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Systematic variation in the methylation of cytosines at CpG
sites plays a critical role in early development of humans and
other mammals. Of particular interest are regions of differen-
tial methylation between parental alleles, as these often dictate
monoallelic gene expression, resulting in parent of origin spe-
cific control of the embryonic transcriptome and subsequent de-
velopment, in a phenomenon known as genomic imprinting.
Using long-read nanopore sequencing we show that, with an av-
erage genomic coverage of approximately ten, it is possible to
determine both the level of methylation of CpG sites and the
haplotype from which each read arises. The long-read property
is exploited to characterise, using novel methods, both methyla-
tion and haplotype for reads that have reduced basecalling pre-
cision compared to Sanger sequencing. We validate the anal-
ysis both through comparison of nanopore-derived methyla-
tion patterns with those from Reduced Representation Bisulfite
Sequencing data and through comparison with previously re-
ported data.
Our analysis successfully identifies known imprinting control
regions as well as some novel differentially methylated regions
which, due to their proximity to hitherto unknown monoallel-
ically expressed genes, may represent new imprinting control
regions.
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Introduction
Methylation of the 5th carbon of cytosines (5mC or simply
mC) is an epigenetic modification essential for normal mam-
malian development. Methylation differences between alle-
les contribute to establishing allele-specific expression pat-
terns. As obtaining genome-wide haplotyped methylomes
with short reads remains challenging, we evaluated the ability
of long read, nanopore-based sequencing to improve allele-
specific methylation analyses.
We apply the technique to the study of genomic imprinting,
where differential expression of the maternal and paternal al-
leles in the offspring is at least partially set by the differential
methylation (1–5). Imprinting is proposed to arise from the
diverging interests of the maternal and paternal genes (6). In
accordance with its primordial role in allocation of resources
from the mother to the offspring, the placenta, along with the

brain, is the organ where parental conflict results in the most
pronounced imprinted expression (7–9). We thus conduct a
survey of differential methylation and expression in murine
embryonic placenta.
Recent studies have increased the number of genes identified
as subject to imprinting in mouse to about 200 (10–15). The
cause of the differential expression between paternal and ma-
ternal alleles is only known for a subset of these genes; ma-
ternal histone marks can play a role (14), and in other cases it
involves the differential methylation of adjacent regions (5).
The differential methylation patterns may be established in
the gametes and persist through the epigenetic reprogram-
ming occurring after fertilisation (16). These differentially
methylated regions (DMRs) are called primary DMRs, or
imprinting control regions (ICRs). Alternatively, differen-
tial methylation may arise during development, perhaps as
a downstream effect of differential expression, in which case
the regions are called somatic or secondary DMRs (17).
Apart from the parent of origin of the allele, genetic differ-
ences can also be associated with differential methylation. In
this case, F1 hybrids of distinct mouse strains will display
DMRs between the alleles according to the strain of origin
(18), and not the parent. Genetically determined DMRs can
have profound effects on phenotype, for instance in humans
by altering the expression of mismatch repair genes impor-
tant in cancer (19). Therefore, we also investigate the link
between DNA methylation and expression for strain-biased
genes.
Reconstructing haplotyped methylomes necessitates the si-
multaneous measurement of DNA methylation and single-
nucleotide polymorphisms (SNPs) differentiating the alle-
les. This can be achieved by deep sequencing of bisulfite-
converted DNA on the Illumina platforms, although the
short reads combined with the reduced complexity of the
bisulfite-treated DNA make the process inefficient, mean-
ing many regions with low SNP density remain unresolved.
Long reads provided by third generation sequencing tech-
nologies can overcome the requirement of a high SNP den-
sity, while several methods allow the assessment of base
modifications on native DNA (thus also avoiding the re-
duction in complexity associated with bisulfite conversion).
These methods include: analysis of polymerase kinetics
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Fig. 1. Nanopore methylation calls are consistent with expected results and established technologies. A. Metaplot of nanopore methylation calls across CpG islands,
clustered in two groups of high and low methylation. B. Metaplot of nanopore methylation calls across the aggregated gene bodies of all protein-coding genes
recapitulated known methylation structures. C. Density of methylation calls (β, the average methylation based on all reads covering that position) for sites covered
by both nanopore and RRBS. D. Joint density of nanopore and RRBS methylation calls for the same sites as in C. Darker regions indicate regions of higher density,
while lighter regions indicate regions of lower density. The density plot is split into four quadrants according to a RRBS threshold of 0.5 and a nanopore threshold
of 0.36, and the percentage of sites in each quadrant is displayed.

for PacBio SMRT sequencing (20), and detection of devi-
ations in the electric signal for Oxford Nanopore sequenc-
ing, via nanopolish (21), signalAlign (22), mCaller (bioRxiv
doi:10.1101/127100), Tombo (bioRxiv doi:10.1101/094672),
or DeepSignal (bioRxiv doi:10.1101/385849). We note that,
for the dominant eukaryotic genome base modification at
5mC, the PacBio technology requires very high coverage
making it impractical for use in the analysis of mammalian
genomes (23). PacBio SMRT sequencing can be combined
with bisulfite treatment (SMRT-BS) to facilitate 5mC detec-
tion, but this approach is currently only available for tar-
geted sequencing (24) and the bisulfite treatment introduces
the same drawbacks noted above in addition to fragmenting
the DNA. Additionally, while PacBio technology is limited to
maximum read lengths of between 50 and 100 kb (25), Ox-
ford Nanopore sequencing has no theoretical upper limit on
read length and exhibits no bias in sequencing quality with
read length (26), which is especially beneficial in genomic
regions devoid of SNPs, or highly repetitive regions.
Here we use the MinION and PromethION long-read
nanopore sequencers to generate whole-genome haplotyped
methylomes from murine embryonic placenta. With a mean
coverage of 10X we successfully identify known imprinting
control regions as well as novel parent-of-origin DMRs near
imprinted genes, as well as strain-specific DMRs close to
both strain-biased genes and structural variants. We show the

improved efficiency of this strategy over existing workflows
to resolve allele-specific methylation, and highlight its utility
in investigating the mechanisms of genomic imprinting.

Results
Nanopore methylation calls are concordant with other
technologies.We sequenced the embryonic portion of pla-
centa derived from a male embryonic day 14.5 (E14.5) con-
ceptus from a C57BL/6 (Black6, or B6) × Castaneus (Cast)
F1 on the MinION platform to a depth of about 8X (Fig. S1)
and called methylation using nanopolish (21). The genome-
wide methylation data successfully recapitulated known pat-
terns: CpG islands (CGIs), as defined by Irizarry et al.
(27), separated into two groups of high and low methylation
(Fig. 1A); the methylation level dipped at transcriptional start
sites (TSSs) (Fig. 1B), and the average genome-wide methy-
lation level was around 50%, as previously reported for pla-
cental tissue (28).
To further validate the accuracy of the nanopore methylation
calls, we compared them to Reduced Representation Bisulfite
Sequencing (RRBS) data on the same sample at sites cov-
ered by both methods. Nanopore methylation calls showed
an overall similar distribution to RRBS methylation calls, al-
beit with a bias toward intermediate values of methylation
(Fig. 1C). Despite being less correlated than measurements
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from methylation-specific technologies (29) with a median
absolute deviation (MAD) of 0.18, per-site methylation was
also relatively concordant between the two methods, with
85% of CpG sites being called correctly when converting av-
erage methylation values to binary calls. (Fig. 1D).
Sequencing of E14.5 embryonic placenta from the recipro-
cal cross (Cast × B6) on the PromethION platform at 12X
coverage (Fig. S1) generated comparable results.

Increased haplotyping efficiency with nanopore reads.
We next used high-confidence SNPs between the Cast and
B6 strains to haplotype RRBS and nanopore reads. In or-
der to mitigate the high sequencing error rates of nanopore
sequencing, we used two methods of haplotype assignment,
denoted the ‘basecall method’, based on FASTQ data, and
the ‘signal method’, based on the phase-reads module from
nanopolish, an HMM which uses the raw nanopore signal
to predict genotype (30). Additionally, we only assigned a
haplotype to those nanopore reads with at least five high-
confidence SNPs (Fig. S3). All RRBS reads overlapping at
least one SNP were assigned a haplotype (31). Only 24% of
the mapped RRBS reads could be assigned to one haplotype,
whereas 74% of mapped nanopore reads were haplotyped in
the expected proportions (Fig. 2A and B): roughly half of the
haplotyped reads were assigned to the maternal haplotype,
and half to the paternal haplotype, albeit showing a slight bias
towards the paternal haplotype (due to an increased number
of split reads in regions where sections of the Cast genome
has a deletion with respect to the B6 genome). The pattern
of haplotype assignment was consistent across the autosomal
chromosomes, while, as expected for a male sample, almost
all (91%) of the reads aligned to the X chromosome were as-
signed to the maternal haplotype (Fig. 2B). Haplotyping of
the Cast× B6 cross gave similar results (Fig. S2A). The lack
of maternal bias in read haplotype indicates minimal mater-
nal contamination, which is also reflected in consistent RNA-
seq library sizes (Fig. S4).
We further evaluated the accuracy of the haplotyping of the
nanopore reads by sequencing the same tissue from the par-
ents (B6 only, and Cast only). Following the same haplotyp-
ing procedure, 85.7% of the reads were correctly assigned to
the relevant genotype, and 1.5% were misassigned (Fig. S2B
and C).
The large majority of nanopore reads showed strong agree-
ment between the two haplotyping methods. Discrepancy
between the basecall and signal methods are typically due
to a low number of SNPs being scored by one or both meth-
ods, resulting in these alignments being filtered out by the
haplotyping procedure (Fig. S3). However, when examin-
ing the overall predictive performance of the two methods
with AUROC (Area Under Receiver Operating Characteris-
tic Curve) on the single-strain experiments, the signal method
marginally outperformed the basecall method (see Table 1).
We also found that the combination of the two methods
achieved a slight improvement again over the signal method,
either with a logistic regression model (32) or an ad hoc com-
bination of the two approaches (see Methods). The ad hoc
method allowed classification of an 30,000 additional reads

over the logistic regression and signal method, both of which
excluded reads for which nanopolish failed to produce out-
put.

Method AUROC Accuracy (%) Called Reads
Basecall 0.976 0.963 261,806
Signal 0.988 0.961 199,474
Regression 0.992 0.972 198,684
Ad hoc — 0.983 228,866

Table 1. Accuracy and support of haplotyping methods on pure-strain reads.

In both nanopore and RRBS data, the main cause of hap-
lotyping failure is the lack of SNPs in the region covered
by the read (Fig. S3). While the proportion of successfully
haplotyped nanopore reads could increase with optimisation
for longer reads and anticipated improved sequencing accu-
racy, RRBS haplotyping efficiency is limited by the short
read length.

Parent-of-origin and strain-biased gene expression. To
investigate the correlation between differential methylation
and differential gene expression, we performed RNA-seq on
the same F1 placental tissue from reciprocal crosses of B6
and Cast, in quadruplicates. Maternal tissue contamination
was unlikely as for each embryo maternal and paternal counts
were similar (Fig. S4). We found 135 genes with a parental
bias in expression (imprinted genes, 10% FDR, Fig. 3A):
88 with higher expression from the maternal allele and 47
with higher expression of the paternal allele. Among the
135 genes, 53 corresponded to well-characterised imprinted
genes in classic databases (33–36). A further 17 of these
genes, including Fkbp6, Smoc1/2, Gzmc/d/e/f/g, Zdhhc14
and Arid1b have been identified as imprinted in one or sev-
eral recent studies (12–15). The remaining 65 genes consti-
tute novel candidate genes with parent-biased expression in
mouse placenta. The complete annotated list is reported in
Additional File 1.
We also identified 4,029 genes (13% of expressed autoso-
mal genes) with a strain bias greater than two-fold (5% FDR,
Fig. 3B and Additional File 1), evenly split between B6 dom-
inance (2,027 genes) and Cast dominance (2,002).

Known imprinting control regions are observable by
nanopore sequencing.We combined the methylation and
haplotyping data from the nanopore reads to compare methy-
lation between the parental alleles. To highlight the linkage
information of the methylation data available for nanopore
reads, as well as the per-site per-read data, we plotted the
loess fit of the cytosine methylation levels for each read in
the region of interest (Fig. 4A and B).
Differentially methylated regions at known imprinting con-
trol regions (35) were readily visible and concordant with
matched allele-specific RNA-seq and RRBS data (Fig. 4A
and B). Nanopore data recapitulated methylation differences
at most known imprinting control regions (Fig. 4C), often
showing extended differential methylation past the annotated
ICR borders.
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Fig. 2. Accurate and efficient haplotyping of nanopore reads. A. Percentages of mapped reads from RRBS and nanopore sequencing that were assigned to the
B6 genome (maternal), Cast genome (paternal), or that could not be haplotyped (filtered) for the B6 × Cast F1 sample. B. Percentages of mapped reads from
nanopore sequencing that were assigned to each haplotype on each chromosome. C. Scatter plot of haplotype scores for nanopore reads according to signal (x-axis)
and basecall (y-axis) methods. Only 10,000 randomly selected reads are shown for ease of visualisation. D. Signal and basecall haplotype scores for reads from the
sequencing of the pure parental Cast strain.
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Fig. 3. Differential allelic expression in mouse E14.5 embryonic placenta. A. Differential expression between the maternal and paternal alleles. Genes with adjusted
p-value < 0.1 are coloured in red when maternal expression dominates (positive log-fold change) and blue when paternal expression is greater (negative log-fold
change). The shape of the point indicates whether the differentially expressed gene has previously been reported as imprinted. B. Differential expression between B6
and Cast alleles. Genes with adjusted p-value < 0.05 and log2 fold-change > 1 are coloured in black when B6 expression is higher and orange when Cast expression
is higher. Interactive plots are available at bioinf.wehi.edu.au/haplotyped_methylome.

Nanopore sequencing reveals novel differentially
methylated regions.Next, we sought to define DMRs be-
tween parental alleles as well as between strains de novo, us-
ing the differential methylation tool DSS (37). We ranked
putative DMRs based on the area statistic. Using the DSS

default threshold of 10−5, we obtained a total of 933 DMRs,
of which 309 were explained by parent-of-origin differences,
and the remainder by strain-specific effects (Additional File
2). We then examined these DMRs, in conjunction with hap-
lotyped RRBS and RNA sequencing data for corroborating
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Fig. 4. Nanopore allele-specific methylation captures known differential methylation at imprinting control regions. A. Allelic methylation plot of maternally imprinted
gene Impact displays a clear DMR at its imprinting control region (ICR). Haplotyped RRBS data shows concordance with nanopore allelic methylation. Allele-specific
RNA-seq coverage plots show monoallelic paternal expression. CGI : CpG Islands are displayed in black, with CpG shores in dark grey and CpG Shelves in light grey.
Nanopore: Vertical bars at the base of the B6Cast track denote CpG sites used for methylation calling, while ‘+’ signs at the base of the CastB6 track denote
SNPs used for haplotyping. Highlighted red regions indicate DMRs detected by DSS. The maternal allele is shown in red and the paternal allele in cyan for all
plots. B. Allelic methylation plot as in A. for the reciprocally imprinted genes Nespas and Gnas. RNA-seq gives very low expression and is not shown. C. Heatmap
of differences (maternal − paternal) in allelic methylation in relative-width bins along known ICRs. Regions are sorted in order of average methylation difference,
with regions in the same imprinting cluster placed adjacent to each other. Regions without haplotyped calls for both alleles are shown in gray.

evidence of differential methylation and differential expres-
sion respectively, in order to find putative DMRs of interest
at imprinted genes.

Of the 20 highest ranking DMRs, 15 corresponded to known
ICRs. Although many of the lower-ranking DMRs are po-
tential false-positives, they also included regions of known
imprinted expression (for instance two small detected DMRs
immediately adjacent to known DMRs at the IMPACT and
NESP ICRs, shown in Figures 4A and B respectively.) Thus
in the absence of statistically robust DMR-finding methods
for nanopore data we kept this permissive threshold.

Five ICRs annotated in the WAMIDEX database (35) were
not detected de novo (Table 2). INPP5F_V2 and GRB10
simply lacked coverage in the B6 × Cast sample but showed
clear differential allelic methylation in the Cast× B6 sample;
GNAS-EXON1A also lacked coverage in B6 × Cast but the
reciprocal sample and the RRBS did not suggest differential
methylation, while NDN lacked coverage in both samples.
The last undetected region was GPR1-ZBDF2; however Duf-
fié et al. (17) have shown that this region lacks important fea-
tures of a bona fide ICR, and that a neighbouring maternally
hypermethylated region is the true ICR. The region in ques-
tion was readily detected as differentially methylated from
the nanopore data (DMR #229, Table 2).

In addition to ICRs, we detected numerous DMRs at im-
printed genes that do not appear to be present in gametes (38–
40), and which therefore likely constitute secondary DMRs
(Table 2). When RRBS coverage was present, the bisulfite
data corroborated the de novo DMR identification. Five of the
secondary DMRs have been described previously, although
they are not currently compiled in a database: maternal hy-
permethylation at the Igf2 promoter (41), maternal hyperme-
thylation at the placental-specific promoter of Gab1 (42), pa-
ternal hypermethylation of the Meg3 transcriptional start site
(TSS) (43), maternal hypermethylation at the Slc38a4 TSS
(44), and paternal hypermethylation at the Igf2r promoter (2).
The remaining secondary DMRs have not been previ-
ously characterised. Six of them overlapped the transcrip-
tional start sites of imprinted genes: Sfmbt2, Jade1, Ascl2,
Cd81/R74862, Tssc4, and AC158554.1.
Other novel secondary DMRs overlapped introns rather
than transcriptional start sites. Park2, a recently identified
maternally-biased gene (13), had seven intronic DMRs, all
displaying hypermethylation of the maternal allele. Rian dis-
played a DMR that had not been previously reported in mice,
although its human ortholog also presents an intronic im-
printed DMR (45).
In some cases, inspection of the parent-specific DMRs re-
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Fig. 5. Proximity of differentially expressed genes to DMRs. A. Distribution of distance from genes to imprinted DMRs, shown on a log-scale. Inset shows distances
from 0 to 10,000bp on a linear scale. Imprinted genes are much more frequently located within 100-100,000 bp of an imprinted DMR. B. Distribution of distance
from genes to strain-specific DMRs. Strain-biased genes are for the most part located no closer to a strain-specific DMR than non-differentially expressed genes,
indicating the strain-specific differential expression is likely caused by other factors, such as genomic differences. In both cases, we use only DMRs ranked in the
top 400.

vealed unannotated imprinted transcription nearby, for exam-
ple in the Kcnq1 and Igf2r clusters (Table 2). These RNA-seq
reads may be part of imprinted long non-coding RNAs, fre-
quent at imprinted clusters.
While we have collated all the imprinted DMRs that we
found to directly overlap with imprinted expression -in ad-
dition to the WAMIDEX ICRs- in Table 2, we note that other
imprinted DMRs may be associated with the imprinted ex-
pression of more distant genes, or with genes that are only
expressed or imprinted in specific tissues. For example we
found imprinted DMRs in the promoters of Smoc2 (DMR
#224) and Arid1b (DMR #863), two genes recently identi-
fied as being imprinted (and also imprinted in our data). The
strong DMR #110 overlapped the transcriptional start site of
Gtsf2, which was poorly expressed in placenta but may be
imprinted in the tissues where it is expressed (in gonocytes
and spermatids (46)). In the absence of chromatin confor-
mation data or functional validation, we did not attempt to
formally assign these DMRs to specific genes.
We however used the top, most reliable 400 DMRs to calcu-
late the distance of genes to their nearest DMR depending on
their expression status. We found that parentally biased genes
were more likely to be proximal to parent-of-origin DMRs
than unbiased genes (median distance 0.9 Mbp compared to
7.4 Mbp), whereas strain-biased genes and DMRs did not
show this relationship (median distance 2.9 Mbp compared to
3.1 Mbp) The distributions of distances to the nearest DMR
are shown in Fig. 5, which shows a striking relationship be-
tween parentally biased genes and parent-of-origin DMRs.
This result is consistent with parental bias in expression being
driven necessarily by epigenetic differences, whereas differ-
ential expression between strains is mainly driven by genetic
differences.

Long reads provide advantages in differential methyla-
tion analysis. Inspection of the DMRs revealed multiple ad-
vantages of our nanopore-based method of methylome hap-
lotyping over traditional bisulfite sequencing (Fig. 6).
We were able to resolve DMRs in regions of low SNP den-

sity, where there were no haplotyped RRBS reads despite the
presence of a CpG island (Fig. 6A). The particular DMR in
Fig. 6A encompassed the transcriptional start site of the im-
printed gene Peg10, and was much wider than the previously
annotated ICR. The increased DMR width was a regular oc-
currence at ICRs (Table 2).
Our method also uncovered novel secondary DMRs at
known imprinted genes such as Jade1 (Fig. 6B), as
well as at previously uncharacterised imprinted transcripts
such as AC158554.1, annotated as a lincRNA (ENS-
MUSG00000116295, Fig. 6C).
Another advantage provided by the long reads was appar-
ent at the ZIM2-PEG3 ICR (Fig. 6D). RRBS data from the
B6Cast F1 showed that certain CG dinucleotides were highly
methylated on the maternal allele (100% methylation at these
positions) while others were variably methylated, resulting in
averages of 25-50% methylation. Two scenarios could give
rise to these intermediate values: either the variable posi-
tions are randomly unmethylated in all maternal alleles, or
there exists two populations of maternal alleles, one where
CG dinucleotides are methylated throughout the region and
one where the variable positions are consistently unmethy-
lated. The long nanopore reads revealed that the second
scenario contributes to the observed intermediate methyla-
tion patterns: there was a mixture of cells, in some of which
the maternal allele showed a contiguous loss of methylation.
Although this result is well known to those who have prac-
ticed Sanger bisulfite sequencing, the haplotyped methylome
derived from nanopore sequencing allowed investigation of
this variability more accurately (no PCR bias) and across the
whole genome.
Eight strain-specific DMRs were also found within 5 kb of a
gene with strain-biased expression (Fig. 6E). Most of these
exhibit structural variation proximal to the DMR, although a
small number exhibited changes in expression seemingly not
associated with any structural variant.
One example of a structural variant between B6 and Cast
associated with differential methylation can be found on
Fig. 6F. Upstream of the Tap2 gene, an IAPEZ retrotrans-
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A

C

E

B

D

F

Peg10 / Wider DMR boundary Jade1 / Novel secondary DMR

AC158554.1 / Novel imprinting Zim2 / Heterogeneous cell state

Tap2 / IAPEZ-int repeat4933421O10Rik / Strain-biased

Fig. 6. Examples of de novo DMRs and the advantages proffered by long reads. A. Allelic methylation (as in Figure 4) plot of maternally imprinted gene Peg10
displayed a clear DMR at its ICR which was much wider than the previously annotated DMR (bottom). B. Previously uncharacterised secondary DMR at the TSS of
maternally imprinted gene Jade1. C. Novel maternally imprinted gene AC158554.1, with imprinted methylation at its TSS. D. Allelic methylation plot of maternally
imprinted gene Peg3 showed consistently high methylation across some maternal reads, and consistently low methylation across others, a conclusion that could not
be drawn from the middling bisulfite methylation values. E. Strain-of-origin DMR associated with the strain-biased expression of 493342110Rik. F. DMR associated
with the omission of a IAPEZ repeat from the Cast genome, suggesting that the methylation in the flanking region was affected by the presence or absence of the
repeat.
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poson in the B6 genome is absent from the Cast genome
(Cast reads are truncated upstream of the repeat and absent
downstream), and the gene-proximal border is more highly
methylated on B6 alleles than on Cast alleles. This differ-
ential methylation would be consistent with the insertion of
the transposon attracting methylation that spreads to adjacent
regions. We could also see at this repeat region a lot of spu-
riously mapping reads from both strains, suggesting that the
repeat is present in multiple copies that the current assembly
fails to account for.

Discussion
Determining allele-specific methylation patterns in diploid
or polyploid cells with short-read sequencing is hampered
by the dependence on a high SNP density and the reduc-
tion in sequence complexity inherent to bisulfite treatment.
In this study we demonstrate the use of long-read nanopore
sequencing to derive haplotyped methylomes of the embry-
onic portion of mouse placentae. Methylation estimates
from nanopore reads are consistent with previous knowledge
(Fig. 1). The longer read lengths allowed most reads to
overlap multiple SNPs, resulting in accurate haplotyping of
75% of the reads, a much higher proportion than compara-
ble short-read data (Fig. 2). Sequencing of native DNA not
only maintains the sequence complexity that is lost in bisul-
fite treatment, but also has the potential to detect a variety of
base modifications outside 5mC, bypassing the need for spe-
cialised chemistries such as bisulfite (for 5mC) or oxidative-
bisulfite (for 5hmC) treatments. Furthermore, we are able
to characterise allele-specific methylation at a relatively shal-
low level of genomic coverage (∼10X), which is substan-
tially lower than the coverage required by Pacific Biosciences
single-molecule sequencing to ascertain any native base mod-
ification (25X) or 5mC in particular (250X) (23). Nonethe-
less, a detailed comparison of the performance of nanopore
and PacBio in the detection of base modifications on matched
samples would be of interest.
Recent increases in throughput of nanopore sequencing in-
struments make this approach a cost-effective way of obtain-
ing genome-wide allele-specific methylation for mammalian-
sized genomes, compared to the alternatives of short-read
whole-genome bisulfite sequencing, or PacBio SMRT se-
quencing. Thus the approach we present is unique in its
ability to characterise allele-specific single-molecule cyto-
sine methylation state in eukaryotes, in which the 5mC modi-
fication is both common and highly relevant to transcriptional
regulation.
The haplotyped methylomes for reciprocal B6 × Cast F1
samples confirm the parent-of-origin specific methylation of
ICRs and provide an improved definition of their boundaries
(Fig. 4). By integrating the haplotyped methylomes with
allele-specific expression data, we identified novel DMRs
linked to imprinted genes. These are likely to constitute sec-
ondary DMRs, whose role and origin are unclear. We note
that the low sequencing coverage in this study (∼10X) lim-
its our ability to detect modest methylation differences be-
tween alleles, and is thus most suited to the detection of large

differences such as those occurring at ICRs. We confirm a
large number (70) of previously identified imprinted genes
and propose another 65 as new candidates (Fig. 3 and Ad-
ditional File 1). This suggests that although the monoallel-
ically expressed genes are now well characterised, sensitive
analyses can still uncover parentally biased genes. Interest-
ingly, though we find more maternal-dominant genes than
paternal-dominant ones (88 and 47, respectively), the imbal-
ance is much less pronounced than in Finn et al. (2014) (12)
(96% maternal dominance). Applying long-read sequencing
to the transcriptome also promises improvements in the per-
centage of usable data, the detection of allele-specific as well
as isoform-specific differential expression, and even the de-
tection of RNA base modifications.
Our allele-specific methylation and expression data can also
be used to reveal strain-biased expression of genes linked to
strain-specific DMRs. The genetic divergence between the
two strains accounts for most of the differences in expression,
however the presence of DMRs could suggest an epigenetic
component to the regulation of a subset of genes.
We foresee a number of improvements that will make the
determination of haplotyped methylomes by nanopore se-
quencing more efficient and comprehensive in the future.
Firstly, we expect to see an expansion in the types and nu-
cleotide contexts of base modifications characterised. Our
analysis is based on Simpson et al. (2017) (21), and is
limited to 5mC at CpG sites. However that is not a limi-
tation of the technology, as has been demonstrated by oth-
ers ((22), Tombo (bioRxiv doi:10.1101/094672), mCaller
(bioRxiv doi:10.1101/127100). Secondly, improvements can
be made in reaching true nucleotide-resolution methylation
calls. Where multiple CpG sites occur within less than twice
the k-mer length (here 6) all these sites are considered to
have the same methylation state. Again, this is not a limi-
tation of the technology, as more complete training data will
allow resolution of mixed methylation states. Finally, we see
opportunities for improvement in the analysis of nanopore
methylation data. Instead of binary calls from bisulfite se-
quencing, the output of nanopore sequencing is a likelihood
ratio that the site is methylated vs. unmethylated. Currently
there is no method for the detection of differential methyla-
tion that accepts these continuous values as input. Addition-
ally, the DMR detection algorithm that we used was designed
originally for bisulfite data, and we expect that algorithms de-
signed specifically to incorporate long reads and probabilistic
methylation assignment would achieve greater levels of accu-
racy.

Conclusions
We demonstrate that long-read sequencing using nanopore
technology can efficiently generate haplotyped mammalian
methylomes. With no additional sample preparation than that
routinely used for basic sequencing and with only a mean
coverage of about 10X, we identify differential allelic methy-
lation throughout the genome. Combined with expression
data, this improves the resolution of imprinting analyses. Our
approach is widely applicable to other systems, for instance
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with more complex genetics, or to phase cancer mutations
with methylation state, and to determine the effects of struc-
tural variation on methylation.

Methods
Animal strains and husbandry.All mice were maintained
and treated in accordance with Walter and Eliza Hall Insti-
tute Animal Ethics Committee approved protocols under ap-
proval number WEHI AEC 2014.026. Mus musculus casta-
neus mice were obtained from Jackson Labs. Note that due
to prior inter-crossing for transgene transmission the female
Mus musculus domesticus C57BL/6 mice that served as dams
for our study comprise 12.5% FVB/NJ genome, however for
simplicity we will refer to this mouse as B6. Wild-type B6
were reciprocally mated to wild type Mus musculus casta-
neus (Cast).

DNA and RNA extraction. Pregnant females were sacri-
ficed at E14.5 by CO2 asphyxiation and the embryonic por-
tion of each placenta was dissected from the maternal por-
tion in PBS, as we have done previously (47). Samples were
snap frozen in buffer RLT plus (Qiagen) and DNA and RNA
were later extracted from the same sample using the AllPrep
DNA/RNA Mini Kit (Qiagen), according to manufacturer’s
instructions. Samples were sexed by PCR using primers for
Otc (X-linked gene) and Zfy (Y-linked gene) as previously
described (48), and male samples were selected for further
analysis.

Illumina sequencing.RRBS libraries were made from
100 ng of DNA purified from the embryonic layer of a male
B6 × Cast E14.5 placenta using the Ovation RRBS Methyl-
Seq System (NuGEN), according to the manufacturer’s rec-
ommendations, which include use of the Qiagen Epitect kit
for bisulfite conversion. The resultant library was sequenced
on a HiSeq 2500 (Illumina) using 100 bp paired end reads
and analysed as previously described (48, 49).
RNA-seq libraries were prepared from 1 µg of RNA from
four B6 × Cast and four Cast × B6 samples, including the
same sample as the RRBS library, using the TruSeq RNA
sample preparation kit (Illumina). 75-bp paired-end sequenc-
ing was performed on a NextSeq 500 (Illumina). Reads were
trimmed with Trim Galore v0.4.2 and mapped with HISAT2
v2.0.5 (50) with option --no-softclip to the GRCm38
(mm10) mouse genome with N-masked castaneus SNPs.
Mapped reads were haplotyped with SNPsplit v0.3.2 (31),
and gene counts obtained by running featureCounts (51) on
the GRCm38_v90 Ensembl annotation. Differential analy-
sis was performed with edgeR (52, 53) using quasi-likelihood
fits (54) and controlling the false discovery rate (FDR) at 10%
(55). Interactive plots were produced with Glimma (56).

Nanopore sequencing. The B6 × Cast F1 sample was se-
quenced on three MinION flow cells with the 1D Sequencing
Genomic Ligation (LSK108) protocol from ONT with mi-
nor adjustments: 4 µg of starting material were used for each
library preparation, and for two libraries DNA was sheared

to 10 kb with a Covaris G-Tube, whereas no shearing was
done for the third library (resulting in longer read lengths).
Reads were basecalled with Albacore 1.2.2. The Cast × B6
F1 was sequenced on one PromethION flow cell with the
1D Sequencing Genomic Ligation (LSK109) protocol with-
out shearing, and basecalled with Albacore 2.2.7. Nanopore
reads were aligned to the same SNP-masked genome as be-
fore, using BWA-MEM (arXiv:1303.3997).

Haplotyping.Haplotyping is achieved through the identifi-
cation of SNPs that are unique to one or the other allele.
Examining only the SNPs identified as passing all filters in
Keane et al. (57), we combine two distinct methods to confi-
dently haplotype each read.

Basecall Haplotyping. Where a read is aligned to a SNP po-
sition i on the reference genome, we assign a score Si if the
aligned base agrees with the reference haplotype, or 1−Si
if the aligned base agrees with the alternate haplotype, where
the score depends on the basecalling quality score qi of the
base in question as

Si = 1−e−0.6927−0.1203qi

where the coefficients of the above relationship were deter-
mined empirically on successfully haplotyped reads. Bases
which match neither haplotype, or which exhibit a deletion
at the SNP location are excluded from the analysis. Finally,
the read is assigned an aggregate haplotype value h ∈ [0,1]
across the n informative SNP calls as follows:

h= 1
n

n∑
i

{
Si, if base i agrees with ref. allele;
1−Si, if base i agrees with alt. allele.

Signal-level haplotyping. For signal-level haplotyping, we use
the HMM of Simpson et al., implemented in nanopolish
phase-reads (30). Briefly, the raw signal corresponding to
the section of the read aligned to the reference at the SNP
position is realigned using a Hidden Markov Model, and the
likelihood of the sequence of 6-mers in this vicinity is max-
imised by choosing the more likely of the two possible alle-
les. Each read is then assigned scores according to the same
rule as in Basecall Haplotyping, where nanopolish quality
scores are offset by−35 in order to exhibit a similar relation-
ship to basecall quality scores.

Combining Haplotype Calls. For each read with nbase and
nsignal associated SNP calls and associated haplotype val-
ues hbase and hsignal, we define the haplotype calls

Hbase = sgn(hbase−0.5) and

Hsignal = sgn
(
hsignal−0.5

)
.

The calls are then combined according to the following rules,
applied in order:
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H =



0, if nbase < 5 and nsignal < 5;
Hbase, if Hbase =Hsignal;
Hbase, if nbase > 3nsignal and not (1);
Hsignal, if nsignal > 3nbase and not (1);
Hbase, if |hbase−0.5|> 3|hsignal−0.5|

and not (1),(3) or (4);
Hsignal, if |hsignal−0.5|> 3|hbase−0.5|

and not (1),(3) or (4);
0, otherwise.

(1)
(2)
(3)
(4)
(5)

(6)

(7)

where H = 1 represents a read assigned to the reference hap-
lotype, H = −1 represents a read assigned to the alternate
haplotype, and H = 0 represents an unassigned read. This
process is shown graphically as a flowchart in Fig. S3.

Resolution of maternal recombination. Owing to the cross of
an FVB-strain into the maternal line in the grand-parental
generation, it is necessary to resolve which section of the
maternal genome was contributed by recombination from the
FVB chromosome. We run the above haplotyping procedure
with three possible outcomes, rather than two: mm10, FVB,
and CAST, with variants called by Keane et al. (57). The
proportion of maternal (non-CAST) reads within any 100Kb
region was fitted to a recursive partition tree, which splits
continuous data into a stepwise function, here representing
the proportion of a contiguous section of chromosome hap-
lotyped to FVB (Fig. S5). Fitting was performed using the R
package rpart with parameters minsplit=5 and cp=0.1
(58). SNPs in sections of the chromosome with mean propor-
tion of FVB greater than 50% were replaced with the FVB
allele for further analysis.

Methylation calling.We determined the methylation sta-
tus of each CpG site on each read using nanopolish call-
methylation (21). Briefly, nanopolish uses a 5-base alphabet,
with 5-methylcytosine represented as M, to build a Gaussian
mixture model representing every possible 6-mer with both
methylated and unmethylated cytosine in a CpG context, ex-
cluding those 6-mers which contain both the methylated and
unmethylated base. We ran nanopolish separately on reads
haplotyped to the maternal and paternal chromosome, using
a SNP-masked version of each chromosome to decrease bias
in reads with expected deviations from the mm10 reference.
Nanopolish then assigns each section or “event” of nanopore
current to a base on the reference genome and calculates the
likelihood of each 6-mer containing the CpG site being ei-
ther methylated (LM (dij)) or unmethylated (LC(dij)) given
the data dij for a call group i covered by a read j. Groups
of consecutive CpG sites in which the distance between any
two adjacent sites is less than 11 bases (therefore having over-
lap between 6-mers containing the cytosines in question) are
chained into CpG call groups. All sites within the one CpG
call group are assumed to have the same methylation status,
such that each 6-mer is only considered once. We convert

these likelihoods to probabilities as follows:

LM (dij) = P (dij |M) and LC(dij) = P (dij |C)

By Bayes’ Law,

P (M |dij)
P (C|dij)

= P (dij |M)P (M)
P (dij |C)P (C)

and since M and C are mutually exclusive and jointly ex-
haustive,

P (C|dij) = 1−P (M |dij).

Then, defining the prior probability of methylation as
P (M) = p0,

P (M |dij)
1−P (M |dij)

= p0
1−p0

LM (dij)
LC(dij)

and rearranging for P (M |dij),

P (M |dij) = 1

1+ 1−p0
p0

LC(dij)
LM (dij)

.

Noting results from Decato et al. (28) showing methylation
levels ranging from 0.433 to 0.538 for mouse placental tissue
we set p0 = 0.5, so finally we define the single-read, single-
site probability of methylation as

βij = P (M |dij) = 1

1+ LC(dij)
LM (dij)

.

Comparison with RRBS methylation calls. Individual methy-
lation calls on a single CpG call group are aggregated over
the set of reads covering each group in order to compare with
aggregate values provided by bisulfite sequencing. That is,
for each CpG call group i covered by n reads, we define the
call group average

βi = 1
n

n∑
j=1

βij .

In order to compare methylation calls between nanopore and
reduced representation bisulfite sequencing, we must split
CpG call groups defined by nanopolish as CpG sites sepa-
rated by less than 11 base pairs into individual sites, includ-
ing GpC sites on the reverse strand, with each site retaining
the same β value as the original call group. Only those CpG
sites for which both RRBS and nanopore data exist are con-
sidered.

Identification of differentially methylated regions. Fol-
lowing methylation detection and haplotype assignment of
each read, it is possible to assign each call of methylation on
the genome to one of the two haplotypes. The aggregated β
methylation values for each CpG group are tested for DMRs
using DSS (37). Briefly, DSS tests for differentially methy-
lation at a single CpG-sites, using a Wald test on the coef-
ficients of a beta-binomial regression of count data with an
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‘arcsine’ link function. Then, using a default p-value thresh-
old of 10−5, DSS aggregates differentially methylated sites
into DMRs based on a maximum separation between sites
and a minimum density and number of sites in each DMR.
To detect parent-of-origin DMRs, we perform DSS with the
comparison B6♀ and Cast♀ vs. Cast♂ and B6♂; to detect
strain-specific DMRs, we perform DSS a second time with
the comparison B6♀ and B6♂ vs. Cast♂ and Cast♀.

Visualisation of haplotyped methylation.Owing to the
noisy nature of nanopore methylation calls, we use a loess
smoothing curve to visually represent the methylation of a
single nanopore read (59). Here the smoothing parameter α
is determined by

α= 0.1+8 ·10−11(max{105−L,0})2

where L is read length. This relationship was determined
empirically to have minimal impact on visualisation while
minimising computation time.

Data availability.All sequencing data are available at
ENA under study accession ERP109201. Processed data
can be explored via a Genome browser (60, 61), in-
teractive plots (56) and a summary page available from
bioinf.wehi.edu.au/haplotyped_methylome. All analysis
scripts are available on GitHub at
github.com/scottgigante/haplotyped-methylome.
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Tables

Table 2. List of known and proposed DMRs associated with imprinted genes. A check mark is shown where RRBS and RNA-seq evidence supports the DMR. The DMR rank is shown when supporting nanopore data exists.

DMR Name Known coordinates Present coordinates Hypermethylated Nearest Gene Nanopore RRBS RNA-seq Note
GPR1-ZDBF2 1:63,257,407-63,264,876 p Zdbf2,Gpr1 several transient DMRs (17)
GPR1-PLATR12/LIZ 1:63,200,250-63,200,470 m Zdbf2,Gpr1 229 3 3 Gpr1 ICR (17)
SFMBT2 2:10,371,327-10,371,731 m Sfmbt2,Gm13261 75 3 3 Sfmbt2 TSS secondary DMR
MCTS2 2:152,686,755:152,687,275 2:152,686,261-152,687,856 m Mcts2 13 3 3 wider than annotation
NNAT 2:157,560,050-157,561,662 2:157,559,825-157,561,802 m Nnat 29 3 3 wider than annotation
NESP 2:174,284,269-174,286,690 2:174,283,034-174,287,439 p Nespas 1 3 3
NESPAS 2:174,295,707-174,300,901 2:174,294,696-174,300,693 m Gnas 6 3 3
GNAS-EXON1A 2:174,326,930-174,329,007 m Gnas 3
JADE1 3:41,555,359-41,556,940 m Jade1 19 3 3 Jade1 TSS secondary DMR
PEG10 6:4,747,209-4,747,507 6:4,746,012-4,749,480 m Peg10 2 3 wider than annotation
MEST 6:30,736,488-30,737,237 6:30,735,330-30,739,552 m Mest 4 3 3
NAP1L5 6:58,906,696-58,907,062 6:58,906,821-58,907,095 m Nap1l5,Herc3 89
NDN 7:62,348,214-62,348,695 m Ndn 3 low coverage
ZIM2 7:6,727,576-6,732,116 7:6,727,344-6,731,296 m Peg3 5 3 3
SNURF/SNRPN 7:60,004,992-60,005,415 7:60,003,140-60,005,295 m Snrpn,Snurf 16;343 3 3 wider than annotation
INPP5F_V2 7:128,688,274-128,688,642 m Inpp5f 3 lack of coverage in B6Cast, clear DMR in CastB6
H19/IGF2 7:142,580,263-142,582,140 7:142,575,503-142,582,086 p H19 17;35;54,534 3 3 wider than annotation
IGF2-DMR0 7:142,669,246-142,670,067 m Igf2,Igf2os,Gm49394 39 3 3 known placenta-specific secondary DMR (41)
ASCL2 7:142,968,946-142,969,300 p Ascl2 62 3 3 Ascl2 TSS secondary DMR
CD81 7:143,052,956-143,053,090 p Cd81,R74862 463;887 3 3 Cd81/R74862 TSS secondary DMR
TSSC4 7:143,068,896-143,069,197 p Tssc4,Trpm5,Cd81 153 3 3 Tssc4 TSS secondary DMR
KCNQ1OT1 7:143,295,155-143,295,622 7:143,294,879-143,296,757 m Kcnq1ot1 11 3 3 wider than annotation
KCNQ1-INTERGENIC1 7:143,438,058-143,438,341 p 205 3 3 secondary DMR with unannotated imprinted expression
KCNQ1-INTERGENIC2 7:143,445,526-143,445,944 p Gm27901 67 3 3 secondary DMR with unannotated imprinted expression
CDKN1C 7:143,459,775-143,459,891 p Cdkn1c,Gm4732 355 3 3 Cdkn1c secondary DMR
GAB1 8:80,859,569-80,859,745 m Gab1 221 3 3 known Gab1 placental TSS secondary DMR (42)
RASGRF1 9:89,879,568-89,879,853 9:89,879,601-89,880,045 p Rasgrf 69
ZAC1 10:13,090,470-13,091,527 10:13,090,313-13,092,161 m Plagl1 12 3 wider than annotation
U2AF1-RS1 11:22,971,842-22,972,319 11:22,971,545-22,973,999 m Zrsr1 3 3 3 wider than annotation
GRB10 11:12,025,482-12,026,332 m Grb10 3 3 lack of coverage in B6Cast, clear DMR in CastB6
GTL2/DLK1 12:109,526,740-109,528,734 12:109,527,519-109,528,845 p Gm27528,Gm27528 52 3 3 narrower than annotation
MEG3 12:109,540,792-109,541,676 p Meg3,Mir1906-1,Gm27300,Gm27596 207;776 3 3 known Meg3 TSS secondary DMR (43)
MEG3-INTRON 12:109,556,071-109,556,162 m Meg3 921 3 Meg3 intronic secondary DMR
RIAN 12:109,612,8804-109,612,962 m Rian,Mir1188,Mir341 304 3 Rian intronic secondary DMR
PEG13 15:72,806,335-72,811,649 15:72,809,183-72,811,180 m Peg13 14 3 3 narrower than annotation
SLC38A4 15:97,053,880-97,056,427 m Slc38a4 9 3 3 known TSS secondary DMR (44)
AC158554.1 15:97,166,956-97,167,257 m AC158554.1 403;406 3 3 lincRNA TSS secondary DMR
PDE10A 17:8,772,760-8,773,118 m Pde10a 474;701 3 Pde10a intronic secondary DMR
PARK2 17:11,123,807-11,124,219 m Park2 222;289;488;597;782;827;852 3 seven Park2 intronic secondary DMRs
SLC22A2 17:12,607,783-12,608,088 m Slc22a2 452 3 Scl22a2 intronic secondary DMR
IGF2R/AIR 17:12,741,297-12,742,707 17:12,741,160-12,742,949 m Igf2r,Airn 8 3 3
IGF2R-TSS 17:12,769,605-12,770,120 p Igf2r,Airn,Gm23833 37 3 3 known Igf2r TSS secondary DMR (2)
SMOC2-INTERGENIC 17:14,590,437-14,590,640 m Smoc2, Thbs2 862 3 secondary DMR with unannotated imprinted expression
IMPACT 18:12,972,197-12,973,741 18:12,972,182-12,974,748 m Impact 7 3 3 wider than annotation
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Additional Files
Additional file 1 — List of detected imprinted genes. Tab-separated values containing names, coordinates, log2 fold-
change and adjusted p-value for the 135 genes with parent-biased expression in E14.5 embryonic placenta.

Additional file 2 — List of detected DMRs.Comma-separated values containing coordinates, differential methylation,
type (imprinted or strain-specific), and nearby gene for all 933 de novo DMRs.
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Fig. S3. Haplotyping flow chart. A. Haplotyping flow chart for B6 × Cast forward cross MinION data. B. Haplotyping flow chart for Cast × B6 reverse cross
PromethION data.
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Fig. S4. RNA-seq library sizes by allele. Consistent paternal and maternal counts indicate that there was no contamination by maternal tissue. The slightly lower
maternal counts in the B6Cast samples are due to the FVB regions in the maternal strain (see Methods).
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Fig. S5. Recursive partition tree resolution of FVB genotype. Proportion of maternal reads from the B6xCast sample assigned to the FVB genotype by genomic
location, where the remainder of the maternal reads are assigned to the C57BL/6 reference genotype. Sections of the genome where the regression tree gave a
value higher than 0.4 (shown in red) were assigned to the FVB genotype. The Y chromosome is excluded.
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