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Abstract

Background: The Perturbational Complexity Index (PCI) was recently introduced to assess the capacity
of thalamocortical circuits to engage in complex patterns of causal interactions. While showing high
accuracy in detecting consciousness in brain injured patients, PCI depends on elaborate experimental
setups and offline processing and has restricted applicability to other types of brain signals beyond
transcranial magnetic stimulation and high-density EEG (TMS/hd-EEG) recordings.

Objective: We aim to address these limitations by introducing PCI®T

, a fast method for estimating
perturbational complexity of any given brain response signal.

Methods: PCI®T is based on dimensionality reduction and state transitions (ST) quantification of evoked
potentials. The index was validated on a large dataset of TMS/hd-EEG recordings obtained from 108
healthy subjects and 108 brain injured patients, and tested on sparse intracranial recordings (SEEG) of 9
patients undergoing intra-cerebral single-pulse electrical stimulation (SPES).

Results: When calculated on TMS/hd-EEG potentials, PCI°T performed with the same accuracy as the
original PCI, while improving on the previous method by being computed in less than a second and
requiring a simpler set-up. In SPES/SEEG signals, the index was able to quantify a systematic reduction
of intracerebral complexity during sleep, confirming the occurrence of state-dependent changes in the
effective connectivity of thalamocortical circuits, as originally assessed through TMS/hd-EEG.
Conclusions: PCI®T represents a fundamental advancement towards the implementation of a reliable and

fast clinical tool for the bedside assessment of consciousness as well as a general measure to explore the

neuronal mechanisms of loss/recovery of brain complexity across scales and models.
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Introduction

Measures of brain complexity have recently begun to move from the realm of theoretical
neuroscience [1-6] into the field of experimental neurophysiology to study differences between
global brain states, from wakefulness to sleep and anesthesia [7-10]. Further, measures of brain
complexity have been considered as useful paraclinical indices to assess consciousness at the
bedside of brain-injured patients [11-15]. In this spirit, a novel strategy based on quantifying the
global effects of direct cortical perturbations was recently introduced [16]. This approach is
motivated by the general theoretical principle that a brain’s capacity for consciousness relies on
its ability to integrate information [5]. In this perspective, a critical mechanism supporting the
emergence of conscious experience is the ability of different neural elements to engage in
complex patterns of causal interactions such that the whole system generates information over
and above its parts.

Practically, in order to estimate the amount of causal, irreducible information that a
system can generate, a general procedure was implemented based on two steps: (i) locally
perturbing the system in a controlled and reproducible way to trigger a cause-effect chain and (ii)
quantifying the spatiotemporal complexity of the ensuing deterministic response to estimate
information. The original implementation of this perturb-and-measure approach [16] involved (i)
stimulating the brain with transcranial magnetic stimulation (TMS) and (ii) computing the
algorithmic (Lempel-Ziv) complexity of the resulting patterns of activations at the level of
cortical sources derived from the inverse solution of high-density electroencephalographic (hd-
EEG) responses; this metric will be henceforth referred to as Lempel-Ziv Perturbational

Complexity Index (PCI-).
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Albeit macroscopic and coarse, PCI-*

provided maximum (100%) accuracy in detecting
consciousness in a large (n=150) benchmark population of subjects who could confirm the
presence or absence of conscious experience through immediate or delayed reports [17]. PCI**
was lower in all unresponsive subjects who did not report any conscious experience upon
awakening from NREM sleep or midazolam, xenon, and propofol anesthesia, and was invariably
higher in conditions in which consciousness was present, including awake controls, conscious
brain-damaged patients and subjects who were disconnected and unresponsive during dreaming
and ketamine anesthesia but retrospectively reported having had vivid conscious experiences
upon awakening [17, 18]. Once calibrated on the gold-standard of subjective reports, PCI-*
measurements performed at the bedside of non-communicating subjects with brain injuries
offered high sensitivity (94%) in detecting minimally conscious patients and allowed identifying
a significant percentage (about 20%) of vegetative state/unresponsive wakefulness syndrome
(VS/UWS) cases with high brain complexity, who had a higher chance of eventually recovering
consciousness [17].

While PCI** performs with unprecedented accuracy, it also has practical drawbacks and

limitations. First, PCI-*

can only be computed on spatiotemporal matrices of cortical activations
that are obtained after an intensive processing of TMS/hd-EEG data, including forward modeling
[19], source estimation [20] and permutation-based statistics at the single-trial level. All these
steps imply a complicated and lengthy off-line analysis pipeline that hinders the dissemination of
the method and its application as a routine clinical bedside tool. Clearly, the possibility of

estimating perturbational complexity directly at the level of EEG sensors may have critical

advantages: not only it would render the analysis process faster (ideally, on-line), easier to
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standardize and immune to the technical caveats of source modeling, but it would also allow the
use of simplified and cheaper set-ups (i.e. not requiring hd-EEG and subject-specific MRI scans).

A second important drawback of PCI-* is its limited application to signals other than
TMS/hd-EEG evoked potentials. Intracranial stimulations/recordings in humans [21, 22] and in
animal models [23-26] as well as intra and extracellular responses recorded from cortical slices
[27, 28] offer an unprecedented range of opportunities to interpret the TMS-EEG results and to
elucidate the relationships between neuronal dynamics, network complexity and consciousness

[29]. However, because PCI-*

relies on EEG source estimation, its extension to other types of
recordings, such as sparse matrices of intra-cerebral stereo EEG (SEEG) recordings and in
vivo/in vitro local field potentials, is not straightforward [27].

Here we address these limitations and propose a novel measure of perturbational
complexity that bears conceptual similarities with PCI-* but is much faster to compute and in
principle generalizable to any type of brain signal evoked by perturbations or event related.
Conceptually, we started from the notion that the binary sequences of activation and

deactivations which are compressed by PCI-

can be considered as sequences of transitions
between different states: a “response state” and a “non-response” or “baseline state” [30]. Thus,
one should expect to find high values of perturbational complexity in systems that react to the
initial perturbation by exhibiting multiple and irreducible patterns of transitions between
response and non-response states.

Following this intuition, we developed PCI®", an index that combines dimensionality
reduction and a novel metric of recurrence quantification analysis (RQA) to empirically quantify

perturbational complexity as the overall number of non-redundant state transitions (ST) caused

by the perturbation. We validated PCI°" on a large dataset of 719 TMS/hd-EEG sessions
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recorded from healthy subjects during wakefulness, non-rapid eye movement (NREM) sleep and
anesthesia as well as brain-injured patients with disorders of consciousness (DOC). Finally, we
tested PCI°"s ability to probe the complexity of causal interactions within the brain by applying
it on 84 SEEG recordings obtained in epileptic patients undergoing intra-cerebral single-pulse

electrical stimulation (SPES) for clinical evaluation during both wakefulness and sleep.

Material and methods

Participants

Healthy subjects

The benchmark dataset consisted of 382 TMS/hd-EEG sessions reported in previous
works [16, 17, 31] . Data were recorded from 108 healthy subjects (female, n = 63; age range =
18-80 years) in two conditions: (1) while they were unresponsive and did not provide any
subjective report upon awakening (NREM sleep, n = 19; midazolam sedation at anesthetic
concentrations, n = 6; anesthesia with xenon, n = 6; anesthesia with propofol, n = 6) and (2)
while they were awake and able to provide an immediate subjective report (n = 103, including 32
subjects also recorded in the previously described unresponsive conditions). Protocols and
informed consents were approved by the local ethical committees [16, 17, 31].

Brain-injured patients

TMS/hd-EEG data were also obtained in a population of 108 brain-injured patients (95
reported in a previous work [17]) with newly acquired data recorded following the same
previously reported protocol [17]. Sixteen brain-injured patients were conscious and
encompassed 5 individuals affected by locked-in syndrome (LIS) and 11 individuals who
emerged from minimally conscious state (EMCS) by recovering functional communication

and/or functional use of objects after a previous DOC. The remaining 92 brain-injured patients
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had a severe DOC and were repeatedly evaluated with the Coma Recovery Scale-Revised (CRS-
R) for a period of 1 week (4 times, every other day). Patients showing only reflexive behavior
across all evaluations were considered as being unresponsive (Unresponsive Wakefulness
Syndrome, UWS, 43 patients), whereas patients showing signs of nonreflexive behaviors in at
least one evaluation were considered as minimally conscious (Minimally Conscious State, MCS,
49 patients). Protocols and informed consents were approved by the local ethical committees
[17] and written informed consent was obtained from healthy subjects, from communicative
patients, and from legal surrogates of DOC patients.

Epileptic patients

Data included in the present study derived from a dataset collected during the pre-
surgical evaluation of nine (eight previously reported [22]) neurosurgical patients with a history
of drug-resistant, focal epilepsy. All subjects were candidates for surgical removal of the
epileptic focus. During the pre-surgical evaluation all patients underwent individual investigation
with SPES and simultaneous SEEG recordings for mapping eloquent areas and for precisely
identifying the epileptogenic cortical network [32]. The investigated hemisphere, the duration of
implantation and the location and number of stimulation sites were determined based on the non-
invasive clinical assessment. The stimulation, recording and data treatment procedures were

approved by the local ethical committee [22]. All patients provided written informed consent.

TMS/hd-EEG measurements and data analysis

Specific protocols for acquiring and analyzing TMS/hd-EEG potentials were described in
[16] and [17]. In brief, data were recorded with a 60-channel TMS-compatible EEG amplifier
and MRI-guided TMS pulses were delivered with a focal biphasic stimulator. A noise masking

sound tailored to the specific coil was played through inserted earphones and titrated by subjects
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within safety limits (<85dB). In each subject, multiple sessions of ~200 stimuli were collected
with TMS targeted to different areas at different intensities accordingly to the specific protocol.
EEG responses to TMS were visually inspected to reject single trials and channels with bad
signal quality. Independent component analysis was applied to remove residual artifactual
components resulting from eye movements and muscle activations. Bad channels were then
interpolated using spherical interpolation and data were bandpass filtered (0.1-45Hz),
downsampled to 725 Hz, segmented between -400 and 400ms, re-referenced to the average,

baseline corrected (-400 to -5 ms) and averaged across trials.

Intracerebral measurements and data analysis

The procedures for SEEG data acquisition and analysis are described in [22]. Briefly,
intracerebral activity was recorded at 1000Hz using a 192-channel recording system (Nihon-
Kohden Neurofax-110) during electrical stimulation applied through one pair of adjacent
contacts at different locations. SPES/SEEG sessions were obtained from all nine patients both
during wakefulness and NREM sleep, resulting in a total of 84 sessions (see Table S1). Data
were referenced to a contact located entirely in the white matter, subjected to linear detrend and
bandpass filtering (0.5 — 300 Hz) and bipolar montages were calculated by subtracting the
signals from adjacent contacts of the same depth-electrode [33, 34]. Stimulation artifact was
reduced by applying a Tukey-windowed median filtering [35] between -5 and 5 ms. Data were
segmented between -300 and 600ms and the SEEG magnitude at each electrode was computed as
a z-score relative to its baseline. Trials and contacts showing pathological activity [36] were
detected by visual inspection and excluded from the analysis and SPES-evoked responses were

computed by averaging the remaining trials.
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Perturbational complexity index based on state transitions (PCI°")

In its original formulation [16], perturbational complexity was calculated by binarizing
TMS-evoked potentials (TEPS) at the EEG sources level using a fixed threshold derived from
non-parametric statistics with respect to the baseline (pre-stimulus) and subsequently
compressing the binary spatiotemporal patterns with the Lempel-Ziv algorithm. An underlying
assumption of this strategy is that complex activations engaged by the perturbation appear on the
evoked signals as patterns of oscillations around a fixed amplitude scale. Although proven
successful when applied to the sources level, this approach was less sensitive in detecting
complexity when calculated directly at the EEG-scalp level, where fast oscillations can appear
riding on top of larger and slower envelopes as result of volume conduction and signal mixing
(Figure S1). Furthermore, complex neuronal oscillations occurring in amplitude scales that are
not determined by a fixed threshold can also be observed in microscopic and mesoscopic
recordings due to cross-frequency couplings [37-41], and a binarized measure applied to such
scales would have limited applicability to detect complex physiological activations.

Aiming at a general index of perturbational complexity that can be fast and efficiently
calculated directly at the EEG-sensors level, we here took a non-binary approach and quantified
the spatiotemporal complexity of evoked potentials by exploring multiple amplitude fluctuations
present in principal components of the response. Starting from trial-averaged signals recorded in
response to a perturbation, singular value decomposition was performed in order to effectively
reduce the dimension of the data (Figure 1A). The principal components were selected so as to
account for at least 99% of the response strength measured in terms of the square mean field
power (see Supplemental Materials for definition and computational details) and components

with low signal-to-noise ratio (SNR < 1.1) were further removed.
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The complexity of each resulting principal component was then evaluated using a method
derived from RQA [30, 42, 43] by quantifying what we call state transitions. More specifically,
distance matrices, defined by the voltage-amplitude distances between all time-points of the
signal, were calculated separately for pre-stimulus and post-stimulus samples (Figure 1B). Next,
these distance matrices were thresholded at a given scale ¢ (Figure 1C), yielding corresponding
transition matrices (Figure 1D), i.e. contour plots that depicts the temporal transitions between
states — roughly, the ups and downs in the signal —, for both the baseline and the response. By
varying the threshold & and comparing the average number of state transitions (NST) in the
matrices of the response with that of the baseline, we looked for the scales at which the state
transitions in the signal’s response were over and above the transitions present in the baseline

activity. In this way, the complexity of the nth component (ANST,) was defined as the

maximized weighted difference of NST between response (NST,™) and baseline (NST,**)
signals:

ANST,, = Tg|[NST, " (e;) — k x NST,”*** (&;,)]

1)

Where &, is the threshold value which maximizes the weighted difference of NST (red dot in
Figure 1E) and Tr is the number of samples in the response, a normalizing factor that yields a
quantity that is extensive with the length of the signal’s response and largely independent of the
sampling rate (Figure S2). The parameter k was introduced to control the relative weight between
pre and post-stimulus state transitions. In this work, k was set to 1.2, value at which there is
maximum separation between conscious and unconscious conditions (Figure S3).

Finally, PCI®T was defined as the sum of these maximized significant state transitions

across all principal components of the evoked perturbation signal:

10
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Nc¢

PCIST = Z ANST,,

n=1

)

By its definition, PCI®" is high when there are multiple linearly independent components

in a spatially distributed response (spatial complexity), each one of them contributing with
significant amounts of state transitions (temporal complexity) (Figure S4). Conversely, PCI®" is
expected to be low either if the perturbation evokes a strongly correlated response across
different spatial recordings or if the independent components carry few temporal transitions in

the response as compared to the baseline.

Statistical Analysis

Data are presented as mean = standard deviation (SD), and p-values less than 0.01 were
considered significant. Wilcoxon-ranksum test was used for evaluating the discrimination
between conscious and unconscious conditions. The classification power of discriminating
different levels of consciousness was quantified by the area under the receiver operating

characteristic (ROC) curve (AUC).

Results and Discussion

PCI°T is reliable and fast in benchmark conditions

PCI®T was calculated on a benchmark of 382 TEPs obtained in a group of 108 subjects
during conscious (alert wakefulness) and unconscious (NREM sleep and anesthesia) conditions
(Figure 2A). The wakefulness group presented significantly higher and more variable PCIS"
values (mean = SD, 47.89 £ 12.65) than the NREM sleep/anesthesia group (14.19 + 5.26, P =

4.7x10%). In terms of classification performance between conscious and unconscious

11
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conditions, PCI®" showed a high classification power that was equivalent to the performance of
the original version of PCI in this same dataset [17] (AUC for PCI®T =0.998, AUC for PCI** =
0.995). Indeed, when values for each TMS/hd-EEG session were compared, we found a
significant linear correlation between the metrics (r = 0.82, p<10™®, Figure 2B).

On the other hand, because PCI®T estimates perturbational complexity without employing
source localization and surrogate techniques, PCI®T computation was approximately 380 times
faster than with PCI1-4. While PCI-“ took about 300 seconds per session to compute (270s + 99),

PCI°T was calculated in less than one second (0.71 + 0.20, p< 10™#") (Figure 2C).

PCI°T allows a simple and fast set-up at the bedside of patients

ST
I

We next tested the performance of PCI®" in brain-injured patients. First, a threshold

15T values of the

discriminating consciousness from unconsciousness was extracted from the PC
benchmark population using a linear classifier [44] (see Figure S5 for computational details).
This empirical cutoff was then compared to PCI°T values obtained from a group of 108 brain-
injured patients who had recovered from coma and evolved toward various clinical conditions.

15T value

Following the previous approach [17], we classified each patient using his maximum PC
obtained across all recorded sessions. This approach is aimed at assessing the patient’s best
capacity for consciousness and parallels the diagnostic use of the best behavioral (CRS-R) score.

The sensitivity of PCI®T in detecting signs of consciousness in brain-injured patients was
comparable to PCI“* [17] (Figure 3A, top): PCI°T made no erroneous classifications on
conscious (LIS/EMCS) patients and achieved 91.9% sensitivity among minimally conscious

individuals, correctly detecting signs of consciousness in 45 from 49 MCS patients (see Figure

S6 for individual PCI°" values).

12
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From a practical perspective, the potential of PCI to be employed as an index of
consciousness in a clinical setting is significantly limited by the use of hd-EEG, which, besides
entailing more expensive hardware, involves a cumbersome and lengthy preparation. While
PCI~4 necessarily demands hd-EEG systems so as to accurately perform source localization,
PCI®" can in principle be calculated on a reduced number of channels. We thus compared the
performance of the index calculated on the original hd-EEG system (60 channels) to reduced
setups containing 19 and 8 electrodes (see Supplemental Materials for further details). Notably
the performance of the index diminished only slightly with the use of the standard 10-20 EEG
system (19 channels), yielding sensitivities of 100% and 89.8% (44/49) for EMCS/LIS and MCS
respectively (Figure 3A, middle). Finally, the simpler 8-channels setup resulted in reduced
sensitivity scores on both EMCS/LIS (94%) and MCS (84%) patients (Figure 3A, bottom). An
equivalent performance in discriminating conscious from unconscious conditions using simpler
set-ups was also observed in the benchmark dataset (Figure S2).

In UWS patients, brain-based measures that do not require subject’s interaction with the
external environment can be useful to detect a covert capacity for consciousness. In a previous
study, PCI-* detected conscious-like complexity in 20.9% (9/43) of UWS patients, who also had
a higher chance of recovery at 6 months [17]. Here, we evaluated whether these patients could
also be identified by PCI®". The novel index calculated on both high-density and standard 10-20
EEG setups detected all (n=9) the patients with high PCI“*, whereas more than 82% of patients
classified as low-complexity by PCI-* were also below threshold for PCI®T (hd-EEG: 88.2%, 10-
20 setup: 82.3%, Figure 3B-top and middle). The simpler 8-channels setup detected 8 out of 9
(88.9%) high-complexity patients and 29 out of 34 (85.3%) low-complexity patients (Figure 3B,

bottom).

13
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Taken together, these results show that PCI°T calculation can afford an accurate and fast
estimation of perturbational complexity even on reduced EEG set-ups. Combined with future
optimizations of TMS-EEG hardware, this may allow the implementation of a practical, fast and

potentially online method to be applied at the bedside in the routine clinical setting.

PCI°T reveals consistent changes of spatiotemporal complexity in intracerebral recordings

Beside its practical applications, estimating perturbational complexity based on state
transitions enables the exploration of the brain’s causal structure across different recordings
scales, from macroscopic EEG signals, to mesoscopic local field potentials and, in principle, to
microscopic multisite electrophysiological/optical recordings. In the present study we explored

this possibility at the mesoscale level by computing PCI®T

on sparse intracranial SPES-evoked
potentials to test whether the state dependent changes in complexity revealed by TMS/EEG
could be replicated and assessed by direct intracortical stimulation combined with SEEG
recordings.

During wakefulness, the composite set of waves elicited by SPES appeared as a large
number of components characterized by recurrent waves of activity lasting up to 600ms in the
principal components space, which resulted in high PCI®T values (Figure 4A-C). On the other
hand, during NREM sleep, when SPES evoked a stereotypical wave, a small number of
components were enough to span most of the response (Figure 4D-F). In addition, the few
components that survived dimensionality reduction in NREM sleep showed fewer state

ST
|

transitions than the ones in wakefulness and accounted for a reduced PCI>" value. These findings

were reproducible across stimulation sites and consistent at population level (Figure 5). PCI°T

during NREM sleep was lower than in wakefulness for each one of the 42 different stimulation
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sites (Figure 5A-1). Overall, compared to wakefulness, PCI®"

was reduced during NREM sleep
on average by 47.2% (Figure 5J) and significant at the group level (p = 1.4 x 10°).

A key advantage of SPES over TMS is that the former is not associated with concurrent
auditory and/or somatosensory stimulation [45]. The extent of the actual contribution of sensory
co-stimulation to TEPs depends on many factors, such as coil type and effectiveness of noise
masking, and is currently a matter of debate [46-49]. In this respect, the present intracranial
results provide a definite confirmation of the fundamental interpretation of perturbational
complexity, originally derived through TMS/hd-EEG recordings, as a genuine index of
intracortical interactions. Direct intracortical stimulation elicited significant transitions

contributing to the build-up of PCI®T

that occurred both at short and long latencies, that were
specific for the stimulation site and state dependent (Figures 4 and 5). Thus, similarly to TMS,
SPES elicited complex responses characterized by recurrent waves of activity in wakefulness and
a stereotypical large-amplitude slow wave during NREM sleep. This finding is relevant as it
confirms that the changes in perturbational complexity observed with TMS/EEG are not due to
peripheral effects or subcortical sensory gating but reflect actual alterations in the intrinsic causal
properties of thalamocortical circuits.

The application of PCI°T

also allows the exploration of the mechanisms of brain
complexity at the finer scale of circuits and neuronal mechanisms. For example, at the level of
the intracranial stimulation/recordings considered here, we observed substantial within-subject
differences in the absolute values of PCI®T depending on the stimulation site. These results

suggest the presence of local differences in the ability of brain circuits to engage in complex

patterns of causal interactions, which deserve further investigations.
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Finally, the mesoscale assessment of perturbational complexity is in an ideal position to
link microscale explorations at the bench to the macroscale measurements performed at the
bedside of brain-injured patients. Connecting these levels is important as experiments in both
cortical slices [27] and unresponsiveness wakefulness syndrome patients [31] suggest that loss of
brain complexity is linked to the tendency of neurons to enter a silent period upon an initial
activation (OFF-period). A thorough multiscale description of such mechanisms may be used to
inform experimental and computational models [50] aimed at devising novel interventions to

restore complexity and thus consciousness following brain injury.

Conclusion

In this paper we have introduced, validated and tested PCI®T, a method of estimating
perturbational complexity based on dimensionality reduction and state-transitions quantification.
The novel index may not only provide a reliable, fast and potentially online option for the
assessment of consciousness in the clinical setting, but also serve as a general translational tool
for exploring the mechanisms of loss and recovery of brain complexity across species, scales,

and models.
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Figure 1. Calculating the Perturbational complexity index based on state transitions (PCI®"

) from
TMS/hd-EEG evoked potentials (TEP). PCI®" is calculated by performing five steps: A) TEPs
(butterfly plot, top) are decomposed in N, principal components (PC) based on the singular value
decomposition of the response to the perturbation. B) For each single component (PC,, highlighted)
amplitude distances are calculated between every baseline samples (black trace in A) and between every
response sample (blue trace in A), resulting in a baseline and a response distance matrix, respectively. C)
These matrices are then thresholded at several scales. Two scale values are depicted in the figure: a lower
threshold (&) and a higher threshold (). D) At each scale, the corresponding transition matrices are
computed for both baseline and response. These matrices are used to calculate the average number of
state transitions (NST) in the baseline NST"* and in the response NST™. E) The complexity of the

selected component is defined as the maximum weighted difference between the number of state

transitions in the response and in the baseline (ANST,). The final measure PCI®" is calculated by

summing the ANST, values across all N, principal components.

22


https://doi.org/10.1101/445882
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/445882; this version posted January 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

A
2 (o
2 |5 =
s |2 *
2
T |#
=
~
B. —
o (2]
33|56
w 7]
cl|la
=99
=z < 1 20 . . . . . . y .
0 20 40 60 80
PCIST
B c .
0.8 = 10
5]
2
o o 270
06 v ”
»nQ
g 2]
— (2]
O 04 Eo
o cS
o=
0.2 £
o = |
.é. eWakefulness 80’71
o NREM sleep/Anesthesia 3
g 0 20 40 60 80 PCIZ PCIST
PCIST

Figure 2. PCIT discriminates between consciousness and unconsciousness in healthy individuals
and is faster than PCI“. (A) Histogram of PCI°" values (left) for all 382 TMS sessions obtained from
healthy individuals in the conscious (red) and unconscious (grey) conditions, with the corresponding
ROC curve of the distributions (right). (B) Correlation between PCI®" and PCI*“ values in the benchmark
dataset for conscious (red) and unconscious (grey) conditions (r=0.82, p<10®®). (C) Mean computation

time per TMS/hd-EEG session for PCI®T (red) and PCI-“ (blue) calculated on the benchmark dataset.
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Figure 3. PCI°"s ability to detect consciousness in brain-injured patients is preserved in simpler
EEG set-ups. Number and percentages of patients classified as high (PCI°™>) and low (PCI®'<)
complexity with respect to the corresponding classification cutoffs obtained from the benchmark dataset
are shown for EEG setups of 60 (top), 19 (middle) and 8 (bottom) channels. (A) PCI°" sensitivity in
detecting signs of consciousness in conscious (EMCS/LIS) and minimally conscious (MCS) patients. (B)
Contingency tables for the stratification of UWS patients in low complexity (PCI<) and high complexity

(PCI>) subgroups accordingly to PCI-* and PCI®".
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Figure 4. PCIT is able to quantify the spatiotemporal complexity of stereotactic EEG responses to
SPES. SPES-evoked responses in the SEEG and principal component space are shown for a
representative subject during stimulation delivered on the Superior Frontal Gyrus (panels A, B, C) and on
the Superior Frontal Sulcus (panels D, E, F). Panels A and D depict the positions of the stimulating
contact (yellow) and remaining SEEG contacts (blue) over a brain surface reconstructed from the

individual’s brain. The correspondent SPES/SEEG-evoked responses are shown in the respective middle
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panels (B and E) as the superposition of the averaged SPES-evoked potentials recorded from all SEEG
contacts during wakefulness (red traces) and NREM sleep (grey traces). Lower panels (C and F) depict
the correspondent PCI®T values and the normalized SPES-evoked responses decomposed in principal

components after dimensionality reduction.
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Figure 5. PCIST values in SPES-evoked potentials are invariably lower during NREM sleep as
compared to wakefulness. Panels A — I: PCIST calculated in nine subjects during wakefulness (W) and

NREM sleep are shown separately for each individual subject. SEEG (blue) and SPES contacts (yellow)
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are depicted over brain surfaces reconstructed from the individual’s brain (left). Numbers and arrows
indicate the stimulation sites and the correspondent PCI®T values (red traces, right). Panel J: shown are the
percentage losses of complexity across all subjects and stimulation sites (left) and boxplots of PCI®T
values (right) at the group level for wakefulness (red box) and NREM sleep (grey box). Red asterisks

indicate significant comparison (p = 1.4 x 10°).
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