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SUMMARY

Single-cell RNA sequencing (scRNA-seq) plays a pivotal role in our understanding of
cellular heterogeneity. Current analytical workflows are driven by categorizing principles
that consider cells as individual entities and classify them into complex taxonomies. We
have devised a conceptually different computational framework based on a holistic view,
where single-cell datasets are used to infer global, large-scale regulatory networks. We
developed correlation metrics that are specifically tailored to single-cell data, and then
generated, validated and interpreted single-cell-derived regulatory networks from organs
and perturbed systems, such as diabetes and Alzheimer’s disease. Using advanced
tools from graph theory, we computed an unbiased quantification of a gene’s biological
relevance, and accurately pinpointed key players in organ function and drivers of
diseases. Our approach detected multiple latent regulatory changes that are invisible to
single-cell workflows based on clustering or differential expression analysis. In summary,
we have established the feasibility and value of regulatory network analysis using
scRNA-seq datasets, which significantly broadens the biological insights that can be
obtained with this leading technology.
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INTRODUCTION

scRNA-seq is the leading technology for exploring tissue heterogeneity, unravelling the
dynamics of differentiation, and quantifying transcriptional stochasticity. scRNA-seq data
are being used to answer increasingly demanding biological questions, which has driven
the development in recent years of an array of computational tools for scRNA-seq
analysis (Zappia et al., 2018). Currently, these tools focus on improving features such
as clustering, retrieving marker genes, and exploring differentiation trajectories (Zappia
et al., 2018). These scenarios are inspired by a dividing, fragmenting principle, where
each cell is an independent identity that must ean be categorized into different types or
stages of increasing hierarchical complexity. This is illustrated by recent large-scale cell
atlases that often reach hundreds of stratified (sub)clusters (Zeisel et al., 2018). This has
undoubtedly improved our understanding of cell diversity in various biological contexts.
However, we hypothesize that a very different approach, inspired by a unifying rather
than dividing ideal, would add a novel layer of information that would significantly
increase the knowledge gained from single-cell datasets.

Gene expression is tightly regulated by networks of transcription factors, cofactors and
signaling molecules. Understanding these networks is a major goal in modern
computational biology, as it will allow us to pinpoint crucial factors that determine
phenotype in healthy systems as well as in disease (Emmert-Streib et al., 2014;
Thompson et al., 2015). Unraveling the determinants of a given phenotype provides
mechanistic insights into causal dependencies in complex cellular systems. Potentially,
single-cell information offers the opportunity to derive a global regulatory network (Fiers
et al., 2018). Traditional approaches to transcriptome profiling, namely microarray and
RNA-seq of pooled cells, have been successfully used to infer and characterize
regulatory networks, with a recent example using 9,435 bulk RNA-seq samples to
decode tissue-specific regulatory networks (Sonawane et al., 2017). To date, there are
only small-scale efforts to derive regulatory networks from single-cell transcriptomics
data, and these efforts have been restricted to specific network properties (Guo et al.,
2015; Lim et al., 2016). This seems unexpected given that single-cell sequencing is the
ideal technology for monitoring real interactions between genes in individual cells.
However, single-cell data is undermined by a series of technical limitations, such as drop-
out events (expressed genes undetected by scRNA-seq) and a high level of noise, which
have made it difficult to infer regulatory networks using this type of data (Chen and Mar,
2018).

In this paper, we demonstrate the feasibility and value of regulatory network analysis

using scRNA-seq datasets. We present a novel correlation metric that can detect gene-
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to-gene correlations that are otherwise hidden by technical limitations. We apply this new
metric to generate global, large scale regulatory networks for 11 mouse organs (Tabula
Muris Consortium et al., 2018), for pancreas tissue from healthy individuals and patients
with type 2 diabetes (Segerstolpe et al., 2016), and for a mouse model of Alzheimer's
disease (Keren-Shaul et al., 2017). We then validate the resulting networks at multiple
levels to confirm the reliability of the reconstruction. Next, we analyze the networks using
state-of-the-art tools borrowed from graph theory, such as node centralities and
dynamical properties. Finally, we integrate network-driven results with standard analyses
such as clustering and differential expression analysis, and show that key regulators of
healthy and diseased systems can only be identified by using holistic, network-based
approaches. Together, our results represent the first complete, validated, high-
throughput and disease-centered application of single-cell regulatory network analysis,

significantly increasing the knowledge gained from this leading technology.

RESULTS

Inferring regulatory networks from large-scale single-cell transcriptomics

We initially set out to develop a reliable approach for inferring global regulatory networks
from single-cell data (Fig. 1). To generate a regulatory network starting from expression
data, we require a robust measure of correlation between genes. Unlike in RNA-seq from
pools of cells (bulk), single-cell data is inherently noisy and highly sparse, which prevents
the effective use of standard metrics such as Pearson, Spearman or Cosine correlation,
or even mutual information (Methods). Hence, we conceived a novel correlation measure
based on bigSCale (lacono et al., 2018), a computational framework used to analyze
single-cell data. Briefly, instead of searching for relationships using the original variables,
namely (normalized) expression counts, we compute the correlations between
transformed variables, in which expression counts are replaced by Z-scores. These Z-
scores are derived from an unsupervised analysis based on iterative differential
expression (DE) between small clusters of cells (Methods). To compute Z-scores, we
exploit a probabilistic model of the noise that considers all sources of variability in single-
cell data. Thereby, this approach can detect correlations that would otherwise be
concealed by drop-out events and other technical artifacts. When applied to a scRNA-
seq dataset of 7,697 microglia cells (Keren-Shaul et al., 2017), bigSCale identified

933,936 significant gene-to-gene correlations (Pearson >0.8), a gain of almost 40,000-
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fold compared to normalized UMI count data (only 24 correlations, Fig. 2A,B). This large

increase in the number of detected correlations is supported by a radically
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Figure 1. Overview of the computational framework. A change of variable (from expression values to Z-
score) is used to detect otherwise hidden correlations between genes in single-cell datasets, ultimately
allowing us to infer the global regulatory network. Network properties are characterized using concepts from
graph theory. We generated, compared and characterized the networks of 11 organs in the mouse (fabula
muris), of pancreas from healthy and type 2 diabetes human subjects, and of a mouse model of Alzheimer's
disease.

different distribution in the Z-score compared to that for the UMIs/reads space (Fig. 2A).
When applied to seven additional datasets generated using different scRNA-seq
techniques (Fluidigm C1, 10x Genomics Chromium, MARS-seq, Smart-seq2), with
different sequencing depths and from different tissue sources (lacono et al., 2018;
Tabula Muris Consortium et al., 2018; Zeisel et al.,, 2015), the bigSCale metric
consistently outperformed standard approaches, suggesting that it is a valid universal

correlation metric for scRNA-seq data (Fig. 2C).
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Figure 2. A metric tailored to single-cell data allows detection of hidden correlations. (A) Distribution
of Pearson correlations p, in normalized expression data (7697 microglia cells) or in the Z-score space. We
detect only 24 correlations |p,|>0.8 in the first scenario, but almost one million |p,|>0.8 in the Z-score space.
(B) Examples of correlations using either expression values or Z-score transformed data (p, Pearson, p.
Cosine, ps Spearman). Due to drop-out events and other artifacts, the positive correlation between Mmp25
and Ankrd22 is only exposed using Z-scores. Similarly for the negative correlation between Samd9/ and
Cx3cr1. (C) Comparison of detected correlations |p,|>0.8 using either original expression values or Z-score
transformed data across different scRNA-seq technologies, sequencing depths (from 625 (Keren-Shaul et
al., 2017) to 6480 (lacono et al., 2018) average detected genes per cell) and source material. (D) An
adaptive correlation cutoff and GO annotations are used to infer the regulatory networks from correlation
data. (E) Example of the validation of Eomes neighbors in the brain network. For each edge, we compute
fold enrichment (proportional to edge width, highest Otx2 with 9.87, lowest Adcy7 with 0.83) and a p-value
(labels). In the case of Eomes, all edges but one (Adcy7) are validated with p<0.05. (F) Overall distribution
of edge-wise fold enrichment in the brain network is biased towards positive values, suggesting that
neighboring genes are regulated together in perturbed systems. (G) Brain network, percentage of validated
edges with p<0.05 (y-axis) filtered by the number of GSEA occurrences (x-axis). Some genes have few
occurrences, which are less likely to yield significant p-values in the Fisher’s exact test. Higher percentages
of validated (p<0.05) edges are obtained by considering only edges with high occurrences.
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After identifying gene-to-gene correlations, an adaptive threshold is applied to retain only
significant correlations (Methods). This adaptivity equalizes the effects of different cell
numbers and coverage, and other technical features of scRNA-seq datasets. The
retained correlations then become the weighted edges of the regulatory network, with
either positive or negative signs. In the final step, gene ontology (GO) information is used
to subset the network to “regulators of gene expression”, in order to retain only putative
causal (regulatory) relationships (Methods) (Fig. 2D). Note that using external
information (e.g. GO) is an established method for refining networks (Cheng et al., 2009;
Tuncay et al., 2007; Zhang et al., 2008). To determine the importance of a given gene in
a single-cell regulatory network and its underlying biological system, we applied
advanced analytical tools from the field of graph theory. These tools allow us to quantify
the biological relevance of a gene using various measures of centrality, namely degree,
betweenness, closeness, pagerank and eigenvalues (Fig. 1). For example,
betweenness centrality identifies regulatory bottlenecks, i.e. genes crucial for the flow of
information; closeness centrality identifies genes situated in a central position in a
network and eigenvalue centrality indicates highly influential genes whose signal quickly

spreads throughout the network.

Single-cell regulatory networks identify essential and specific genes for organ
function

To evaluate the value of using large-scale regulatory networks inferred from single cells
to aid biological interpretation of scRNA-seq datasets, we first applied our framework to
a single-cell resolved mouse organ atlas (Tabula Muris Consortium et al., 2018). We
generated regulatory networks from 11 organs: endoderm (lung, pancreas, intestine),
mesoderm (heart, fat, spleen, bladder, bone marrow) and ectoderm (skin, brain,
mammary glands). The adaptive correlation threshold required to normalize batch effects
such as sequencing depth or cell numbers reached high values for all organs (pihresh>0.9,
Table 1), which confirms the significance of selected correlations. Inferred networks had
a scale-free topology (a structure conferring fault-tolerant behavior, Fig. S1), which is in
line with previous findings in manually curated networks (Albert, 2005; Balaiji et al., 2006;
Noort et al., 2004). We next sought to validate our predicted regulatory edges. We
reasoned that when the system is perturbed all pairs of genes linked by an undirected
edge should be activated/deactivated together. Thus, we used the Gene Set Enrichment
Analysis (GSEA) database, which contains an extensive collection of experimental
signatures representing perturbations in different biological systems (Methods). We
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performed a proportional test (Fisher’'s exact test) to quantify the co-occurrence of
neighboring genes in GSEA experimental signatures,

thereby testing the significance of each individual edge in the network (Fig. 2E). In the
brain network, the edges (23,492) showed an overall distribution bias toward positive
fold-enrichment and significant p-values, which supports our inferred regulatory links
(Fig. 2F,G). Specifically, 34% of the edges were validated (p<0.05), and this percentage
increased when we considered only the edges whose genes are present in many GSEA
signatures (Fig. 2G). In fact, 100% of the edges were validated when considering only
genes appearing in at least 360 signatures. The results were similar for the other 10
mouse organ networks (Fig. S2A).

We found that specific global properties differed markedly across organ-specific
networks while other properties remained largely homogeneous (Table 1). For example,
we observed diverse signaling complexities (ratio edges/node), this being lowest in the
heart (2.28 edges per node) and highest in bone marrow (15.13 edges per node). In
contrast, the percentage of “regulators of gene expression” (nodes actively regulating
the expression of other nodes) was very stable across all tissues (26-28%). Notably,
genes that were central in the different measures showed marginal overlap (Fig. 3A, Fig.
8$3,4), which suggests that conceptually different centralities quantifies distinct types of
biological importance and provide mutually complementary information. To confirm the
importance of central regulatory genes in the biological system, we calculated their
enrichment among experimentally validated essential genes (Online GEne Essentiality
(OGEE) database); knockdown of these genes causes lethal or infertile phenotypes in
Mus musculus (methods). For all centrality metrics, gene centrality was proportional to
biological essentiality (Fig. 3B,C), which supports the reliability of our networks and the
validity of applying node centrality theories to single-cell data. Pagerank centrality was
the best predictor of gene essentiality, and was the most consistent measure across
organs (Fig. 3D). Eigenvalue was the worst predictor, its performance possibly
depending on the network structure (Fig. S5). Next, to assess genes’ organ-specific
centrality and how this relates to biological functions, we compared the centrality of
genes across organs. In 11 regulatory networks we identified genes that were central for
single or multiple mouse organs (Fig. 3E, Fig. S2B). Genes that were central in multiple
organs appeared more essential than organ-specific genes (Fig. 3G, Fig. S2C). In line
with this, shared central genes were associated with general housekeeping functions
(e.g. gene expression or metabolic processes), whereas organ-specific central genes
were associated with organ-specific processes (GO enrichment, Fig. 3H). Examples
include epidermis development in the skin (p<3.2x107°), regulation of blood vessel

diameter in the heart (p<4.7x710-°) and regulation of neuron apoptotic process in the brain


https://doi.org/10.1101/446104
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/446104; this version posted October 17, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

(p<5.8x10+4). Importantly, regulatory network analysis provided biologically relevant
information not captured by gene expression levels alone. In fact, most organ-specific
central genes are not up-regulated in their respective organs (Fig. 3F). This implies that
gene expression levels are not an adequate measure of the importance of such genes
for their underlying biological system. Overall, our framework for single-cell network
analysis was capable of exposing functional regulatory structures and key genes that are
undetectable by current computational strategies. We believe that this approach will be
very valuable and broadly applicable for interpreting healthy and diseased complex
biological systems. For the latter, regulatory networks will allow us to detect the

molecular fingerprints of perturbations and to identify key driver genes for disease.

Table 1. Overview of specifications for inferred regulatory networks. In order: the adaptive correlation
threshold set to retain significant correlations. Number of cells, edges. Percentage of edges between
regulators of transcription (RT) and of edges with negative sign. Amount of nodes and their percentage being
RT. Ratio edges/node (E/N), number of connected components, average and maximum shortest paths.

NETWORK  ptresh Cells Edges Edges Edges<0 Nodes RT % E/N Conn. Avg. Max short.

RT-RT Comp. short. path.
path

Marrow 095 5017 48748 14,8% 0,0% 3221 27.5% 15,13 3 4,06 15
Intestine 094 3991 60941 153% 0,0% 5858 24,4% 10,40 1 6,33 25
Heart 094 3854 3460 9,7% 0,4% 1519 23,7% 2,28 3 6,71 24
Brain 092 3399 23492 12,3% 0,0% 5131 27.3% 4,58 2 9,84 33
Fat 089 3018 35495 11,1% 1,4% 4814 26,7% 737 3 5,27 17
Mammary 095 2356 38088 14,3% 1,2% 5978 26,0% 6,37 2 7,92 32
Skin 085 2282 42965 14,9% 8,6% 5361 28,6% 8,01 1 5,56 19
Spleen 088 1699 30424 15,0% 3,4% 4560 28,8% 6,67 1 6,95 24
Pancreas 092 1432 30191 11,1% 0,5% 6586 24,6% 4,58 1 8,84 34
Bladder 099 1369 46136 10,1% 26,2% 5729 22,8% 8,05 5 7,19 33
Lung 090 1289 15008 11,4% 0,6% 2921 25,7% 514 2 7,73 20
Pancreas

Healthy 090 1208 48540 142% 1,1% 7432 28,0% 6,53 2 7,06 35
Pancreas

T2D 091 1162 52035 13,2% 6,7% 7501 27,0% 6,94 1 6,63 29
Microglia

Healthy 089 7676 32064 19,3% 0,0% 2665 31,6% 12,03 3 4,16 17
Microglia

AD 084 8332 20970 13,5% 0,0% 2774 26,7% 7,56 1 6,74 27
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Figure 3. Regulatory networks inferred from 11 organs of the mouse body. (A) Marginal overlap of
genes of different centralities in the brain network (top 20% genes). Additional organs in Fig. S4. (B) Visual
representation the mammary gland network, in which node size is proportional to pagerank centrality. The
top five central nodes (red color) are all genes classified by OGEE as biologically essential. (C) Genes (2403)
of the mammary gland regulatory network sorted by centrality. Increasing centrality corresponds to higher
biological essentiality for all centrality measures. (D) Genes sorted according to their pagerank centrality.
High centrality (roughly top 10% of genes) corresponds to high biological essentiality. (E) The central genes
(here, pagerank, top 20%) of each organ classified by their multiplicity. Multiplicity=1 means that they are
central only in that organ, whereas multiplicity=2(3+) means that they are also central in additional organs
(total of 2, or 3 or more, organs). Additional organs in Fig. S2B. (F) Analysis of genes which are i) central in
at least one organ (pagerank) and ii) up-regulated in one organ compared to others. Intriguingly, most of the
genes central in a given organ are expressed to a significantly higher extent (p<0.05) in a different organ.
Additional organs in Fig. S2D. (G) Radar plot of the pagerank essentiality score for the central genes of each
organ (top 20%), partitioned in either organ-specific or shared (multiplicity 3+). The latter have higher
biological essentiality and reach a significant p-value for all organs (random permutations, p<0.005; Fig.
S$2C). (H) Heatmap of GO enrichments using pagerank centrality.


https://doi.org/10.1101/446104
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/446104; this version posted October 17, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Altered regulatory network architecture in pancreas from type 2 diabetes (T2D)
patients

We considered that regulatory networks and gene centralities would be particularly
informative about latent disease-related regulatory changes that are invisible to current
analytical approaches. Thus, we generated healthy and T2D regulatory networks for
2,491 single-cell transcriptomes from diabetes patients and controls (Segerstolpe et al.,
2016). First, we studied disease-related changes in pagerank centrality, a metric
originally conceived to rank the popularity of websites. Nodes with high pagerank
centrality indicate “popular” genes involved in multiple regulatory pathways. We
hypothesized that genes with altered pagerank centrality would represent T2D regulatory
changes with high functional impact on disease pathology. We found 162 genes with
significantly increased pagerank centrality in T2D, despite showing equal expression
levels (p>0.05) in T2D patients and healthy controls (Fig. 4A,B). In addition, we detected
10 genes, including insulin (INS), with increased pagerank that were significantly down-
regulated in T2D (p<0.05). Consistent with known disease pathology, insulin was the
most down -regulated gene (p<2.2x10-264), but had significantly higher pagerank
centrality (from 0.3 to 0.9; Fig. 4A,B). This shows that insulin is a crucial limiting factor in
the T2D network, and further emphasizes its pivotal role for the disease. Next, we used
GO and GSEA to confirm the importance of the 172 genes with increased pagerank for
pancreas function. Gene set enrichment supported their role in diabetes
pathophysiology, as illustrated by the overrepresentation of terms such as “onset of
diabetes in the young” signature (p<0.016; Fig. 4C). Genes showing changes in the
remaining centralities (eigenvalues, closeness, betweenness, degree) were also
enriched in diabetes-related functions, further highlighting the value of our method for
interpreting scRNA-seq data (Table S1).

Finally, we identified genes with a simultaneous increase or decrease in the five
centralities, which we expect to drive essential regulatory changes in T2D. We detected
4 (6) genes with repeated increased (decreased) centrality, most of which have
previously been linked to diabetes pathology (Fig. 4D,E) (Guan et al., 2018; Kuo et al.,
2016; Li et al., 2003; Omatsu et al., 2014; Qiu et al., 2016; Teran-Garcia et al., 2007;
Zhao et al., 2018; Zhu et al., 2013). For example, ARRB2, a gene with a demonstrated
role in B cell development (Ravier et al.,, 2014), showed no differential expression
(p>0.05) but was simultaneously decreased in all six centrality measures. This is
particularly remarkable because B cells were the most deregulated cell type in the
original analysis (Segerstolpe et al., 2016), which, however did not detect the importance

of ARRB?2 this context. This further supports the notion that generating global regulatory
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networks from single-cell data provides important insights into the pathological

mechanisms of diseases.
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Figure 4. Changes in centralities and dynamical properties in the pancreas of type 2 diabetes (T2D).
(A) Network from healthy and T2D subjects, in which node size is proportional to its pagerank centrality. In
red, the nodes which are present in both networks and have higher pagerank in T2D (84 nodes). (B) Violin
plots, p-values and ranking in differential expression in healthy vs. T2D tissue using all cells (1313 control
cells vs 1178 T2D cells). (C) GO and GSEA enrichments showing overrepresentation of diabetes-related
functions in nodes with increased pagerank. (D-E) Several of the genes showing simultaneous decrease (D)
or increase (E) of the five centralities have been implicated in diabetes. (F-G) Degree of the monotonicity
(residual negative edges) was 37 for control (F) and 53 for T2D (G). Nodes carrying residual negative edges
are highlighted in the networks plots.
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Monotone behavior of healthy and diseased pancreatic tissue

Dynamical behavior is perhaps the most important aspect of biological modeling, and
describes how systems respond to input or perturbation. Biological regulatory networks
have been suggested to display nearly monotone behaviors (lacono and Altafini, 2010;
lacono et al., 2010), i.e. the prevalence of predictable, bounded trajectories over
“chaotic”’, oscillatory behaviors. Generally, abundant negative signs (negative
correlations between genes) favor non-monotone behaviors. A social network is an
intuitive parallel of this, in that unfriendly relationships (negative signs) increase social
tension and decrease social monotonicity (Facchetti et al., 2011). We considered it
interesting to assess whether our scRNA-seq-derived regulatory networks preserve the
near-to-monotone behavior previously found in manually curated networks (lacono and
Altafini, 2010; Soranzo et al., 2012). The T2D regulatory network possessed more
negative edges than the healthy counterpart, suggesting that diabetes causes an
increase in chaotic signaling in the pancreas.

Computing the distance to monotonicity (how many negative edges must be removed to
achieve monotonicity) of large networks is a complex, NP-hard (non-deterministic
polynomial-time) problem, for which there are only approximate solutions. We used a
greedy heuristic based on gauge transformations and previously shown to be the most
accurate solution for large networks (lacono et al., 2010). As expected from the number
of negative edges, the T2D network was less monotone than the healthy network
(563/52035=0.101% compared to 37/48549=0.076% residual negative edges,
respectively) (Fig. 4F,G). The nodes carrying these residual negative signs have
potentially chaotic effects in the dynamic behavior of the network. Herein, we identified
these potentially chaotic transcription regulators in healthy (DDX5) and T2D (NDFIP1,
TAF9B and CREBL?2) networks (Fig. 4F,G). However, both networks were extremely
close to monotone, in comparison to previously reported regulatory networks (Yeast
3.8%, E.coli 11.2% residual negative edges) (lacono et al., 2010). Hence, the decrease
in monotonicity in T2D was not sufficient to suggest that diabetes induces “chaotic”
signaling in the pancreas. Nevertheless, this approach illustrates the potential for going
beyond clustering-based phenotype analysis of single cells, allowing us to infer
advanced system properties, such as dynamical behaviors of organs in health and
disease. While we did not observe increased “chaotic” signaling in T2D, is it still intriguing

to speculate that this is the case in other diseases.

Network-driven interpretation of differentially expressed genes
Differential expression (DE) is the backbone of most analytical pipelines for RNA-seq. A

typical challenge is to interpret differentially expressed genes and identify functionally
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important events. This is generally achieved by i) focusing on the genes with most
significant p-value, ii) integrating external databases (GO or GSEA) to elucidate key
genes and pathways, or iii) using personal knowledge to identify previously annotated
genes. However, none of these approaches guarantees an unbiased classification of
biological importance. In fact, in DE analysis p-values rank genes by technical
reproducibility, not by biological importance, and both external databases and personal
knowledge can be biased. Single-cell regulatory networks can be used to provide an
unbiased, hypothesis-free classification of the biological importance of genes, allowing
us to automatically identify pivotal deregulated genes, which greatly facilitates data
interpretation. Comparing gene expression in B cells between healthy and T2D
individuals, we detected 911 genes up-regulated in T2D B cells (p<0.05; Fig. 5A).
Ranking these genes by centrality rather than p-values (i.e. Z-scores) provided
quantitative sorting by biological importance, allowing us to immediately focus on the
most relevant candidates. For example, NEUROD1 and RCAN1 showed the highest
centrality of all deregulated genes according to multiple metrics (Fig. 5A,B), suggesting
that they are the most informative and biologically relevant. Interestingly, mutations in
NEUROD1 were associated with T2D (Malecki et al., 1999), whereas up-regulation of
RCAN1 was shown to cause hyperinsulinemia, 8 cell dysfunction and diabetes (Peiris et
al., 2012). Notably, neither of these genes was highlighted with DE p-values (NEUROD1
2829th, p<2x10*; RCAN1 4331th, p<0.05). This example highlights the high additive
value of using single-cell regulatory networks and related node centralities to aid
interpretation of DE results.

Inversions of gene correlations in T2D

Regulatory networks can be further interrogated to detect changes in local interactions,
namely pairwise correlations between genes. With the rationale that gene pairs with
directional changes in correlation represent rewired functional modules with pathological
implications, we performed comparative analysis of the healthy and T2D networks.
Overall, all pairwise correlations were highly similar (example of BMP5 and PCSK1, Fig.
5C,D) under healthy and T2D conditions, which is remarkable considering that the data
come from different donors and are subject to inter-individual variability as well as several
confounding factors (e.g. age and weight). This indicates that our approach works
transversely to confounding variables, ultimately exposing the true functional correlations
between genes. Closer inspection revealed a number of modules (14) with strongly (p>1)
inverted correlations, the most striking example being ZNF134 and TFAMP1, which
switch from a strong positive correlation in the healthy pancreas (p=0.92) to a negative

correlation in T2D (p=-0.7). Neither of these genes showed a change in expression


https://doi.org/10.1101/446104
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/446104; this version posted October 17, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

between conditions (healthy/T2D), which renders their altered functionality invisible to
standard methods (Fig. 5E,F).
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Figure 5. Prediction of gene importance in DE data and directional changes in correlations. (A)
Heatmap of normalized expression values of 911 genes found significantly up-regulated in T2D 8 cells
compared to healthy 8 cells (p<0.05, bigSCale) sorted by decreasing Z-score (i.e. Increasing p-values) or
decreasing centralities (betweenness, closeness and degree). Biological importance of NEUROD1 and
RCANT1 is highlighted by their high centrality, but not by their DE Z-scores. More in general, correlation
between DE Z-scores and centrality is marginal, as shown by the erratic area plots of Z-scores sorted by
centrality. (B) Pancreas regulatory network generated using all cells (both healthy and T2D), node size
proportional to its degree. NEUROD1 and RCANT have high degree centrality (461 and 438, respectively).
(C) Scatter plot and marginal distributions (MD1-4) of all pairwise gene correlations with |p|>0.9 (329'046
couples). The strong bias in the marginal distributions (especially MD1, 2, 4) indicates an overall similarity
of correlations between healthy and T2D pancreas. (D) An example of a highly conserved correlation (BMP5-
PCSK1) against the strongest inversion (ZNF134-TFAMP1). (E) Overview of top 10 inversions of
correlations. F) Neither ZNF134 nor TFAMP1 display a significant change of expression (bigSCale DE).
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Several other genes displaying inverted correlations have previously been linked to
diabetes, either by functional studies (TRIB71, glucose metabolism; NFKBIA, insulin
resistance pathway) or as candidate disease genes in GWAS or gene expression studies
(TMPPE, PRTG and ZNF319) (Ishizuka et al., 2014; Itani et al., 2002; Miller et al., 2010;
Wanic et al.,, 2013; Yang et al., 2016; Zhang et al., 2018). Functionally, the most
interesting are SREBP2 and GSK3A, which have a direct mechanistic relationship and
are both implicated in T2D, and which also switched from a positive to a negative
correlation. SREBP transcription factors are major players in lipid metabolism and
possibly insulin resistance, whereas GSK3 phosphorylates SREBP in the absence of
insulin and AKT signaling, leading to its degradation (Henriksen and Dokken, 2006;
Musso et al., 2013; Shao and Espenshade, 2012). Consequently, we can speculate that
the reversal in correlations inferred from single-cell data is directly related to a change in
insulin signaling and the degradation of SREBP2 through GSK3A.

In summary, the comparative analysis of single-cell-driven correlations is a suitable novel
approach for disentangling the molecular mechanisms of diabetes, and further enlarges
the repertoire of single-cell data analysis strategies available for meaningful data

interpretation.

Rewiring of microglia gene regulation in Alzheimer’s disease (AD)

To further evaluate the applicability of our network-based approach in a different disease
context, we analyzed scRNA-seq data from immune cells (CD45+) derived from 5XFAD
transgenic mice, a commonly used model for AD (Keren-Shaul et al., 2017). The dataset
contains transcriptomes from 22,951 single cells from different disease stages (1-8
months, control and 5XFAD) as well as Trem2** and Trem2’ AD and control mice
(Trem2 is a key receptor that modulates immune response). The variety of conditions
makes the dataset particularly suitable for confirming the benefits of our unifying
approach. In fact, instead of progressively fragmenting cells and conditions into stratified
groups and clusters, we use all of the data as an input to generate regulatory networks
for controls and AD. Overall, while the two networks were of comparable size (Table 1),
we observed a general loss of connectivity in AD, which increased network sparseness
and signal travelling time (shortest paths, Table 1). Consequently, centralities of several
genes were different in the AD network compared to the control (Fig. 6A). Altered
centralities were associated with different GSEA enrichments, further reflecting the fact
that each centrality highlights different functional aspects. For example, genes that lost
influence (eigenvalue) significantly overlapped with genes that were dependent on
Trem1 in monocytes (p<6.5x10%). This observation is intriguing given the relevance of

TremZ2 in the mediation of immune response in AD brains.
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Other function-centrality associations include genes that are up-regulated in AD patients
(p<5.0x107'?), the Interleukin 12 signaling cascade (p<1.1X10%®) and genes that are
down-regulated in naive B-cells compared to monocytes (p<3.5x107'%; Fig. 6A). Overall,
betweenness showed the most dramatic changes of all centralities. In fact, the AD
network was rewired into a circular shape, which in turn causes a number of genes to
become information bottlenecks (Fig. 6B). Interestingly, beta catenin 1 (Ctnnb1), part of
the main pathway that regulates the onset and progression of AD (Ghanevati and Miller,
2005), showed the largest increase in betweenness (from 0.0% to 27.3%, Fig. 6B) and
became the main bottleneck in the AD network. Among the top-10 genes with increased
betweenness, we also found a poorly annotated transcript 2700060E02Rik (Fig. 6C),
whose heterozygous deletion was previously associated with tremors and hypoactivity,
a common symptom of AD (Mouse Phenotyping Consortium,

hwww.mousephenotype.org).
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Figure 6. Rewiring of regulatory network in Alzheimer’s disease microglia introduces information
bottlenecks. (A) GSEA enrichments for 10 lists of genes with altered centrality in AD compared to control
network. For 5 centralities (up or down) 719 GSEA terms were found to be enriched with p<0.05 in at least
one entry). The results show that the tested centralities provide insights into different functional pathways.
(B) The AD regulatory network follows a circular shape in which the nodes along the terminal tail (yellow
genes) become bottlenecks, i.e. acquire increased betweenness. The exact increase in betweenness is
represented in the histogram. (C) International Mouse Phenotyping Consortium data for the transcript
2700060E02Rik, alias Rtraf. Homozygous 2700060E02Rik knockout is associated with embryonic lethality
prior to tooth bud stage and heterozygous 2700060E02Rik knockout is associated with tremors, hypoactivity
and increased eosinophil cell number.

DISCUSSION

During the last decade, single-cell transcriptomics has becoming increasingly important
for deconvoluting the cellular architecture of complex tissues, and for classifying cells
with categorizing principles. A holistic scenario, where single cells are combined to infer
global regulatory networks, has not yet been comprehensively explored. There have
been isolated studies using small-scale single-cell data to derive partial regulatory
networks, although their reliability has been questioned (Chen and Mar, 2018). Hence, it
remained unclear whether single-cell datasets can be analyzed using strategies other
than clustering-based phenotyping.

The main obstacles that impede network analysis of single-cell data are the technical
limitations inherent to the technology and the very large data volumes. Guo and
coworkers used least square fitting on expression data from 28 epithelial cells and
inferred a partial regulatory network of few hundred nodes and edges (Guo et al., 2015),
however, without validating it. Further, the use of least square fitting is known to perform
poorly with the sparse and low complexity of single-cell data (Fiers et al., 2018). In
another work (Lim et al., 2016), 92 cells were analyzed using an asynchronous Boolean
approach to refine literature curated models of hematopoiesis. Boolean approaches are
not easily scalable (Fiers et al., 2018), and can therefore only be used to inspect reduced,
specific sub-networks. Other studies applied graphical approaches not scalable to large-
scale sequencing data (Chan et al., 2017; Hamey et al., 2017; Matsumoto et al., 2017;
Moignard et al., 2013; Pina et al., 2015; Sanchez-Castillo et al., 2018; Wei et al., 2017),
metrics not tailored to scRNA-seq specific features (Chan et al., 2017; Hamey et al.,
2017; Moignard et al., 2013; Papili Gao et al., 2017; Pina et al., 2015; Wei et al., 2017),
or dynamic process-specific approaches (Matsumoto et al., 2017; Moignard et al., 2013;
Papili Gao et al., 2017). More recently, Aibar and colleagues developed the first tool
designed to infer transcription factors and their target genes from single-cell data (Aibar
et al., 2017). However, this tool ultimately applies clustering and phenotyping, without
generating global regulatory networks.
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In this work, we conceived an analytical framework for inferring large-scale regulatory
networks from single-cell data. To confirm the viability of this approach, we generated a
large and diverse repertoire of regulatory networks in healthy and diseased contexts. To
support network interpretation, we applied advanced tools from graph theory, and
validated this strategy thoroughly at multiple levels. Importantly, we showed that
regulatory networks derived from single-cell data can be used to obtain novel and
biologically relevant insights into the molecular architecture of complex systems and the
pathophysiology of diseases. This work represents an important leap forward in the field
of single-cell analysis for the reasons described below.

First, we conducted the first large-scale analysis of global regulatory networks using
single cells. We processed datasets from up to 8,000 single cells into networks with up
to 60,000 edges and 7,000 nodes, going far beyond previous studies (Guo et al., 2015;
Lim et al., 2016).

Second, we conceived a metric which consistently identified hidden correlations within
the single-cell dataset. The metric was developed within the framework of bigSCale
(lacono et al., 2018), and was specifically tailored to single-cell data, diminishing the
effect of data sparsity, confounding factors, and other technical artifacts. Thereby, it
removes main obstacle to processing scRNA-seq data into regulatory networks.

Third, we studied the global and local properties of networks using advanced tools from
graph theory, enabling a comprehensive characterization. Some of the concepts, such
as monotonicity, have not yet been applied to data-driven regulatory networks, but have
proven to be extremely powerful for understanding the biological systems analyzed here.
Fourth, we validated our results at multiple levels. Specifically, we validated inferred
correlations between transcription regulators and target genes via experimental
signatures of perturbed biological systems. In line with previous evidence, the inferred
networks were scale-free (Albert, 2005; Balaji et al., 2006; Noort et al., 2004). The
centrality of genes was validated using external experimental datasets of essential genes
(OGEE database), supporting their biological relevance. Further, we validated the
functionality of organ-specific central genes in their respective tissue contexts (GO
enrichment). Lastly, we found that genes with altered centrality in T2D and AD strongly
overlap with previous known disease mechanisms.

Fifth, we compared the results from the regulatory network approach with those from
conventional DE analysis. Notably, we found that networks repeatedly disclosed latent
variation and features that were invisible to standard analysis. Moreover, we showed that
gene centrality analysis was able to work in synergy with differential expression analysis
to provide an unbiased, quantitative ranking of biological importance from dysregulated

genes. To our knowledge, this is a unique strategy for deducing a data-driven biological
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ranking without the need to incorporate external information (e.g. GO or GSEA) or
personal knowledge.

Sixth, we have completed the first single-cell, network-driven analysis of diseased
samples. Here, graph-based tools allowed us to enhance our understanding of their
molecular pathology. In general, given its holistic rather than classifying use of single
cells, we propose that the network approach is particularly well-suited for complex
experimental designs with multiple confounding factors, such as clinical samples

displaying sex-, age- and weight-related differences.

In summary, we have shown that regulatory network approaches can be applied to large-
scale single-cell datasets, and can be used to maximize the biologically relevant
information obtained. Testing consistency across multiple networks will allow us to
determine the completeness of the captured regulatory interactions, and this should be

the primary future task.

METHODS

Inferring gene expression correlations and regulatory networks from scRNA-seq

data

Single-cell sequencing is characterized by a series of technical limitations that generate
artifacts, such as drop-out events, irregular sequencing depth and low library complexity.
First, Drop-out events represent expressed genes that are undetected by scRNA-seq for
technical reasons, resulting in zero values in the expression count matrix. These events
make single-cell datasets considerably sparser than bulk RNA-seq datasets. Drop-out
events are perhaps the most important factor affecting the performance of correlation
methods, such as Spearman or Pearson, applied directly to expression count data.
Second, irregular sequencing depth is caused by the uneven (non-normalized) loading
of single-cell libraries into the sequencing reaction. Consequently, we observe large
fluctuations in sequencing depth between cells, which can only partially be addressed
by data normalization. Third, single-cell data present a reduced dynamic range of
expression values, which is a further challenge for the performance of correlation
methods. In fact, as it is not possible to entirely remove the effects of read distribution
biases, traditional correlation metrics have suboptimal performance with this data type.
Since these technical artifacts concur to mask correlations when using expression

counts, we envisaged that a change of variable would greatly improve the performance
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of the correlation methods, thereby allowing us to infer the regulatory networks. To this

end, we devised the following steps:

1) Data pre-processing. Datasets were analyzed using the bigSCale framework, which
handles the noise and sparsity of scRNA-seq data using an accurate numerical model
of noise. The framework includes modules for differential expression analysis and
unsupervised cell clustering. All datasets were processed using bigSCale under default
parameters, with the exception of parameters regulating the granularity of clusters.
BigSCale was set to the highest granularity in order to produce the highest number of
clusters, the rationale being to segregate cell subtypes and subtle cell states, so as to

improve the resolution and quality of inferred correlations.

2) Measuring correlations in the Z-score space. After clustering the cells to highest
feasible granularity, we used bigSCale to run an iterative differential expression (DE)
analysis between all pairs of clusters. For x clusters, this results in a total of x*(x-1)/2
unigue comparisons, each yielding a Z-score for each gene that indicates the likelihood
of an expression change between two clusters. This allows us to compute correlations
between genes using Z-scores instead of expression values. For correlation analysis,
we used Pearson, Spearman and Cosine metrics. We also tested the mutual information
to detect non-linear correlations. However, in the Z-score space this resulted in an
excessive number of false positives. Specifically, mutual information repeatedly
identified significant dependencies for which one of the two variables was linearly
independent of the other (slope=0). Nevertheless, linear correlations in the Z-score
space can also reflect non-linear correlations in the original expression space. Hence,
we chose to rely exclusively on a solid measure of linear correlation in the Z-score space
via Pearson, Spearman and Cosine metrics. The final correlation for each pair of genes
was computed as the lowest (worst) between Pearson and Cosine (Spearman is used in

a later stage as a further control).

3) Building a regulatory network. In the next step, we retained significant correlations to
define the edges of the regulatory network. Notably, the distribution of correlations is
influenced by biological and technical factors. For example, increased cell numbers or
sequencing depth results in a higher number of significant correlations. Consequently,
to compare regulatory networks inferred from different datasets, we must first adjust for
technical factors, for which we used an adaptive rather than fixed correlation threshold.

Specifically, the inferred networks were built by retaining the top 0.1% correlations. Using
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this relative correlation threshold prevents technical factors from producing artificial
differences when comparing different networks. Although relative thresholds could result
in the inclusion of non-significant correlations (e.g. p=0.4), we did not observe such
events in any of the inferred networks, with most adaptive thresholds set between
Pinresh=0.9 and pinresh=0.99. The lowest (worst) adaptive threshold was pinresn=0.84 for the
AD network, which is still significant. Spearman correlation is used as a further control to
discard weak correlations. Specifically, final correlations for which |pspearman|<|Pthresh-0.15|
were considered null.

In a final step, the undirected network is polished to retain only the edges that represent
actual regulatory links. To this end, we utilized GO annotations (version 24/03/2017) to
extract putative regulators of transcription (GO:0010468 “regulation of gene
expression”). We discarded from the network edges representing pairs of genes of which
neither was annotated as “regulator of gene expression”, as we considered these to be
spurious co-expression links. Alternatively, more specific GO terms could be used for
network polishing (e.g. GO:0006355 “regulation of transcription, DNA-templated” or
G0:000370 “DNA-binding transcription factor activity”). However, we opted for a broader
term so as to include in our networks all possible regulatory layers, including indirect

signaling events.

Validation of network edges with external datasets

Our inferred regulatory links represent putative events of transcriptional regulation on
target gene(s). We chose to also include indirect regulation events that do not imply the
direct binding of a transcription factor to the promoter of the target gene(s). By filtering
the edges using the broad GO term “regulators of transcription”, we included all possible
regulatory layers, including transcription co-factors, epigenetic mechanisms, regulation
of RNA stability/degradation, and signaling cascades. Consequently, neighboring genes
(genes connected by an edge) are likely to belong to a common pathway and should be
similarly affected when the system is perturbed. GSEA contains an extensive collection
of experimental signatures associated with perturbation of biological systems, which we
used to independently validate each edge in our networks. To detect significant
enrichment of co-occurrences, we applied the Fisher’'s exact test. Edges with significant
p-values imply that the related genes are activated/deactivated together in
experimentally perturbed systems significantly more often than expected by chance.
The distribution of edge-wise fold enrichment (i.e. how often the edges translate into co-
occurrences in GSEA signatures) was biased towards positive values for all mouse
organs tested, indicating an overall simultaneous modulation of neighboring genes (Fig.

2E,F). Co-regulation was further supported by significant p-values (e.g. Fig. 2G, Fig.
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S2A), especially when considering edges with higher numbers of associated GSEA
signatures (small gene sets are less likely to yield significant p-values in the Fisher exact
test). Notably, we inferred organ-specific regulations, whereas the GSEA signatures are
collected from a highly heterogeneous set of biological sources. Inevitably, some of our
organ-specific regulatory links will be not backed-up by GSEA signatures, which explains
why we could not validate not all individual edges in our networks.

For all the GO (version 24/03/2017) and GSEA (version v6.0) enrichment analyses we
used hypergeometric distribution with Bonferroni correction.

Validation of network hubs with gene essentiality

To elucidate whether the hubs in our networks represent essential regulatory factors, we
took advantage of the Online GEne Essentiality (OGEE) database. This database
provides an unbiased, comprehensive catalogue of the essentiality of experimentally
tested genes across species. In this setting, we used the Mus musculus dataset
(available at http://ogee.medgenius.info/browse/Mus%20musculus), which lists the
essentiality status for 9,402 mouse genes. To quantify the essentiality of each set of
hubs, we computed an essentiality score (ES), as:

ES =log, B
b

ackground
NEbackground

where Enuws and NEnuss are the number of essential and non-essential hubs, and Epackground
and NEbpackgrouna are the number of essential and non-essential genes in the OGEE
dataset, respectively.

To assess the significance of each ES, we computed the empirical probability of finding
a score of the same magnitude by chance. Specifically, given a set with N hubs, we
sampled N random genes from the OGEE dataset and calculated the ES. We repeated
this process 10,000 times, and from the resulting distribution, we used the one-tailed p-
value as the proportion of random ES that are equal to or greater than the observed ES.
After calculating one p-value for each ES, we corrected for multiple testing by applying

a Benjamini-Hochberg correction to the vector of p-values.

Detection of changes in centralities
We evaluated two different approaches for ranking nodes according to their change in

centrality. The first approach identifies the highest absolute change in centrality: Ac =
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¢, — cp, Where Ac for each node is defined as the difference in its centrality between
networks A (c,) and B (¢, ). Next, we selected the 1000 nodes with the greatest change
in centrality (either positive or negative). The change in centrality was then integrated
with the p-values of the DE analysis (bigSCale, standard parameters) to identify genes
undetected by DE (Figs. S6A). In an alternative approach to identify relative changes in
centrality, we searched for dispersed nodes lying outside the proportional relationship
between ¢, and c¢,. We performed non-linear fitting (smoothing spline) to derive a
confidence interval of the dispersion. Nodes that showed overdispersion at p<0.05 were
defined as having altered centrality (Fig. S6B). Ultimately, we did not use this analysis
in the manuscript, opting for the absolute change only (first approach). This is because
relative changes in centrality, as measured by overdispersion, were biased towards small
changes in centrality, which were important at a relative level, but irrelevant at the
absolute level.
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Fig. S1 Single-cell gene regulatory networks are scale-free. The degree distribution of the single-cell
gene regulatory networks derived for 11 organs shown in linear (histogram) and logarithmic scale (scatter
plot). Each distribution was fitted to a power-law distribution, and the p-value of the Kolmogorov-Smirnov
test (KS.p) and the degree exponent of the power-law (alpha) are shown for each network. All networks are
scale-free (p>0.01) apart from the mammary gland which slightly deviates from the exact scale-free

distribution (p<0.004).
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Fig. S2 Validation of inferred networks and analysis of multiplicity. (A) Percentage of validated edges
validated with p<0.05 (y-axis) filtered by the number of GSEA occurrences (x-axis) for each organ. Increasing
occurrences correspond to higher percentages of edges validated by significant p-values (p<0.05). (B) The
central genes (top 20%) of each organ classified by their multiplicity for all tested centrality measures.
Multiplicity=1 means that they are central only in that organ, whereas multiplicity=2(3+) means that they are
central also in additional organs (total of 2, or 3 or more, organs). (C) Comparison of ES score of organ-
specific central genes (multiplicity=1) against shared central genes (multiplicity 3+). The latter have higher
biological essentiality (* p<0.05, ** p< 0.01, *** p<0.005, random permutations, see methods). (D) Analysis
of genes which are i) central in at least one organ and ii) up-regulated in one organ compared to others.
Intriguingly, most of the genes central in a given organ are actually expressed to a significantly higher extent
(p<0.05) in a different organ. The brain has the highest amount of genes which are central and more
expressed (compare to other organs) at the same time.
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Fig S3. Relationship between degree and other centralities. Scatter plots between degree (log-scale)
and the other centralities. Degree is perhaps the most simple and direct measure of centrality. Nodes with
high degree have many connections and are therefore more likely to be central also in the other metrics. In
line, degree and the other metrics show a general positive correlation, as shown in the examples of the
intestine, the pancreas, the skin and the spleen. However, the other metrics are able to capture types of
node importance (i.e. centrality) which the degree cannot. This is shown by the sparseness and/or multi-
modality of several distributions, such as for example degree and pagerank in the intestine, where nodes
with the same degree can present widely different pagerank centrality.
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Supplementary Figure 4
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Fig S4. The central genes of different metrics show marginal overlap. Venn diagrams intersecting the
genes central (top 20%) in different measures.
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Supplementary Figure 5

BETWEENNESS CLOSENESS
1,5 1,5

w [‘ j;’”' w 1
8 A WA . &
go,s I w‘\“‘;"\}gﬁm \ (go,s
; i s S
Z o “ ‘ \"'YA ! Z o
05 05
1 3 1
+ GENE CENTRALITY = + GENE CENTRALITY =
DEGREE EIGENVALUE
16 15
y y W\W )& ‘”
§ '@' kde J § !”‘\ r“t" th”l*nm
"" e ‘d” Vi q“w |
R o RO
i b RN A LT ok
05
08 1
+ GENE CENTRALITY - + GENE CENTRALITY -

Fig S5. Relationship between gene centrality and biological essentiality. Genes sorted according to
their centrality. The top central genes (left side of the x-axis) in betweenness, closeness and degree show
the highest biological essentiality (ES score, OGEE database, see methods). Eigenvalue has an unstable
performance (working for some organs and not for others), possibly depending on the structure of the
network.
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A Supplementary Figure 6
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Fig S6. Detection of genes showing changes in centrality. (A) Change in expression as measured by
bigSCale Z-score (y-axes) compared to the absolute change in the five centralities. (B) Adaptive empirical
fitting for the detection of relative changes of centralities.
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