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ABSTRACT:  

Background: In recent years, research on cancer predisposition germline variants has 

emerged as a prominent field. The identity of somatic mutations is based on a reliable 

mapping of the patient germline variants. In addition, the statistics of germline variants 

frequencies in healthy individuals and cancer patients is the basis for seeking candidates for 

cancer predisposition genes. The Cancer Genome Atlas (TCGA) is one of the main sources of 

such data, providing a diverse collection of molecular data including deep sequencing for 

more than 30 types of cancer from >10,000 patients. 

Methods: Our hypothesis in this study is that whole exome sequences from healthy blood 

samples of cancer patients are not expected to show systematic differences among cancer 

types. To test this hypothesis, we analyzed common and rare germline variants across six 

cancer types, covering 2,241 samples from TCGA. In our analysis we accounted for inherent 

variables in the data including the different variant calling protocols, sequencing platforms, 

and ethnicity.  

Results: We report on substantial batch effects in germline variants associated with cancer 

types. We attribute the effect to the specific sequencing centers that produced the data. 

Specifically, we measured 30% variability in the number of reported germline variants per 

sample across sequencing centers. The batch effect is further expressed in nucleotide 

composition and variant frequencies. Importantly, the batch effect causes substantial 

differences in germline variant distribution patterns across numerous genes, including 

prominent cancer predisposition genes such as BRCA1, RET, MAX, and KRAS. For most of 

known cancer predisposition genes, we found a distinct batch-dependent difference in 

germline variants.  
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Conclusion: TCGA germline data is exposed to strong batch effects with substantial 

variabilities among TCGA sequencing centers. We claim that those batch effects are 

consequential for numerous TCGA pan-cancer studies. In particular, these effects may 

compromise the reliability and the potency to detect new cancer predisposition genes. 

Furthermore, interpretation of pan-cancer analyses should be revisited in view of the source 

of the genomic data after accounting for the reported batch effects. 

 

Keywords: Cancer predisposition, TCGA, germline variants, batch effect, somatic mutations, 

personalized medicine, Next generation sequencing, BRCA1, Genomic sequencing centers. 

 

Abbreviations:  

BCM, Baylor college of medicine  
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LoF, Loss of function  

MPS, Massively parallel sequencing  

SNV, Single nucleotide variant 

KS, Kolmogorov-Smirnov 

TCGA, The cancer genome atlas 

TiTv, Transition-transversion  

WUGSC, Washington university genome sequencing center  

WES, Whole exome sequencing 

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/445049doi: bioRxiv preprint 

https://doi.org/10.1101/445049
http://creativecommons.org/licenses/by-nd/4.0/


4 
 

INTRODUCTION  

Identifying predisposition variants underlying cancer heritability is of utmost importance 

and a critical milestone for personalized medicine. Despite the enormous clinical relevance, 

strong evidence for variant contribution to cancer development is restricted to only a few 

genes harboring significant effects. For example, inherited mutations in BRCA1 and BRCA2 

predispose to very high risks for breast and ovarian cancers [1-3]. The risk and prevalence of 

specific germline variants in cancer predisposition genes greatly vary across ethnicities and 

cancer types, as illustrated by the high prevalence of BRCA1 variants in Ashkenazi Jews [4, 

5]. While each cancer type may have its own signature, a substantial overlap in the identity 

of known predisposition genes has been observed [6, 7]. Studies of families with high 

recurrence of cancer identified numerous genes carrying germline mutations with high 

penetrance (e.g., [2, 8]). The increasing number of sequenced exomes has led to the 

discovery of additional cancer predisposition genes, mostly with rare mutations [9-11].  

In recent years, the task of identifying predisposition variants [2] using data-driven and 

statistically-sound approaches has become feasible, thanks to the availability of thousands 

of genomic samples with satisfying sequencing depth and quality, from healthy and diseased 

individuals (e.g., [7, 12]). The premise is that identifying germline cancer predisposition 

genes will lead to improved clinical diagnosis of hereditary cancers [13]. The Cancer Genome 

Atlas (TCGA) [14] is the most exhaustive collection of such data. Batch effects in miRNAs-

Seq, RNA-Seq and DNA methylation data from TCGA were reported [15]. However, batch 

effects in genomic data from whole exome sequencing (WES) were mainly attributed to 

platform-dependent sequencing reactions and sampling conditions [16]. Additionally, it was 

noted that TCGA exome sequencing data is liable to inaccuracies resulting from sample 

calling quality [17] and additional technical effects associated with different batches [18]. 
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The latter is evident through monitoring loss of function (LoF) mutations, and specifically 

short indels that cause frameshifts [18]. 

In this study, we performed a detailed analysis of germline variants (common and rare) 

across six cancer types covering thousands of samples. Our assumption is that germline 

variants identified using WES of healthy blood samples extracted from cancer patients are 

not expected to show systematic differences across cancer types, assuming that biases 

attributed to variant calling, indel recording, and population structure are eliminated. 

Consequently, the reliability and consistency of the data in TCGA can be directly assessed in 

an analysis avoiding or correcting for such known confounders. In this study, we show that 

the mapped reads are already subjected to substantial batch effects, and demonstrate the 

impact of such batch effects on critical statistical measures of the data and pan-cancer 

downstream interpretation.  

 

RESULTS 

Germline variants in exome sequences  

In order to test the TCGA dataset for potential batch effects, we processed and analyzed a 

subset of the cancer-type cohorts in TCGA. We focused on six cancer types, each with at 

least 250 germline samples (total of 2,241 samples): BRCA (Breast Invasive Carcinoma), 

UCEC (Uterine Corpus Endometrial Carcinoma), STAD (Stomach Adenocarcinoma), SKCM 

(Skin Cutaneous Melanoma), LIHC (Liver Hepatocellular Carcinoma) and THCA (Thyroid 

Carcinoma) (Supplementary Table S1).  

We implemented a unified variant calling pipeline for aligned reads (i.e., TCGA germline 

BAM files) using conventional, well-accepted variant calling methods (see Methods). We 

restricted the reported analysis to 1,522 samples TCGA classified as Caucasian (marked 
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“White” by TCGA) to eliminate possible biases due to ancestry. We also restricted our 

analysis to samples profiled using Massively Parallel Sequencing (MPS) methodology (only 

HiSeq) to minimize variations due to the technical genomic data production protocols. As 

short indels account for the majority of batch effects and inconsistencies [18], they were not 

included in the variant calling, and only Single Nucleotide Variants (SNVs) were considered.  

 

Batch effects manifestation in the number of called variants 

Our quantitative analysis reveals a significant batch effect in the number of germline 

variants per sample across different cancer types. The most prominent characteristic shared 

by cancer types with similar numbers of called variants is the sequencing center contributing 

to the collection in TCGA (Figure 1A). The healthy blood samples from patients with skin, 

stomach and thyroid cancers (SKCM, THCA and STAD) were sequenced at the Broad Institute 

(BI); samples from patients with uterus and breast cancers (UCEC and BRCA) were 

sequenced at the Washington University Genome Sequencing Center (WUGSC) and samples 

from lung cancer patients (LIHC) were sequenced at the Baylor College of Medicine (BCM) 

sequencing center.  

Numerous aspects of the data analysis are sensitive to the origin of the data, thus reflecting 

the effect of the different batches. We present several such quantitative measures: 

 

20-30% difference in the number of called variants per sample 

In Figure 1 we show the number of called variants per sample, partitioned by the patient's 

cancer type. The average number of germline variants greatly varies across sequencing 

centers. Samples provided by WUGSC and BCM have up to 30% more variants compared to 
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samples provided by BI (one-way ANOVA, p-value = 1.32E-313). This observation applies 

also to the other ethnic groups (Supplementary Figure S1).  

Recently, a report on a catalogue of rare pathogenic germline mutations from TCGA was 

presented [7]. This report relied on a different variant calling pipeline. By extracting the 

number of variants per sample from this report, we show that our reported batch effect is 

insensitive to the underlying variant calling pipeline. Supplementary Table S2 provides 

estimated values for the average number of variants per sample across all 33 cancer types in 

TCGA extracted from this report. In addition to the three sequencing centers covered in this 

work, the extracted data also includes a fourth sequencing center, the Sanger center. The 

overlooked dominating signal of the identity of the sequencing center applies in the data 

extracted from this report, and generalizes to all 33 cancer types (Supplementary Figure 

S2A). For the six shared cancer types, we report an almost perfect correlation (r=0.91) 

between the average number of variants per sample calculated in our analysis to these 

numbers extracted from the report (Supplementary Figure S2B). We conclude that the 

reported sequencing batch effect dominates the results regardless of the variant calling 

pipelines used.  

 

Variations in nucleotide substitution ratios 

We find strong evidence for batch effect in the transition-transversion (TiTv) ratios of called 

variants per sample across sequencing centers (Figure 1B, one-way ANOVA p-value < 1E-

320). Samples sequenced at BI have ~6% higher transition-transversion ratio (average 2.73) 

compared to samples from the other two sequencing centers (average 2.57). 
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Figure 1. Variability in called variants across TCGA sequencing centers  

Batch effect due to sequencing center in 1,522 samples associated with Caucasian populations (originated in 

Europe, Middle East or North Africa) across the six analyzed cancer types. (A) Number of called exome variants 

per sample. (B) Ratio of transition-transversion (TITv) variants per sample. Colors represent the genomic 

sequencing centers: BI (blue), WUGSC (orange) and BCM (green). 

 

Variant density per gene 

We addressed the possibility that the found differences in the number of variants according 

to the different batches (Figure 1A) might reflect a naive scaling issue due to different 

sequencing depths or significance thresholds in variant calling among the sequencing 

centers. We tested whether the batch effects apply also to the relative variant densities 

across genes. For each combination of gene and sample, we calculated variant density per 

nucleotide (i.e., the number of variants divided by the full transcript length). We then 

calculated Pearson’s correlation for each pair of samples across all transcripts. We show the 

resulted correlations for the 1,522 Caucasian samples (Figure 2). We find that the batch 

effect dominates these variant densities, with a strong similarity among samples sequenced 

at the BI. The lung cancer (LIHC) samples, which were sequenced at BCM, show the largest 

deviation. We conclude that there are consistent variations among samples from different 

sequencing centers that are more substantial than naive scaling, leading to enrichment or 

depletion of called variants in specific genes.  
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Figure 2. Correlations in variant densities among samples from Caucasian populations 

Heatmap of Pearson’s correlations of per-gene variant densities between pairs of samples from Caucasian 

populations. The 1,522 samples are sorted by their cancer types. The correlation values show high similarity 

among cancer types sequenced by the same canter. The cancer types are as reported in Figure 1. BRCA (Breast 

Invasive Carcinoma, 291 samples), UCEC (Uterine Corpus Endometrial Carcinoma, 169 samples), STAD 

(Stomach Adenocarcinoma, 248 samples), SKCM (Skin Cutaneous Melanoma, 435 samples), LIHC (Liver 

Hepatocellular Carcinoma, 146 samples) and THCA (Thyroid Carcinoma, 258 samples). Color for the 

sequencing centers are as in Figure 1.  

 

Variant distribution within cancer predisposition genes 

We tested whether sequencing center batches affect not only the number of variants 

(Figure 1) and their distribution among genes (Figure 2), but also their distribution within 

genes. Figure 3 shows the positional distribution of variants within four known cancer 

predisposition genes: BRCA1, BRCA2, KRAS and RET. We show marked differences 
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associated to the sequencing centers in the distribution of variants along three of these 

genes. Interestingly, the strongly reported predisposition gene BRCA2 is mostly 

indistinguishable for all six cancer types and is thus relatively insensitive to this batch effect.  

 

 

 

 

 

 

 

 

 

Figure 3. Gene exomic location distributions of germline variants within selected cancer predisposition 

genes  

Empirical probability density functions (PDF) of germline variant coordinates, plotted for four selected genes 

(BRCA1, BRCA2, RET and KRAS). Each line represents the density function of one of the six cancer types, 

colored by their corresponding sequencing center: BI (SKCM, STAD and THCA) in blue, WUGSC (BRCA and 

UCEC) in orange, and BCM (LIHC) in green. The genes BRCA1, RET and KRAS display distinct distributions per 

sequencing batch, while BRCA2 displays a relatively cohesive distribution. Exons are colored by alternating gray 

and white backgrounds to enhance the visibility of exon boundaries (introns, for which we have no data, are 

omitted). The schemas of the transcripts (including the non-coding 5’-UTR and 3’-UTR parts) are shown below 

each figure. For visibility, the graphs are smoothed by kernel density estimation (KDE), using a window size of 

100 nt.  

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/445049doi: bioRxiv preprint 

https://doi.org/10.1101/445049
http://creativecommons.org/licenses/by-nd/4.0/


11 
 

As illustrated in Figure 3 for four selected genes, we analyzed the entire collection of 104 

known cancer predisposition genes from the COSMIC catalogue [19], in order to thoroughly 

quantify the batch effect on the distribution of called variants within those genes (Figure 4). 

We used the Kolmogorov-Smirnov (KS) statistical test to compare these distributions 

between the 15 pairs of the six cancer types for each gene. We clustered the genes and 

pairs of cancer types based on these statistical results (p-values) using Bi-clustering. Pairs 

originating from the same sequencing center were clustered together (e.g., the three 

leftmost columns corresponding to the three pairs sequenced at BI), highlighting the effect 

of the sequencing center on variants’ positional distribution. 

The susceptibility of genes to the batch effect was determined by the ratio of similarity 

(using KS p-values) within and across the BI and WUGSC batches (see Methods). Only 35 of 

the 104 genes were unaffected by the batch effect (p-value ratio <1.0; Supplementary Table 

S3). Variant distribution of genes that are extremely sensitive to the batch effect based on 

this p-value ratio (e.g. MAX, SMACRE1) and other genes that are insensitive (e.g. POLD1) is 

shown in Supplementary Figure S3.  
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Figure 4. Significant differences in variant location distributions between cancer-type pairs Bi-clustering of 

Two-sided Kolmogorov-Smirnov (KS) test results (log-p-values) comparing cancer-type pairs across 104 genes 

annotated by COSMIC as cancer predisposition genes.  

 

Batch effects is associated with clinical outcome  

We assume that if the identity and distribution of called variants along genes have no 

impact on pan-cancer downstream clinical interpretation, there will be no difference 

between genes that are prone to such batch effect and those that are unaffected by it. To 

test this assumption we performed an indirect test and followed the survival of patients 

while focusing on two disjoints gene sets from the 104 genes annotated by COSMIC [19] as 

germline-associated cancer predisposition genes. Specifically, we sorted the 104 genes by 

their p-value ratio and defined two extreme gene sets: (i) the top 10% (10 genes) that 

display maximal sensitivity to the batch effect according to the p-value ratio: MAX, RET, 
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ERBB4, TSC1, DICER1, BARD1, ERCC5, PRKAR1A, PHOX2B and SMARCE1 and (ii) the bottom 

10% (10 genes) showing the minimal sensitivity to such effect: CYLD, POLD1, SMAD4, TSHR, 

CDC73, NTHL1, SMARCB1, TSC2, FH and SDHD. We performed a survival analysis on cancer 

patients with somatic mutations from an independent cohort, taken from MSK-IMPACT 

clinical sequenced samples (MSKCC, [20]), which covers 10,129 samples.  

We found a clear difference in the Kaplan-Meier estimated survival curves for the two sets 

of genes (compare Figures 5A to 5B). Specifically, statistically significant reduced survival 

(Log rank test p-value = 4.58e-4, Figure 5A) is associated with patients carrying mutations in 

the genes that are maximally sensitive to the batch effect. Such difference is not detected 

for genes that are resistant to the batch effect (p-value = 0.236, Figure 5B). In both 

instances, the fraction of cases with mutations in the gene sets is 11% of all 10,129 samples, 

showing that the difference in observed effects on survival for the two groups of genes is 

not due to differences in statistical power. We conclude that the relative sensitivity of genes 

to batch effect may be carried on to downstream analysis, including clinical outcome and its 

interpretation, even when one uses independent cohorts for such analysis. 

 

 

 

 

 

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/445049doi: bioRxiv preprint 

https://doi.org/10.1101/445049
http://creativecommons.org/licenses/by-nd/4.0/


14 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Survival curves for gene sets differing by their sensitivity to batch effect 

Kaplan-Meier estimate survival curves tested on 10,129 samples from the MSK-IMPACT clinical sequenced 

cohort (MSKCC, [19]). The analysis applies to genes from a collection of 104 CPGs annotated by COSMIC. (A) 

Top 10 genes exhibiting maximal sensitivity to the batch effect. (B) Bottom 10 genes exhibiting minimal 

sensitivity to the batch effect. Supplementary Table S3_104 CPG lists the 104 genes along with their batch 

effect measure.  

 

 

 

Batch effects are associated with most of the analyzed genes  

 

We expanded the KS paired statistics analysis to include all genes with variants in all six 

cancer types (overall, 18,421 genes). Only 33% of the genes appear to be insensitive to the 

batch effect (score <1; see Methods and Supplementary Table S3, all genes). Again, we 

observe strong similarity between cancer-type pairs sequenced at the same centers, 

compared to high variability between pairs originating from different sequencing centers. 

Pairs comparing cancer types from BCM (LIHC) and WUGSC (UCEC and BRCA), as well as the 

UCEC-BRCA pair show intermediate resemblance (Figure 6).  
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Figure 6. Violin plots based on Kolmogorov-Smirnov test per each group pairing 

Two-sided Kolmogorov-Smirnov (KS) tests were carried per gene to test for differences in the distributions of 

variants between each of the 15 cancer-type pairs (the same variant distributions shown in Figure 3 for four 

selected genes). Each panel displays the distribution of resulted p-values across all 18,421 analyzed genes. 

Red-colored images represent cancer-type pairs originating from different sequencing centers, while blue-

colored images represent pairs originating from the same sequencing center. Cancer-type labels are color-

coded by sequencing centers, as in all previous figures. The y axis scale is -log10(p-value), where all values 

above 2.5 were truncated to 2.5 (for visibility). 

 

Discussion 

We report on multiple layers of batch effects associated with the sequencing centers 

contributing to TCGA, which are evident upon examination of called germline variants from 

thousands of samples. These systematic biases raise an urgent need to identify their exact 

source, be it experimental [21], technical [17, 18] or computational [22]. Understanding the 

sources of biases is essential for the ongoing effort to mitigate and adjust for such biases 

from high-throughput collection and data compilation [23, 24].  
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Somatic mutations in cancer samples exhibit strong characteristics by the cancer type. An 

entirely opposite trend is expected for germline variants from healthy samples. There, the 

genomic characteristics signify the ethnic origin of the analyzed samples. By examining 

samples from the same population (i.e. Caucasians), we expect unified and cohesive 

genomic signals among samples and across cancer-types. Under such setting, it is easier to 

isolate the batch effect phenomenon, as we have shown here. However, we anticipate that 

the batch effect may also infiltrate, to some extent, into somatic mutation analyses, as 

suggested by our clinical analysis (Figure 5). However, due to the orders-of-magnitude 

higher variability in the number of somatic mutations observed among different cancer 

types, the batch effect is often masked, making it more challenging to identify. Many of the 

pan-cancer studies performed on TCGA data rely heavily on differences in the total number 

of somatic mutations among cancer types. Such studies might be skewed due to 

unaccounted sequencing batch effects. The identity of the genomic centers in which the 

blood samples were sequenced and the methodology used (i.e., the proportion between 

samples sequenced by HiSeq technology to data extracted from GeneArray) differ among 

cancer types and should be accounted for as well.  

The reported TCGA batch effect has a broad range of implications. Our results demonstrate 

similarity among samples originating from the same sequencing center, compared to 

dissimilarity across samples from different sequencing centers. Our results reaffirm the 

encompassing nature of the sequencing batch effect that are not restricted to any particular 

cancer type from TCGA (Supplementary Figure S2). 

In summary, the observed batch effects influence the number of variants per sample (Figure 

1A), as well as the types of variants (Figure 1B), the number of variants at a per-gene 

resolution (Figure 2), and the distribution of variants within genes (Figure 3). They also 
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drastically affect the majority of candidate genes annotated as predisposed for cancer 

(Figure 4) as well as other genes (Figure 6, Supplementary Table S2). 

The batch effect described in this study is not restricted to the context of cancer, and may 

affect other human catalogues of WES germline variants. In the context of cancer, the pan-

cancer studies are especially prone to batch effect that may lead to false discoveries and 

misinterpretation. Protocols for determining the identity and prevalence of somatic 

mutations from patient’s biopsy rely on having an accurate list of its germline variants. 

Developing methodologies to better control the inherent quantitative imbalances caused by 

batch effects is urgently and critically needed. Our results suggest that without batch effects 

correction, pan-cancer analysis cannot guarantee the precision required for personalized 

medicine. Current filters designed to remove batch effects from whole genome sequencing 

seem to impede the ability to detect true associations, and find new disease-associated 

variants [23,24]. In conclusion, the reported biases underlie the severe discrepancies in 

germline variants detection and analysis. Additionally, data from the different genomic 

centers may tamper with detection of somatic mutations, and therefore must be taken into 

consideration in any data driven pan-cancer analysis and interpretation.  

 

Materials and Methods  

 

Data resource  

Approval for access BAM files and clinical data of TCGA cases was obtained from the 

database of Genotypes and Phenotypes (dbGaP) [25]. We selected a total of 2,241 blood 

derived healthy DNA samples with whole exome sequencing data (Supplementary Table S1). 

We limited the analysis to samples sequenced by the HiSeq-2000 Illumina technology. 
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Aligned sequence data for normal samples in BAM file format and the accompanying 

metadata was downloaded from GDC portal [26].  

 

Germline variant calling 

Variant calling was limited to exome regions only, as provided by UCSC GRCh38 reference 

genome [26]. We ran four different variant calling pipelines on each BAM file: GATK 

‘HaplotypeCaller’ pipeline v3.5 [27], Atlas2 v1.4.3 [28], Freebayes [29] and Platypus v0.8.1 

[30]. We filtered the results by their quality score. Samples with four complete VCF files (for 

each of the four pipelines) were unified; samples with missing or incomplete VCF files were 

discarded. Running this pipeline on a single BAM file took approximately 22 hours and 

produced a ~200MB unified VCF file.  

Comparing within-gene variant distributions 

Many of the presented analyses required comparing the distributions of within-gene variant 

locations between cancer types (Figures 3,4,6). Within each gene, we collected all the called 

variants (from all samples), and partitioned them into six groups according to the cancer 

types they had originated from. We considered only the per-gene exomic locations of the 

variants (e.g. coordinates 0 to 8,300 for BRCA1, Figure 3). Denote by Lg,t=(Lg,t(1),..,Lg,t(kg,t)) 

the collection of the gene exomic locations of all kg,t called variants in a given gene g 

originating from samples of a given cancer type t (for example,  if singleton germline 

variants were called at nucleotide positions 17, 65, and an additional variant was called at 

two individuals at position 183 of the KRAS transcript in SKCM samples, then 

LKRAS,SKCM=(17,65,183,183)) . Note that the same locations, or even same variants, may 

appear multiple times in such a collection (e.g. if a variant is called in multiple samples). The 
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empirical distributions of these variant location collections Lg,t are displayed in Figure 3 for 

all six cancer types within four selected genes. 

In order to compare two cancer types t,s for a given gene g and obtain a p-value for the 

difference in the distributions of variants within that gene between the two cancer types, 

we applied a two-sided Kolmogorov-Smirnov (KS) test between the two (cumulative) 

empirical distributions of the collections, denoting the resulting p-values as 

pg,(t,s)=KS(Lg,t,Lg,s). These p-values are shown in supplementary table S3.  

In order to obtain a final summary measure for the possible presence of batch effect within 

a gene (with respect to the distribution of variants along it), we took the ratio between the 

KS p-value of an intra sequencing center pair to the KS p-value of an inter sequencing center 

pair. Specifically, we defined  the ratio rg=pg,min/pg,max between the minimum of the p-values 

of BI-BI pairs pg,min=min (pg,(SKCM,STAD), pg,(SKCM,TCHA) pg,(STAD,TCHA)) to the maximum of the p-

values of BI-WUGCS pairs pg,max=max(pg,(SKCM,BRCA), pg,(SKCM,UCEC), pg,(STAD,BRCA), pg,(STAD,UCEC), 

pg,(TCHA,BRCA), pg,(THCA,UCEC),). We declared a gene to be possibly affected by the batch effect if 

rg>1. By taking a minimum-to-maximum ratio, we adopted a conservative criterion for the 

presence of the batch effect, requiring that all between-center p-values are smaller than all 

within-centers p-values. As reported, only 33% of the analyzed genes resulted a ratio rg< 1, 

indicating no batch effect. 
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Supplementary Information 

Figure legends  

Figure S1. Number of exome variants per sample across ethnic groups and cancer types 

(data source: Supplementary Table S1) 
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Figure S2. Average number of variants per sample based on an alternative variant calling pipeline 
(for all 33 cancer types) 
 A. 

 
 

 

B. 

 

(A) Box plots show an average number of variants per sample across all 33 cancer types 

partitioned by the identity of the four sequencing centers. The data was extracted from 
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another study (Huang et al. [7]; Supplementary Table S2). Boxplots are color-coded by the 

four sequencing centers that provided the analyzed data: Broad Institute (BI, blue), 

Washington University Genome Sequencing Center (WUGSC, orange) Baylor College of 

Medicine (BCM, green) and the Sanger Institute (Sanger, purple). A total of 16 cancer types 

were sequenced by BI, 9 by WUGSC, 7 by BCM, and 1 cancer type by the Sanger Institute. 

(B) Comparing the values of the 6 cancer types shared by the analysis in this study (y-axis, 

Supplementary Table S1) to the values in (Huang et al. [7]) (x-axis).  

 

Figure S3. Gene exomic location distributions of germline variants within selected cancer. 

 

Empirical PDF of germline variant coordinates for four representative genes (see Figure 3 in 

main text). The genes shown are (A) MAX, (B) SMARCE1, (C) BARD1 and (D) POLD1. Each 

colored line represents the distribution for one of the 6 groups. SKCM, STAD, THCA are 

colored blue; BRCA, UCEC are in orange; LIHC is in green. The distributions per sequencing 

center are indicated by the score of the KS paired statistics (see Methods). The sensitivity 

rank is indicated by the percentage (lower percentage indicating higher sensitivity to the 

batch effect). KS p-values comparing variant distribution among all pairs per gene can be 

found in Supplementary Table S3 (all genes).  
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Table S1. Number of variants in exomes per sample across ethnic groups and cancer types 

Cancer 

Type 

White  

(Ave)  

 

White 

(std)  

 

African- 

American  

(Ave)  

African- 

American  

(std)  

Asian  

(Ave)    

Asian  

(std)  

BRCA 41561.7 4770.1 51717.9 3304.6 40446.3 3825.4 

LIHC 39884.5 3414 47976.3 5913.1 40996.4 2593 

SKCM 29679.7 2382.5 36425 - 31134.2 4087.7 

STAD 31228.9 3154.9 34824.2 1142.3 32259 3540.4 

THCA 30251 1417.9 36294.3 1645.9 30368.6 1310.5 

UCEC 41306.7 3825.2 50976.3 4114 44563.7 6770 
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Table S2. Cancer-type statistics derived from TCGA 

Cancer  

Type 

Sequencing 

Center
a
 

# of 

Samples White African Asian 

Not 

provided 

Hawaiian / 

Pacific  

Indian 

/Alaska  

Ave. # 

variants 

(Fig. S1E)
b
 

ACC BCM 92 78 1 2 11 0 0 27500 

BLCA BI 412 327 23 44 18 0 0 25000 

BRCA WUGSC 1098 757 183 61 95 0 1 28000 

CESC WUGSC 307 211 30 20 36 2 8 31500 

CHOL WUGSC 45 38 3 3 1 0 0 31500 

COAD BCM 458 213 59 11 174 0 1 29000 

DLBC BCM 48 29 18 1 0 0 0 29500 

ESCA WUGSC 185 114 5 46 20 0 0 32000 

GBM BI 398 341 41 7 9 0 0 25500 

HNSC BI 528 452 48 11 15 0 2 25500 

KICH BCM 66 58 4 2 2 0 0 29000 

KIRC BCM 535 464 56 8 7 0 0 28500 

KIRP BI 291 207 61 6 15 0 2 29000 

LAML BI 191 172 15 2 2 0 0 25500 

LGG BI 515 475 21 8 10 0 1 25500 

LIHC BCM 377 187 17 161 10 0 2 30000 

LUAD BI 519 392 52 8 66 0 1 26000 

LUSC BI 504 351 31 9 113 0 0 26000 

MESO SANGER 87 85 1 1 0 0 0 28500 

OV WUGSC 571 485 34 20 28 1 3 25000 

PAAD BI 185 162 7 11 5 0 0 25000 

PCPG BI 179 148 20 6 4 0 1 25000 

PRAD BI 498 147 7 2 342 0 0 25000 

READ WUGSC 170 82 6 1 81 0 0 28500 

SARC WUGSC 261 228 18 6 9 0 0 32000 

SKCM BI 470 447 1 12 10 0 0 25000 

STAD BI 443 278 13 89 62 1 0 26000 

TGCT BCM 134 119 6 4 5 0 0 29000 

THCA BI 507 334 27 52 93 0 1 25500 

THYM WUGSC 124 103 6 13 2 0 0 32000 

UCEC WUGSC 559 374 108 20 32 9 4 30500 

UCS BI 57 44 9 3 1 0 0 27000 

UVM BI 80 55 0 0 25 0 0 25000 
 

a
Sequencing centers providing data for 33 cancer types in the TCGA are: Broad Institute (BI), 

Washington University Genome Sequencing Center (WUGSC), Baylor College of Medicine 

(BCM) and Sanger center (Sanger). 
b
Data for number of variants per sample is provided by 

[12] in supplementary Figure S1E. Average data was presented at a 500 variants’ resolution. 

In italic are the 6 cancer types analyzed in this study.  
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Table S3 - Kolmogorov-Smirnov P-value per gene across all pairs of 6 cancer types  

A measure of the batch distinctive variant distribution pattern is shown for the 104 CPG 

annotated by COSMIC (named “104 CPG”) and the entire genes (named “all genes”). The 

table lists all genes with at least a single variant among the compared groups.  
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