledge to identify previously annotated 

genes. However, none of these approaches guarantees an unbiased classification of 

biological importance. In fact, in DE analysis p-values rank genes by technical 

reproducibility, not by biological importance, and both external databases and personal 

knowledge can be biased. Single-cell regulatory networks can be used to provide an 

unbiased, hypothesis-free classification of the biological importance of genes, allowing 

us to automatically identify pivotal deregulated genes, which greatly facilitates data 

interpretation. Comparing gene expression in β cells between healthy and T2D 

individuals, we detected 911 genes up-regulated in T2D β cells (p<0.05; Fig. 5A). 

Ranking these genes by centrality rather than p-values (i.e. Z-scores) provided 

quantitative sorting by biological importance, allowing us to immediately focus on the 

most relevant candidates. For example, NEUROD1 and RCAN1 showed the highest 

centrality of all deregulated genes according to multiple metrics (Fig. 5A,B), suggesting 

that they are the most informative and biologically relevant. Interestingly, mutations in 

NEUROD1 were associated with T2D (Malecki et al., 1999), whereas up-regulation of 

RCAN1 was shown to cause hyperinsulinemia, β cell dysfunction and diabetes (Peiris et 

al., 2012). Notably, neither of these genes was highlighted with DE p-values (NEUROD1 

2829th, p<2x10-4; RCAN1 4331th, p<0.05). This example highlights the high additive 

value of using single-cell regulatory networks and related node centralities to aid 

interpretation of DE results. 

 

Inversions of gene correlations in T2D 

Regulatory networks can be further interrogated to detect changes in local interactions, 

namely pairwise correlations between genes. With the rationale that gene pairs with 

directional changes in correlation represent rewired functional modules with pathological 

implications, we performed comparative analysis of the healthy and T2D networks. 

Overall, all pairwise correlations were highly similar (example of BMP5 and PCSK1, Fig. 

5C,D) under healthy and T2D conditions, which is remarkable considering that the data 

come from different donors and are subject to inter-individual variability as well as several 

confounding factors (e.g. age and weight). This indicates that our approach works 

transversely to confounding variables, ultimately exposing the true functional correlations 

between genes. Closer inspection revealed a number of modules (14) with strongly (ρ>1) 

inverted correlations, the most striking example being ZNF134 and TFAMP1, which 

switch from a strong positive correlation in the healthy pancreas (ρ=0.92) to a negative 

correlation in T2D (ρ=-0.7). Neither of these genes showed a change in expression 
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between conditions (healthy/T2D), which renders their altered functionality invisible to 

standard methods (Fig. 5E,F). 

 
Figure 5. Prediction of gene importance in DE data and directional changes in correlations. (A) 
Heatmap of normalized expression values of 911 genes found significantly up-regulated in T2D β cells 
compared to healthy β cells (p<0.05, bigSCale) sorted by decreasing Z-score (i.e. Increasing p-values) or 
decreasing centralities (betweenness, closeness and degree). Biological importance of NEUROD1 and 
RCAN1 is highlighted by their high centrality, but not by their DE Z-scores. More in general, correlation 
between DE Z-scores and centrality is marginal, as shown by the erratic area plots of Z-scores sorted by 
centrality. (B) Pancreas regulatory network generated using all cells (both healthy and T2D), node size 
proportional to its degree. NEUROD1 and RCAN1 have high degree centrality (461 and 438, respectively). 
(C) Scatter plot and marginal distributions (MD1-4) of all pairwise gene correlations with |ρ|>0.9 (329’046 
couples). The strong bias in the marginal distributions (especially MD1, 2, 4) indicates an overall similarity 
of correlations between healthy and T2D pancreas. (D) An example of a highly conserved correlation (BMP5-
PCSK1) against the strongest inversion (ZNF134-TFAMP1). (E) Overview of top 10 inversions of 
correlations. F) Neither ZNF134 nor TFAMP1 display a significant change of expression (bigSCale DE).  
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Several other genes displaying inverted correlations have previously been linked to 

diabetes, either by functional studies (TRIB1, glucose metabolism; NFKBIA, insulin 

resistance pathway) or as candidate disease genes in GWAS or gene expression studies 

(TMPPE, PRTG and ZNF319) (Ishizuka et al., 2014; Itani et al., 2002; Miller et al., 2010; 

Wanic et al., 2013; Yang et al., 2016; Zhang et al., 2018). Functionally, the most 

interesting are SREBP2 and GSK3A, which have a direct mechanistic relationship and 

are both implicated in T2D, and which also switched from a positive to a negative 

correlation. SREBP transcription factors are major players in lipid metabolism and 

possibly insulin resistance, whereas GSK3 phosphorylates SREBP in the absence of 

insulin and AKT signaling, leading to its degradation (Henriksen and Dokken, 2006; 

Musso et al., 2013; Shao and Espenshade, 2012). Consequently, we can speculate that 

the reversal in correlations inferred from single-cell data is directly related to a change in 

insulin signaling and the degradation of SREBP2 through GSK3A. 

In summary, the comparative analysis of single-cell-driven correlations is a suitable novel 

approach for disentangling the molecular mechanisms of diabetes, and further enlarges 

the repertoire of single-cell data analysis strategies available for meaningful data 

interpretation. 

 

Rewiring of microglia gene regulation in Alzheimer’s disease (AD) 

To further evaluate the applicability of our network-based approach in a different disease 

context, we analyzed scRNA-seq data from immune cells (CD45+) derived from 5XFAD 

transgenic mice, a commonly used model for AD (Keren-Shaul et al., 2017). The dataset 

contains transcriptomes from 22,951 single cells from different disease stages (1-8 

months, control and 5XFAD) as well as Trem2+/+ and Trem2-/- AD and control mice 

(Trem2 is a key receptor that modulates immune response). The variety of conditions 

makes the dataset particularly suitable for confirming the benefits of our unifying 

approach. In fact, instead of progressively fragmenting cells and conditions into stratified 

groups and clusters, we use all of the data as an input to generate regulatory networks 

for controls and AD. Overall, while the two networks were of comparable size (Table 1), 

we observed a general loss of connectivity in AD, which increased network sparseness 

and signal travelling time (shortest paths, Table 1). Consequently, centralities of several 

genes were different in the AD network compared to the control (Fig. 6A). Altered 

centralities were associated with different GSEA enrichments, further reflecting the fact 

that each centrality highlights different functional aspects. For example, genes that lost 

influence (eigenvalue) significantly overlapped with genes that were dependent on 

Trem1 in monocytes (p<6.5x10-6). This observation is intriguing given the relevance of 

Trem2 in the mediation of immune response in AD brains. 
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Other function-centrality associations include genes that are up-regulated in AD patients 

(p<5.0x10-12), the Interleukin 12 signaling cascade (p<1.1X10-8) and genes that are 

down-regulated in naive B-cells compared to monocytes (p<3.5x10-10; Fig. 6A). Overall, 

betweenness showed the most dramatic changes of all centralities. In fact, the AD 

network was rewired into a circular shape, which in turn causes a number of genes to 

become information bottlenecks (Fig. 6B). Interestingly, beta catenin 1 (Ctnnb1), part of 

the main pathway that regulates the onset and progression of AD (Ghanevati and Miller, 

2005), showed the largest increase in betweenness (from 0.0% to 27.3%, Fig. 6B) and 

became the main bottleneck in the AD network. Among the top-10 genes with increased 

betweenness, we also found a poorly annotated transcript 2700060E02Rik (Fig. 6C), 

whose heterozygous deletion was previously associated with tremors and hypoactivity, 

a common symptom of AD (Mouse Phenotyping Consortium, 

hwww.mousephenotype.org). 
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Figure 6. Rewiring of regulatory network in Alzheimer’s disease microglia introduces information 
bottlenecks. (A) GSEA enrichments for 10 lists of genes with altered centrality in AD compared to control 
network. For 5 centralities (up or down) 719 GSEA terms were found to be enriched with p<0.05 in at least 
one entry). The results show that the tested centralities provide insights into different functional pathways. 
(B) The AD regulatory network follows a circular shape in which the nodes along the terminal tail (yellow 
genes) become bottlenecks, i.e. acquire increased betweenness. The exact increase in betweenness is 
represented in the histogram. (C) International Mouse Phenotyping Consortium data for the transcript 
2700060E02Rik, alias Rtraf. Homozygous 2700060E02Rik knockout is associated with embryonic lethality 
prior to tooth bud stage and heterozygous 2700060E02Rik knockout is associated with tremors, hypoactivity 
and increased eosinophil cell number. 
 

 

DISCUSSION 

 

During the last decade, single-cell transcriptomics has becoming increasingly important 

for deconvoluting the cellular architecture of complex tissues, and for classifying cells 

with categorizing principles. A holistic scenario, where single cells are combined to infer 

global regulatory networks, has not yet been comprehensively explored. There have 

been isolated studies using small-scale single-cell data to derive partial regulatory 

networks, although their reliability has been questioned (Chen and Mar, 2018). Hence, it 

remained unclear whether single-cell datasets can be analyzed using strategies other 

than clustering-based phenotyping. 

The main obstacles that impede network analysis of single-cell data are the technical 

limitations inherent to the technology and the very large data volumes. Guo and 

coworkers used least square fitting on expression data from 28 epithelial cells and 

inferred a partial regulatory network of few hundred nodes and edges (Guo et al., 2015), 

however, without validating it. Further, the use of least square fitting is known to perform 

poorly with the sparse and low complexity of single-cell data (Fiers et al., 2018). In 

another work (Lim et al., 2016), 92 cells were analyzed using an asynchronous Boolean 

approach to refine literature curated models of hematopoiesis. Boolean approaches are 

not easily scalable (Fiers et al., 2018), and can therefore only be used to inspect reduced, 

specific sub-networks. Other studies applied graphical approaches not scalable to large-

scale sequencing data (Chan et al., 2017; Hamey et al., 2017; Matsumoto et al., 2017; 

Moignard et al., 2013; Pina et al., 2015; Sanchez-Castillo et al., 2018; Wei et al., 2017), 

metrics not tailored to scRNA-seq specific features (Chan et al., 2017; Hamey et al., 

2017; Moignard et al., 2013; Papili Gao et al., 2017; Pina et al., 2015; Wei et al., 2017), 

or dynamic process-specific approaches (Matsumoto et al., 2017; Moignard et al., 2013; 

Papili Gao et al., 2017). More recently, Aibar and colleagues developed the first tool 

designed to infer transcription factors and their target genes from single-cell data (Aibar 

et al., 2017). However, this tool ultimately applies clustering and phenotyping, without 

generating global regulatory networks.  
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In this work, we conceived an analytical framework for inferring large-scale regulatory 

networks from single-cell data. To confirm the viability of this approach, we generated a 

large and diverse repertoire of regulatory networks in healthy and diseased contexts. To 

support network interpretation, we applied advanced tools from graph theory, and 

validated this strategy thoroughly at multiple levels. Importantly, we showed that 

regulatory networks derived from single-cell data can be used to obtain novel and 

biologically relevant insights into the molecular architecture of complex systems and the 

pathophysiology of diseases. This work represents an important leap forward in the field 

of single-cell analysis for the reasons described below.  

First, we conducted the first large-scale analysis of global regulatory networks using 

single cells. We processed datasets from up to 8,000 single cells into networks with up 

to 60,000 edges and 7,000 nodes, going far beyond previous studies (Guo et al., 2015; 

Lim et al., 2016). 

Second, we conceived a metric which consistently identified hidden correlations within 

the single-cell dataset. The metric was developed within the framework of bigSCale 

(Iacono et al., 2018), and was specifically tailored to single-cell data, diminishing the 

effect of data sparsity, confounding factors, and other technical artifacts. Thereby, it 

removes main obstacle to processing scRNA-seq data into regulatory networks. 

Third, we studied the global and local properties of networks using advanced tools from 

graph theory, enabling a comprehensive characterization. Some of the concepts, such 

as monotonicity, have not yet been applied to data-driven regulatory networks, but have 

proven to be extremely powerful for understanding the biological systems analyzed here. 

Fourth, we validated our results at multiple levels. Specifically, we validated inferred 

correlations between transcription regulators and target genes via experimental 

signatures of perturbed biological systems. In line with previous evidence, the inferred 

networks were scale-free (Albert, 2005; Balaji et al., 2006; Noort et al., 2004). The 

centrality of genes was validated using external experimental datasets of essential genes 

(OGEE database), supporting their biological relevance. Further, we validated the 

functionality of organ-specific central genes in their respective tissue contexts (GO 

enrichment). Lastly, we found that genes with altered centrality in T2D and AD strongly 

overlap with previous known disease mechanisms. 

Fifth, we compared the results from the regulatory network approach with those from 

conventional DE analysis. Notably, we found that networks repeatedly disclosed latent 

variation and features that were invisible to standard analysis. Moreover, we showed that 

gene centrality analysis was able to work in synergy with differential expression analysis 

to provide an unbiased, quantitative ranking of biological importance from dysregulated 

genes. To our knowledge, this is a unique strategy for deducing a data-driven biological 
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ranking without the need to incorporate external information (e.g. GO or GSEA) or 

personal knowledge. 

Sixth, we have completed the first single-cell, network-driven analysis of diseased 

samples. Here, graph-based tools allowed us to enhance our understanding of their 

molecular pathology. In general, given its holistic rather than classifying use of single 

cells, we propose that the network approach is particularly well-suited for complex 

experimental designs with multiple confounding factors, such as clinical samples 

displaying sex-, age- and weight-related differences.  

 

In summary, we have shown that regulatory network approaches can be applied to large-

scale single-cell datasets, and can be used to maximize the biologically relevant 

information obtained. Testing consistency across multiple networks will allow us to 

determine the completeness of the captured regulatory interactions, and this should be 

the primary future task. 

 

 

METHODS 

 

Inferring gene expression correlations and regulatory networks from scRNA-seq 

data 

Single-cell sequencing is characterized by a series of technical limitations that generate 

artifacts, such as drop-out events, irregular sequencing depth and low library complexity. 

First, Drop-out events represent expressed genes that are undetected by scRNA-seq for 

technical reasons, resulting in zero values in the expression count matrix. These events 

make single-cell datasets considerably sparser than bulk RNA-seq datasets. Drop-out 

events are perhaps the most important factor affecting the performance of correlation 

methods, such as Spearman or Pearson, applied directly to expression count data. 

Second, irregular sequencing depth is caused by the uneven (non-normalized) loading 

of single-cell libraries into the sequencing reaction. Consequently, we observe large 

fluctuations in sequencing depth between cells, which can only partially be addressed 

by data normalization. Third, single-cell data present a reduced dynamic range of 

expression values, which is a further challenge for the performance of correlation 

methods. In fact, as it is not possible to entirely remove the effects of read distribution 

biases, traditional correlation metrics have suboptimal performance with this data type. 

Since these technical artifacts concur to mask correlations when using expression 

counts, we envisaged that a change of variable would greatly improve the performance 
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of the correlation methods, thereby allowing us to infer the regulatory networks. To this 

end, we devised the following steps:  

 

1) Data pre-processing. Datasets were analyzed using the bigSCale framework, which 

handles the noise and sparsity of scRNA-seq data using an accurate numerical model 

of noise. The framework includes modules for differential expression analysis and 

unsupervised cell clustering. All datasets were processed using bigSCale under default 

parameters, with the exception of parameters regulating the granularity of clusters. 

BigSCale was set to the highest granularity in order to produce the highest number of 

clusters, the rationale being to segregate cell subtypes and subtle cell states, so as to 

improve the resolution and quality of inferred correlations. 

 

2) Measuring correlations in the Z-score space. After clustering the cells to highest 

feasible granularity, we used bigSCale to run an iterative differential expression (DE) 

analysis between all pairs of clusters. For x clusters, this results in a total of x*(x-1)/2 

unique comparisons, each yielding a Z-score for each gene that indicates the likelihood 

of an expression change between two clusters. This allows us to compute correlations 

between genes using Z-scores instead of expression values. For correlation analysis, 

we used Pearson, Spearman and Cosine metrics. We also tested the mutual information 

to detect non-linear correlations. However, in the Z-score space this resulted in an 

excessive number of false positives. Specifically, mutual information repeatedly 

identified significant dependencies for which one of the two variables was linearly 

independent of the other (slope=0). Nevertheless, linear correlations in the Z-score 

space can also reflect non-linear correlations in the original expression space. Hence, 

we chose to rely exclusively on a solid measure of linear correlation in the Z-score space 

via Pearson, Spearman and Cosine metrics. The final correlation for each pair of genes 

was computed as the lowest (worst) between Pearson and Cosine (Spearman is used in 

a later stage as a further control). 

 

3) Building a regulatory network. In the next step, we retained significant correlations to 

define the edges of the regulatory network. Notably, the distribution of correlations is 

influenced by biological and technical factors. For example, increased cell numbers or 

sequencing depth results in a higher number of significant correlations. Consequently, 

to compare regulatory networks inferred from different datasets, we must first adjust for 

technical factors, for which we used an adaptive rather than fixed correlation threshold. 

Specifically, the inferred networks were built by retaining the top 0.1% correlations. Using 
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this relative correlation threshold prevents technical factors from producing artificial 

differences when comparing different networks. Although relative thresholds could result 

in the inclusion of non-significant correlations (e.g. ρ=0.4), we did not observe such 

events in any of the inferred networks, with most adaptive thresholds set between 

ρthresh=0.9 and ρthresh=0.99. The lowest (worst) adaptive threshold was ρthresh=0.84 for the 

AD network, which is still significant. Spearman correlation is used as a further control to 

discard weak correlations. Specifically, final correlations for which |ρspearman|<|ρthresh-0.15| 

were considered null. 

In a final step, the undirected network is polished to retain only the edges that represent 

actual regulatory links. To this end, we utilized GO annotations (version 24/03/2017) to 

extract putative regulators of transcription (GO:0010468 “regulation of gene 

expression”). We discarded from the network edges representing pairs of genes of which 

neither was annotated as “regulator of gene expression”, as we considered these to be 

spurious co-expression links. Alternatively, more specific GO terms could be used for 

network polishing (e.g. GO:0006355 “regulation of transcription, DNA-templated” or 

GO:000370 “DNA-binding transcription factor activity”). However, we opted for a broader 

term so as to include in our networks all possible regulatory layers, including indirect 

signaling events. 

 

Validation of network edges with external datasets 

Our inferred regulatory links represent putative events of transcriptional regulation on 

target gene(s). We chose to also include indirect regulation events that do not imply the 

direct binding of a transcription factor to the promoter of the target gene(s). By filtering 

the edges using the broad GO term “regulators of transcription”, we included all possible 

regulatory layers, including transcription co-factors, epigenetic mechanisms, regulation 

of RNA stability/degradation, and signaling cascades. Consequently, neighboring genes 

(genes connected by an edge) are likely to belong to a common pathway and should be 

similarly affected when the system is perturbed. GSEA contains an extensive collection 

of experimental signatures associated with perturbation of biological systems, which we 

used to independently validate each edge in our networks. To detect significant 

enrichment of co-occurrences, we applied the Fisher’s exact test. Edges with significant 

p-values imply that the related genes are activated/deactivated together in 

experimentally perturbed systems significantly more often than expected by chance. 

The distribution of edge-wise fold enrichment (i.e. how often the edges translate into co-

occurrences in GSEA signatures) was biased towards positive values for all mouse 

organs tested, indicating an overall simultaneous modulation of neighboring genes (Fig. 

2E,F). Co-regulation was further supported by significant p-values (e.g. Fig. 2G, Fig. 
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S2A), especially when considering edges with higher numbers of associated GSEA 

signatures (small gene sets are less likely to yield significant p-values in the Fisher exact 

test). Notably, we inferred organ-specific regulations, whereas the GSEA signatures are 

collected from a highly heterogeneous set of biological sources. Inevitably, some of our 

organ-specific regulatory links will be not backed-up by GSEA signatures, which explains 

why we could not validate not all individual edges in our networks. 

For all the GO (version 24/03/2017) and GSEA (version v6.0) enrichment analyses we 

used hypergeometric distribution with Bonferroni correction.  

 

Validation of network hubs with gene essentiality 

To elucidate whether the hubs in our networks represent essential regulatory factors, we 

took advantage of the Online GEne Essentiality (OGEE) database. This database 

provides an unbiased, comprehensive catalogue of the essentiality of experimentally 

tested genes across species. In this setting, we used the Mus musculus dataset 

(available at http://ogee.medgenius.info/browse/Mus%20musculus), which lists the 

essentiality status for 9,402 mouse genes. To quantify the essentiality of each set of 

hubs, we computed an essentiality score (ES), as: 

 

𝐸𝑆 ൌ 𝑙𝑜𝑔ଶ

𝐸௛௨௕௦
𝑁𝐸௛௨௕௦

𝐸௕௔௖௞௚௥௢௨௡ௗ
𝑁𝐸௕௔௖௞௚௥௢௨௡ௗ

 

 

where Ehubs and NEhubs are the number of essential and non-essential hubs, and Ebackground 

and NEbackground are the number of essential and non-essential genes in the OGEE 

dataset, respectively. 

To assess the significance of each ES, we computed the empirical probability of finding 

a score of the same magnitude by chance. Specifically, given a set with N hubs, we 

sampled N random genes from the OGEE dataset and calculated the ES. We repeated 

this process 10,000 times, and from the resulting distribution, we used the one-tailed p-

value as the proportion of random ES that are equal to or greater than the observed ES. 

After calculating one p-value for each ES, we corrected for multiple testing by applying 

a Benjamini-Hochberg correction to the vector of p-values. 

 

Detection of changes in centralities 

We evaluated two different approaches for ranking nodes according to their change in 

centrality. The first approach identifies the highest absolute change in centrality: ∆𝑐 ൌ
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𝑐௔ െ 𝑐௕, where ∆𝑐 for each node is defined as the difference in its centrality between 

networks A (𝑐௔) and B (𝑐௕). Next, we selected the 1000 nodes with the greatest change 

in centrality (either positive or negative). The change in centrality was then integrated 

with the p-values of the DE analysis (bigSCale, standard parameters) to identify genes 

undetected by DE (Figs. S6A). In an alternative approach to identify relative changes in 

centrality, we searched for dispersed nodes lying outside the proportional relationship 

between 𝑐௔ and 𝑐௕. We performed non-linear fitting (smoothing spline) to derive a 

confidence interval of the dispersion. Nodes that showed overdispersion at p<0.05 were 

defined as having altered centrality (Fig. S6B). Ultimately, we did not use this analysis 

in the manuscript, opting for the absolute change only (first approach). This is because 

relative changes in centrality, as measured by overdispersion, were biased towards small 

changes in centrality, which were important at a relative level, but irrelevant at the 

absolute level. 
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Fig. S1 Single-cell gene regulatory networks are scale-free. The degree distribution of the single-cell 
gene regulatory networks derived for 11 organs shown in linear (histogram) and logarithmic scale (scatter 
plot). Each distribution was fitted to a power-law distribution, and the p-value of the Kolmogorov-Smirnov 
test (KS.p) and the degree exponent of the power-law (alpha) are shown for each network. All networks are 
scale-free (p>0.01) apart from the mammary gland which slightly deviates from the exact scale-free 
distribution (p<0.004). 
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Fig. S2 Validation of inferred networks and analysis of multiplicity. (A) Percentage of validated edges 
validated with p<0.05 (y-axis) filtered by the number of GSEA occurrences (x-axis) for each organ. Increasing 
occurrences correspond to higher percentages of edges validated by significant p-values (p<0.05). (B) The 
central genes (top 20%) of each organ classified by their multiplicity for all tested centrality measures. 
Multiplicity=1 means that they are central only in that organ, whereas multiplicity=2(3+) means that they are 
central also in additional organs (total of 2, or 3 or more, organs). (C) Comparison of ES score of organ-
specific central genes (multiplicity=1) against shared central genes (multiplicity 3+). The latter have higher 
biological essentiality (* p<0.05 , ** p< 0.01, *** p<0.005, random permutations, see methods). (D) Analysis 
of genes which are i) central in at least one organ and ii) up-regulated in one organ compared to others. 
Intriguingly, most of the genes central in a given organ are actually expressed to a significantly higher extent 
(p<0.05) in a different organ. The brain has the highest amount of genes which are central and more 
expressed (compare to other organs) at the same time. 
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Fig S3. Relationship between degree and other centralities. Scatter plots between degree (log-scale) 
and the other centralities. Degree is perhaps the most simple and direct measure of centrality. Nodes with 
high degree have many connections and are therefore more likely to be central also in the other metrics. In 
line, degree and the other metrics show a general positive correlation, as shown in the examples of the 
intestine, the pancreas, the skin and the spleen. However, the other metrics are able to capture types of 
node importance (i.e. centrality) which the degree cannot. This is shown by the sparseness and/or multi-
modality of several distributions, such as for example degree and pagerank in the intestine, where nodes 
with the same degree can present widely different pagerank centrality. 
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Fig S4. The central genes of different metrics show marginal overlap. Venn diagrams intersecting the 
genes central (top 20%) in different measures. 
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Fig S5. Relationship between gene centrality and biological essentiality. Genes sorted according to 
their centrality. The top central genes (left side of the x-axis) in betweenness, closeness and degree show 
the highest biological essentiality (ES score, OGEE database, see methods). Eigenvalue has an unstable 
performance (working for some organs and not for others), possibly depending on the structure of the 
network.  
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Fig S6. Detection of genes showing changes in centrality. (A) Change in expression as measured by 
bigSCale Z-score (y-axes) compared to the absolute change in the five centralities. (B) Adaptive empirical 
fitting for the detection of relative changes of centralities. 
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