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Abstract  

 

Background: The Perturbational Complexity Index (PCI) was recently introduced to assess the capacity 

of thalamocortical circuits to engage in complex patterns of causal interactions. While showing high 

accuracy in detecting consciousness in brain injured patients, PCI depends on elaborate experimental 

setups and offline processing and has restricted applicability to other types of brain signals beyond 

transcranial magnetic stimulation and high-density EEG (TMS/hd-EEG) recordings. 

Objective: We aim to address these limitations by introducing PCIST, a fast method for estimating 

perturbational complexity of any given brain response signal. 

Methods: PCIST is based on dimensionality reduction and state transitions (ST) quantification of evoked 

potentials. The index was validated on a large dataset of TMS/hd-EEG recordings obtained from 108 

healthy subjects and 108 brain injured patients, and tested on sparse intracranial recordings (SEEG) of 9 

patients undergoing intra-cerebral single-pulse electrical stimulation (SPES). 

Results: When calculated on TMS/hd-EEG potentials, PCIST performed with the same accuracy as the 

original PCI, while improving on the previous method by being computed in less than a second and 

requiring a simpler set-up. In SPES/SEEG signals, the index was able to quantify a systematic reduction 

of intracerebral complexity during sleep, confirming the occurrence of state-dependent changes in the 

effective connectivity of thalamocortical circuits, as originally assessed through TMS/hd-EEG. 

Conclusions: PCIST represents a fundamental advancement towards the implementation of a reliable and 

fast clinical tool for the bedside assessment of consciousness as well as a general measure to explore the 

neuronal mechanisms of loss/recovery of brain complexity across scales and models.  
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Introduction  

Measures of brain complexity have recently begun to move from the realm of theoretical 

neuroscience [1-6] into the field of experimental neurophysiology to study differences between 

global brain states, from wakefulness to sleep and anesthesia [7-10]. Further, measures of brain 

complexity have been considered as useful paraclinical indices to assess consciousness at the 

bedside of brain-injured patients [11-15].  In this spirit, a novel strategy based on quantifying the 

global effects of direct cortical perturbations was recently introduced [16]. This approach
 
is 

motivated by the general theoretical principle that a brain’s capacity for consciousness relies on 

its ability to integrate information [5]. In this perspective, a critical mechanism supporting the 

emergence of conscious experience is the ability of different neural elements to engage in 

complex patterns of causal interactions such that the whole system generates information over 

and above its parts. 

Practically, in order to estimate the amount of causal, irreducible information that a 

system can generate, a general procedure was implemented based on two steps: (i) locally 

perturbing the system in a controlled and reproducible way to trigger a cause-effect chain and (ii) 

quantifying the spatiotemporal complexity of the ensuing deterministic response to estimate 

information. The original implementation of this perturb-and-measure approach [16] involved (i) 

stimulating the brain with transcranial magnetic stimulation (TMS) and (ii) computing the 

algorithmic (Lempel-Ziv) complexity of the resulting patterns of activations at the level of 

cortical sources derived from the inverse solution of high-density electroencephalographic (hd-

EEG) responses; this metric will be henceforth referred to as Lempel-Ziv Perturbational 

Complexity Index (PCI
LZ

). 
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Albeit macroscopic and coarse, PCI
LZ

 provided maximum (100%) accuracy in detecting 

consciousness in a large (n=150) benchmark population of subjects who could confirm the 

presence or absence of conscious experience through immediate or delayed reports [17]. PCI
LZ

 

was lower in all unresponsive subjects who did not report any conscious experience upon 

awakening from NREM sleep or midazolam, xenon, and propofol anesthesia, and was invariably 

higher in conditions in which consciousness was present, including awake controls, conscious 

brain-damaged patients and subjects who were disconnected and unresponsive during dreaming 

and ketamine anesthesia but retrospectively reported having had vivid conscious experiences 

upon awakening [17, 18]. Once calibrated on the gold-standard of subjective reports, PCI
LZ

 

measurements performed at the bedside of non-communicating subjects with brain injuries 

offered high sensitivity (94%) in detecting minimally conscious patients and allowed identifying 

a significant percentage (about 20%) of vegetative state/unresponsive wakefulness syndrome 

(VS/UWS) cases with high brain complexity, who had a higher chance of eventually recovering 

consciousness [17].  

While PCI
LZ

 performs with unprecedented accuracy, it also has practical drawbacks and 

limitations. First, PCI
LZ

 can only be computed on spatiotemporal matrices of cortical activations 

that are obtained after an intensive processing of TMS/hd-EEG data, including forward modeling 

[19], source estimation [20] and permutation-based statistics at the single-trial level. All these 

steps imply a complicated and lengthy off-line analysis pipeline that hinders the dissemination of 

the method and its application as a routine clinical bedside tool. Clearly, the possibility of 

estimating perturbational complexity directly at the level of EEG sensors may have critical 

advantages: not only it would render the analysis process faster (ideally, on-line), easier to 
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standardize and immune to the technical caveats of source modeling, but it would also allow the 

use of simplified and cheaper set-ups (i.e. not requiring hd-EEG and subject-specific MRI scans). 

A second important drawback of PCI
LZ

 is its limited application to signals other than 

TMS/hd-EEG evoked potentials. Intracranial stimulations/recordings in humans [21, 22] and in 

animal models [23-26] as well as intra and extracellular responses recorded from cortical slices 

[27, 28] offer an unprecedented range of opportunities to interpret the TMS-EEG results and to 

elucidate the relationships between neuronal dynamics, network complexity and consciousness 

[29]. However, because PCI
LZ

 relies on EEG source estimation, its extension to other types of 

recordings, such as sparse matrices of intra-cerebral stereo EEG (SEEG) recordings and in 

vivo/in vitro local field potentials, is not straightforward [27].  

Here we address these limitations and propose a novel measure of perturbational 

complexity that bears conceptual similarities with PCI
LZ

 but is much faster to compute and in 

principle generalizable to any type of brain signal evoked by perturbations or event related. 

Conceptually, we started from the notion that the binary sequences of activation and 

deactivations which are compressed by PCI
LZ

 can be considered as sequences of transitions 

between different states: a “response state” and a “non-response” or “baseline state” [30]. Thus, 

one should expect to find high values of perturbational complexity in systems that react to the 

initial perturbation by exhibiting multiple and irreducible patterns of transitions between 

response and non-response states.  

Following this intuition, we developed PCI
ST

, an index that combines dimensionality 

reduction and a novel metric of recurrence quantification analysis (RQA) to empirically quantify 

perturbational complexity as the overall number of non-redundant state transitions (ST) caused 

by the perturbation. We validated PCI
ST

 on a large dataset of 719 TMS/hd-EEG sessions 
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recorded from healthy subjects during wakefulness, non-rapid eye movement (NREM) sleep and 

anesthesia as well as brain-injured patients with disorders of consciousness (DOC). Finally, we 

tested PCI
ST

’s ability to probe the complexity of causal interactions within the brain by applying 

it on 84 SEEG recordings obtained in epileptic patients undergoing intra-cerebral single-pulse 

electrical stimulation (SPES) for clinical evaluation during both wakefulness and sleep.  

 

Material and methods  

Participants 

Healthy subjects 

The benchmark dataset consisted of 382 TMS/hd-EEG sessions reported in previous 

works [16, 17, 31] . Data were recorded from 108 healthy subjects (female, n = 63; age range = 

18–80 years) in two conditions: (1) while they were unresponsive and did not provide any 

subjective report upon awakening (NREM sleep, n = 19; midazolam sedation at anesthetic 

concentrations, n = 6; anesthesia with xenon, n = 6; anesthesia with propofol, n = 6) and (2) 

while they were awake and able to provide an immediate subjective report (n = 103, including 32 

subjects also recorded in the previously described unresponsive conditions). Protocols and 

informed consents were approved by the local ethical committees [16, 17, 31]. 

Brain-injured patients 

TMS/hd-EEG data were also obtained in a population of 108 brain-injured patients (95 

reported in a previous work [17]) with newly acquired data recorded following the same 

previously reported protocol [17]. Sixteen brain-injured patients were conscious and 

encompassed 5 individuals affected by locked-in syndrome (LIS) and 11 individuals who 

emerged from minimally conscious state (EMCS) by recovering functional communication 

and/or functional use of objects after a previous DOC.  The remaining 92 brain-injured patients 
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had a severe DOC and were repeatedly evaluated with the Coma Recovery Scale-Revised (CRS-

R) for a period of 1 week (4 times, every other day). Patients showing only reflexive behavior 

across all evaluations were considered as being unresponsive (Unresponsive Wakefulness 

Syndrome, UWS, 43 patients), whereas patients showing signs of nonreflexive behaviors in at 

least one evaluation were considered as minimally conscious (Minimally Conscious State, MCS, 

49 patients). Protocols and informed consents were approved by the local ethical committees 

[17] and written informed consent was obtained from healthy subjects, from communicative 

patients, and from legal surrogates of DOC patients.  

Epileptic patients   

Data included in the present study derived from a dataset collected during the pre-

surgical evaluation of nine (eight previously reported [22]) neurosurgical patients with a history 

of drug-resistant, focal epilepsy. All subjects were candidates for surgical removal of the 

epileptic focus. During the pre-surgical evaluation all patients underwent individual investigation 

with SPES and simultaneous SEEG recordings for mapping eloquent areas and for precisely 

identifying the epileptogenic cortical network [32]. The investigated hemisphere, the duration of 

implantation and the location and number of stimulation sites were determined based on the non-

invasive clinical assessment. The stimulation, recording and data treatment procedures were 

approved by the local ethical committee [22]. All patients provided written informed consent. 

TMS/hd-EEG measurements and data analysis  

Specific protocols for acquiring and analyzing TMS/hd-EEG potentials were described in 

[16] and [17]. In brief, data were recorded with a 60-channel TMS-compatible EEG amplifier 

and MRI-guided TMS pulses were delivered with a focal biphasic stimulator. A noise masking 

sound tailored to the specific coil was played through inserted earphones and titrated by subjects 
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within safety limits (<85dB). In each subject, multiple sessions of 200 stimuli were collected 

with TMS targeted to different areas at different intensities accordingly to the specific protocol. 

EEG responses to TMS were visually inspected to reject single trials and channels with bad 

signal quality. Independent component analysis was applied to remove residual artifactual 

components resulting from eye movements and muscle activations. Bad channels were then 

interpolated using spherical interpolation and data were bandpass filtered (0.1-45Hz), 

downsampled to 725 Hz, segmented between -400 and 400ms, re-referenced to the average, 

baseline corrected (-400 to -5 ms) and averaged across trials.  

Intracerebral measurements and data analysis 

The procedures for SEEG data acquisition and analysis are described in [22]. Briefly, 

intracerebral activity was recorded at 1000Hz using a 192-channel recording system (Nihon-

Kohden Neurofax-110) during electrical stimulation applied through one pair of adjacent 

contacts at different locations. SPES/SEEG sessions were obtained from all nine patients both 

during wakefulness and NREM sleep, resulting in a total of 84 sessions (see Table S1). Data 

were referenced to a contact located entirely in the white matter, subjected to linear detrend and 

bandpass filtering (0.5 – 300 Hz) and bipolar montages were calculated by subtracting the 

signals from adjacent contacts of the same depth-electrode [33, 34]. Stimulation artifact was 

reduced by applying a Tukey-windowed median filtering [35] between -5 and 5 ms. Data were 

segmented between -300 and 600ms and the SEEG magnitude at each electrode was computed as 

a z-score relative to its baseline. Trials and contacts showing pathological activity [36] were 

detected by visual inspection and excluded from the analysis and SPES-evoked responses were 

computed by averaging the remaining trials.  
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Perturbational complexity index based on state transitions (PCI
ST

) 

In its original formulation [16], perturbational complexity was calculated by binarizing 

TMS-evoked potentials (TEPs) at the EEG sources level using a fixed threshold derived from 

non-parametric statistics with respect to the baseline (pre-stimulus) and subsequently 

compressing the binary spatiotemporal patterns with the Lempel-Ziv algorithm. An underlying 

assumption of this strategy is that complex activations engaged by the perturbation appear on the 

evoked signals as patterns of oscillations around a fixed amplitude scale. Although proven 

successful when applied to the sources level, this approach was less sensitive in detecting 

complexity when calculated directly at the EEG-scalp level, where fast oscillations can appear 

riding on top of larger and slower envelopes as result of volume conduction and signal mixing 

(Figure S1). Furthermore, complex neuronal oscillations occurring in amplitude scales that are 

not determined by a fixed threshold can also be observed in microscopic and mesoscopic 

recordings due to cross-frequency couplings [37-41], and a binarized measure applied to such 

scales would have limited applicability to detect complex physiological activations. 

Aiming at a general index of perturbational complexity that can be fast and efficiently 

calculated directly at the EEG-sensors level, we here took a non-binary approach and quantified 

the spatiotemporal complexity of evoked potentials by exploring multiple amplitude fluctuations 

present in principal components of the response. Starting from trial-averaged signals recorded in 

response to a perturbation, singular value decomposition was performed in order to effectively 

reduce the dimension of the data (Figure 1A). The principal components were selected so as to 

account for at least 99% of the response strength measured in terms of the square mean field 

power (see Supplemental Materials for definition and computational details) and components 

with low signal-to-noise ratio (SNR ≤ 1.1) were further removed.  
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The complexity of each resulting principal component was then evaluated using a method 

derived from RQA [30, 42, 43] by quantifying what we call state transitions. More specifically, 

distance matrices, defined by the voltage-amplitude distances between all time-points of the 

signal, were calculated separately for pre-stimulus and post-stimulus samples (Figure 1B). Next, 

these distance matrices were thresholded at a given scale ε (Figure 1C), yielding corresponding 

transition matrices (Figure 1D), i.e. contour plots that depicts the temporal transitions between 

states – roughly, the ups and downs in the signal –, for both the baseline and the response. By 

varying the threshold ε and comparing the average number of state transitions (NST) in the 

matrices of the response with that of the baseline, we looked for the scales at which the state 

transitions in the signal’s response were over and above the transitions present in the baseline 

activity. In this way, the complexity of the nth component (∆NSTn) was defined as the 

maximized weighted difference of NST between response (NSTn
res

) and baseline (NSTn
base

) 

signals: 

        [    
   (  

 )        
    (  

 )] 

 (1) 

Where n
*
 is the threshold value which maximizes the weighted difference of NST  (red dot in 

Figure 1E) and TR is the number of samples in the response, a normalizing factor that yields a 

quantity that is extensive with the length of the signal’s response and largely independent of the 

sampling rate (Figure S2). The parameter k was introduced to control the relative weight between 

pre and post-stimulus state transitions. In this work, k was set to 1.2, value at which there is 

maximum separation between conscious and unconscious conditions (Figure S3). 

Finally, PCI
ST

 was defined as the sum of these maximized significant state transitions 

across all principal components of the evoked perturbation signal: 
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      ∑     

  

   

 

 (2) 

By its definition, PCI
ST

 is high when there are multiple linearly independent components 

in a spatially distributed response (spatial complexity), each one of them contributing with 

significant amounts of state transitions (temporal complexity) (Figure S4). Conversely, PCI
ST

 is 

expected to be low either if the perturbation evokes a strongly correlated response across 

different spatial recordings or if the independent components carry few temporal transitions in 

the response as compared to the baseline. 

Statistical Analysis 

Data are presented as mean ± standard deviation (SD), and p-values less than 0.01 were 

considered significant. Wilcoxon-ranksum test was used for evaluating the discrimination 

between conscious and unconscious conditions. The classification power of discriminating 

different levels of consciousness was quantified by the area under the receiver operating 

characteristic (ROC) curve (AUC).  

 

Results and Discussion  

PCI
ST

 is reliable and fast in benchmark conditions  

PCI
ST

 was calculated on a benchmark of 382 TEPs obtained in a group of 108 subjects 

during conscious (alert wakefulness) and unconscious (NREM sleep and anesthesia) conditions 

(Figure 2A). The wakefulness group presented significantly higher and more variable PCI
ST

  

values (mean ± SD, 47.89 ± 12.65) than the NREM sleep/anesthesia group (14.19 ± 5.26, P = 

4.7x10
-40

). In terms of classification performance between conscious and unconscious 
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conditions, PCI
ST

 showed a high classification power that was equivalent to the performance of 

the original version of PCI in this same dataset [17] (AUC for PCI
ST

 =0.998, AUC for PCI
LZ

 = 

0.995). Indeed, when values for each TMS/hd-EEG session were compared, we found a 

significant linear correlation between the metrics (r = 0.82, p<10
-95

, Figure 2B).  

On the other hand, because PCI
ST

 estimates perturbational complexity without employing 

source localization and surrogate techniques, PCI
ST

 computation was approximately 380 times 

faster than with PCI
LZ

. While PCI
LZ

 took about 300 seconds per session to compute (270s ± 99), 

PCI
ST

 was calculated in less than one second (0.71 ± 0.20, p< 10
-127

) (Figure 2C). 

 

PCI
ST

 allows a simple and fast set-up at the bedside of patients 

We next tested the performance of PCI
ST

 in brain-injured patients. First, a threshold 

discriminating consciousness from unconsciousness was extracted from the PCI
ST

 values of the 

benchmark population using a linear classifier [44] (see Figure S5 for computational details). 

This empirical cutoff was then compared to PCI
ST

 values obtained from a group of 108 brain-

injured patients who had recovered from coma and evolved toward various clinical conditions. 

Following the previous approach [17], we classified each patient using his maximum PCI
ST

 value 

obtained across all recorded sessions. This approach is aimed at assessing the patient’s best 

capacity for consciousness and parallels the diagnostic use of the best behavioral (CRS-R) score. 

The sensitivity of PCI
ST

 in detecting signs of consciousness in brain-injured patients was 

comparable to PCI
LZ 

[17] (Figure 3A, top): PCI
ST

 made no erroneous classifications on 

conscious (LIS/EMCS) patients and achieved 91.9% sensitivity among minimally conscious 

individuals, correctly detecting signs of consciousness in 45 from 49 MCS patients (see Figure 

S6 for individual PCI
ST 

values).  
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From a practical perspective, the potential of PCI to be employed as an index of 

consciousness in a clinical setting is significantly limited by the use of hd-EEG, which, besides 

entailing more expensive hardware, involves a cumbersome and lengthy preparation. While 

PCI
LZ

 necessarily demands hd-EEG systems so as to accurately perform source localization, 

PCI
ST 

can in principle be calculated on a reduced number of channels. We thus compared the 

performance of the index calculated on the original hd-EEG system (60 channels) to reduced 

setups containing 19 and 8 electrodes (see Supplemental Materials for further details). Notably 

the performance of the index diminished only slightly with the use of the standard 10-20 EEG 

system (19 channels), yielding sensitivities of 100% and 89.8% (44/49) for EMCS/LIS and MCS 

respectively (Figure 3A, middle). Finally, the simpler 8-channels setup resulted in reduced 

sensitivity scores on both EMCS/LIS (94%) and MCS (84%) patients (Figure 3A, bottom). An 

equivalent performance in discriminating conscious from unconscious conditions using simpler 

set-ups was also observed in the benchmark dataset (Figure S2). 

In UWS patients, brain-based measures that do not require subject’s interaction with the 

external environment can be useful to detect a covert capacity for consciousness. In a previous 

study, PCI
LZ

 detected conscious-like complexity in 20.9% (9/43) of UWS patients, who also had 

a higher chance of recovery at 6 months [17]. Here, we evaluated whether these patients could 

also be identified by PCI
ST

. The novel index calculated on both high-density and standard 10-20 

EEG setups detected all (n=9) the patients with high PCI
LZ

, whereas more than 82% of patients 

classified as low-complexity by PCI
LZ

 were also below threshold for PCI
ST

 (hd-EEG: 88.2%, 10-

20 setup: 82.3%, Figure 3B-top and middle). The simpler 8-channels setup detected 8 out of 9 

(88.9%) high-complexity patients and 29 out of 34 (85.3%) low-complexity patients (Figure 3B, 

bottom).   
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Taken together, these results show that PCI
ST

 calculation can afford an accurate and fast 

estimation of perturbational complexity even on reduced EEG set-ups. Combined with future 

optimizations of TMS-EEG hardware, this may allow the implementation of a practical, fast and 

potentially online method to be applied at the bedside in the routine clinical setting. 

 

PCI
ST

 reveals consistent changes of spatiotemporal complexity in intracerebral recordings 

Beside its practical applications, estimating perturbational complexity based on state 

transitions enables the exploration of the brain’s causal structure across different recordings 

scales, from macroscopic EEG signals, to mesoscopic local field potentials and, in principle, to 

microscopic multisite electrophysiological/optical recordings. In the present study we explored 

this possibility at the mesoscale level by computing PCI
ST

 on sparse intracranial SPES-evoked 

potentials to test whether the state dependent changes in complexity revealed by TMS/EEG 

could be replicated and assessed by direct intracortical stimulation combined with SEEG 

recordings.  

During wakefulness, the composite set of waves elicited by SPES appeared as a large 

number of components characterized by recurrent waves of activity lasting up to 600ms in the 

principal components space, which resulted in high PCI
ST 

values (Figure 4A-C). On the other 

hand, during NREM sleep, when SPES evoked a stereotypical wave, a small number of 

components were enough to span most of the response (Figure 4D-F). In addition, the few 

components that survived dimensionality reduction in NREM sleep showed fewer state 

transitions than the ones in wakefulness and accounted for a reduced PCI
ST 

value. These findings 

were reproducible across stimulation sites and consistent at population level (Figure 5). PCI
ST

 

during NREM sleep was lower than in wakefulness for each one of the 42 different stimulation 
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sites (Figure 5A-I). Overall, compared to wakefulness, PCI
ST

 was reduced during NREM sleep 

on average by 47.2% (Figure 5J) and significant at the group level (p = 1.4 x 10
-7

). 

A key advantage of SPES over TMS is that the former is not associated with concurrent 

auditory and/or somatosensory stimulation [45].  The extent of the actual contribution of sensory 

co-stimulation to TEPs depends on many factors, such as coil type and effectiveness of noise 

masking, and is currently a matter of debate [46-49]. In this respect, the present intracranial 

results provide a definite confirmation of the fundamental interpretation of perturbational 

complexity, originally derived through TMS/hd-EEG recordings, as a genuine index of 

intracortical interactions. Direct intracortical stimulation elicited significant transitions 

contributing to the build-up of PCI
ST

 that occurred both at short and long latencies, that were 

specific for the stimulation site and state dependent (Figures 4 and 5). Thus, similarly to TMS, 

SPES elicited complex responses characterized by recurrent waves of activity in wakefulness and 

a stereotypical large-amplitude slow wave during NREM sleep. This finding is relevant as it 

confirms that the changes in perturbational complexity observed with TMS/EEG are not due to 

peripheral effects or subcortical sensory gating but reflect actual alterations in the intrinsic causal 

properties of thalamocortical circuits.  

The application of PCI
ST 

also allows the exploration of the mechanisms of brain 

complexity at the finer scale of circuits and neuronal mechanisms. For example, at the level of 

the intracranial stimulation/recordings considered here, we observed substantial within-subject 

differences in the absolute values of PCI
ST 

depending on the stimulation site. These results 

suggest the presence of local differences in the ability of brain circuits to engage in complex 

patterns of causal interactions, which deserve further investigations.  
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Finally, the mesoscale assessment of perturbational complexity is in an ideal position to 

link microscale explorations at the bench to the macroscale measurements performed at the 

bedside of brain-injured patients. Connecting these levels is important as experiments in both 

cortical slices [27] and unresponsiveness wakefulness syndrome patients [31] suggest that loss of 

brain complexity is linked to the tendency of neurons to enter a silent period upon an initial 

activation (OFF-period). A thorough multiscale description of such mechanisms may be used to 

inform experimental and computational models [50] aimed at devising novel interventions to 

restore complexity and thus consciousness following brain injury. 

 

Conclusion  

In this paper we have introduced, validated and tested PCI
ST

, a method of estimating 

perturbational complexity based on dimensionality reduction and state-transitions quantification. 

The novel index may not only provide a reliable, fast and potentially online option for the 

assessment of consciousness in the clinical setting, but also serve as a general translational tool 

for exploring the mechanisms of loss and recovery of brain complexity across species, scales, 

and models. 
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Figure 1. Calculating the Perturbational complexity index based on state transitions (PCI
ST

) from 

TMS/hd-EEG evoked potentials (TEP). PCIST is calculated by performing five steps: A) TEPs 

(butterfly plot, top) are decomposed in Nc principal components (PC) based on the singular value 

decomposition of the response to the perturbation. B) For each single component (PCn, highlighted) 

amplitude distances are calculated between every baseline samples (black trace in A) and between every 

response sample (blue trace in A), resulting in a baseline and a response distance matrix, respectively. C) 

These matrices are then thresholded at several scales. Two scale values are depicted in the figure: a lower 

threshold (’) and a higher threshold (*).  D) At each scale, the corresponding transition matrices are 

computed for both baseline and response. These matrices are used to calculate the average number of 

state transitions (NST) in the baseline NSTbase and in the response NSTres. E) The complexity of the 

selected component is defined as the maximum weighted difference between the number of state 

transitions in the response and in the baseline (∆NSTn). The final measure PCIST is calculated by 

summing the ∆NSTn values across all Nc principal components. 
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Figure 2. PCI
ST

 discriminates between consciousness and unconsciousness in healthy individuals 

and is faster than PCI
LZ

. (A) Histogram of PCIST values (left) for all 382 TMS sessions obtained from  

healthy individuals in the conscious (red) and unconscious (grey) conditions, with the corresponding 

ROC curve of the distributions (right). (B) Correlation between PCIST and PCILZ values in the benchmark 

dataset for conscious (red) and unconscious (grey) conditions (r=0.82, p<10-95). (C) Mean computation 

time per TMS/hd-EEG session for PCIST (red) and PCILZ (blue) calculated on the benchmark dataset. 
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Figure 3. PCI
ST
’s ability to detect consciousness in brain-injured patients is preserved in simpler 

EEG set-ups. Number and percentages of patients classified as high (PCIST≥) and low (PCIST<) 

complexity with respect to the corresponding classification cutoffs obtained from the benchmark dataset 

are shown for EEG setups of 60 (top), 19 (middle) and 8 (bottom) channels. (A) PCIST’ sensitivity in 

detecting signs of consciousness in conscious (EMCS/LIS) and minimally conscious (MCS) patients. (B) 

Contingency tables for the stratification of UWS patients in low complexity (PCI<) and high complexity 

(PCI≥) subgroups accordingly to PCILZ and PCIST.  
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Figure 4. PCI
ST

 is able to quantify the spatiotemporal complexity of stereotactic EEG responses to 

SPES. SPES-evoked responses in the SEEG and principal component space are shown for a 

representative subject during stimulation delivered on the Superior Frontal Gyrus (panels A, B, C) and on 

the Superior Frontal Sulcus (panels D, E, F). Panels A and D depict the positions of the stimulating 

contact (yellow) and remaining SEEG contacts (blue) over a brain surface reconstructed from the 

individual’s brain. The correspondent SPES/SEEG-evoked responses are shown in the respective middle 
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panels (B and E) as the superposition of the averaged SPES-evoked potentials recorded from all SEEG 

contacts during wakefulness (red traces) and NREM sleep (grey traces). Lower panels (C and F) depict 

the correspondent PCI
ST

 values and the normalized SPES-evoked responses decomposed in principal 

components after dimensionality reduction.  
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Figure 5. PCI
ST

 values in SPES-evoked potentials are invariably lower during NREM sleep as 

compared to wakefulness. Panels A – I: PCIST calculated in nine subjects during wakefulness (W) and 

NREM sleep are shown separately for each individual subject. SEEG (blue) and SPES contacts (yellow) 
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are depicted over brain surfaces reconstructed from the individual’s brain (left). Numbers and arrows 

indicate the stimulation sites and the correspondent PCIST values (red traces, right). Panel J: shown are the 

percentage losses of complexity across all subjects and stimulation sites (left) and boxplots of PCI
ST

 

values (right) at the group level for wakefulness (red box) and NREM sleep (grey box). Red asterisks 

indicate significant comparison (p = 1.4 x 10-7). 
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