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ABSTRACT 17 

 18 

1. Next-generation sequencing technologies have opened a new era of research in genomics. 19 

Among these, restriction enzyme-based techniques such as restriction-site associated DNA 20 

sequencing (RADseq) or double-digest RAD-sequencing (ddRADseq) are now widely used in 21 

many population genomics fields. From DNA sampling to SNP calling, both wet and dry 22 

protocols have been discussed in the literature to identify key parameters for an optimal loci 23 

reconstruction.  24 

2. The impact of these parameters on downstream analyses and biological results drawn from 25 

RADseq or ddRADseq data has however not been fully explored yet. In this study, we tackled 26 

this issue by investigating the effects of ddRADseq laboratory (i.e. wet protocol) and 27 

bioinformatics (i.e. dry protocol) settings on loci reconstruction and inferred biological signal 28 

at two evolutionary scale using two systems: a complex of butterfly species (Coenonympha 29 

sp.) and populations of Common beech (Fagus sylvatica).  30 

3. Results suggest an impact of wet protocol parameters (DNA quantity, number of PCR 31 

cycles during library preparation) on the number of recovered reads and SNPs, the number of 32 

unique alleles and individual heterozygosity. We also found that bioinformatic settings (i.e. 33 

clustering and minimum coverage thresholds) impact loci reconstruction (e.g. number of loci, 34 

mean coverage) and SNP calling (e.g. number of SNPs, heterozygosity). We however do not 35 

detect an impact of parameter settings on three types of analysis performed with ddRADseq 36 

data: measure of genetic differentiation, estimation of individual admixture, and demographic 37 

inferences. In addition, our work demonstrates the high reproducibility and low rate of 38 

genotyping inconsistencies of the ddRADseq protocol.  39 
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4. Thus, our study highlights the impact of wet parameters on ddRADseq protocol with strong 40 

consequences on experimental success and biological conclusions. Dry parameters affects loci 41 

reconstruction and descriptive statistics but not biological conclusion for the two studied 42 

systems. Overall, this study illustrates, with others, the relevance of ddRADseq for population 43 

and evolutionary genomics at the inter- or intraspecific scales. 44 

 45 

Keywords 46 

ddRADseq, laboratory protocol, bioinformatics treatments  47 

 48 

INTRODUCTION 49 

For a decade, next-generation sequencing (NGS) technologies have opened a new era in the 50 

large field of molecular ecology In particular, the advances in sequencing capabilities have 51 

deeply changed the field of population genetics, by providing tremendous amount of sequence 52 

data/information (10 to 100 thousand markers) at a relatively low cost. (Andrews et al., 2014; 53 

da Fonseca et al., 2016). Whole genome re-sequencing (WGR) methods, providing the 54 

highest marker density among the current genomic methods, notably appear very useful to 55 

investigate many questions in evolutionary biology and ecology (Fuentes-Pardo & Ruzzante, 56 

2017). WGR has however a limited relevance for non-model species, because a reference 57 

genome is not always available and because it requires considerable sequencing and 58 

computing efforts (Fuentes-Pardo & Ruzzante, 2017). Stemming from these limitations, 59 

reduced-representation sequencing methods have been developed. These approaches include 60 

restriction-site associated DNA sequencing (RAD-sequencing), sequencing of transcribed 61 

DNA from mRNA (RNA-sequencing), and whole-exome sequencing (WES). Overall, 62 
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reduced-representation sequencing methods allow accessing numerous homologous loci with 63 

a great taxa coverage at a relatively low cost (Fuentes-Pardo & Ruzzante, 2017). Among these 64 

methods, RAD-sequencing, or RADseq (Miller, Dunham, Amores, Cresko, & Johnson, 2007; 65 

Baird et al., 2008), is certainly the most popular method to obtain thousands of single 66 

nucleotide polymorphisms (SNPs) for non-model species (K. R. Andrews, Good, Miller, 67 

Luikart, & Hohenlohe, 2016). The principle of RADseq is to use restriction enzymes to 68 

subsample the genome of multiple individuals at homologous genomic locations (Miller et al., 69 

2007; Baird et al., 2008). The resulting DNA fragments are then sequenced and compared 70 

among individuals to detect SNPs. Since its origin, this technique has been transformed into a 71 

variety of related approaches (Peterson, Weber, Kay, Fisher, & Hoekstra, 2012; S. Wang, 72 

Meyer, Mckay, & Matz, 2012; Toonen et al., 2013; Campbell, Brunet, Dupuis, & Sperling, 73 

2018). Among these, double-digest RADseq, or ddRADseq (Peterson et al., 2012), is highly 74 

customizable as regards the final number of loci, depending on the choice of enzymes and 75 

range of fragment size selected. The ddRADseq approach has been applied with success to 76 

many purposes including population genetic studies (Kjeldsen et al., 2016; Black, Seears, 77 

Hollenbeck, & Samollow, 2017; Sherpa, Rioux, Goindin, et al., 2018), phylogenetic 78 

reconstructions (DaCosta & Sorenson, 2016; Vargas, Ortiz, & Simpson, 2017; Boubli et al., 79 

2018; Lee et al., 2018; Sherpa, Rioux, Pougnet-Lagarde, & Després, 2018), demographic 80 

inferences (Capblancq, Després, Rioux, & Mavárez, 2015; Nunziata, Lance, Scott, Lemmon, 81 

& Weisrock, 2017; Settepani et al., 2017; Elleouet & Aitken, 2018) and landscape genetic 82 

analyses (Saenz-Agudelo et al., 2015; Johnson, Gaddis, Cairns, Konganti, & Krutovsky, 83 

2017). Despite the recognized advantages of the ddRADseq technique, several limitations and 84 

weaknesses arose in the literature (Davey et al., 2013; K. R. Andrews et al., 2016; Lowry et 85 

al., 2017). The main concerns are related to both the wet laboratory and bioinformatic 86 
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procedures associated with the method (Puritz et al., 2014; Mastretta-Yanes et al., 2015; 87 

Shafer et al., 2017). 88 

 The frequency and distribution of restriction sites in the genome vary considerably 89 

depending on the species and the pair of enzymes considered (Herrera, Reyes-Herrera, & 90 

Shank, 2015). Among wet lab specific aspects, the choice of enzymes is therefore critical for 91 

appropriate genome subsampling through a ddRADseq procedure. For example, this choice 92 

will influence the number of digested fragments, their location in the genome, and their size 93 

distribution (Burns et al., 2017; Y. Wang et al., 2017). DNA quality also influences SNPs 94 

recovery, because degraded (i.e. fragmented) DNA can greatly lower the efficiency of 95 

restriction enzyme-based techniques, by inducing a loss of recovered fragments (Graham et 96 

al., 2015). Amplification of ddRADseq or RADseq fragments during library preparation has 97 

also been pointed out as a potential critical step (Davey et al., 2013; Mastretta-Yanes et al., 98 

2015). Indeed, non-homogeneous amplification of RAD fragments can lead to a substantial 99 

loss of alleles due to unbalanced RAD fragments coverage (Andrews & Luikart, 2014; 100 

Andrews et al., 2014; Puritz et al., 2014) . Furthermore, the number of PCR cycles during 101 

library preparation is generally low to minimize PCR artifacts (such as PCR errors) in the 102 

RAD tags sequences (Hohenlohe, Catchen, & Cresko, 2012; Peterson et al., 2012).  103 

Another important concern about RAD-based methods is the bioinformatic treatment 104 

of sequences and the reconstruction of RADseq loci (e.g. Shafer et al., 2017). The principle of 105 

the RADseq technique relies on the identification of homologous loci among individuals. This 106 

task is implemented by clustering single-copy loci according to a similarity threshold, which 107 

is determined using either distance-based (e.g. STACKS; Catchen, Hohenlohe, Bassham, 108 

Amores, & Cresko, 2013), or global alignment (e.g. pyRAD; Eaton, 2014) methods. In both 109 

cases, stringent parameter settings will avoid the clustering of paralogs but can also split 110 
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highly divergent single-copy loci in different clusters (Catchen et al., 2013; Eaton, 2014). 111 

Coverage is another important parameter for loci reconstruction. A minimum number of reads 112 

is generally set in order to take into account an allele or not (Catchen et al., 2013). Defining a 113 

high threshold value can induce a loss of alleles via insufficient coverage, while a too low 114 

value will not discard rare sequences originating from PCR or sequencing errors (Paris, 115 

Stevens, & Catchen, 2017). The influence of parameter settings on quality and quantity of 116 

recovered fragments and SNPs has therefore been widely tested (Eaton, 2014; Mastretta-117 

Yanes et al., 2015; Paris et al., 2017; Rochette & Catchen, 2017; Shafer et al., 2017) and it 118 

sometimes impacts downstream population genomics analyses (Ilut, Nydam, & Hare, 2014; 119 

Harvey et al., 2015; Willis, Hollenbeck, Puritz, Gold, & Portnoy, 2017). 120 

 Finally, the impact of missing data, which are inherent to any genotyping technique, 121 

has also been evaluated over the years (Arnold, Corbett-Detig, Hartl, & Bomblies, 2013; 122 

Gautier et al., 2013; Malinsky, Trucchi, Lawson, & Falush, 2018). Missing data can be due to 123 

some extent to an experimental lack of reproducibility, but more frequently to polymorphism 124 

in restriction sites. This polymorphism leads to allele drop-out (ADO) for the individuals 125 

lacking the restriction site in one or two of the homologous chromosomes. ADO directly 126 

influences the estimation of genetic variation and diversity (Davey et al., 2013; Gautier et al., 127 

2013; Cariou, Duret, & Charlat, 2016). It has been particularly investigated in phylogenetic 128 

studies (Cariou, Duret, & Charlat, 2013; Eaton, 2014; DaCosta & Sorenson, 2016) because of 129 

the direct correlation between ADO and the divergence time among lineages and species 130 

(Cariou et al., 2013).  131 

The scientific community has accumulated expertise about RAD-based methods over 132 

the last decade to make better use of such techniques while some critical issues deserve 133 

further investigations. Indeed, if the proximal consequences have been investigated (e.g. 134 
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number of SNPs or deficit in heterozygosity), the distal consequences (effect on genetic 135 

structure estimation, demographic inferences, etc.) remain rarely explored in most cases. The 136 

impact of the minimum coverage or the similarity threshold for sequences clustering has for 137 

example already been largely discussed in the literature. However, if the community accepts 138 

that these parameters directly influence the number and coverage of loci or the percentage of 139 

missing data in the final genetic matrix (Catchen et al., 2013), their potential effects on the 140 

biological signal unraveled by downstream analyses are not systematically tested and this 141 

issue lacks empirical investigation (but see Mastretta-Yanes et al., 2015; Rodríguez-Ezpeleta 142 

et al., 2016; Shafer et al., 2017). In addition, some of the wet laboratory procedures are 143 

thought to be critical for the success of the experiment (Peterson et al., 2012; Mastretta-Yanes 144 

et al., 2015), like the initial DNA quantity and number of PCR cycles, but they have never 145 

been experimentally evaluated. 146 

This study aims to examine these steps of the ddRADseq procedure, providing a novel 147 

contribution to the literature, in an animal system at an interspecific level (in the butterfly 148 

species complex of Coenonympha) and in plants at an intraspecific scale (in tree populations 149 

of European/common beech, Fagus sylvatica). We first evaluate the impact of both initial 150 

DNA quantity and number of PCR cycles on the experiment results, and the reproducibility of 151 

our wet protocol by evaluating the percentage of genotyping inconsistencies and missing 152 

fragments between replicates. Concerning the bioinformatic treatment, we investigate the 153 

influence of the minimum coverage and the similarity threshold during the loci reconstruction 154 

on three types of analyses based on ddRADseq data: genetic differentiation (evaluated using 155 

FST estimation and Principal Component Analysis), genetic structure (genetic clustering) and 156 

demographic inferences (Approximate Bayesian Computation method). 157 

 158 
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MATERIALS AND METHODS 159 

Sampling  160 

This study is based on a total of 108 samples, including 58 individuals of Fagus sylvatica 161 

(deciduous tree; genome size around 600 Mbp) and 50 individuals of Coenonympha sp. (three 162 

butterfly species: C. arcania, C. gardetta and C. macromma; genome size around 300 Mbp). 163 

Depending on the conditions and settings tested (Fig. 1), different numbers of individuals and 164 

populations were used (see Table S1). 165 

 166 

Standard ddRADseq protocol  167 

A double-digested RAD experiment was conducted on individuals using a common protocol 168 

for both the wet and dry parts of the procedure. The protocol was the same for all samples, 169 

except for some parameter settings as described in the following sections: “Setting tests for 170 

the wet laboratory protocol” and “Tests on bioinformatics parameters”. 171 

 172 

Library preparation - DNA was extracted from one leaf for Fagus sylvatica samples and 173 

from the complete thorax of individual Coenonympha butterflies using a DNeasy Blood & 174 

Tissue Kit (QIAgen) following manufacturer’s instructions. For each individual, 200 ng of 175 

genomic DNA were double-digested with 10 units of each PstI and MspI (New England 176 

Biolabs Inc.) at 37°C for two hours in a final volume of 34µL, using the CutSmart buffer 177 

provided with the enzymes. Digestion was further continued with ligation of the P1 (with 178 

individual tags) and P2 adapters (see Peterson et al., 2012) by adding to each sample 10 units 179 

of T4 DNA ligase (New England Biolabs Inc.), adapters P1 and P2 in 10-fold excess 180 

(compared to the estimated number of restriction fragments), 1µL of 10mM ribo-ATP (New 181 

England Biolabs Inc.) and once again two units of PstI and MspI enzymes. This simultaneous 182 
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digestion-ligation reaction was performed on a thermocycler using 60 cycles of a succession 183 

of 2 min at 37°C for digestion and 4 min at 16°C for ligation. An equal volume of all the 184 

digested-ligated fragment mixtures were pooled and purified using magnetic beads 185 

(Agencourt AMPure XP of Beckman Coulter, or NucleoMag of Macherey Nagel) with a 186 

DNA/beads ratio equal to 1/1.5. Fragments were size-selected in a range between 250 and 500 187 

bp on agarose gel (1.6%) and excised bands purified with the QIAquick Gel Extraction Kit 188 

(Qiagen). The ddRADseq library obtained was amplified independently eight times by PCR, 189 

and the obtained PCR products were then pooled, in order to minimize the impact of potential 190 

PCR errors. We used the following PCR mix: a final volume of 20 µL containing 1 µL of 191 

DNA template, 10 mM of dNTPs, 10 µM of each PCR primer (Peterson et al., 2012) and 192 

2U/µL of Taq Phusion-HF (New England Biolabs Inc.); and the following PCR program: an 193 

initial denaturation at 98°C for 30 seconds; 15 cycles of 98°C for 10 sec, 66°C for 30 sec and 194 

72°C for 1 min; followed by a final extension at 72°C for 10 min. The amplified ddRADseq 195 

library was purified with magnetic beads and sequenced on half a lane of an Illumina Hi-Seq 196 

2500 sequencer (paired-end 2 x 125 bp, Fasteris SA). 197 

 198 

Bioinformatic treatment - DNA sequences of Fagus sylvatica and Coenonympha sp. libraries 199 

were used to call SNP genotypes (total: ~100 million reads). We developed a homemade 200 

pipeline called ProcessMyRAD (fully available at https://github.com/cumtr/pmr) to 201 

automatically perform the different steps leading from the raw reads to genotype data. To call 202 

the genotypes, ProcessMyRAD relies on the STACKS pipeline (Catchen et al., 2013). To 203 

reconstruct loci, the STACKS procedure needs to set three thresholds: the minimum number of 204 

reads to consider an allele (m), the maximum number of mismatches allowed between two 205 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/445122doi: bioRxiv preprint 

https://doi.org/10.1101/445122
http://creativecommons.org/licenses/by/4.0/


 10

alleles to reconstruct a locus (M), and the maximum number of mismatches allowed between 206 

two individual loci to consider them as homologous (n). 207 

 208 

Setting tests for the wet laboratory protocol 209 

Impact of initial DNA amount and number of PCR cycles - We evaluated the impact of two 210 

parameters on the experiment results: 1) the DNA quantity used for the initial 211 

digestion/ligation step; and 2) the number of PCR cycles used to produce the final library.  212 

For 10 samples of Coenonympha and 10 samples of Fagus sylvatica (Table S1), we 213 

repeated the ddRADseq lab experiment three times for each sample with the standard protocol 214 

described above but with different quantities of DNA during the first step: 50, 150 or 250 ng 215 

of initial genomic DNA. Similarly, we used 10 samples of Coenonympha sp. and 10 samples 216 

of Fagus sylvatica to repeat three times the ddRADseq lab experiment, with different 217 

numbers of PCR cycles in the final step of the protocol: 10, 15 or 25 cycles. We then 218 

sequenced the resulting libraries all together. 219 

The sequences resulting from these tests were treated with the STACKS program and the 220 

following clustering parameters: m=4, M=6, n=8 (based on the results of the section 221 

“Bioinformatics tests” for m and M, and with n=M+2 to increase the number if inter-222 

individual matches), keeping only one SNP by ddRADseq fragment. To estimate the impact 223 

of the wet lab treatment on alleles frequencies, we did not filter out alleles based on their 224 

frequency. On the resulting genetic datasets, we determined the number of polymorphic 225 

fragments, the mean fragment coverage, the number of SNPs in the fragments, the individual 226 

heterozygosity, and the proportion of private alleles in individuals.  227 

 228 
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Experimental reproducibility - We assessed the reproducibility of our laboratory protocol by 229 

repeating the experiment, since the digestion/ligation step, three times for 11 Fagus sylvatica 230 

individuals. Each replicate of these triplets was processed with the same protocol and was 231 

sequenced within the same Illumina sequencing run. All sequences obtained were treated 232 

together with the ProcessMyRAD pipeline with m=4, M=6, n=8 and a minor allele frequency 233 

of 0.1 (corresponding to at least three individuals to keep the allele). A locus was kept only if 234 

sequenced in at least 50% of the 33 replicates. 235 

For each replicate, the number of ddRADseq fragments, the mean fragment coverage, the 236 

proportion of polymorphic fragments and the individual heterozygosity were estimated. These 237 

different parameters were then compared among replicates to assess the intra and inter-238 

replicate variability. We also evaluated reproducibility by performing a Principal Component 239 

Analysis on genetic data with the R-package adegenet (Jombart, 2008), and looking at the 240 

distances between replicates in the PCA projection space. In addition, the replicates were used 241 

to estimate the proportion of inconsistencies in our final genetic dataset. These inconsistencies 242 

can take two different forms: errors of genotypes (due to PCR errors or ADO) or fragment 243 

absence (due to a lack of reproducibility of the experiment). We measured the genotyping 244 

inconsistency rate by identifying the proportion of loci with inconsistencies among the three 245 

replicates. Then, by looking at the fragments in the three replicates, we could estimate the 246 

proportion of “true” fragment absences, when the fragment was missing in all three replicates, 247 

and the proportion of “false” fragment absences, when the fragment was missing in just one 248 

or two of the replicates. 249 

 250 

Test on bioinformatic parameters  251 

Impact of bioinformatic treatment - We estimated the influence of the m (ustacks) and M 252 

(cstacks) values on ddRADseq fragment reconstruction and downstream analyses. 253 
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 For this purpose, we used the standard ddRADseq wet protocol described above on 30 254 

individuals of Fagus sylvatica coming from three different populations (Sainte Beaume, 255 

Digne, and Bauges, France; see Table S1) and 30 individuals of Coenonympha butterflies 256 

from three different species (C. arcania, C. gardetta and C. macromma; see Table S1). We 257 

then repeated the bioinformatic pipeline with different m values ranging from 1 to 15 and 258 

different values of M ranging from 1 to 25. When the m value varied, M and n were fixed to 259 

6. When the M value varied, m was fixed to 4 and n was equal to M. For all these tests, the 260 

remaining steps of the procedure were exactly the same and the last step of genetic dataset 261 

export was performed by keeping only one SNP by RAD tag fragment and without any 262 

filtering on allelic frequency. 263 

 To estimate the influence of the m and M values on RAD tag fragment recovery, we 264 

determined the number of reconstructed fragments, their mean coverage and the proportion of 265 

polymorphic fragments for each value of M and m tested. We also evaluated the impact of 266 

these parameters on population genetics results by performing, for all m and M values, some 267 

of the most commonly used analyses using ddRADseq data (Capblancq et al., 2015; Kjeldsen 268 

et al., 2016; Black et al., 2017; Nunziata et al., 2017; Settepani et al., 2017; Elleouet & 269 

Aitken, 2018; Sherpa, Rioux, Pougnet-Lagarde, et al., 2018), i.e. mean individual 270 

heterozygosity, FST among populations (estimated with the adegenet R package (Jombart, 271 

2008)), Principal Component Analysis (PCA, using the adegenet R package (Jombart, 2008)), 272 

genetic structure with sNMF (using the LEA R package (Frichot & François, 2015)) and 273 

evolutionary history reconstruction using Approximate Bayesian Computation (performed 274 

with the diyABC program (Cornuet et al., 2014)). The results of these analyses were then 275 

compared across the m and M ranges and with results from other population genetic studies 276 
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on the same species Coenonympha sp. In Capblancq et al., 2015, and Fagus sylvatica in 277 

Capblancq et al. (in review). 278 

 279 

RESULTS 280 

Influence of DNA quantity and number of PCR cycles  281 

DNA quantity - For all initial DNA quantity conditions, the library produced a mean of 3,172 282 

fragments for Coenonympha, with a mean coverage of 24.6 reads per fragment, and 450 283 

fragments for Fagus sylvatica, with a mean coverage of 19.5 reads per fragment. With 50 ng 284 

or 150 ng of genomic DNA as template, similar numbers of fragments and SNPs were 285 

recovered (around 3,500 fragments for Coenonympha and around 500 for Fagus sylvatica). If 286 

fragment coverage varies (from 15 to 30 for Coenonympha and from 15 to 23 for Fagus 287 

sylvatica), this does not have much impact on individual heterozygosity (He~ 0.125 for 288 

Coenonympha and He~0.25 for Fagus sylvatica). Conversely, we noticed that using 250 ng of 289 

DNA during the initial step of digestion/ligation could dramatically decrease fragment 290 

recovery (divided by 1.5) and SNPs identification for some individuals (Fig. 2). Using 250 ng 291 

of DNA also induced a greater variability among tested individuals (Fig. 2). 292 

 293 

Number of PCR cycles - For all PCR conditions, the library produced a mean of 2,480 294 

fragments for Coenonympha with a mean coverage of 23.9 reads per fragment and 520 295 

fragments for Fagus sylvatica with a mean coverage of 23.3 reads per fragment. Again, the 296 

results showed a great variability depending on the PCR settings. Increasing the number of 297 

PCR cycles in the final library preparation had a positive effect on the number of fragments 298 

and SNPs recovery. The mean number of fragments for Fagus sylvatica ranged from 41 for 299 

10 cycles to 1,028 for 25 cycles. Similar results were obtained for Coenonympha sp. for 300 
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which the number of fragments varied from 350 to 4,500. The number of PCR cycles was also 301 

directly correlated with individual heterozygosity and with the number of private alleles in the 302 

individuals. For example, the individual heterozygosity increased from 0.09 to 0.27 for Fagus 303 

sylvatica individuals when the number of cycles increased from 10 to 25. In the same way, the 304 

number of private alleles doubled when the number of PCR cycles increased from 10 to 25 for 305 

both Coenonympha sp. and Fagus sylvatica samples. Finally, 10 cycles of PCR lowered 306 

Substantially the number of fragments and SNPs as well as the number of private alleles in 307 

the final genetic dataset.  308 

 309 

Reproducibility of the experiment and estimation of inconsistencies 310 

The library of the 11 Fagus sylvatica triplicates produced a mean of 7,547 fragments with a 311 

mean coverage of 20.3 reads per fragments. The PCA performed on the complete genetic 312 

dataset showed very consistent results across the 11 tested individuals (Fig. 3). Inter-313 

individual genetic variability was higher than inter-replicate genetic variability. All triplicates 314 

clustered in the PCA plot and the different individuals could easily be differentiated. 315 

Moreover, considering the eigenvalues, the 10 first axes retained most of the genetic variance 316 

within the three replicates * 11 sample tests (92%). For example, PC1 strongly discriminates 317 

individual VTX_H_83 from the rest of the sampling and PC2 differentiates individuals 318 

SB_H_42 and BG_1_1. This suggests that each PC captured parts of inter-individual genetic 319 

variability differentiating a particular individual from the remaining samples. Replicates did 320 

not seem to add any substantial genetic variability that could have been caught by the PCA. 321 

Across all replicates and individuals, the number of recovered fragments varied from 322 

around 4,000 to 16,000; the mean coverage from 8 to 40; the proportion of polymorphic loci 323 

from 0.15 to 0.38, and the individual heterozygosity from 0.27 to 0.37 (Fig. 3). For seven 324 
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individuals, the replicates returned almost exactly the same number of fragments, the same 325 

ratio of polymorphic loci and the same individual heterozygosity. Four individuals showed 326 

more contrasted results but with similar patterns across the different parameters we measured. 327 

No association between the initial DNA concentration after extraction and the consistency of 328 

ddRADseq results was observed (data not shown).  329 

Regarding the estimation of genotype inconsistencies, the results were congruent 330 

across the 11 tested individuals (Fig. 4). The maximum inconsistency rate was just above 4% 331 

and the minimum is around 1.6%. Similarly, we obtained a good proportion of fragments 332 

recovery among replicates. Between 66% and 90% of the ddRADseq fragments were found in 333 

all three replicates (Fig. 4). The individuals with low fragment recovery rate were the exact 334 

same ones that showed a great variability in the reproducibility experiment (see above). Some 335 

fragments were missing for all three replicates, and the proportions of missing fragments were 336 

pretty homogeneous across individuals, varying from 5% to 13%. Finally, for all samples, a 337 

fair proportion of fragments (2 to 24%) was found in only one or two replicates, giving an 338 

estimation of fragment loss not due to restriction site polymorphism across individuals but to 339 

incomplete digestion, ligation, amplification or sequencing of these fragments.  340 

 341 

Influence of bioinformatic thresholds on the biological results 342 

The ddRADseq libraries used for bioinformatic tests produced very variable numbers of 343 

fragments and coverage depending on the thresholds used along the analysis pipeline. With 344 

the parameter values m = 4 and M = 6, we obtained a mean of 3,246 fragments for 345 

Coenonympha individuals with a mean coverage of 40.16 reads per fragment and 11,018 346 

fragments for Fagus sylvatica samples with a mean coverage of 25.18 reads per fragment.  347 
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The minimum coverage required to create a RAD tag locus during the first step of 348 

STACKS procedure (m) had a direct influence in the number of fragments, the mean coverage 349 

of the fragments and the number of SNPs identified in these fragments (Fig. 5). Furthermore, 350 

the pattern was very similar for the Coenonympha sp. and Fagus sylvatica models. An 351 

increase in m value was associated with a decrease in fragment recovery, the variation being 352 

particularly important between m = 1 and m = 2. Similarly, an increase of m value was 353 

associated with an increase in mean fragment coverage, ranging from 10x for a m value of 1 354 

to 58x for a m value of 15 in Coenonympha sp. and from 5x for a m value of 1 to 30x for a m 355 

value of 15 in Fagus sylvatica. The number of SNPs identified in the fragments was also 356 

strongly affected by variation of the m threshold: the highest number of SNPs was reached for 357 

m = 2 and the lowest number for m = 15. Regarding individual heterozygosity, there was a 358 

slight increase when m increased. Heterozygosity ranged from 0.29 for m = 1 to 0.36 for m = 359 

15 for Fagus sylvatica individuals, and from 0.13 to 0.15 for Coenonympha sp. samples. 360 

Nevertheless, the m parameter did not seem to influence any of the downstream 361 

population genetic analyses. No major difference among the m parameter settings was 362 

observed for FST estimation among populations (Fig. 6), PCA and genetic clustering results 363 

(Fig. 6, Fig S1 and Fig. S2) or demographic inferences (Fig. 7). Here again, the results were 364 

similar for both the animal and plant models. While slight changes in FST values or PCA 365 

scores were noticed when m varied, the populations remained differentiated in the same way 366 

and strength (Fig. 6). For example, the FST values ranged from 0.28 to 0.33 between 367 

Coenonympha arcania and C. gardetta but the ranking of FST values among the three pairs of 368 

species did not change depending on m (Fig. 6). An increasing m seemed to slightly influence 369 

the percentage of inertia retained by the first two PCs for both Fagus sylvatica and 370 

Coenonympha sp. (from 18 to 20% of the genetic variance, see Fig. 6) but population 371 
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differentiation on the PCA was not affected. The Procrustes superimposition performed on the 372 

first two axes of the PCAs returns correlation coefficients superior to 0.96 between each pair 373 

of m values for Coenonympha and superior to 0.85 for F. sylvatica (Fig. S7). Regarding the 374 

genetic structure (sNMF analysis), the number of K selected with the cross-entropy criterion 375 

did not vary for Coenonympha samples and varied between 2, 3 and 4 for Fagus sylvatica 376 

individuals (Fig. 6). This variation was due to very close values of cross-entropy for K = 2, 3 377 

and 4 (Fig. S2). Similarly, the differentiation of species groups in the sNMF analysis 378 

remained exactly the same across the range of m values (Fig. 6). The Procrustes 379 

superimposition performed on the percentage of assignation to the three main clusters 380 

obtained with sNMF returns correlation coefficients superior to 0.975 between each pair of m 381 

values for Coenonympha and superior to 0.99 for F. sylvatica (Fig. S8). Finally, we did not 382 

detect any influence of the m parameter on the estimations of population size, divergence time 383 

or hybridization rate through ABC procedure (Fig. 7). All model parameters showed 384 

approximately the same posterior distribution whatever the m value, with only a small 385 

variation between the maximum and the minimum of the estimates across the m range (Table 386 

S2). 387 

The maximum number of mismatches accepted between two stacks of sequences to 388 

merge two alleles in one locus (M) greatly influenced the number of recovered fragments, the 389 

number of identified SNPs and individual heterozygosity (Fig. 5). When M varied from 1 to 390 

25 the number of recovered ddRADseq fragments decreased from 12,000 to 10,000 for Fagus 391 

sylvatica and from 3,500 to 3,000 for Coenonympha sp. On the opposite, the number of SNPs 392 

identified increased rapidly for the first M values of the range (1-6) until a plateau was 393 

reached around 3,800 fragments for Fagus sylvatica individuals. The influence of M on 394 

individual heterozygosity was clear for M values between 1 and 6, for which heterozygosity 395 
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increased with M. For higher values of M, the relationship was less obvious and the variation 396 

of individual heterozygosity did not seem to follow the variation of M.  397 

In agreement with the results obtained for the m parameter, population genetic 398 

analyses showed very consistent results across the range of tested M values. Again, no 399 

substantial effect was observed for FST values among populations, PCA results, genetic 400 

clustering results or demographic inferences when M value varied (Fig. 6, Fig. 7, Fig. S4 and 401 

Fig. S5). M variation did not impact PCA, neither in terms of population differentiation, nor 402 

in terms of percentage of inertia of the two first axes. The Procrustes superimposition 403 

performed on the first two axes of the PCAs returns correlation coefficients superior to 0.95 404 

between each pair of m values for Coenonympha and superior to 0.85 for F. sylvatica (Fig. 405 

S7). For genetic structure however, we observed a slight change in the number of K selected 406 

by the cross-entropy criterion. Here again, it is rather due to close cross-entropy values at K = 407 

3 and K = 4 than to a real variation across the M range (Fig. S5). Even though, neither the 408 

genetic grouping of individuals nor the percentage of assignation varied across the range of M 409 

value (Fig. 6 and Fig. S8). Finally, all parameters inferred during the ABC analysis showed 410 

very consistent distributions depending on the M value used for the sequence clustering (Fig. 411 

7), with only a small variation between the maximum and minimum of the estimates across 412 

the M range (Table S2).  413 

 414 

DISCUSSION 415 

Double-digest RAD-sequencing is a widely used technique to investigate population genetics 416 

for a wide range of non-model organisms (Peterson et al., 2012; K. R. Andrews et al., 2016). 417 

Multiple studies have speculated and tested the impact of different parameter settings on pre- 418 

and post-sequencing procedures of RAD-based protocols, especially in loci reconstruction 419 
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summary statistics, i.e number of loci or SNPs, or heterozygosity (Davey et al., 2013; Gautier 420 

et al., 2013; K. Andrews & Luikart, 2014; K. R. Andrews et al., 2014; Puritz et al., 2014; 421 

Mastretta-Yanes et al., 2015; Burns et al., 2017; Rochette & Catchen, 2017; Y. Wang et al., 422 

2017; Willis et al., 2017). Nevertheless, only a handful of them linked those parameters to the 423 

downstream biological interpretation (Mastretta-Yanes et al., 2015; Rodríguez-Ezpeleta et al., 424 

2016; Shafer et al., 2017; Malinsky et al., 2018). In addition, some pre-sequencing factors, 425 

regularly pointed out as sensitive parts of the RADseq protocol (Hohenlohe et al., 2012; 426 

Peterson et al., 2012), lack experimental testing on various models that would allow building 427 

a solid knowledge of their influence in ddRAD data production. Our objectives here were to 428 

test the impact of some wet laboratory and bioinformatic treatment settings on loci recovery 429 

as well as on population genetics and demographic inferences.  430 

 431 

Pre-sequencing treatment - Regarding the wet protocol, we focused on two factors for 432 

which we did not find any proper evaluation in the literature: the initial DNA quantity and the 433 

number of PCR cycles in the last step of library amplification.  434 

The initial amount of DNA required in ddRADseq library preparation is a constraint 435 

for small individuals or museum o samples (Blair, Campbell, & Yoder, 2015; Shortt et al., 436 

2017). Here, we found that only a small amount of DNA template (i.e. ~50 ng; Fig. 2) was 437 

required in our library preparation for the two tested systems, which could open the 438 

possibility of using ddRADseq technique with low quantity DNA template from non-invasive 439 

sampling in a conservation genomics context. If the initial protocol from Peterson et al. 440 

(2012) already suggested to use less than 100 ng of DNA per individual, ddRADseq users 441 

commonly process more than 200 ng and even up to 1 µg (Capblancq et al., 2015; Yang et al., 442 

2016; Burns et al., 2017; Sherpa, Rioux, Goindin, et al., 2018). Here we showed that enzyme 443 
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saturation can already happen at the digestion step with 250 ng. Obviously, the exact amount 444 

of DNA that can be digested is directly dependent on the number of enzyme units used and 445 

the number of restriction sites. We showed that even a 5-time variation (i.e. 250 ng instead of 446 

50 or 150 ng in our study) increased the probability of experiment failure by reducing the loci 447 

and the SNP recovery and by inflating the variability between samples (Fig. 2). This points 448 

out the need to calibrate finely the amount of DNA and number of enzyme units to avoid a 449 

dramatic loss of fragments.  450 

The number of PCR cycles is another part of the experiment that has to be carefully 451 

considered (Fig. 2). In their study, Davey et al., 2013 highlighted that PCR cycles introduced 452 

GC biases in sequenced RAD libraries. For example, RAD loci with high GC content were 453 

sequenced more often compared to RAD loci with low GC content for high numbers of PCR 454 

cycles and the opposite was true for for low numbers of PCR cycles (Davey et al., 2013). In 455 

this study, our results showed that the number of SNPs and individual heterozygosity is 456 

reduced with a low number of PCR cycles, while a high number of PCR cycles increases the 457 

number of private alleles. This highlights the trade-off existing between a satisfactory 458 

coverage, directly related to the number of PCR cycles, and the limitation of errors occurring 459 

during PCR, because these can lead to very weak fragment coverage impeding loci 460 

reconstruction (Hohenlohe et al., 2012). Usually the number of PCR cycles is set between 12 461 

and 16 (Peterson et al., 2012; Capblancq et al., 2015; Yang et al., 2016; Burns et al., 2017). 462 

Considering the important increase in individual heterozygosity and number of private alleles 463 

observed with 25 PCR cycles, our results greatly support this practice. It would be interesting 464 

to investigate further if the increase in private alleles and individual heterozygosity could be 465 

simply overcome by stringent filtering on allele frequencies aiming at discarding low 466 

frequency alleles in the population. Unfortunately, our sampling size did not allow such tests.  467 
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Furthermore, we showed that, when properly calibrated, the protocol is greatly 468 

reproducible. The triplicates used for 11 individuals of Fagus sylvatica showed very close 469 

proximities in genetic PCA and most of them showed similar numbers of fragments and 470 

coverage (Fig. 3). Such results were consistent with those of Mastretta-Yanes et al. (2015), on 471 

which most replicate pairs were clustered together in neighbour-joining dendrograms. Even if 472 

there are several steps during ddRADseq laboratory experiment that could lack 473 

reproducibility to some extent (e.g. digestion/ligation, range size selection, amplification by 474 

PCR), our results were robust across replicates. Combined with a low rate of genotyping 475 

inconsistency and missing fragments (Fig. 4), our results illustrate that ddRADseq is an 476 

accessible method with some key parameters that have to be finely tuned to gain in robustness 477 

and reproducibility. Our testing procedure does not claim to cover all parameters that could 478 

influence the ddRADseq method but points at key information about lab protocols and gives 479 

clues to optimize the technique.  480 

 481 

Post-sequencing treatment - Concerning the dry protocol, an important part of the RAD-482 

based sequencing literature pertains to the bioinformatic treatment of sequences and to loci 483 

reconstruction (Mastretta-Yanes et al., 2015; Paris et al., 2017; Rochette & Catchen, 2017; Y. 484 

Wang et al., 2017). These studies highlight the impact of clustering thresholds (e.g. M and m 485 

parameters of the STACKS software procedure) on bioinformatic results and summary 486 

statistics. Indeed, these thresholds have been shown to influence the number of recovered loci, 487 

coverage, number of identified SNPs and error rates (Mastretta-Yanes et al., 2015; Paris et al., 488 

2017; Rochette & Catchen, 2017; Y. Wang et al., 2017). In agreement with previous works, 489 

we found a substantial impact of the minimum coverage (m) and clustering (M) thresholds on 490 

ddRADseq loci recovery and reconstruction during the bioinformatic process. The minimum 491 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/445122doi: bioRxiv preprint 

https://doi.org/10.1101/445122
http://creativecommons.org/licenses/by/4.0/


 22

coverage imposes a minimum number of reads to consider an allele. Many alleles are 492 

expected to be lost with a high m, while a low m can give too much importance to very rare 493 

sequences, and thus potentially to sequencing or PCR errors (Catchen et al., 2013). The 494 

similarity threshold (M) determines the minimum sequence homology to consider that two 495 

sequences are variants of the same locus. Choosing a too high M can wrongly impede the 496 

clustering of different alleles of the same locus, while a too low value could lead to the 497 

merging of paralog regions of the genome (Catchen et al., 2013).  498 

 We could have expected that such variation in loci reconstruction and SNPs 499 

identification would influence, to some extent, the population genetic analyses performed 500 

with most ddRADseq datasets. However, our results suggest that the bioinformatic treatment 501 

has only a marginal influence on population genetic results. Indeed, no change in genetic 502 

differentiation, clustering or demographic inferences were detected neither at the inter-species 503 

level for the animal model nor at the intraspecific level for the plant model (Fig 6, 7, S7 and 504 

S8).  505 

 Moreover, despite a reduced number of individuals, the results of this study are 506 

congruent with previous results obtained with a larger sampling for both Coenonympha and 507 

Fagus sylvatica (Capblancq et al., 2015; Capblancq, unpublished data). Such patterns may be 508 

explained by the large amount of information generated by the ddRADseq method (10 or 100 509 

of thousands of SNPs). A potential “false” signal due to genotyping inconsistencies at some 510 

loci seems negligible compared to the abundance of “true” signal provided by most of the 511 

RAD loci. Similar observations have also been made for another species model, i.e.. 512 

Galapagos sea lion (Zalophus wollebaeki) in Shafer et al. (2017), and similarly, several 513 

studies have demonstrated that clustering parameters have no impact on phylogenetic 514 

reconstruction (Herrera et al., 2015; Hou et al., 2015; Lee et al., 2018).  515 
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 Finally, combined with the results from Malinsky et al. (2018) showing that non-516 

random data missingness due to a batch (i.e library) effect had no impact on downstream 517 

analyses of the genetic structure. These findings moderate the message from the literature, 518 

which commonly presents the bioinformatics treatment as a key parameter of ddRADseq loci 519 

reconstruction. If this step indeed has an influence on loci recovery (i.e summary statistics), it 520 

only has a weak impact on the biological signal resulting from population genetic analyses, at 521 

least for the two models tested in this study. 522 

 523 
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 720 

FIGURES AND TABLES 721 

 722 

Figure 1: Overview of the experimental design used in this study.  723 

 724 

Figure 2: Impacts of initial DNA quantity (bottom) and number of PCR cycles (top) on 725 

ddRADseq results. For each condition and each biological model (Coenonympha sp. or Fagus 726 

sylvatica), boxplots present the number of recovered fragments, the mean coverage of these 727 

fragments, the number of identified SNPs, the individual heterozygosity and the number of 728 

private alleles in individuals. A log-transformation was performed on the results in order to 729 

simplify the comparison of the two models.  730 

 731 

Figure 3: Reproducibility of the experimental wet protocol. The PCA on the left shows the 732 

inter-replicate genetic variability in comparison with inter-individual variability for Fagus 733 

sylvatica individuals. Each three-replicate group is circled by an ellipse. Boxplots on the right 734 

show the variation of the number of fragments, the mean coverage of the fragments, the 735 

proportion of polymorphic fragments and the individual heterozygosity within the three 736 

replicates of each individual. 737 

 738 

Figure 4: Left: boxplot of the genotyping inconsistency rate within Fagus sylvatica 739 

individuals. Right: proportion of loci found either in all the replicates (white), in only one or 740 

two replicates (grey) or in none of the three replicates (black). 741 

 742 

Figure 5: Impact of the ustacks thresholds m and M on the number of fragments, the mean 743 

coverage of the fragments, the number of SNPs, and the mean individual heterozygosity. 744 

 745 

Figure 6: Impact of ustacks thresholds m and M in FST between pairs of populations, genetic 746 

differentiation and structure (PCA and sNMF results) for Fagus sylvatica and Coenonympha 747 

sp. individuals. Only the results for m =1, 4 and 15 and M = 1, 6 and 25 are shown (see Fig. 748 

S1 to S6 for the complete results). Ellipses in the PCA distinguish the different populations or 749 
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species, sNMF results are shown for K = 3 which is the best number of clusters in almost all 750 

cases according to the cross-entropy criterion. 751 

 752 

Figure 7: Impact of ustacks thresholds m and M in demographic inferences obtained the 753 

ABC procedure. The boxplot summarizes the values of the selected parameters in the 1000 754 

simulations closest to the observed dataset. The parameters include divergence times (t1 and 755 

t2) and effective population size (N1, N2, N3) for Fagus sylvatica and Coenonympha 756 

populations, and hybridization contribution (ra) for Coenonympha.  757 

 758 

 759 

SUPPLEMENTARY MATERIAL 760 

 761 

Figure S1: Impact of the bioinformatic threshold m (ranging from 1 to 15) on a genetic PCA 762 

of Fagus sylvatica and Coenonympha sp. samples. 763 

 764 

Figure S2: Impact of the bioinformatic threshold m (ranging from 1 to 15) on genetic 765 

clustering (sNMF method) of Fagus sylvatica and Coenonympha sp. samples. 766 

 767 

Figure S3: Impact of the bioinformatic threshold m (ranging from 1 to 15) on Euclidean 768 

distances between PCA origin and loci scores in PC1 vs PC2 space, for Fagus sylvatica and 769 

Coenonympha sp. samples. 770 

 771 

Figure S4: Impact of the bioinformatic threshold M (ranging from 1 to 25) on a genetic PCA 772 

of Fagus sylvatica and Coenonympha sp. samples. 773 

 774 

Figure S5: Impact of the bioinformatic threshold M (ranging from 1 to 25) on genetic 775 

clustering (sNMF method) of Fagus sylvatica and Coenonympha sp. samples. 776 

 777 

Figure S6: Impact of the bioinformatic threshold M (ranging from 1 to 25) on Euclidean 778 

distances between PCA origin and loci scores in PC1 vs PC2 space, for Fagus sylvatica and 779 

Coenonympha sp. samples. 780 

 781 

Figure S7: Procrustes superimposition of PCA results for a range of M and m values and for 782 

both the Coenonympha and Fagus sylvatica models. The two first axes of the PCA were kept 783 

to do the Procrustes superimposition among the different M and m values. The distribution of 784 

pairwise correlation coefficients between sets of coordinates resulting from the procruste 785 

superimposition are shown for each case. 786 

 787 

Figure S8: Procrustes superimposition of sNMF results for a range of M and m r values and 788 

for both the Coenonympha and Fagus sylvatica models. The individual percentages of 789 

assignation to the three clusters obtained with sNMF analyses at K = 3 were kept to do the 790 

Procrustes superimposition among the different M and m values. The distribution of pairwise 791 

correlation coefficients between sets of assignation scores resulting from the Procrustes 792 

superimposition are shown for each case. 793 

 794 

Table S1: Summary of the samples used in each part of this study. 795 

 796 
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Table S2: Variation of parameters estimation during the ABC procedure for a range of M and 797 

m values and for both the Coenonympha and Fagus sylvatica models. The minimum and 798 

maximum estimation across all M or m values, and the percentage of variation between them 799 

are given for each scenario parameter. 800 
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