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ABSTRACT
A comprehensive knowledge of the types and ratios of microbes that inhabit the healthy human gut is 
necessary before any kind of pre-clinical or clinical study can be performed that attempts to alter the 
microbiome to treat a condition or improve therapy outcome. To address this need we present an 
innovative scalable comprehensive analysis workflow, a healthy human reference microbiome list and 
abundance profile (GutFeelingKB), and a novel Fecal Biome Population Report (FecalBiome) with 
clinical applicability. GutFeelingKB provides a list of 157 organisms (8 phyla, 18 classes, 23 orders, 38 
families, 59 genera and 109 species) that forms the baseline biome and therefore can be used as 
healthy controls for studies related to dysbiosis. The incorporation of microbiome science into routine 
clinical practice necessitates a standard report for comparison of an individual’s microbiome to the 
growing knowledgebase of “normal” microbiome data. The FecalBiome and the underlying technology of 
GutFeelingKB address this need. The knowledgebase can be useful to regulatory agencies for the 
assessment of fecal transplant and other microbiome products, as it contains a list of organisms from 
healthy individuals. In addition to the list of organisms and abundances the study also generated a list of 
contigs of metagenomics dark matter. In this study, metagenomic dark matter represents sequences that 
cannot be mapped to any known sequence but can be assembled into contigs of 10,000 nucleotides or 
higher. These sequences can be used to create primers to study potential novel organisms. All data is 
freely available from https://hive.biochemistry.gwu.edu/gfkb and NCBI’s Short Read Archive.
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INTRODUCTION
While humanity has only begun to influence planetary-level events in the last few hundred years [1], 
microorganisms have shaped our planet since time immemorial [2]. It has been shown that the microbes 
of the ocean are as important for influencing planetary climate as the microbes of gastrointestinal (GI) 
tracts of cattle [3]; furthermore, new functions are continuously found for the human microbiome [4-6]. 
However, since the advent of germ theory and the antimicrobial chemotherapy revolution, microbes have 
been viewed as insurgents bound for eradication [7].

In 2001, some sixty years into the antibiotic era, Joshua Lederberg coined the term ‘microbiome’ as the 
pendulum of opinion began to swing back to a more microbe-tolerant position [8,9]. In 2008, the US 
National Institutes of Health launched the Human Microbiome Project (HMP) to better understand the 
makeup of the community of microbes in cohabitation with humans [10,11]. This population of 
microorganisms brings with it a vast, diverse, and modifiable set of genomes which have proven to 
influence human health and disease [12,13]. Together, these organisms’ genomes comprise the 
metagenome, a highly versatile pool of genetic elements which now serves as a target for medical 
research [14]. Microbiome characterization through various analysis pipelines has advanced 
progressively since HMP and this development process has catalyzed the understanding of certain roles 
of these microbial communities [15,16].

Although, microbiomes of all body sites are important, the gut microbiome with hundreds of prevalent 
species is of major interest to a large and diverse number of researchers [17,18]. The healthy gut 
microbiome data and analysis is crucial for all studies of disease with relation to the human gut. A Nature 
Microbiology issue in 2016 contained a consensus statement which outlined all federally-funded 
microbiome research over a three-year period [19]. The authors, on behalf of the federal government’s 
FastTrack Action Committee on Mapping Microbiomes (FTAC-MM), defined a microbiome as a multi-
species community of microorganisms in any environment: host, habitat, or ecosystem. One of the 
conclusions reached by the authors was a “priority need” for higher-throughput, more accurate data 
acquisition, better pipelines for data analyses, and a greater ability to organize, store, access, and 
share/integrate data sets. At present, most studies leverage study specific control groups and reporting 
mechanisms. This problem is compounded by the fact that different bioinformatics pipelines produce 
different results largely because all current pipelines use a limited number of ad hoc reference organisms 
to determine abundance. It has also been shown that database growth influences the accuracy of 
relatively faster k-mer-based species identification [20]. The final understanding of the baseline healthy 
microbiome therefore can be flawed because the methods are uniquely applied in each study. As such, 
there is a need for aggregation, validation for interoperability, and eventual standardization of methods 
and reporting. 

Currently, all metagenomic analyses use as a reference database, nucleotide sequences from a limited 
set of pre-determined microorganisms or genes and, as such, these reference lists are not truly 
comprehensive. The use of limited sets of sequence data is prevalent because it is computationally 
challenging to perform pairwise read alignment against the entire NCBI non-redundant nucleotide 
database (NCBI-nt) [21]. We have developed algorithms that allow the use of the complete NCBI-nt and 
have shown that using the NCBI-nt allows accurate analysis of the data with significantly less errors in 
microorganism abundance quantification [22]. To leverage this prior work on metagenomics analysis 
algorithm, we collected and sequenced healthy cohort of samples from participants. To make sure the 
samples are abundant and correct enough to build healthy reference list, we also retrieved sequences of 
healthy people from HMP. The method also generates a list of assembled contigs that cannot be aligned 
to any known sequence in NCBI-nt but are present in healthy individual fecal samples and are ideal for 
healthy-disease-microbiome correlation analysis and novel primer design. We define these sequences 
as metagenomic dark matter – sequences that cannot be mapped to any known sequence but can be 
assembled into contigs of 10,000 nucleotides or higher. The contig nucleotide length threshold is 
expected to reduce the number of contigs in GutFeelingKB that are not of biological origin. Our definition 
is much stricter than previous definitions of the metagenomic dark matter which accepts remote 
homology to known sequences [23]. The need to include metagenomic dark matter in comprehensive 
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analyses of the gut microbiome matches the arguments presented by Bernard et al. in their recent 
manuscript on microbial dark matter where they opine that “unraveling the microbial dark matter should 
be identified as a central priority for biologists” [24]. 

Together, our methods and GutFeelingKB with significant new data, allow for the analysis of the species-
level composition of the healthy human gut microbiome and also the metagenomic dark matter. We have 
subsequently designed a standard reporting template of individual microbiome data to be compared to 
the database, useful to any scientist, clinician, or patient.

MATERIALS AND METHODS

Metagenomic sampling and participant statistics

Healthy cohort selection and nutritional information

Participants for this study were recruited from the George Washington University (GW) Foggy Bottom 
campus area through the use of flyers and emails to GW affiliated organizations (selection criterions 
included in S1 Table). Study participants provided samples and anthropomorphic measurements 
(included in S1 Table) were collected from healthy people at the George Washington University 
according to an IRB approved protocol. At the baseline visit, participants received extensive instructions 
on how to record their dietary intake (including type, brand, and portion size of every food and beverage 
consumed on each day throughout the study period) and the time of consumption for each item. 
Participants then recorded their dietary intake using a seven-day food journal throughout the study. Each 
participant provided three samples. The food journal was collected at the submission of the final sample, 
after which the reported 7-day dietary intakes for each subject were entered into the Nutrition Data 
System for Research (NDSR) [25]. NDSR produces a tabular daily nutrient for each day of dietary intake 
for each individual, which was then added as metadata to the abundance matrices (supplementary table 
S2 Table). All participants self-reported as ‘healthy’ at the start of the study and remained healthy 
throughout. 

Sampling and sequencing 
Fecal samples were collected from healthy volunteers using sterile commode containers at the Milken 
Institute School of Public Health at the George Washington University (GWSPH). Immediately following 
collection, fecal samples were stored in a -20 degree Celsius freezer for a period of up to two weeks, 
after which, aliquots were placed in longer term storage at -80 degree Celsius ultra-freezer. Samples 
were subsequently transported to the sequencing center on dry ice. DNA was extracted using the MoBio 
PowerFecal DNA Isolation kit25. Double-stranded DNA (dsDNA) concentration and quality was assessed 
using NanoDrop and the Qubit dsDNA Broad Range (BR) DNA Assay Kit26, respectively. DNA was 
diluted for library preparation using the Illumina Nextera XT Library Prep Kit, and 1 ng from each sample 
was fragmented and amplified using Illumina Nextera XT Index Kit primers. Amplified DNA was then 
cleaned using Agencourt AMPure XP beads, resuspended in buffer, and tested again for concentration, 
quality, and fragment size distribution on a Bioanalyzer using the Agilent High Sensitivity DNA Kit. DNA 
libraries were brought to the same nM concentration, pooled, and denatured with 0.2 N NaOH prior to 
loading on an Illumina MiSeq Reagent Kit v3 and sequencing on the Illumina MiSeq platform. Sequence 
data FASTQ files was uploaded to BaseSpace (https://basespace.illumina.com/home/index) for sharing 
and further analysis.

Sequence quality assurance

All sequence data were uploaded to the GW High-performance Integrated Virtual Environment (HIVE) 
[26,27]. Upon initial upload into the system, HIVE conducts a series of quality assurance (QA) 
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computations for each sequence read file and generates figures to display the results. S3 Fig shows the 
quality assurance computations done on one read file. 

Upon completion of the initial loading, quality analysis resulting figures were inspected for each read file 
to ensure that the read file was of adequate quality and did not have any unusual characteristics such as 
low quality score or disproportionate ratio and distribution of A, T, G and C nucleotides. S4 Fig shows the 
aggregated computations across all samples. 

Healthy cohort from Human Microbiome Project

In addition to the data generated from sequencing described above, additional data were downloaded 
and analyzed from the Human Microbiome Project (HMP) [28]. HMP sequence data and metadata are 
available through NCBI SRA and dbGaP. We obtained fifty fecal metagenomic samples, randomly 
chosen from HMP Phase I (supplementary table S1 Table) to match approximately the number of 
samples collected in our study. For the samples collected by us and the HMP project dataset subjects 
were screened based on stringent criteria; the individuals who passed screening were considered 
“healthy” subjects[11]. 

GW and HMP combined data 

Sequence and metadata from this study are publicly available through GutFeeling 
(https://hive.biochemistry.gwu.edu/gfkb), and also available from NCBI-SRA BioProject Healthy Human 
Gut Metagenomics (PRJNA428202), and Effects of non-nutritive sweeteners on the composition of the 
human gut microbiome (PRJNA487305). For PRJNA487305, samples prior to intake of non-nutritive 
sweeteners were used in this study. HMP data was downloaded from NIH Human Microbiome Project 
(HMP) Roadmap Project (PRJNA43021). 

48 samples from 16 individuals were sequenced in the GW cohort. Each sample resulted in two pair-end 
read files (for details see S5 Table). Sequence data from these 48 samples along with 50 samples from 
HMP passed sequence quality checks and was used to develop the baseline microbiota profile. For GW 
samples 55.55% ( 13.46%) while for HMP 48.29% ( 18.54%) of the reads could not be mapped to any 
known sequence. There was no need for any computational filtering of human DNA as the MoBio 
PowerFecal DNA Isolation kit25 was used for GW samples, biochemically removing any host DNA. The 
human DNA had been computationally removed before the HMP data was deposited in dbGaP[11].

Data interoperability is a perennial challenge in bioinformatics [29]. This problem is further magnified 
when considerations are made for data from samples collected in distant locations at different times. In 
the case of HMP, sampling was done in Houston, TX and St. Louis, MO during 2008-2012. All GW 
samples were collected from the DC Metro Area in 2016. One way to test the compatibility of these data 
sets was to run a Between-Class Analysis (BCA) on all samples from each of the projects. Data from our 
three, separate projects fell into the expected three classic enterotypes [30] instead of clustering by 
project set (S6 Fig). Had the data clustered by project, sampling location, or year, they may not have 
been compatible for inclusion in the same database. However, we believe that these data do not show a 
sampling bias and can be leveraged for joint analysis. Sample and participant information can be seen in 
Table 1.

Filtered-nt

The Filtered-nt (v3.6) was created from the NCBI-nt file through the use of taxonomy blacklist file. NCBI-
nt and NCBI taxonomy files were downloaded (ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/; 
ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy) on May 21st, 2017. More specifically, Filtered-nt was generated 
using blacklist file of taxonomy IDs identified based on terms that are contained in the lineage of each 
taxonomy entry. Taxonomy nodes with terms such as 'unclassified', 'unidentified', 'uncultured', 
'unspecified', 'unknown', 'vector', 'environmental sample', 'artificial sequence', 'other sequence' were 
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blacklisted. Child nodes are also automatically blacklisted. The filtered taxonomy list was then used to 
filter the NCBI-nt sequence file. Filtered-nt and the blacklisted taxonomy IDs along with node names are 
available for download at hive.biochemistry.gwu.edu/filterednt.

Metagenomic analysis pipeline
The innovative metagenomic analysis pipeline we developed includes three software tools and one 
sequence database (Filtered-nt), organized in a fashion to produce a workflow that ensure an efficient 
and comprehensive analysis of a large sequence space. The tools are CensuScope [22], HIVE-Hexagon 
[31], and IDBA-UD [32]. All software tools are integrated in the HIVE platform [26,27] and allow end-to-
end analysis of metagenomic sequences.

Bacterial abundance profile 

Figure 1 provides a schematic representation of the workflow. The first step uses CensuScope to identify 
organisms that are present in the sample [22]. CensuScope is a taxonomic profiling software that 
randomly extracts a user defined number of reads and maps them to any size sequence database using 
BLAST [33]. In our previous studies, we have shown that CensuScope is rapid, accurate and is not 
hindered by the size of the reference sequence database. With the non-redundant sequence database’s 
almost constant exponential increase, CensuScope offers a scalable approach for estimating taxonomic 
composition of a microbial population. We then used HIVE-hexagon, a highly specific and sensitive 
short-read aligner [31], to obtain the final abundance profiles. HIVE-hexagon was used to map all the 
reads to the organisms that are identified through CensuScope.

Healthy Human gut microbiome list (GutFeelingKB)

A list of organisms and taxonomy identifiers are provided as the output by CensuScope. After manual 
verification that the alignment results are valid for each of the identified organisms, every new organism 
and their alignments are checked manually to confirm that it is a true positive. Manual evaluation 
includes match count (number of matched alignments over the entire computation (all iterations)), valid 
taxonomy level assignment, completeness of sequence and contamination in genome assembly in 
Filtered-nt. The accession numbers are then used to obtain the NCBI Genome Assembly IDs, which is 
used to retrieve proteome IDs from UniProt whenever possible. Genome to proteome mapping was 
guided by Representative Proteome Groups (RPGs), a dataset that contains similar proteomes (hence 
genomes) calculated based on co-membership in UniRef50 clusters [34] (supplementary table S7 Table). 
Such mapping provides an opportunity to explore metabolic pathways present in the identified organisms. 
It is important to note that many bacteria are closely related and hence have large homologous regions. 
This can lead to species level misidentification. Although the concept of pan-genome or pan-proteome 
for closely related bacteria is well accepted [35], it is important to avoid such misidentification for known 
pathogens. To avoid such false positives of well-known pathogens (S8 Table), they are included only if 
their abundance is 1% or higher and their alignments have been manually checked.

Metagenomic dark matter

The unaligned reads of each sample were assembled using IDBA-UD [32]. Assembled contigs longer 
than 10,000 nucleotides were considered as metagenomic dark matter. Such a large length threshold 
was used to ensure that the metagenomics dark matter contigs are of biological origin. The gut 
microbiome of a sample can be represented as the sum of known organisms and organisms represented 
by the metagenomic dark matter sequences. More specifically, the contigs that were over 10,000 
nucleotides in length were tagged with the sample ID and numbered, and metadata data about the 
participant were added to the header. These contigs are available as a download at 
(https://hive.biochemistry.gwu.edu/gfkb) for further analysis and novel primer design. 
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Analysis of nutritional metadata and microbial abundance
MaAsLin, an R package that employs a “multivariate statistical framework that finds associations 
between clinical metadata and microbial community abundance or function” [36] was used to find 
correlations between bacterial abundance and diet. Intra-host variability was analyzed evaluating the 
standard deviation of multiple measurements for every patient averaged over all patients. Inter-host 
variability was computed as a standard deviation of the means of per-host abundance values. To 
estimate the degree of stability of measurements for bacterial populations in patient samples intra-host 
vs inter-host variability ratio was computed. 

Nutrition to organism abundance correlation was also computed by using a Cosine Similarity Coefficient. 
The matrix of bacterial strain abundances was variance scaled and zero centered to create comparable 
distributions of equal variability. Categorical data (such as gender) was turned into numerical values. 
More specifically, in order to define correlation metrics between features and bacterial composition for 
the set of individuals, we used Cosine Similarity Coefficient as defined in Formula 1. 

Formula 1: Cosine Similarity Coefficient of correlation between bacteria j and feature k is computed as the 
sum product of j-th Bacteria (Bj) abundance for patient i and k-th Feature (Fk) of patient i.

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑗,𝑘 =
𝑁

∑
𝑖 = 1

𝐵𝑖,𝑗 × 𝐹𝑖,𝑘

A Cosine Similarity of around 1 means strong correlation, -1 means strong anti-correlation, 0 means no 
correlation with 0.7 being considered the marginal threshold for evidence of some degree of correlation. 

RESULTS AND DISCUSSIONS

Filtered NCBI-nt (Filtered-nt)

NCBI nucleotide sequence collection (NCBI-nt) is the most comprehensive collection of DNA sequences 
[21], but many sequences present in NCBI-nt do not provide enough relevant information or they might 
be artificial (e.g. sequences with taxonomy placement such as environmental, unclassified, synthetic 
sequences, unidentified sequences etc.). Reads mapped to such sequences do not provide any valuable 
information in terms of the organisms and hence are not useful in understanding the microbial 
composition of the sample. The NCBI-nt initially contained 42,439,338 sequences. The taxonomy file 
contained 1,601,859 scientific names. After removal of 250,610 blacklisted taxonomy IDs (supplementary 
table S9 Table) containing 7,499,592 sequences the Filtered-nt contained 34,939,806 sequences. The 
Filtered-nt is ideal for comprehensive metagenomic analysis that relies on best sequence hit. 

All current studies use genomes from known gut bacteria as reference database [18,22,37,38] and hence 
would not be able to detect organisms that are not present in the reference database. The use of 
Filtered-nt guarantees that no known organism in the sample is missed. 

Healthy fecal microbiome

GutFeelingKB - a reference list for healthy human gut organisms
GutFeelingKB consists of 157 organisms which fall into sixty distinct genera, as seen in Table 2 which list 
in species level and the full table that can be downloaded at https://hive.biochemistry.gwu.edu/gfkb . 
Members of the Firmicutes and Bacteroidetes phyla make up a majority of the bacterial species were 
present in the human intestinal microbiota. A total of 155 bacterial and 2 archaeal species were identified 
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in healthy samples. In summary, the healthy human gut microbiome consists of 8 phyla, 18 families, 23 
classes, 38 orders, 59 genera and 109 species. 63 (40%), 32 (20%) and 31 (19.7%) members belongs to 
Firmicutes, Actinobacteria and Bacteroidetes, respectively which make up a majority of the bacterial 
species. More than half of Firmicutes are members of the Clostridia (20.3%) class, which is the most 
abundant class, followed by Bacteroidia (18.5%), Bifidobacteriales (16.6%), Enterobacterales (14%) and 
Lactobacillales (14%). All of members of Clostridia in the samples are members of Clostridiales order 
and all of Bacteroidia belongs to Bacteroidales, these two are the most abundant orders. There are 27 
organisms are members of Bifidobacteriaceae family, and 26 of them belongs to Bifidobacterium longum, 
which are the most abundant species.

Several researchers have focused on the reference genes of the gut microbiome rather than organisms 
[18,39], but organisms have their own clinical significance in treatment. When Yatsunenko et al analyzed 
531 healthy samples from Venezuela, rural Malawi and US metropolitan areas and mapped their reads 
to 126 microbial species, they found Fusobacteria that were not mapped to our list. On the other hand, 
Spirochaetes, Planctomycetes were not shown in their list [40]. 40 of the organisms reported in their 
study map to our list at the species level. Unmapped species include organisms such as Actinomyces 
odontolyticus, Bacteroides capillosus, Bacteroides uniformis and so on. Nishijima et al identified 26 major 
genera in healthy Japanese [41]. 20 out of 26 genera they listed mapped to our list, the unmapped 
genera belong to existing GlytFeelingKB families and are Dorea, Dialister, Succinatimonas, Butyrivibrio, 
Collinsella, and Phascolarctobacterium. Qin et al grouped 66 clusters representing cognate bacterial 
species for healthy and liver cirrhosis patients [42], and the lowest taxonomy level of cluster in this study 
is strain. 36 clusters map to GutFeelingKB in the taxonomy levels higher than species and all of them 
map to existing GutFeelingKB families. It is expected that while other studies will find additional 
organisms, GutFeelingKB can provide a reference list and abundance information that can provide a 
starting point for comparative analysis of samples from healthy individuals from around the world and can 
also help better understand observed differences due to disease and therapy.

Organism abundance in individual samples
Many studies have focused on higher taxonomy nodes, providing little species and strain abundance 
information. Figure 2 shows the abundance of phyla to highlight how our baseline gut microbiome 
compares to past studies. We provide an abundance sheet with the lowest taxonomy node broken down 
to the strain level where applicable so that other scientists can use them. Then we calculated the 
average abundance, standard deviation, maximal and minimal abundance excluding the organisms with 
the 0% abundance (S10 Table). In terms of average abundance of organisms 4 phyla have abundance 
above 1%, these are Actinobacteria (1.82 3 %), Bacteroidetes (73.13  22.16%), Firmicutes (22.2  
18.66 %) and Proteobacteria (2.15  10.39%). Bacteroidia (72.97  22.14%) under Bacteroidetes, 
Actinobacteria (1.67  2.94%) under Actinobacteria, Gammaproteobacteria (2.12  10.38 %) under 
Proteobacteria, Clostridia (21.35  17.87%) under Firmicutes are the only four classes that have average 
abundance larger than 1%. Bacteroidaceae (65.58  21.84 %) is the most abundant family, followed by 
Lachnospiraceae (11.46  11.06%) and Ruminococcaceae (8.38  10.48%). Odoribacteraceae, 
Rikenellaceae, Bifidobacteriaceae, Enterobacteriaceae and Tannerellaceae are the five other families 
with abundance above 1%. Bacteroides is the most abundant genus in human gut microbiome (65.58  
21.84%) with sample SRS016585 having the smallest abundance (0.37%) while SRS013215 has the 
largest abundance (98.82%). Bacteroides includes 9 species and 7 of them have abundance greater 
than 1%. Bacteroides dorei is the most dominant species with a 17.44  8.74% abundance.

Out of 98 samples analyzed, only 53 samples had archaea. Bacteroidetes, Proteobacteria, Spirochaetes, 
Actinobacteria, Firmicutes phylum are present in all samples. The abundances of Bacteroidetes are 
larger than 10% in 97 of 98 samples. Bacteroides is present in all the samples with an abundance 
ranging from 0.37% to 98.82%. Within Bacteroides, Bacteroides fragilis is present in all the samples. The 
range of Bifidobacterium abundance in all the samples ranges from 0.004% to 12.21%, Bifidobacterium 
longum abundance from 0.003% to 10.30% and Bifidobacterium bifidum BGN4 strain is present in 96 of 
98 samples. A total of 84 out of 109 species are present in all of the samples. 
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It has been shown that Bacteroides is the most abundant genus in Spain, China, Sweden, US, Denmark 
and France from samples collected from healthy individuals [41]. Bacteroides maintain a generally 
beneficial relationship with the host when retained in the gut but can also be opportunistic pathogens. 
When they escape the gut environment, they can cause significant pathology, including bacteremia and 
abscess formation in multiple body sites [43]. Otherwise, they have been shown to have beneficial 
effects on the host immune system. For example, Bacteroides fragilis protects animals from experimental 
colitis induced by Helicobacter hepaticus, a commensal bacterium with pathogenic potential [44]. A large 
proportion of the B. fragilis genome is responsible for carbohydrate metabolism, including the 
degradation of dietary polysaccharides [45]. Bifidobacterium has been reported to be present in almost 
all healthy human fecal samples. Members of Bifidobacterium are among the first microbes to colonize 
the human gastrointestinal tract and are believed to exert positive health benefits on their host [46]. Many 
species of Bifidobacterium are commonly used as probiotics due to their health promoting properties [47]. 
Certain Bifidobacterium longum strains have been used as probiotics against enterohemorrhagic 
Escherichia coli infection due to the production of acetate, a short chain fatty acid, which upregulates a 
barrier function of the host gut epithelium [48]. In general, they are able to survive in particular ecological 
niches due to competitive adaptations and metabolic abilities through colonization of specific 
appendages. There are 12 strains under Bifidobacterium longum species. One strain, BBMN68 has been 
isolated from the feces of a healthy centenarian living in an area of BaMa, Guangxi, China, known for 
longevity [49]. Another strain of Bifidobacterium, BGN4, was shown to prevent CD4(+) CD45RB (high) T-
cell mediated inflammatory bowel disease by inhibition of disordered T cell activation in BGN4-fed mice 
[50]. Despite the well-established health benefits, the molecular mechanisms responsible for these traits 
remain to be elucidated.

Some potential pathogenic species appear in our and Yatsunenko et al’s healthy samples [40] like 
Streptococcus mitis, a strain that can cause severe clinical symptoms in cancer patients [51]. Most likely, 
these organisms are opportunistic pathogens or might be involved in diseases that are not yet fully 
understood. There are several strains of Escherichia coli, but it is generally considered a harmless 
intestinal inhabitant by being one of the first bacterium to colonize human infants and is a lifelong 
colonizer of adults [52] although, pathogenic strains of E. coli have been implicated in the etiology of 
health problems such as Crohn’s disease, and ulcerative colitis [53].

Contigs from unaligned reads (microbial dark matter)

On average, 50% of the reads from an individual sample could not be aligned to any sequence in 
Filtered-nt. These unaligned reads were assembled into contigs. Previous work has shown that creation 
of contigs from unaligned short reads can be used to better understand the actual sequence space 
represented in metagenomics samples [54]. This “microbial dark matter” remains to be elucidated. Using 
BLAST on these sequences yielded no significant matches. Given that the average protein-coding 
density of bacterial genomes is 87% with a typical range of 85–90% [55], and the organisms in our 
reference list range in size from 1.89 – 6.17 Mb, we chose to look at contigs greater than 10Kb. This 
value would mean that any single sequence would cover at the very least 0.16% of the organism’s 
genome, or 0.19% of an organism’s coding region and hence reduce the number of false positive contigs. 
We were able to assemble unaligned reads into 1,467,129 contigs of which 46,095 have a length greater 
than 10Kb. After building the contigs, sequences greater than 10,000 nucleotides were all filtered into the 
same file, and each header was formatted to indicate the sample number, gender, age, and ethnicity of 
the source. The file is available for download at 
https://hive.biochemistry.gwu.edu/prd/gfkb//content/unalignedContigsGFKB-v2.0.fasta. These contigs are 
ideal for new primer design for detailed analysis of the gut microbiome.

FecalBiome Reporting Template
The effects of the microbiome on health status are growing rapidly and have already spawned FDA 
approved products at various biotech firms [56]. Some firms have even begun to report microbial 
composition data to consumers. The formats and parameters for generation of these reports are 
nonstandardized, limiting their research value. It is necessary to standardize the way that the microbiome 
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is discussed in research and, eventually, in the clinic; the earlier this standardization occurs, the more 
effective it will be as microbiome science becomes a tool for general research and microbiome medicine 
moves as close to clinic as genomic medicine. Since there is a need for a cycle moving from bench to 
bedside and back again, we find value in building a clinical-style report on top of a research tool with the 
ability to easily cross between the two [57]. This report is also intended to serve as a snapshot of a 
research project, allowing colleagues and collaborators across labs to share high level information in a 
rapid manner. Here, we present the FecalBiome Template (Figure 3) -- a general reporting template for 
microbiome research. It is composed of three domains: Sample, Patient, and Result; these results are 
drawn from information from a given microbiome sample which is the compared to the contents of the 
GutFeelingKB. The template was drafted in the spirit of comprehensive metabolic panel (CMP) lab test 
(https://www.accesalabs.com/downloads/quest-lab-test-sample-report/Comprehensive-Metabolic-Panel-
Test-Results.jpg; https://medlineplus.gov/ency/article/003468.htm). It is not uncommon for sample 
collection, sequencing, and analysis to happen at different locations with different research groups each 
having a stake in the data produced. In a research setting, the template can serve as a coversheet for 
shared data, accompanying sequence data to give collaborators a look at their data without having to 
write scripts for visualizations. While our group works primarily with GI microbiome samples, this report is 
designed to be generalizable to any human microbiome. Here, we apply the template to the human GI 
tract, the largest known repository of microbes in the human body. 

Researchers and clinicians can determine a threshold for the number of organisms reported. Here, we 
report the organisms comprising the top 50% (sorted based on abundance) of identified microbes from 
an individual’s sample is included but any threshold of organisms to report in the second and third 
domains can be set by the user to fit their purposes. Information about abundances, average 
abundances, as well as information about those microbes from the literature is included on this report. 

One of the major outcomes for microbiome science is used in the clinic as any routine test. We intend 
this report to be the first step in a discussion of standardized reporting of microbiome medicine, bringing 
the science closer to the clinic (Figure 3). The human GI microbiome is appreciably relevant to human 
health status. While it is still the early days of microbiome science, it is important to think towards a future 
where microbiome assays and sequencing are as relevant as routine blood draws and urine samples. As 
such, we have designed a template for clinical microbiome reporting for physicians and patients. The 
header of this template was designed to capture relevant information about the test. The two tables 
which follow the header include the most abundant microbes in a sample, as well as any known 
physiology and effects of those microbes.

As a test case, we took one sample from the set to determine where it fell relative to the baseline gut 
microbial population to show the potential clinical application of this technology. For ease of interpretation, 
the final column in the Result table includes information about whether a given population of microbes 
falls within the range expected based on the sample space included in GutFeelingKB. The report does 
not include an explanation for what a particular result means, as it is both premature to tie microbe to 
phenotype in cases other than infectious disease and any result falls to the purview of the requesting 
physician. With more information on the role of the microbiome and its constituent microbes, it will 
become important to be able to compare where a sample from an individual falls within the spectrum of 
healthy or dysbiotic abundances of microbes. 

All relative abundances were calculated for the individual datasets before quantifying the relative min, 
relative max, mean, median, and standard deviation (Figure 3). These statistics were then transformed 
into one cohesive report that merged the range, mean, median, and standard deviation. The statistics 
were further collapsed by family to generate an overall report that models a complete metabolic profile. 
The top most abundant families (Akkermansiaceae, Bacteroidaceae, Enterobacteriaceae, Rikenellaceae, 
and Ruminoccocaceae) had a relative max of 8.03, 12.13, 10.99, 6.89, and 6.31 percent of relative 
abundance, respectively. This is not surprising considering the Rikenellaceae family is indicative of good 
gastrointestinal health [58]. Akkermansiaceae is linked to lower rates of obesity and associated metabolic 
disorders [59]. Bacteroidaceae and Enterobacteriaceae can be linked to acute infective processes but 
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are otherwise symbionts [60,61], and Ruminococcaceae is known to break down complex carbohydrates 
especially in people with carb heavy diets [62]. FecalBiome and the underlying GutFeelingKB can have 
high value to clinicians who hope to assess the gut microbial status of their patients. The goal of the 
database and report is to connect lab results with outcomes. At present, most microbiome diseases are 
those of severe dysbioses caused by a kind of potentially pathogenic bacteria – the canonical infectious 
pathogens such as Helicobacter pylori, Vibrio cholerae and others. By determining what species or strain 
correlate with good or bad outcomes, we could aid clinicians in developing strategies for valuable 
evidence-based treatments. 

Dietary data and nutrient correlative analysis
MaAsLin is a multivariate statistical framework that identifies associations between clinical metadata and 
microbial community abundance [36]. The HMP samples did not have specific dietary data (participants 
only categorized their type of diet: Carnivore, Vegan, Vegetarian etc.), and thus, this analysis was limited 
to the samples collected at GW. Over 100 features were obtained for each participant from the NDSR 
program and added this to the abundance sheets, along with the anthropomorphic measurements 
(height, weight, waist circumference) that were taken. 

In comparing bacterial species to nutrient data, several interesting patterns were observed. 
Bifidobacterium was positively correlated with dietary protein intake (Figure 4a), specifically vegetable 
protein, as well as dietary fiber, specifically soluble fiber, present in vegetables such as broccoli, brussel 
sprouts, beans, peas, asparagus and beans, which also contain vegetable protein. Akkermansia (figure 
4b) was shown to be positively associated with saturated fat intakes and is negatively correlated with 
total polyunsaturated fatty acids (PUFA). Not surprisingly, it was also positively correlated with linoleic 
acid, as this particular omega-6 PUFA is found abundantly in oils (e.g. soybean oil, vegetable oil) used in 
processed food. Bacteriodes ovatus was positively correlated with daily calorie intake (Figure 4c), as well 
as body weight (Figure 4d), and waist circumference. The table of results (see supplementary table S11 
Table) demonstrates the range of correlation for features that have been measured.

Cosine Similarity Coefficient analysis (see supplementary table S12 Table) identified correlation for 
features and organisms with the observations similar to MaAslin. For example, characteristics such as fat 
intake and BMI correlate with members of Akkermansia. Similarly, the impact of Vitamin A or beta 
carotenes has positive inductive correlation across all the Bifidobacterium (Figure 5).

As microbiome science moves closer to the clinic, it will be imperative both to have tools for analysis and 
the quick understanding of a microbial population. We envision our database and pathway analyses as 
the foundation for this clinical reporting. While each organism in an entire microbiome sample isn’t 
immediately actionable, it does allow for both the close tracking of microbial modulation and the better 
understanding of how the microbiome tracks with health states and therapy. This will be further 
applicable as evidence based medicine approaches microbiome science, and microbiome science 
becomes as important to clinical treatment as genomic medicine. Preliminary microbiome analyses are 
increasingly yielding interesting results in complex diseases such as cancer. For example, in colorectal 
cancer patients, carcinoma-enriched bacteria, B. massiliensis, B. dorei, B. vulgates, Parabacteroides 
merdae, A. finegoldii and B. wadsworthia, positively correlated with red meat consumption and negatively 
correlated with fruit and vegetables consummation [63]. It is expected that as the number and size of 
these studies increase, the need for baseline human gut microbial profile in healthy people and standard 
reporting template will become essential.

Conclusion
The workflow described in this study involves a sub-sampling-based method followed by comprehensive 
mapping of all of the reads to accurately determine the abundance of microorganisms. The workflow 
provides a comprehensive snapshot of the microbial abundance and can easily be used with any state-
of-the-art NGS read mapping and assembly algorithm. The list of baseline organisms identified in the 
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normal human gut has clinical applicability as microbiome research moves closer to the bedside. The 
methods, tools and data from this project can also be used by regulatory scientists to evaluate workflows 
related to fecal transplant.

In addition to the workflow, we have laid the foundation for an expansive and modular database which 
will aggregate all publicly available data as well as the data from contributors to push towards an 
understanding the baseline human microbiome. This database will serve as a common control in studies 
of dysbiosis and microbiome associated common disease and cancer. Finally, the user-friendly format 
through FecalBiome report, which contains absolute and relative abundance information about a given 
sample compared to an average across the entire database, scientists, clinicians, and eventually patients 
can get an easy to understand overview of gut microbiome. Separately, we see a significant impact of 
this technology on regulatory science in the future. Finally, as a tool and library, GutFeelingKB will allow 
for rapid assessment of the content of human GI replacement products and, ideally, allow for more 
expedient review of products. Future studies to advance evidence-based microbiome medicine should be 
conducted where potential patients identify which outcomes such as depression, bloating, frequency of 
common colds, etc., are most important via a focus group or survey. Those outcomes will become 
endpoints in clinical trials or observational studies that demonstrate the effects of various bacteria on the 
human gut. This type of methodology would tie raw numbers to health states that are meaningful for the 
general population, ensuring that data gathered are relevant to the patient, and therefore the clinician. 
This could bring a new, patient-centric perspective to microbiome data and allow for a greater scope of 
health data to sit atop metagenomic sequence data. These outcomes/endpoints would become a “toolkit” 
for other researchers who are interested in the gut. If everyone uses the same set of clinically relevant 
endpoints, research will be easily comparable across studies and meta-analysis becomes interoperable. 
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Figure legends
Figure 1. Metagenomic analysis pipeline. Step 1: CensuScope is run for each read file against Filtered-nt. 
Each of the aligned organism approved by manually check will be added to the GutFeelingKB and it is 
versioned. Step 2: For the final analysis the raw read files are run in HIVE-hexagon against the 
GutFeelingKB and the outputs are tabulated as relative abundance percentages.

Figure 2. Stacked bar plot of phylogenetic composition of microbiome taxa at the phyla level in fecal 
(n=98, bottom) samples. 

Figure 3. FecalBiome Reporting Template. Personal Information section of the report contains 
information about the individual who had a sample sequenced, as well as the individual who ordered the 
sequence. It contains information about the pipeline used for analysis, as well as the sample number for 
ease of retrieval. Result section contains microbes representing the most abundant organisms which 
comprise the top 50% of inhabitants. Organismal Comment section includes information from the 
GutFeelingKB which pertains to the potential function of that organism.

Figure 4. Correlation between bacterial organism and nutrient data. (A) Bifidobacterium is positively 
correlated with dietary protein intake, specifically vegetable protein, present in vegetables such as 
broccoli, brussel sprouts, beans, peas, asparagus and beans. (B) Akkermansia is positively associated 
with body mass index (BMI). (C) Bacteriodes ovatus is positively correlated with daily calorie intake. (D) 
Bacteriodes ovatus is negatively correlated with daily body weight. 

Figure 5. The range of correlation for all features that have been measured for each of the GW samples. 
Each line is a graph of the min and max values using a Cosine Similarity coefficient correlation. A 
positive value means strong correlation, and a negative value means strong anticorrelation, whereas 
zero means absolutely no correlation. Given the size of sample pool of 16 we have taken 0.7 as the 
marginal threshold for evidence of some degree of correlation. Each feature that had a correlation with 
any organism is highlighted in blue. For example, some characteristics such as Fat intake have 
anticorrelation with members of Campulobacter jejuni and Eubacterium family.
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Supplementary files legends 
S1 Table. Anthropomorphic measurements of GW and HMP samples. 1.) GW anthropomorphic 
measurements and the associated value. 2.) HMP anthropomorphic measurements and the associated 
value. 3.) Selection criterions

S2 Table. Nutritional features and the associated values of GW and HMP samples. 1.) GW 100 
nutritional features and the associated values from NDSR results of GW samples. 2.) 100 nutritional 
features and the associated values of HMP samples.

S3 Fig. Quality assurance of one sample. (A) Summary statistics for the read file. (B) ACGT Count: A pie 
chart displaying the number and percentage of bases present in a read file. (C) Lengthwise Position 
Count: Displays the number of bases versus position in the read files. (D) Quality Position Count: The 
average quality score of a position in the reads of a file. (E) Average Quality Per Base: A histogram of 
the quality score of each base pair. (F) Length Count: A plot of the read length against the number of 
reads in the sample. (G) Quality Length Count: Shows the average quality score of a read of a given 
length.

S4 Fig. HIVE-MultiQC output figures. (A) The average quality score for each base shown by sample file. 
The consistently high-quality score for the forward strand files indicates acceptable sequences for 
analysis. (B) The relative abundance of each base in each read file. (C) The average quality score for the 
entire data set, shown by position in the read, is the blue line. The greyed area represents one standard 
deviation above and below the average.

S5 Table. GW read files information. List of 96 reads file information from 48 GW samples.

S6 Fig. Enterotypes of GW and HMP samples.

S7 Table. Mapping information of the organisms in GutFeelingKB. Organisms shown in GutFeelingKB 
are present by UniProt IDs, all the UniProt IDs have been mapped to NCBI. This table lists the same 
organism’s information through different databases like UniProt, NCBI Assembly, NCBI Taxonomy, NCBI 
Nucleotide and so on. 

S8 Table. Pathogens table. List of well-known gut pathogens that can be misidentified through 
metagenomics.

S9 Table. Blacklist of Filtered-nt. All the removed taxonomy IDs all shown in this table.

S10 Table. Abundance table. Abundance table are presented by 7 tables in deferent taxonomy level, 
including phylum, family, class, order, genus, species and strain abundance tables. Average abundance, 
standard deviation, maximal and minimal abundance are provided excluding the organisms with the 0% 
abundance.

S11 Table. Associations between clinical metadata and microbial community abundance.

S12 Table. Cosine similarity coefficient of correlation. This table demonstrates the range of correlation for 
features that have been measured, and the organisms that have been detected.
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Table 1: Human Microbiome Project (HMP) and GW participant statistics.
Feature White Other Asian Black Male Female

HMP samples 39 2 7 2 30 20

GW samples 24 0 6 18 21 27

Table 2. List of 109 baselines species and their GenBank accessions found in healthy human gut.

Organism name GenBankAC Organism name GenBankAC Organism 
name

GenBankAC

Acidaminococcus 
fermentans 
(Bac/Firmicute) 
(1001;0.042)

CP001859 Clostridium 
saccharolyticum 
(Bac/Firmicute) 
(100;0.24)

CP002109, FP929037 Odoribacter 
splanchnicus 
(Bac/CFB_bac
) (100;1.12)

CP002544

Acidaminococcus 
intestine 
(Bac/Firmicute) 
(100;0.09)

CP003058 Coprococcus catus 
(Bac/Firmicute) 
(100;0.37)

FP929038 Ornithobacteri
um 
rhinotracheale 
(Bac/CFB_bac
) (100;0.11)

CP006828

Acidovorax sp 
KKS102 
(Bac/Beta-proteo) 
(100;0.01)

CP003872 Coprococcus sp 
ART55/1 
(Bac/Firmicute) 
(100;0.68)

FP929039 Oscillibacter 
valericigenes 
(Bac/Firmicute
) (100;0.05)

AP012044

Adlercreutzia 
equolifaciens 
(Bac/ActnBac) 
(100;0.07)

AP013105 Cutibacterium 
acnes 
(Bac/ActnBac) 
(100;0.004)

CP003084 Paenibacillus 
sabinae 
(Bac/Firmicute
) (100;0.01)

CP004078

Akkermansia 
muciniphila (Other 
Bacteria) 
(91.84;0.70)

CP001071 Eggerthella lenta 
(Bac/ActnBac) 
(100;0.04)

CP001726 Paeniclostridiu
m sordellii 
(Bac/Firmicute
) (100;0.02)

LN679998, 
LN681234

Alistipes finegoldii 
(Alistipes 
finegoldii) 
(100;1.27)

CP003274 Eggerthella sp. 
YY7918 
(Bac/ActnBac) 
(100;0.01)

AP012211 Parabacteroid
es distasonis 
(Bac/CFB_bac
) (100;2.30)

CP000140

Alistipes shahii 
(Bac/CFB_bac) 
(100;1.75)

FP929032 Enterococcus 
faecium 
(Bac/Firmicute) 
(100;0.04)

CP003351, CP006620, 
CP006030

Parvimonas 
micra 
(Bac/Firmicute
) (100;0.01)

CP009761

Anaerococcus 
prevotii 
(Bac/Firmicute) 
(100; 0.003)

CP001708 Enterococcus hirae 
(Bac/Firmicute) 
(96.94;0.004)

CP003504 Porphyromona
s 
asaccharolytic
a 
(Bac/CFB_bac
) (98.98;0.01)

CP002689
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Anaerostipes 
hadrus 
(Bac/Firmicute) 
(100;0.55)

FP929061 Escherichia coli 
(Bac/Gamma-
proteo) (100;1.87)

CP009859, CP010816, 
CP000948, CP001637, 
CP000970, CP000243, 
CP009166, CP002291, 
CP003297, CP007394, 
AP009378, AE014075, 
CP010371, CP002729, 
CP007799, CP001396, 
CP009789, CP004009, 
CP007390, FN649414, 
CP009167, HG941718

Porphyromona
s gingivalis 
(Bac/CFB_bac
) (100;0.01)

AP009380

Bacillus 
methanolicus 
(Bac/Firmicute) 
(100;0.01)

CP007739 Escherichia coli 
O104:H4 
(Bac/Gamma-
proteo) (96.94;0.04)

CP004009 Prevotella 
dentalis 
(Bac/CFB_bac
) (100;0.08)

CP003368, 
CP003369

Bacteroides 
cellulosilyticus 
(Bac/CFB_bac) 
(100;3.38)

CP012801 Escherichia coli 
O83:H1 
(Bac/Gamma-
proteo) (95.92;0.06)

CU651637 Prevotella 
denticola 
(Bac/CFB_bac
) (98.98;0.04)

CP002589

Bacteroides dorei 
(Bac/CFB_bac) 
(100;17.44)

CP007619, 
CP009057

Ethanoligenens 
harbinense 
(Bac/Firmicute) 
(100;0.01)

CP002400 Prevotella 
intermedia 
(Bac/CFB_bac
) (100;0.07)

AP014597, 
CP003502, 
CP003503, 
AP014598

Bacteroides 
fragilis 
(Bac/CFB_bac) 
(100;3.47)

FQ312004, 
CR626927, 
AP006841, 
AP006842, 
CR626928

Eubacterium eligens 
(Bac/Firmicute) 
(100;0.65)

CP001104, CP001105, 
CP001106

Prevotella 
melaninogenic
a 
(Bac/CFB_bac
) (100;0.24)

CP002122, 
CP002123

Bacteroides 
helcogenes 
(Bac/CFB_bac) 
(100;0.50)

CP002352 Eubacterium 
limosum 
(Bac/Firmicute) 
(100;0.03)

CP002273 Prevotella 
ruminicola 
(Bac/CFB_bac
) (100;0.06)

CP002006

Bacteroides 
ovatus 
(Bac/CFB_bac) 
(100;7.72)

CP012938 [Eubacterium] 
rectale 
(Bac/Firmicute) 
(100;6.21)

FP929042, FP929043, 
CP001107

Prevotella sp 
oral taxon 299 
(Bac/CFB_bac
) (100;0.06)

CP003666

Bacteroides 
salanitronis 
(Bac/CFB_bac) 
(100;0.48)

CP002530 [Eubacterium] 
siraeum 
(Bac/Firmicute) 
(100;0.75)

FP929044, FP929059, Raoultella 
ornithinolytica 
(Bac/Gamma-
proteo) 
(100;0.01)

CP004142

Bacteroides sp. 
CAG:98 
(Bac/CFB_bac) 
(100;8.89)

CP008741 Faecalibacterium 
prausnitzii 
(Bac/Firmicute) 
(100;3.52)

FP929045, FP929046 Roseburia 
hominis 
(Bac/Firmicute
) (100;0.69)

CP003040
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Bacteroides 
thetaiotaomicron 
(Bac/CFB_bac) 
(100;3.78)

AE015928, 
AY171301

Faecalitalea 
cylindroides 
(Bac/Firmicute) 
(100;0.15)

FP929041 Roseburia 
intestinalis 
(Bac/Firmicute
) (100;1.15)

FP929049, 
FP929050

Bacteroides 
vulgatus 
(Bac/CFB_bac) 
(100;14.99)

CP000139 Fermentimonas 
caenicola 
(Bac/CFB_bac) 
(100;0.01)

LN515532 Rubinisphaera 
brasiliensis 
(Bac/Plnctmy) 
(70.41;0.0002)

CP002546

Bacteroides 
xylanisolvens 
(Bac/CFB_bac) 
(100;4.92)

FP929033 Gardnerella 
vaginalis 
(Bac/ActnBac) 
(91.84;0.002)

CP001849 Ruminococcus 
bicirculans 
(Bac/Firmicute
) (100;2.54)

HF545616, 
HF545617

Barnesiella 
viscericola 
(Bac/CFB_bac) 
(100;0.33)

CP007034 Gordonibacter 
pamelaeae 
(Bac/ActnBac) 
(100;0.03)

FP929047 Ruminococcus 
bromii 
(Bac/Firmicute
) (100;0.83)

FP929051

Bifidobacterium 
adolescentis 
(Bac/ActnBac) 
(97.96;0.46)

CP007443, 
CP010437, 
AP009256

Haemophilus 
parainfluenzae 
(Bac/Gamma-
proteo) (100;0.10)

FQ312002 Ruminococcus 
champanellen
sis 
(Bac/Firmicute
) (100;0.04)

FP929052

Bifidobacterium 
animalis 
(Bac/ActnBac) 
(100;0.03)

CP009045 Intestinimonas 
butyriciproducens 
(Bac/Firmicute) 
(100;0.24)

CP011307 Ruminococcus 
sp SR1/5 
(Bac/Firmicute
) (100;0.68)

FP929053

Bifidobacterium 
bifidum 
(Bac/ActnBac) 
(100;0.31)

CP010412, 
CP001840, 
CP002220, 
CP001361

Klebsiella 
aerogenes 
(Bac/Gamma-
proteo) (91.84;0.01)

FO203355, CP002824 Ruminococcus 
torques 
(Bac/Firmicute
) (100;0.97)

FP929055

Bifidobacterium 
breve 
(Bac/ActnBac) 
(97.96;0.01)

CP006715, 
CP006713

Klebsiella 
michiganensis 
(Bac/Gamma-
proteo) 
(93.88;0.002)

CP004887 Sphingobacter
ium faecium 
(Bac/CFB_bac
) (95.92;0.04)

LK931720

Bifidobacterium 
dentium 
(Bac/ActnBac) 
(85.71;0.01)

AP012326 Klebsiella 
pneumoniae 
(Bac/Gamma-
proteo) (88.78;0.01)

CP009208 Streptococcus 
mitis 
(Bac/Firmicute
) (100;0.02)

FN568063

Bifidobacterium 
kashiwanohense 
(Bac/ActnBac) 
(100;0.13)

AP012327, 
CP007456

Klebsiella variicola 
(Bac/Gamma-
proteo) (90.82;0.01)

CP001891 Streptococcus 
parasanguinis 
(Bac/Firmicute
) (100;0.04)

CP002843, 
CP003122
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Bifidobacterium 
longum 
(Bac/ActnBac) 
(100; 0.74)

AP014658, 
CP002286, 
CP011964, 
CP000605, 
LN824140, 
AP010890, 
AP010889, 
AP010888, 
CP002010, 
FP929034, 
CP006741, 
CP002794, 
CP009072

Lachnoclostridium 
phytofermentans 
(Bac/Firmicute) 
(100;0.09)

CP000885 Streptococcus 
pasteurianus 
(Bac/Firmicute
) (100;0.02)

AP012054

Bifidobacterium 
thermophilum 
(Bac/ActnBac) 
(100;0.005)

CP004346 Lactobacillus 
acidophilus 
(Bac/Firmicute) 
(93.88;0.003)

CP005926 Streptococcus 
salivarius 
(Bac/Firmicute
) (100; 0.09)

CP009913, 
FR873482, 
CP002888, 
FR873481

Blautia obeum 
(Bac/Firmicute) 
(100;0.51)

FP929054 Lactobacillus 
paracasei 
(Bac/Firmicute) 
(100;0.01)

AP012541 Streptococcus 
sp I-P16 
(Bac/Firmicute
) (100;0.01)

CP006776

butyrate-
producing 
bacterium SM4/1 
(Bac/Firmicute) 
(100;0.13)

FP929060 Lactobacillus 
rhamnosus 
(Bac/Firmicute) 
(92.86;0.01)

CP003094 Streptococcus 
suis 
(Bac/Firmicute
) (100;0.02)

CP000837

butyrate-
producing 
bacterium SS3/4 
(Bac/Firmicute) 
(100;0.36)

FP929062 Lactobacillus 
ruminis 
(Bac/Firmicute) 
(100;0.16)

CP003032 Streptococcus 
thermophilus 
(Bac/Firmicute
) (100;0.05)

CP000024, 
CP000419, 
CP006819

Campylobacter 
coli (Bac/Delta-
Epsilon-proteo) 
(100;0.01)

CP007180 Lactococcus lactis 
(Bac/Firmicute) 
(96.94;0.01)

CP006766 Tannerella 
forsythia 
(Bac/CFB_bac
) (100;0.06)

CP003191

Campylobacter 
hominis 
(Bac/Delta-
Epsilon-proteo) 
(97.96;0.003)

CP000776 Leuconostoc 
citreum 
(Bac/Firmicute) 
(93.88;0.003)

DQ489736 Treponema 
succinifaciens 
(Other 
Bacteria) 
(100;0.03)

CP002631

Candidatus 
Methanomassiliic
occus intestinalis 
(Arch/Euryar) 
(34.69;0.01)

CP005934 Mageeibacillus 
indolicus 
(Bac/Firmicute) 
(100;0.01)

CP001850 Veillonella 
parvula 
(Bac/Firmicute
) (100;0.05)

CP001820
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Citrobacter 
freundii 
(Bac/Gamma-
proteo) 
(84.69;0.02)

CP007557 Megamonas sp 
Calf98-2 
(Bac/Firmicute) 
(100;0.02)

FP929048

Clostridioides 
difficile 
(Bac/Firmicute) 
(1.02;2.10)

CP003939, 
CP010905

Methanobrevibacter 
smithii (Arch/Euryar) 
(39.80;0.07)

CP000678

1Percentage of samples this organism is present in. 
2Average percent relative abundance of this organism. 
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