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ABSTRACT 23 

Next-generation sequencing technology (NGS) enables discovery of nearly all genetic variants present 24 

in a genome. A subset of these variants, however, may have poor sequencing quality due to limitations 25 

in sequencing technology or in variant calling algorithms. In genetic studies that analyze a large number 26 

of sequenced individuals, it is critical to detect and remove those variants with poor quality as they may 27 

cause spurious findings. In this paper, we present a statistical approach for performing quality control on 28 

variants identified from NGS data by combining a traditional filtering approach and a machine learning 29 

approach. Our method uses information on sequencing quality such as sequencing depth, genotyping 30 

quality, and GC contents to predict whether a certain variant is likely to contain errors. To evaluate our 31 

method, we applied it to two whole-genome sequencing datasets where one dataset consists of related 32 

individuals from families while the other consists of unrelated individuals. Results indicate that our 33 

method outperforms widely used methods for performing quality control on variants such as VQSR of 34 

GATK by considerably improving the quality of variants to be included in the analysis. Our approach is 35 

also very efficient, and hence can be applied to large sequencing datasets. We conclude that combining a 36 

machine learning algorithm trained with sequencing quality information and the filtering approach is an 37 

effective approach to perform quality control on genetic variants from sequencing data. 38 

Keywords: machine learning, genetic variant, quality control, next-generation sequencing, random 39 

forest, filtering 40 

 41 

Author Summary 42 

Genetic disorders can be caused by many types of genetic mutations, including common and rare single 43 

nucleotide variants, structural variants, insertions and deletions. Nowadays, next generation sequencing 44 

(NGS) technology allows us to identify various genetic variants that are associated with diseases. 45 

However, variants detected by NGS might have poor sequencing quality due to biases and errors in 46 
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sequencing technologies and analysis tools. Therefore, it is critical to remove variants with low quality, 47 

which could cause spurious findings in follow-up analyses. Previously, people applied either hard filters 48 

or machine learning models for variant quality control (QC), which failed to filter out those variants 49 

accurately. Here, we developed a statistical tool, ForestQC, for variant QC by combining a filtering 50 

approach and a machine learning approach. We applied ForestQC to one family-based whole genome 51 

sequencing (WGS) dataset and one general case-control WGS dataset, to evaluate our method. Results 52 

show that ForestQC outperforms widely used methods for variant QC by considerably improving the 53 

quality of variants. Also, ForestQC is very efficient and scalable to large-scale sequencing datasets. Our 54 

study indicates that combining filtering approaches and machine learning approaches enables effective 55 

variant QC. 56 

Introduction 57 

Over the past few years, genome-wide association studies (GWAS) have been playing an important role 58 

in identifying genetic variations associated with common diseases or complex traits(1,2). GWAS have 59 

found many associations between common variants and human diseases, such as schizophrenia(3), type 60 

2 diabetes(4,5) and Parkinson’s Disease(6). However, these common variants typically explain only a 61 

small fraction of heritability for the complex traits(7,8). Rare variants are another type of genetic 62 

variants that have been considered as an important risk factor for complex traits and common 63 

diseases(9–12). With the next generation sequencing (NGS) technology, geneticists may now gain 64 

insights into the roles of novel or rare variants. For instance, deep targeted sequencing was applied to 65 

discover rare variants associated with inflammatory bowel disease(13). Whole genome sequencing 66 

(WGS) has been used to identify rare variants associated with prostate cancer(14), and with whole 67 

exome sequencing, studies have also detected rare variants associated with LDL cholesterol(15) and 68 

autism(16). 69 
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NGS data are not, however, perfect, and the quality of variants detected by sequencing may be 70 

adversely influenced by several factors. First, genome sequencing is known to have errors or biases(17–71 

21), which might cause inaccuracy in detecting variants. Second, sequence mappability of different 72 

regions may not be uniform, but correlated with sequence-specific biological features, leading to 73 

alignment biases. For instance, it is shown that introns have significantly lower mappability levels than 74 

exons(22). Third, variant calling algorithms may be sources of errors as no algorithm is 100% accurate. 75 

For example, GATK HaplotypeCaller and GATKUnifiedGenotyper(23), which are the widely used 76 

variant callers, have sensitivity of about 96% and precision of about 98%(24). Additionally, different 77 

variant callers may generate discordant calls on some variants(25), which indicates inaccuracy of those 78 

calls, and in certain cases, different versions of even the same software may generate inconsistent calls. 79 

All these factors may generate false positive sites or incorrect genotypes, which may then lead to false 80 

positive associations in the follow-up association test. For example, Alzheimer’s Disease Sequencing 81 

Project reports that they found spurious associations in the case-control analysis where one of the causes 82 

for the problem could be inconsistent variant calling processes for sequenced samples(26). 83 

It is extremely important to perform quality control (QC) on genetic variants identified from 84 

sequencing to remove variants that may contain sequencing errors and hence are likely to be false 85 

positive calls. Traditionally, genetic studies have utilized two types of QC approaches; we call them, 86 

“filtering” and “classification” approaches. In filtering approaches, several filters are applied to remove 87 

problematic variants such as variants with high genotype missing rate (e.g. > 5%), low Hardy-Weinberg 88 

Equilibrium (HWE) p-value (e.g. < 1E-4), or very high or low allele balance of heterozygous calls 89 

(ABHet) (e.g. > 0.75 or < 0.25). One main problem with this type of approaches is that these thresholds 90 

are arbitrarily determined without strong statistical justification. We may also remove variants whose 91 

metrics are very close to the thresholds (e.g. variants with missing rate of 5.1%). Another type of QC is 92 

a classification approach that attempts to learn variants with low quality using machine learning 93 
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approaches. One example is VQSR of GATK(24,27) that uses a Gaussian mixture model to learn the 94 

multidimensional annotation profile of variants with high and low quality. However, one of issues with 95 

VQSR is that one needs training datasets acquired from existing databases on variants such as 1000 96 

Genomes Project(28) and HapMap(29), which may be biased to keep known variants and filter out novel 97 

variants. Another issue is that those known databases of genetic variants may not be always accurate, 98 

which would lead to inaccurate classification of variants, and they may not even be available for some 99 

species. It may also be a challenge to apply VQSR to a variant call set generated by variant callers other 100 

than GATK as VQSR needs metrics of variants that are not often calculated by non-GATK variant 101 

callers. 102 

In this article, we present ForestQC for performing QC on genetic variants discovered through 103 

sequencing. Our method aims to identify whether a specific variant is of high sequencing quality 104 

(“good” variants) or of low quality (“bad” variants) by combining the filtering and classification 105 

approaches. We first apply a filtering approach to detect obviously good and bad variants from data. We 106 

use stringent filters such that those variants are truly good or bad while the rest of variants that are 107 

neither good nor bad are considered to have ambiguous quality (“gray” variants). Given this set of good 108 

and bad variants, we train a machine learning model whose goal is to classify whether gray variants are 109 

good or bad. With an insight that good variants would have higher genotype quality and sequencing 110 

depth than do bad variants, we use information of several sequencing quality measures of variants for 111 

model training. ForestQC then uses sequencing quality measures of gray variants to predict whether 112 

each gray variant has high or low sequencing quality. Our approach is different from the filtering 113 

strategy in that it only uses filters to identify truly good or bad variants and does not attempt to classify 114 

gray variants with filters. Our method is also different from VQSR as our training strategy allows us to 115 

train our model without known datasets for variants and solves several issues with VQSR mentioned 116 
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above. Another advantage of our software is that it can be applied to standard Variant Call Format 117 

(VCF) files from any variant callers and is very efficient.  118 

To demonstrate accuracy of ForestQC, we apply it to two high-coverage WGS datasets; 1) large 119 

extended pedigrees ascertained for bipolar disorder (BP) from Costa Rica and Colombia(30), and 2) a 120 

sequencing study for Progressive Supranuclear Palsy (PSP). The first dataset includes 449 related 121 

individuals from families while the latter dataset consists of 495 unrelated individuals. We show that 122 

ForestQC outperforms VQSR and a filtering approach based on ABHet as good variants detected from 123 

ForestQC have higher sequencing quality than those from VQSR and the filtering approach in both 124 

datasets. This suggests that our tool identifies high-quality variants more accurately than other 125 

approaches in both family and unrelated datasets. ForestQC is publicly available at 126 

https://github.com/avallonking/ForestQC  127 

 128 

 129 

Results 130 

Overview of ForestQC 131 

ForestQC takes a raw VCF file as input and determines whether each variant has “good” sequencing 132 

quality or “bad” quality. Our method combines a filtering approach that determines good and bad 133 

variants by a set of pre-defined filters and a classification approach that uses machine learning to 134 

classify whether a variant is good or bad. As illustrated in Figure 1, our method first calculates statistics 135 

of each variant for several filters that are commonly used in performing QC in GWAS. These statistics 136 

consist of ABHet, HWE p-value, genotype missing rate, Mendelian error rate for family data, and any 137 

user-defined statistics (details described in Method session). ForestQC then identifies three sets of 138 

variants using these statistics for filters: 1) a set of good variants that pass all filters, 2) a set of bad 139 
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variants that fail any filter(s), and 3) a set of gray variants that are neither good nor bad variants. We use 140 

stringent thresholds for filters (Table S2, S3), and hence we are highly confident that good variants are 141 

of high quality while bad variants are truly false positives or have unequivocally poor sequencing 142 

quality. The next step in ForestQC is to train a random forest machine learning model using the good 143 

and bad variants we detect from the filtering step. In ForestQC, seven sequencing quality metrics of 144 

good and bad variants are used as features to train the random forest model, including three related to 145 

sequencing depth, three related to genotype quality, and one related to the GC content. Finally, the fitted 146 

model predicts whether each gray variant is good or bad. We combine the predicted good variants from 147 

the random forest model and the good variants from the filtering step, and they are all good variants 148 

determined by ForestQC. The same procedure is applied to identify bad variants. 149 

One major challenge in classifying gray variants is to identify a set of sequencing quality metrics that 150 

are used as features to train the random forest model. We choose three sets of features based on quality 151 

metrics that variant callers provide and prior knowledge in genome sequencing. The first set of features 152 

is genotype quality (GQ) where we have three metrics: mean, standard deviation (SD), and outlier ratio. 153 

The outlier ratio is the proportion of samples whose GQ scores are lower than a particular threshold, and 154 

it measures a fraction of individuals who are poorly sequenced at a mutation site. A good variant is 155 

likely to have high mean, low SD, and low outlier ratio of GQ values. The second set of features is 156 

sequencing depth (DP) as low depth often introduces sequencing biases and reduces variant calling 157 

sensitivity(31). We also use the same three sets of metrics for DP as those for GQ: mean, SD, and outlier 158 

ratio. The last set of features is related to genomic characteristics instead of sequencing quality, which is 159 

GC content. High or low GC content may decrease the coverage of certain regions(32,33) and thus may 160 

lower the quality of variant calling. Hence, the GC content of the DNA region containing a good variant 161 

would not be too high or too low. Given these three sets of features, ForestQC learns how those features 162 

determine good and bad variants and classifies gray variants according to rules that it learns.   163 
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Comparison of different machine learning algorithms 164 

As there are many different machine learning algorithms available, we first seek to find the most 165 

accurate and efficient algorithm for performing QC on NGS variant data. To ensure the quality of 166 

training and prediction, we choose supervised learning algorithms rather than unsupervised algorithms. 167 

Several major types of supervised algorithms are selected for comparison: random forest, logistic 168 

regression, k nearest neighbors (KNN), Naive Bayes, quadratic discriminant analysis (QDA), AdaBoost, 169 

artificial neural network (ANN), and single support vector machine (SVM). We use the BP WGS 170 

dataset, which consists of large pedigrees from Costa Rica and Colombia, to compare the performance 171 

of different algorithms. We use the aforementioned three sets of features related to sequencing quality 172 

for all algorithms we test. We apply the filtering approach (Table S2, S3) to the BP data to identify 173 

good, bad, and gray variants, and we choose 100,000 good and 100,000 bad variants randomly for 174 

model training. We then choose another 100,000 good and 100,000 bad variants randomly from the rest 175 

of variants for model testing. Each learning algorithm will be trained with the same training set and 176 

tested with the same test set. We use 10-fold cross validation, area under the receiver operating 177 

characteristic curve (AUC), and F1-score to estimate classification accuracy during model testing. F1-178 

score is the harmonic average of precision (positive predictive value) and recall (sensitivity). The closer 179 

F1-score is to 1, the better the performance is. To assess the efficiency of each algorithm, we measure its 180 

time cost during training and predicting. We use eight threads for algorithms that support parallelization. 181 

Table 1: Performance of eight different machine learning algorithms 182 

Machine learning algorithm Time cost (sec) F1-score for  
indel classification 

F1-score for  
SNV classification 

Random Forest 9.85 0.9428 0.9740 
ANN 75.34 0.9400 0.9707 
SVM 1253.48 0.9381 0.9704 
AdaBoost 25.27 0.9270 0.9672 
Logistic Regression 2.49 0.9074 0.9668 
KNN 24.71 0.9200 0.9486 
QDA 0.30 0.9006 0.9241 
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Naïve Bayes 0.18 0.8716 0.9012 

Performance metrics, including F1-scores, total time cost of model fitting and prediction, are ranked by F1-score for SNV 183 

classification. Random forest, ANN, logistic regression and KNN are set to run with eight threads. “ANN”: artificial neural 184 

network. “SVM”: single support vector machine. “KNN”: K-nearest neighbors classifier. “QDA”: quadratic discriminant 185 

analysis. 186 

Results show that random forest is the most accurate model in both SNV classification and indel 187 

classification with the highest F1-scores, accuracy and the largest AUC (Table 1, Table S1, Figure S1). 188 

Its time cost is only 9.85 seconds in model training and prediction (Table 1), which ranks as the fourth 189 

fastest algorithm. As random forest randomly divides the entire dataset into several subsets of the same 190 

size and constructs decision trees independently in each subset, it is highly scalable, and it has low error 191 

rates and high robustness with respect to noise(34). As for other machine learning algorithms, both SVM 192 

and ANN are highly accurate (both with F1-score of 0.97 and AUC > 0.985 in SNV classification) but 193 

they are not as efficient as random forest. ANN is the second slowest algorithm that is about 8x slower 194 

than random forest because it has to estimate many parameters. Especially, SVM is the slowest 195 

algorithm because of its inability to parallelize, which costs about 125x as much time as random forest 196 

(Table 1). This suggests that it may be computationally very expensive to use SVM in large-scale WGS 197 

datasets that have tens of millions of variants. Normally, a real dataset is at least 10 times larger than the 198 

dataset used here. For example, in the BP dataset, the training set has 2.20 million (M) SNVs and there 199 

are 2.73M gray SNVs for prediction. We find that random forest only spends 80.51 seconds for training 200 

and predicting, while ANN needs 489.63 seconds and SVM needs 14.74 hours. Therefore, random forest 201 

is much faster than ANN and SVM, although all three algorithms have similar performance in terms of 202 

AUC (Figure S1). In addition, there are even a larger number of variants in large-scale WGS projects 203 

such as NHLBI Trans-Omics for Precision Medicine (TOPMed) program that includes about 463M 204 

variants. Hence, it is more practical to use random forest when processing this very large datasets. 205 

Logistic regression, Naive Bayes and QDA are more efficient than random forest, but their predictions 206 
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are not as accurate as those of random forest. For example, Naive Bayes needs only 0.18 seconds for 207 

training and prediction while its F1-score is the lowest among all algorithms (0.90 and 0.87 in SNV and 208 

indel classification, respectively) (Table 1). This result demonstrates that random forest is both accurate 209 

and efficient, and hence we use it as the machine learning algorithm in our approach. To further improve 210 

the random forest algorithm, we test a different number of trees in the algorithm and we find that 211 

random forest with 50 trees balances efficiency and accuracy (Figure S2). To identify good variants 212 

from gray variants, we use the probability of each gray variant being a good variant calculated from 213 

random forest, and we consider gray variants with the probability of being good variants > 50% as good 214 

variants as this probability threshold achieves the highest F1-score (Figure S3). 215 

Measuring performance of QC methods on WGS data 216 

To evaluate the accuracy of ForestQC and other methods on WGS data, we apply them to two WGS 217 

datasets and calculate several statistics. For a family-based dataset, we calculate Mendelian error rate 218 

(ME) of each variant, which measures inconsistency in genotypes between parents and offspring. 219 

Another statistic we measure is genotype discordance rate between microarray and sequencing if 220 

individuals who are sequenced are also genotyped. In both WGS datasets we analyze, microarray data 221 

are available. These two statistics are important indicators of quality of variants because good variants 222 

would follow Mendelian inheritance patterns and their genotypes would be consistent between 223 

microarray and sequencing. In addition to these statistics, we measure several other statistics that are 224 

reported in sequencing studies such as the number of variants (SNVs and indels), 225 

transitions/transversions (Ti/Tv) ratio, the number of multi-allelic variants, genotype missing rate. We 226 

compute these QC-related statistics separately for SNVs and indels. We use these statistics to compare 227 

the performance of ForestQC with that of three approaches. The first is one without performing any QC 228 

(no QC). The second method is VQSR which is a classification approach that requires known truth sets 229 

for model training, such as HapMap or 1000 genomes. We use recommended resources and parameter 230 
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settings to run VQSR as of 2018-04-04(35), but we also look at different settings. The third method is an 231 

ABHet approach, which is a filtering approach that retains variants according to allele balance of 232 

variants (see Methods).  233 

Performance of ForestQC on family WGS data 234 

We apply ForestQC to the BP WGS dataset that consists of 449 subjects with the average coverage of 235 

36. There are 25.08M SNVs and 3.98M indels(30). The variant calling is performed with GATK-236 

HaplotypeCaller v3.5. This is an ideal dataset for assessing the performance of different QC methods 237 

because this dataset contains individuals from families who are both sequenced and genotyped. This 238 

study design allows us to calculate both ME rate and genotype discordance rate of variants between 239 

WGS and microarray. For this dataset, we test ForestQC with two different filter settings, one using ME 240 

rate as a filter and the other not using ME as a filter. The results of the former approach would filter out 241 

bad variants based on ME rate, and hence ME rate of good variants would be very low. However, we 242 

observe that both approaches have similar performance in terms of ME rate and other statistics (Table 243 

S4, Figure S4, Figure S5), and hence we show results of only ForestQC using ME rate as a filter. 244 

Table 2: Variant-level quality metrics of good variants in the BP dataset processed by different 245 

methods 246 

Metric No QC ABHet VQSR ForestQC 

Total SNVs 25081636 22415368 24239357 22227503 
Known SNVs 21165051 19665276 20675746 19361635 

Known SNVs (%) 84.38% 87.73% 85.30% 87.11% 
Total indels 3976710 2670647 3212886 2789037 

Known indels 3094271 2188996 2758783 2237002 
Known indels (%) 77.81% 81.97% 85.87% 80.21% 

Multi-allelic SNVs 153836 26549 128894 77693 
Multi-allelic SNVs (%) 0.61% 0.12% 0.53% 0.35% 
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Four methods are compared, including no QC applied, ABHet approach, VQSR and ForestQC. “Known” stands for variants 247 

found in dbSNP. The version of dbSNP is 150. 248 

Results show that ForestQC outperforms ABHet and VQSR in terms of the quality of good SNVs 249 

while it detects fewer good SNVs than the other approaches (detailed variant-level metrics in Table S5). 250 

ForestQC identifies 22.23M (88%) good SNVs, which is fewer than 22.42M (89%) and 24.24M (97%) 251 

good SNVs from ABHet and VQSR, respectively (Table 2). However, ABHet has 3.57x and VQSR has 252 

9.99x higher ME rate on good SNVs than ForestQC (Figure 2a), and ABHet has 1.50x (p-value < 2.2e-253 

16) and VQSR has 1.26x higher genotype discordance rate (p-value < 2.2e-16) on good SNVs than 254 

ForestQC (Figure 2b). In addition, ABHet and VQSR have 81.48x and 97.72x higher genotype missing 255 

rate on good SNVs than ForestQC, respectively (Figure 2c), but it is important to note that genotype 256 

missing rate is used as a filter in ForestQC, which means SNVs with high genotype missing rate are 257 

filtered out. We observe that VQSR and ABHet have 319 thousand (K) (1.32%) and 235K (1.05%) good 258 

SNVs with very high genotype missing rate (>10%), respectively, and there are also 118K (0.49%, 259 

VQSR) and 53K (0.24%, ABHet) good SNVs with very high ME rate (>15%) while ForestQC has none 260 

of them due to its filtering approach. The better quality of good SNVs from ForestQC means that bad 261 

SNVs detected from ForestQC would have lower quality, and results show that bad SNVs detected by 262 

our method have higher genotype missing rate, higher ME rates and higher genotype discordance rate 263 

than those of ABHet, and higher genotype missing rate than those of VQSR (Figure S6a, b, c). The no 264 

QC method keeps the greatest number of good SNVs (25.08M), but they have the highest ME rate, 265 

genotype missing rate, and genotype discordance rate as expected. 266 

Next, we obtain several statistics of good SNVs commonly used in sequencing studies to evaluate the 267 

performance of ForestQC. One such statistic is Ti/Tv ratio, which is expected to be around 2.0 over the 268 

whole genome(36). If this ratio is smaller than 2.0, it means that there may be false positive variants in 269 

the dataset. We compute Ti/Tv ratio for each individual across all good SNVs and look at the 270 

distribution of those ratios across all individuals (sample-level statistics). We find that the mean Ti/Tv 271 
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ratio of good known SNVs (present in dbSNP) is around 2.0 for all four methods, which suggests that 272 

they have similar accuracy on known SNVs in terms of Ti/Tv ratio (Figure S7a). However, results show 273 

that the mean Ti/Tv ratio of good novel SNVs (not in dbSNP) from ForestQC is better than that of those 274 

SNVs from other methods; the mean Ti/Tv ratio is 1.68 for ForestQC, which is closest to 2.0 among 275 

other methods (1.41 for VQSR, 1.53 for ABHet, and 1.29 for No QC) (Figure 3a). Paired t-tests for the 276 

difference in the mean Ti/Tv ratio between ForestQC and other methods are all significant (p-value < 277 

2.2e-16 versus all other methods). This result suggests that novel SNVs predicted to be good by 278 

ForestQC are more likely to be true positives than those SNVs from other QC methods. Another statistic 279 

commonly used in sequencing studies is the percentage of multi-allelic SNVs, which are variants with 280 

more than one alternative allele. Given this sample size (449), many of them are likely to be false 281 

positives, and ForestQC has 33.96% and 42.62% smaller fraction of multi-allelic SNVs among good 282 

SNVs than do VQSR and no QC methods while the ABHet approach has the smallest fraction of such 283 

SNVs (Table 2). Note that ABHet values can only calculated for biallelic mutation sites, so ABHet does 284 

not work properly for multi-allelic variants. It might mistakenly filter out many high quality multi-allelic 285 

SNVs, so it has the fewest multi-allelic SNVs. 286 

In addition to SNVs, we apply the four QC methods to indels. Similar to results of SNVs, ForestQC 287 

identifies fewer good indels than does VQSR, but the quality of those indels from ForestQC is better 288 

than that of good indels from ABHet and VQSR. Out of total 3.98M indels, ForestQC predicts 2.79M 289 

indels (70%) to have good sequencing quality while VQSR and ABHet find 3.21M (81%) and 2.67M 290 

(67%) good indels, respectively (Table 2). Good indels from VQSR and ABHet, however, have 8.54x 291 

and 3.18x higher ME rate, and 22.25x and 25.28x higher genotype missing rate, than those from 292 

ForestQC, respectively (Figure 2d, e). Bad indels identified by ForestQC have 2.25x and 1.32x higher 293 

ME rate, and 1.48x and 2.36x higher genotype missing rate than those from VQSR and ABHet, 294 

respectively (Figure S6d, e). Besides, we observe that there are 95K (2.97%, VQSR) and 86K (3.23%, 295 
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ABHet) good indels with very high genotype missing rate (>10%) and also 167K (5.21%, VQSR) and 296 

44K (1.66%, ABHet) good indels with very high ME rate (>15%) while there are no such indels in 297 

ForestQC. This result suggests that many good indels detected by ABHet or VQSR may be false 298 

positives or indels with poor sequencing quality. One of the reasons why VQSR does not perform well 299 

on indels could be the database it uses for training its machine learning model as VQSR considers all 300 

indels found in the database (Mills gold standard call set(37) and 1000G Project(38)) to be true variants. 301 

This leads VQSR to have a significantly higher proportion of known indels among good indels (86%), 302 

compared with 80% from ForestQC and 82% from ABHet (Table 2). The poor performance of VQSR 303 

on indels may be because not all indels in the database are true variants, or because even if they are true 304 

indels, those indels would not necessarily have high sequencing quality in the sequencing dataset of 305 

interest. Hence, this result demonstrates one of the limitations of using known databases for finding 306 

good variants. It is also important to note that in general, indels have much higher ME rate (0.41% for 307 

no QC) than that of SNVs (0.08% for no QC), which is expected given the greater difficulty of calling 308 

indels.  309 

Another major difference between ForestQC and the other approaches is the allele frequency of 310 

variants after QC as ForestQC keeps a greater number of rare variants in its good variant set. Our 311 

method has 1.77% and 1.64% higher proportion of rare SNVs, and 5.30% and 15.37% higher proportion 312 

of rare indels than ABHet and VQSR do, respectively (Table S6). We also observe this phenomenon in 313 

the variant-level and sample-level statistics for the number of SNVs. The variant-level statistics show 314 

that the number of good SNVs detected by ForestQC is similar to those from ABHet (Table 2). 315 

However, the sample-level statistics show that each individual on average carries fewer alternative 316 

alleles of good SNVs from ForestQC (3.58M total SNVs) than those from VQSR and ABHet (3.99M 317 

and 3.77M total SNVs, respectively) (Figure 3b, c, Figure S7b). We observe a similar phenomenon for 318 

indels between ABHet and ForestQC (Table 2, Figure 3d, Figure S7c, d). This phenomenon could be 319 
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explained by the higher fraction of rare variants among good variants from ForestQC, as individuals 320 

would carry fewer variants if there are a greater fraction of rare variants. One main reason why 321 

ForestQC has the higher proportion of rare variants is that common variants have higher ME rate, 322 

genotype discordance rate and genotype missing rate than do rare variants (Figure S8); because common 323 

variants are more heterozygous, it is more difficult to accurately call them. This suggests that while a 324 

majority of common variants may be true variants, some of them may not necessarily have high 325 

sequencing quality, and hence their calls may not be accurate enough for downstream analyses. 326 

ForestQC uses several filters to remove variants whose sequencing quality is poor while other two 327 

approaches (VQSR and ABHet) do not use these filters, which might have artificially improved the 328 

performance of ForestQC. Hence, to compare the performance of ForestQC with other approaches 329 

without this potential bias due to the filtering step, we measure the performance metrics on only gray 330 

variants as their sequencing quality is not determined by the filtering approach. From 2.73M gray SNVs 331 

and 1.09M gray indels, ForestQC identifies 979K (35.83%) good SNVs and 532K (48.58%) good 332 

indels, while ABHet approach detects 620K (22.70%) SNVs and 195K (17.80%) indels, and VQSR 333 

selects 2.16M (79.18%) SNVs and 643K (58.76%) indels as good variants, respectively (Table S7). For 334 

good SNVs from gray variants, ABHet and VQST have 2.75x and 22.67x higher ME rate than 335 

ForestQC, respectively (Figure S9a), and ABHet and VQSR have 5.15x (p-value = 1.367e-14) and 336 

3.86x (p-value = 1.926e-14) higher genotype discordance rate than ForestQC (Figure S9b). In addition, 337 

ABHet and VQSR have 15.50x and 7.05x higher genotype missing rate on good SNVs than ForestQC, 338 

respectively (Figure S9c). We observed similar results for indels (Figure S9d and S8e). Sample-level 339 

metrics also show that ForestQC has better Ti/Tv ratio on known SNVs (mean Ti/Tv: 1.64, 1.85, 1.72, 340 

1.88 for No QC, ABHet, VQSR, ForestQC, respectively), and novel SNVs (mean Ti/Tv: 1.14, 1.04, 341 

1.21, 1.22 for No QC, ABHet, VQSR, ForestQC, respectively) than other methods (Figure S10d and 342 

S9e). Paired t-tests for the difference in the mean Ti/Tv ratio of novel SNVs and known SNVs between 343 
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ForestQC and other methods are all significant (p-value < 0.05 versus all other methods). These results 344 

show that even on those variants for whom we do not use the filtering approach, ForestQC has better 345 

performance than ABHet and VQSR. These results further imply that if we use the same filtering 346 

approach to all three approaches, our method will still outperform other approaches.  347 

Performance of ForestQC on WGS data with unrelated individuals 348 

To evaluate the performance of ForestQC on WGS datasets that contain only unrelated individuals, we 349 

apply it to the PSP dataset that has 495 individuals who are whole-genome sequenced at average 350 

coverage of 29, generating 33.27M SNVs and 5.09M indels. Among the 495 individuals who are 351 

sequenced, 381 individuals (77%) of them are also genotyped with microarray, which enables us to 352 

check the genotype discordance rate between WGS and microarray data. Because the PSP dataset 353 

contains only unrelated individuals, we do not report ME rate. Similar to BP WGS data, we apply four 354 

methods (ForestQC, VQSR, ABHet, and No QC) to the PSP dataset, although the parameter setting of 355 

VQSR has slightly changed. As the PSP dataset is called with GATK v3.2, the StrandOddsRatio (SOR) 356 

information from the VCF file is missing, which is recommended to use in VQSR, and hence this 357 

annotation is excluded from VQSR. However, we find that SOR information has little impact on the 358 

results of VQSR as we test VQSR without SOR information using the BP dataset and obtain similar 359 

results with one using SOR information (Figure S11).  360 

Table 3: Variant-level quality metrics of good variants in the PSP dataset processed by four 361 

different methods 362 

Metric No QC ABHet VQSR ForestQC 

Total SNVs 33273111 29771182 31281620 29352329 
Known SNVs 25960464 24142744 24910728 23514257 

Known SNVs (%) 78.02% 81.09% 79.63% 80.11% 
Total indels 5093443 3311136 3682319 3418242 

Known indels 3679990 2532899 3012662 2567879 
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Known indels (%) 72.25% 76.50% 81.81% 75.12% 
Multi-allelic SNVs 250418 6685 188180 146247 

Multi-allelic SNVs (%) 0.75% 0.02% 0.60% 0.50% 
Four methods are compared, including no QC applied, ABHet approach, VQSR and ForestQC. “Known” stands for variants 363 

found in dbSNP. The version of dbSNP is 150. 364 

Similar to the results of the BP dataset, ForestQC identifies good variants with higher quality 365 

although it detects fewer good variants than other approaches (detailed variant-level metrics in Table 366 

S8). ForestQC identifies 29.25M (88%) good SNVs, which is slightly fewer than 29.77M (89%) good 367 

SNVs from ABHet but about 2 million fewer than 31.28M (94%) good SNVs from VQSR (Table 3). 368 

However, good SNVs from ABHet and VQSR have 53.76x and 42.55x higher genotype missing rate 369 

than those from ForestQC, respectively (Figure 4a), but it is important to note that missing rate is 370 

included as a filter in ForestQC. In addition, there are 311K (0.99%, VQSR) and 331K (1.13%, ABHet) 371 

good SNVs with very high genotype missing rate (>10%), while ForestQC removes all these SNVs. We 372 

also observe that bad SNVs from ForestQC have 2.4x higher genotype missing rate than those from 373 

ABHet, although bad SNVs from GATK have slightly higher missing rate than those from ForestQC 374 

(Figure S12a). Good SNVs from ABHet and VQSR have 1.28x (p-value < 2.2e-16) and 1.29x higher 375 

genotype discordance rate (p-value < 2.2e-16) than those from ForestQC, respectively (Figure 4b). As 376 

for the genotype discordance rate of bad SNVs, both ABHet and VQSR have higher genotype 377 

discordance rate than does ForestQC (Figure S12b), but this may be inaccurate because of the small 378 

number of bad SNVs genotyped with microarray (10,130, 4,121, and 553 such SNVs for ForestQC, 379 

ABHet, and VQSR, respectively). The variant-level and sample-level statistics also demonstrate the 380 

better quality of good SNVs from ForestQC. Although all methods have mean Ti/Tv ratio of good 381 

known SNVs above 2.0, the mean Ti/Tv ratio of good novel SNVs among all sequenced individuals is 382 

1.65 for ForestQC, which is closer to 2.0 than other methods (1.27, 1.54, and 1.24 for VQSR, ABHet, no 383 

QC, respectively). (Figure S13a, Figure 5a). Paired t-tests for the difference in the mean Ti/Tv ratio 384 
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between ForestQC and other methods are all significant (p-value < 2.2e-16 versus all other methods). 385 

ForestQC has 16.67% and 33.33% smaller fraction of multi-allelic SNVs among good SNVs than do 386 

VQSR and no QC methods, respectively, while the ABHet approach has the smallest proportion of such 387 

SNVs (Table 3). ABHet has the smallest number of multi-allelic SNVs because it can only work 388 

properly for biallelic SNVs where all subjects are either heterozygous or homozygous and therefore it 389 

might remove many multi-allelic SNVs by mistakes. Lastly, consistent with the results of the BP dataset, 390 

the sample-level statistics show that each individual on average carries fewer alternative alleles of good 391 

SNVs from ForestQC than those from VQSR and ABHet (Figure 5b, c, Figure S13b). Rare SNVs in 392 

good SNVs from ForestQC account for 1.70% and 1.32% higher proportion, compared with those from 393 

ABHet and VQSR (Supplemental Table 5). This may be because rare SNVs have lower genotype 394 

missing rate and genotype discordance rate than do common variants (Figure S14a, b).  395 

For indels, our method predicts 3.42M indels (67% of total 5.09M indels) to be good variants, which 396 

is slightly more than 3.31M (65%) good indels from ABHet and fewer than 3.68M (72%) good indels 397 

from VQSR (Table 3). Because the PSP dataset lacks ME rate as it contains only unrelated individuals 398 

and indels are not called in microarray, it is difficult to compare the performance of the QC methods on 399 

indels. We find that good indels from ABHet and VQSR have 27.02x and 18.77x higher genotype 400 

missing rate than those from our method, respectively (Figure 4c). Additionally, VQSR and ABHet have 401 

107K (2.91%) and 131K (4.08%) good indels with high genotype missing rate (>10%), respectively 402 

while ForestQC filters out all of these indels. Also, bad indels from ForestQC have 2.05x and 1.21x 403 

higher genotype missing rate than those from ABHet and VQSR, respectively (Figure S12c). This, 404 

however, may be biased comparison as ForestQC removes indels with high genotype missing rate in its 405 

filtering step. Consistent with the results of SNVs, the sample-level statistics indicate that each 406 

individual has fewer good indels from ForestQC than those from VQSR and ABHet (Figure 5d, Figure 407 

S13c, d). Among good indels, ForestQC has 6% and 1% more novel indels than VQSR and ABHet, 408 
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respectively (Table 3). In terms of allele frequency, rare indels detected by ForestQC accounts for 409 

12.35% and 3.49% larger proportions than those by VQSR and ABHet, respectively (Table S9). Similar 410 

to the results of the BP dataset, we also observe that the missing rate of rare indels is lower than that of 411 

common indels (Figure S14c).  412 

Similar with the analysis of the BP dataset, we also compare the performance of ForestQC, ABHet 413 

approach and VQSR only on gray variants in PSP dataset. From 3.95M gray SNVs and 1.60M gray 414 

indels, ForestQC identifies 1.71M (43.33%) good SNVs and 719K (45.01%) good indels, while ABHet 415 

approach detects 780K (19.74%) SNVs and 248K (15.51%) indels, and VQSR selects 2.75M (69.52%) 416 

SNVs and 820K (51.34%) indels as good variants, respectively (Table S10). For good SNVs from gray 417 

variants, ABHet and VQSR have 14.84x and 5.38x higher genotype missing rate than ForestQC, 418 

respectively (Figure S15a). In addition, ABHet has 2.09x (p-value = 2.183e-11) and VQSR has 2.13x 419 

higher genotype discordance rate (p-value = 1.584e-10) on than ForestQC (Figure S15b). For indels, 420 

ABHet and VQSR have 9.39x and 3.61x higher genotype missing rate on good indels than ForestQC, 421 

respectively (Figure S15c). Sample-level metrics also show that ForestQC has better Ti/Tv ratio on 422 

known SNVs (mean Ti/Tv: 1.75, 1.87, 1.82, 1.96 for No QC, ABHet, VQSR and ForestQC, 423 

respectively) and novel SNVs (mean Ti/Tv: 1.17, 1.03, 1.20, 1.39 for No QC, ABHet, VQSR and 424 

ForestQC, respectively) than other methods (Figures S15d and S15e). Paired t-tests for the difference in 425 

the mean Ti/Tv ratio of novel SNVs and known SNVs between ForestQC and other methods are all 426 

significant (p-value < 2.2e-16 versus all other methods). Similar to results of the BP dataset, ForestQC 427 

has higher accuracy in identifying good variants from gray variants, compared with ABHet approach 428 

and VQSR. 429 

Feature importance in random forest classifier 430 

ForestQC uses several sequencing features in the random forest classifier to predict whether a variant 431 

with undermined quality is good or bad. To understand which sequencing features are more important 432 
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indicators for quality of variants than other features, we analyze weight or importance of each feature 433 

that the random forest classifier learns during its model training. We first find that GC-content has the 434 

lowest importance in both BP and PSP datasets and also for both SNVs and indels (Figure S17). This 435 

means that GC-content may not be as a strong indicator of quality of variants as other features related to 436 

sequencing quality such as depth (DP) and genotype quality (GQ). Second, the results show that 437 

classification results are not determined by one or two most important features as there is no feature with 438 

much higher importance than other features except GC-content. This suggests that all sequencing 439 

features except GC-content are important indicators for quality of variants and need to be included in 440 

our model. We also check correlation among features and find that while certain pairs of features are 441 

highly correlated, like outlier GQ and mean GQ, SD DP and mean DP, some features have low 442 

correlation to other features, such as GC, suggesting that they may capture different information on 443 

quality of genetic variants (Figure S19). Third, we observe that the same features have different 444 

importance between the BP dataset and the PSP dataset. For example, for SNVs, an outlier ratio of GQ 445 

feature has the highest importance for the PSP dataset while it has the third lowest importance for the BP 446 

dataset (Figure S17a). Also, the importance of features varies between SNVs and indels. One example is 447 

a SD of DP feature that has the highest importance for SNVs in the BP dataset, but it has the third lowest 448 

importance for indels (Figure S17a, b). Therefore, these results suggest that each feature may have a 449 

different contribution to classification results depending on sequencing data and types of genetic 450 

variants.  451 

Performance of VQSR with different settings 452 

For SNVs, GATK recommends three SNV call sets for training its VQSR model; 1) SNVs found in 453 

HapMap (“HapMap”), 2) SNVs in the omni genotyping array (“Omni”), and 3) SNVs in the 1000 454 

Genomes Project (“1000G”). According to the VQSR parameter recommendation, SNVs in HapMap 455 

and Omni call sets are considered to contain only true variants while SNVs in 1000G contain both true 456 
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and false positive variants(35). We call this recommended parameter setting “original VQSR.” We, 457 

however, find that considering SNVs in Omni to contain both true and false positive variants 458 

considerably improves the quality of good SNVs from VQSR for the BP dataset. We call this modified 459 

parameter setting “Omni_Modified VQSR”. Results show that the mean Ti/Tv on good novel SNVs 460 

from Omni_Modified VQSR is 1.76, which is much higher than that from original VQSR (1.41) and 461 

slightly higher than that from ForestQC (1.68) (Figure S19a). We also find that the mean number of total 462 

SNVs from Omni_Modified VQSR is 3.68M which is much smaller than that from original VQSR 463 

(3.99M) but higher than that from ForestQC (3.58M) (Figure S19b). In terms of other statistics, good 464 

SNVs from original VQSR has 3.66x higher ME rate, 7.40x higher genotype missing rate, and 1.16x 465 

higher genotype discordance rate (p-value = 0.0001118) than those SNVs from Omni_Modified VQSR 466 

(Figure S19c-e). Interestingly, we do not observe the improved performance of Omni_Modified VQSR 467 

for the PSP dataset as the mean novel Ti/Tv on good novel SNVs of Omni_Modified VQSR is 1.23, 468 

which is slightly smaller than that of original VQSR (1.27) (Figure S19a), although individuals have 469 

fewer good SNVs from Omni_Modified VQSR (3.53M) than that from original VQSR (3.75M) (Figure 470 

S19b). These results suggest that the performance of VQSR may change significantly depending on 471 

whether to consider a certain SNV call set to contain only true variants or both true and false positive 472 

variants, and it appears that the difference in performance is more noticeable in certain sequencing 473 

datasets than others.  474 

Although Omni_Modified VQSR has slightly better Ti/Tv on good novel SNVs and identifies more 475 

good SNVs than does ForestQC, good SNVs from Omni_Modified VQSR have 2.76x higher ME rate, 476 

13.20x higher genotype missing rate, and 1.35x higher genotype discordance rate (p-value < 2.2e-16) 477 

than good SNVs from ForestQC (Figure S19c-e). Hence, the results show that good SNVs from 478 

ForestQC have higher quality than those from VQSR even with the modification in the parameter 479 

setting. 480 
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Discussion 481 

We developed an accurate and efficient method called ForestQC to identify a set of variants with high 482 

sequencing quality from NGS data. ForestQC combines the traditional filtering approach for performing 483 

QC in GWAS and the classification approach that uses a machine learning algorithm to classify whether 484 

a variant has good quality. Our method first uses stringent filters to identify good and bad variants that 485 

unequivocally have high and low sequencing quality, respectively. ForestQC then trains a random forest 486 

classifier using the good and bad variants obtained from the filtering step, and predicts whether a variant 487 

with ambiguous quality (a gray variant) is good or bad in an unbiased manner. To evaluate ForestQC, 488 

we applied our method to two WGS datasets where one dataset consists of related individuals from 489 

families and the other dataset has unrelated individuals. We demonstrated that good variants identified 490 

from ForestQC in both datasets had higher sequencing quality than those from other approaches such as 491 

VQSR and a filtering approach based on ABHet.  492 

To measure the performance of methods for variant quality control, one typically plans to apply these 493 

methods to benchmarking datasets where the true variants with high sequencing quality are verified. A 494 

few high-quality benchmarking variant sets have been proposed, including Genome In A Bottle (GIAB) 495 

(39), Platinum Genome (PlatGen) (40) and Syndip (41). GIAB has seven samples, PlatGen sequenced 496 

17 individuals, and Syndip includes only two cell lines, CHM1 and CHM13. The sample sizes of these 497 

datasets are very small while we usually need to perform variant QC on an entire large dataset 498 

containing tens of millions of variants from hundreds of subjects or more. Thus, these datasets cannot be 499 

used as benchmarking datasets for variant QC. Apart, it is not expected to have a new benchmarking 500 

dataset with large sample size in the near future because it is expensive to construct such a dataset. 501 

Hence, in this study, we used real WGS datasets to evaluate different approaches for variant QC. Their 502 

large sample sizes allow more accurate calculation of various quality metrics and statistics used by the 503 

approaches for variant QC, and therefore enable more reliable performance evaluation. 504 
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To measure the quality of variants, we used 21 sample-level metrics and 20 variant-level metrics, plus 505 

genotype missing rate, ME rate and genotype discordance rate, resulting in a comprehensive evaluation 506 

of the performance of different methods. ME rate is found to be nearly linearly correlated with genotype 507 

errors(42–44), so it is a good quality metric for variants with pedigree information. Low genotype 508 

missing rate has been considered as an indicator of high-quality variant call set as a variant with high 509 

genotype missing rate indicates poor genotyping or sequencing quality(45). Also, high-quality variants 510 

would have the same genotypes generated by different genotyping technologies, such as sequencing and 511 

microarray. Thus, variant sequencing quality may be measured with genotype discordance rate between 512 

microarray and sequencing. One challenge with this approach is that genotypes generated by microarray 513 

are usually available for a small proportion of variants in the whole genome, especially for common and 514 

known variants, so it might not be able to show the sequencing quality of the entire variant call set. 515 

Another frequently used variant quality metric is Ti/Tv ratio (46–49). It is supposed to be around 2.0 for 516 

whole genome sequencing data(36). That is because transitions have higher frequency according to 517 

molecular mechanisms although the number of transversions is twice as many as transitions. Previous 518 

studies found that mitochondrial DNA and some non-human DNA sequences might be biased towards 519 

transitions or transversions(50,51). In this study, we only computed Ti/Tv ratio for each QC method 520 

using the same human variant call set excluding mitochondria, in order to achieve an unbiased 521 

evaluation of all methods. 522 

A main advantage of our approach over the traditional filtering approach is that our method does not 523 

attempt to classify gray variants using filters. It is difficult to determine the quality of those gray variants 524 

using filters if their QC metrics (e.g. genotype missing rate) are close to the thresholds of filters. Hence, 525 

ForestQC avoids a limitation of the traditional filtering approaches that determine the quality of every 526 

variant using filters, which may exclude some of good variants from the downstream analysis. We did 527 

not compare our approach with the traditional filtering approach used in GWAS that removes variants 528 
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according to HWE p-values, ME rates and genotype missing rates. One main reason is that the 529 

performance of this approach changes dramatically depending on filters and thresholds for each filter, 530 

and there are numerous different thresholds of filters as well as many combinations of filters that could 531 

be tested. Another reason is that its performance could be arbitrarily determined depending on the filters 532 

we use. For example, if one filter is to remove any variants having more than zero Mendel errors, the 533 

ME rate of good variants would be zero, but we may be removing many other good variants. We 534 

checked the accuracy of a filtering approach based on ABHet as ABHet is often used in performing QC 535 

of NGS data and is a good indicator for variant quality(26,52,53). Also, as this approach is not based on 536 

standard QC metrics such as genotype missing rate, its performance is independent of those metrics 537 

unlike the standard filtering approaches. We showed that our approach outperformed the ABHet 538 

approach as the quality of good variants from ForestQC was better than that from ABHet, regardless of 539 

similar total number of good variants, as demonstrated by ME rate, missing rate, genotype discordance 540 

rate and Ti/Tv ratio in the BP and PSP dataset. 541 

Although our approach is similar to VQSR as both approaches train machine learning classifiers to 542 

predict quality of variants, they have a few distinct differences. First, our approach trains the model 543 

using good and bad variants detected from sequencing data on which quality control is performed, while 544 

VQSR uses variants in existing databases, such as HapMap and 1000 genomes, as its training set. As 545 

VQSR uses previously known variants for model training, good variants from VQSR are likely to 546 

contain more known (and likely to be common) variants than novel (and rare) variants. We showed in 547 

both WGS datasets that it did identify more common and known SNVs and indels as good variants than 548 

ForestQC. This may not be a desirable outcome for some sequencing studies if one of their main goals is 549 

to identify rare and novel variants not captured in chips. Another difference between ForestQC and 550 

VQSR is the set of features used in the classifiers. While both methods use features related to 551 

sequencing depth and genotyping quality, VQSR uses some features that are specifically calculated by 552 
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GATK software while our method uses quality information reported in the standard VCF file. This 553 

suggests that our method is more generalizable than VQSR as it can be applied to VCF files generated 554 

from variant callers other than GATK. The last difference is the machine learning algorithms that 555 

ForestQC and VQSR use. Our method trains a random forest model while VQSR trains a Gaussian 556 

Mixture model. Using the BP and PSP dataset, we found that random forest model was much faster than 557 

Gaussian Mixture model (Table S11). 558 

In addition to SNVs, we applied our method to indels in both WGS datasets and found that indels had 559 

much lower sequencing quality than do SNVs as the fraction of good indels detected by ForestQC was 560 

considerably smaller than that of SNVs. This is somewhat expected because indel or structural variant 561 

calling is much more difficult than SNV calling from sequencing data, and some of them are likely to be 562 

false positives(54,55). It is, however, important to note that VQSR classifies many more indels as good 563 

variants than does ForestQC or ABHet, but those good indels from VQSR may not have high 564 

sequencing quality. We showed that good indels from VQSR had similar Mendelian error rate to that 565 

without performing QC, indicating the poor performance of VQSR on indels. VQSR considers indels 566 

from Mills gold standard call set(37) as true variants, and while those indels might represent true variant 567 

sites, it does not necessarily mean that genotyping on those sites is accurate. Therefore, genetic studies 568 

need to perform stringent QC on indels to remove those erroneous calls and not to have false positive 569 

findings in their downstream analysis. 570 

We found that the performance of VQSR was improved dramatically for the BP dataset when we 571 

considered SNVs in Omni genotyping array to have both true and false positive sites, compared with 572 

when they were assumed to have all true sites. We, however, did not observe this performance 573 

enhancement for the PSP dataset. This suggests that users may need to try different parameter settings to 574 

obtain optimal results from VQSR for specific sequencing datasets they analyze. Another issue with 575 

VQSR and also with ABHet is that some of good SNVs or indels have high genotype missing rate and 576 
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ME rate, which may not be suitable for the downstream analysis such as association analysis. Thus, 577 

those variants need to be filtered out separately, which means users may need to perform an additional 578 

filtering step in addition to applying VQSR and ABHet to the dataset. As the filtering step is 579 

incorporated in ForestQC, our method does not have this issue. 580 

Our approach is an extension of a previous approach that uses a logistic regression model to predict 581 

the quality of variants in the BP dataset(30). While our approach is similar to the previous approach in 582 

that they both combine filtering and classification approaches, ForestQC uses a random forest classifier 583 

that has higher accuracy than a logistic regression model, according to our simulation results. It includes 584 

more bad variants for model training, leading to predictions with fewer biases. ForestQC also includes 585 

more features than the previous approach as well as more filters to improve the quality of good variants. 586 

Additionally, compared with the previous approach, ForestQC is more user-friendly and generalizable 587 

because users can choose or define different features and filters and tune the parameters according to 588 

their research goals. 589 

ForestQC is efficient, modularized and flexible with following features. First, users are allowed to 590 

change thresholds for filters as needed. This is important because filters that are stringent for one dataset 591 

may not be stringent for another dataset. For example, variants from sequence data with very small 592 

sample size (e.g. < 100) may not have statistical power to have significant HWE p-values, and hence 593 

higher p-value thresholds may need to be used, compared with studies with larger sample size. If filters 594 

are not stringent enough, there may be many bad variants, and ForestQC would train a very stringent 595 

classifier, leading to the possible removal of good variants. On the contrary, if the filters are too 596 

stringent, there would be too few good variants or bad variants, which would lower the accuracy of our 597 

random forest classifier. In this study, after the filtering step, 4.39% of SNVs and 15.72% of indels in 598 

the BP dataset, and 5.06% of SNVs and 15.66% of indels in PSP dataset, were determined as bad 599 

variants. Empirically, we suggest filters for ForestQC such that after the filtering step, a fraction of bad 600 
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variants is about 4-16%. Normally, the default parameter settings are recommended, which are the same 601 

sets of filters and features described in this paper. The selection of threshold values for these filters are 602 

based on our previous study for WGS data of extended pedigrees for bipolar disorder(30). Second, users 603 

are allowed to use their own filters and features provided that they specify values for those new filters 604 

and features at each variant site, and our software also allows users to remove existing filters and 605 

features. As there may be filters and features that capture sequencing quality of variants more accurately 606 

than current set of filters and features, this option allows users to improve ForestQC further. For 607 

example, users can employ mappability, strand bias and micro-repeats as features, instead of sequencing 608 

depth and genotyping quality used in this study, because DP and GQ might penalize disease-causing 609 

variants with low coverage. Also, if users want to obtain more variants after QC, they may lower the 610 

standard for good variants, that is, increase the threshold values of ME or missing rate for determining 611 

good variants. Third, ForestQC generates the probability of each gray variant being a good variant. This 612 

probability needs to be greater than a certain threshold for a gray variant to be predicted to be good, and 613 

it can also be used to analyze sequencing quality of certain variants. If studies find that a certain gray 614 

variant is associated with a phenotype, they may consider checking whether its probability of being a 615 

good variant is high enough. Lastly, ForestQC allows users to change the probability threshold for 616 

determining whether each gray variant is good or bad. Users may lower this threshold if they are 617 

interested in obtaining more good variants at the cost of including more bad variants.  618 

Materials and Methods 619 

ForestQC 620 

ForestQC consists of two approaches: a filtering approach and a machine learning approach based on a 621 

random forest algorithm. 622 

Filtering Given a variant call set from next generation sequencing data, ForestQC first applies several 623 
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stringent filters to identify good, bad, and gray variants. Good variants are ones that pass all filters while 624 

bad variants fail any of them (Table S2, S3). Gray variants are variants that neither pass filters for good 625 

variants nor fail filters for bad variants. We use following filters in the filtering step. 626 

• Mendelian error (ME) rate. The Mendelian error occurs when a child’s genotype is inconsistent 627 

with genotypes from parents. ME rate is calculated as the number of ME among all trios divided 628 

by the number of trios for a given variant. Note that this statistic is only available for family-based 629 

data. 630 

• Genotype missing rate. This is the proportion of missing alleles in each variant.  631 

• Hardy-Weinberg equilibrium (HWE) p-value. This is a p-value for hypothesis testing whether a 632 

variant is in Hardy-Weinberg equilibrium. Its null hypothesis is that the variant is in Hardy-633 

Weinberg equilibrium. We use the algorithm used in an open-source software, VCFtools(56) for 634 

the calculation of Hardy-Weinberg equilibrium p-value.  635 

•  ABHet. This is allele balance for heterozygous calls. ABHet is calculated as the number of 636 

reference reads from individuals with heterozygous genotypes divided by the total number of 637 

reads from such individuals, which is supposed to be 0.50 for good variants. For variants in 638 

chromosome X, we only calculate ABHet for females. 639 

Random forest classifier Random forest algorithm is a machine learning algorithm that runs efficiently 640 

on large datasets with high accuracy(34). Briefly, random forest builds several randomized decision 641 

trees, each of which is trained to classify the input objects. For classification of a new object, the fitted 642 

random forest model passes the input vector down to each of the decision trees in the forest. Each 643 

decision tree has its classification result, then the forest would output the classification that the majority 644 

of the decision trees make. Balancing efficiency and accuracy, we train a random forest classifier using 645 

50 decision trees (Figure S2) and 50% as probability threshold (Figure S3).  646 
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To train random forest, we use good and bad variants identified from the previous filtering step as a 647 

training dataset, after balancing their sample size by random sampling. Normally, good variants are 648 

much more numerous than bad variants, so we randomly sample from good variants with the sample 649 

size of bad variants. Hence, the sample size of the balanced training set would be twice as large as the 650 

sample size of bad variants. We also need features in training random forest, which characterize 651 

datasets, and we use following features. 652 

• Mean and standard deviation of depth (DP) and genotyping quality (GQ). Depth and genotyping 653 

quality values are extracted from DP and GQ fields of each sample in VCF files, respectively, and 654 

mean and standard deviation are calculated over all samples for each variant.  655 

• Outlier depth and outlier genotype quality. These are the proportions of samples whose DP or GQ 656 

is lower than a particular threshold. We choose this threshold as the first quartile value of all DP 657 

or GQ values of variants on chromosome 1. We use DP and GQ of variants on only chromosome 658 

1 to reduce the computational costs. 659 

•  GC content: We first split a reference genome into window size of 1,000 bp and calculate GC 660 

content for each window as (# of G or C alleles) / (# of A, G, C or T alleles). Then, each variant is 661 

assigned a GC content value according to its position in the reference genome. 662 

After training random forest with the training dataset using above features, we next use the fitted 663 

model to make predictions on gray variants on being good variants. Gray variants with the predicted 664 

probability of being good larger than 50% are labeled as predicted good variants. Then the predicted 665 

good variants and good variants from the previous filtering step are combined to form the final set of 666 

good variants. We apply the same procedure to identify bad variants. 667 

Comparison of different machine learning algorithms  668 

We compare eight different machine learning algorithms, in order to identify the best algorithm used for 669 

ForestQC. They are 1) k-nearest neighbors for supervised 2-class classification (8 threads); 2) logistic 670 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2019. ; https://doi.org/10.1101/444828doi: bioRxiv preprint 

https://doi.org/10.1101/444828
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

regression (8 threads); 3) single support vector machine with Gaussian kernel function and penalty 671 

parameter C of 1 (1 thread); 4) random forest with 50 trees (8 threads); 5) naïve Bayes without any prior 672 

probabilities of the classes (1 thread); 6) artificial neural network with sigmoid function as activation 673 

function (8 threads). It has 1 hidden layer with 10 units; 7) AdaBoost with 50 estimators and learning 674 

rate of 1, which uses SAMME.R real boosting algorithm (1 thread); 8) and quadratic discriminant 675 

analysis without any prior on classes. Its regularization is 0 and its threshold for rank estimation is 1e-4 676 

(1 thread). Other parameters of these machine learning algorithm are default, as described in the 677 

documentations of Python scikit-learn package(57). All learning algorithms use the seven 678 

aforementioned features: mean and standard deviation of sequencing depth, mean and standard deviation 679 

of genotype quality, outlier depth, outlier quality and GC content. 680 

To test these eight machine learning algorithms, we obtain training and test datasets from the BP 681 

dataset, using filters described in Table S2 and S3. There are 21,248,103 good SNVs and 2,257,506 682 

good indels while there are 1,100,325 bad SNVs and 624,965 bad indels. We sample 100,000 variants 683 

randomly from good variants and 100,000 variants from bad variants to generate a training set. 684 

Similarly, 100,000 good variants and 100,000 bad variants are randomly chosen from the rest of variants 685 

to form a test set. Each machine learning model shares the same training and test sets. We train the 686 

machine learning models and measure training time at a training stage, and then test their accuracy and 687 

measure prediction time at a testing stage. We measure the time cost of each algorithm, which is the 688 

elapsed clock time between the start and end of each algorithm. To assess the performance of each 689 

algorithm, we compute F1-score for the test set. F1-score is the harmonic average of precision and 690 

recall, which is calculated as 2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ +,-.//
0+,-121345+,-.//

. The closer F1-score is to 1, the higher 691 

classification accuracy is. Recall is the fraction of true positive results over all samples that should be 692 

given positive prediction. Precision is the number of true positive results divided by the number of 693 
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positive results predicted by the classifier. We also measure the model accuracy using 10-fold cross 694 

validation, as well as the area under the receiver operating characteristic curve. 695 

ABHet approach and VQSR  696 

We compare ForestQC with two other approaches for performing QC on genetic variants. One is a 697 

filtering approach based on ABHet and the other is a classification approach called VQSR from GATK 698 

software. For the ABHet approach, we consider variants with ABHet > 0.7 or < 0.3 as bad variants, and 699 

the rest as good variants. We chose this threshold setting of ABHet (> 0.3 and < 0.7) because the ADSP 700 

project could not reliably confirm heterozygous calls with ABHet > 0.7 with Sanger sequencing(26). We 701 

also exclude variants with small ABHet values (< 0.3) to ensure high quality. For GATK, we use 702 

recommended arguments as of 2018-04-04(35). For SNVs, VQSR takes SNVs in HapMap 3 release 3, 703 

1000 Genome Project and Omni genotyping array as training resources, and dbSNP135 as known sites 704 

resource. HapMap and Omni sites are considered as true sites, meaning that SNVs in these datasets are 705 

all true variants, while 1000 Genome Project sites are regarded as false sites, meaning that there could 706 

be both true and false-positive variants. The desired level of sensitivity of true sites is set to be 99.5%. In 707 

the BP dataset, we run VQSR version 3.5-0-g36282e4 with following annotations; quality by depth 708 

(QD), RMS mapping quality (MQ), mapping quality rank sum test (MQRankSum), read position rank 709 

sum test (ReadPosRankSum), fisher strand (FS), coverage (DP) and strand odds ratio (SOR) to evaluate 710 

the likelihood of true positive calls. In the PSP dataset, we use VQSR version 3.2-2-gec30cee that uses 711 

all previous annotations and additional inbreeding coefficient (InbreedingCoeff) except SOR because 712 

variants in PSP dataset do not have the SOR annotation. For indels, VQSR takes indels in Mills gold 713 

standard call set(37) as true training resource, and dbSNP135 as known sites resource. The desired level 714 

of sensitivity of true sites is set to be 99.0%. We use VQSR version 3.5-0-g36282e4 with QD, DP, FS, 715 

SOR, ReadPosRankSum and MQRankSum annotations to evaluate the likelihood of true positive calls 716 
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in the BP dataset, while we run VQSR version 3.2-2-gec30cee with the same annotations and additional 717 

InbreedingCoeff except SOR for the PSP dataset. 718 

BP and PSP WGS datasets 719 

The BP WGS dataset is for studying bipolar disorder whose average coverage is 36. This study recruited 720 

individuals from 11 Colombia (CO) and 15 Costa Rica (CR) extended pedigrees in total. 454 subjects 721 

from 10 CO and 12 CR families are both whole genome sequenced and genotyped with microarray. 722 

There are 144 individuals diagnosed with BP1 and 310 control samples that are unaffected or have non-723 

BP traits. We use highly scalable Churchill pipeline(58) to do variant calling for the BP data set, where 724 

GATK-HaplotypeCaller 3.5-0-g36282e4 is used as the variant caller according to the GATK best 725 

practices(23) and the reference genome is HG19. After initial QC on individuals, five individuals are 726 

removed because of poor sequencing quality and possible sample mix-ups. Finally, 449 individuals are 727 

included in an analysis, resulting in 25,081,636 SNVs and 3,976,710 indels. 1,814,326 SNVs in the 728 

WGS dataset are also genotyped with microarray, which are used to calculate genotype discordance rate. 729 

In this study, we use the BP dataset before any QC performed on genetic variants. In a previous 730 

study(30), genetic variants in the BP WGS dataset are first processed with VQSR and then filtered with 731 

a trained logistic regression model to remove variants with low quality. 732 

The PSP WGS dataset is for studying progressive supranuclear palsy with average coverage of 29. 733 

544 unrelated individuals are whole genome sequenced, 518 of whom are also genotyped with 734 

microarray. Among them, 119 individuals have 547,644 SNPs and 399 individuals have 1,682,489 SNPs 735 

genotyped with microarray, respectively. That 119 individuals would be excluded when calculating 736 

genotype discordance rate in case of biases caused by fewer SNPs. There are 356 individuals diagnosed 737 

with PSP and 188 individuals as controls. Variant calling for the PSP dataset is performed using 738 

Churchill pipeline, where GATK-HaplotypeCaller 3.2-2-gec30cee is used as the variant caller according 739 

to the GATK best practices and the reference genome is HG19. 49 samples are found to have high 740 
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missing rate or high relatedness with other samples, or are diagnosed with diseases other than PSP, so 741 

they are removed. Next, we extract variant data with only 495 individuals with VCFtools. Monomorphic 742 

variants are then removed. After preprocessing, the PSP WGS dataset has 33,273,111 SNVs and 743 

5,093,443 indels. There are 1,682,489 SNVs from 381 samples genotyped by both microarray and WGS, 744 

which are used for calculating genotype discordance rate. 745 

Performance metrics 746 

21 sample-level metrics and 20 variant-level metrics are defined to measure the sequencing quality of 747 

the variant call set after performing quality control (Table S12). Note that we do not show all sample-748 

level metrics and variant-level metrics in the main text. Other metrics are available in supplemental 749 

materials. Variant-level metrics provide us with a summarized assessment report of the sequencing 750 

quality of a variant call set, such as total SNVs of the whole dataset. They are calculated based on the 751 

information of all variants in a variant call set. For example, the number and the proportion of multi-752 

allelic SNVs are counted for the entire dataset, each of which is identified according to its reference and 753 

alternate alleles. On the other hand, sample-level metrics enable the inspection of the sequencing quality 754 

for sequenced individuals in a variant call set. For instance, we check the distribution of novel Ti/Tv or 755 

other quality metrics among all individuals in the study. Sample-level metrics are calculated for each 756 

sample, using its genotype information on all variants in the dataset, and a distribution of those metrics 757 

across all individuals is shown as a box plot. For example, the number of SNV singletons on a sample 758 

level shows the distribution of the number of SNV singletons across all sequenced individuals. In this 759 

study, both sample-level and variant-level metrics are used to evaluate the sequencing quality of WGS 760 

variant datasets. 761 

In addition, we also use genotype missing rate, ME rate and genotype discordance rate as variant 762 

quality metrics, which are computed using the entire variant call set. The definitions of genotype 763 

missing rate and ME rate have been described above. Note that ME rate is only available for family-764 
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based datasets, such as the BP dataset, so we do not calculate ME rate for the PSP dataset that only 765 

includes unrelated individuals. Genotype discordance rate is the proportion of individuals whose 766 

genotypes are inconsistent between next-generation sequencing and microarray. This metric can only be 767 

calculated with a subset of variants due to the limited number of variants genotyped by both sequencing 768 

and microarray. Note that microarray might also have biases in genotyping, leading to some limitations 769 

of genotype discordance rate. For example, microarray usually genotype selected variants, especially 770 

common and known variants, so genotype discordance rate is only available for these selected variants 771 

and it cannot provide quality evaluation for all variants, especially rare variants. Genotype missing rate, 772 

ME rate and genotype discordance rate provide us with accurate evaluation of variant quality, because 773 

true positive variants with high quality are very likely to have low values of these three metrics. 774 
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Supporting Information 953 

Supporting Information includes 19 figures and 11 tables. Captions listed below. 954 

Figure S1: Receiver operating charateristic (ROC) curves and area under the curve of eight machine 955 

learning models. 956 

Figure S2: Relationship between the number of trees in random forest model and the performance of 957 

ForestQC. Relationship between the number of trees and (a) CPU time and (b) F1-score. 958 

Figure S3: Relationship between the probability threshold for predicting a variant to be good and the 959 

precision of ForestQC. If the probability of a variant predicted to be good is larger than the probability 960 

threshold, this variant would be labeled as a good variant. Classification precision changes along with 961 

the probability threshold in SNV classification (a) and indel classification (b). The precision of 962 

ForestQC is measured in F1-score. 963 

Figure S4: Overall quality of good and bad variants in the BP dataset identified by ForestQC using ME 964 

rate as a filter or not. The average Mendelian error rate and genotype missing rate for SNVs and indels, 965 

and genotype discordance rate to microarray data for SNVs are shown. Data are represented as the mean 966 

± SEM. 967 
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Figure S5: Sample-level quality metrics of good variants in the BP dataset identified by ForestQC using 968 

ME rate as a filter or not. (a) Total number of SNVs. (b) The number of SNVs found in dbSNP. (c) the 969 

number of SNVs not found in dbSNP. (d) Ti/Tv ratio of SNVs found in dbSNP. (e) Ti/Tv ratio of SNVs 970 

not found in dbSNP. (f) Total number of indels. (g) the number of indels found in dbSNP. (h) the 971 

number of indels not found in dbSNP. The version of dbSNP is 150. 972 

Figure S6: Overall quality of bad variants in the BP dataset detected by four different methods, including 973 

no QC applied, ABHet approach, VQSR and ForestQC. The average Mendelian error rate and genotype 974 

missing rate for SNVs and indels, and genotype discordance rate to microarray data for SNVs are 975 

shown. Data are represented as the mean ± SEM. 976 

Figure S7: Sample-level quality metrics of good variants in the BP dataset identified by four different 977 

methods, including no QC applied, ABHet approach, VQSR and ForestQC. (a) Ti/Tv ratio of SNVs 978 

found in dbSNP. (b) The number of SNVs found in dbSNP. (c) The number of indels found in dbSNP. 979 

(d) The number of indels not found in dbSNP. The version of dbSNP is 150. 980 

Figure S8: Overall quality of rare variants (MAF < 0.03) and common variants (MAF  0.03) in the BP 981 

dataset. The average Mendelian error rate and genotype missing rate for SNVs and indels, and genotype 982 

discordance rate to microarray data for SNVs are shown. Data are represented as the mean ± SEM. 983 

Figure S9: Overall quality of good variants identified from gray variants in the BP dataset processed by 984 

four different methods, including no QC applied, ABHet approach, VQSR and ForestQC. The average 985 

Mendelian error rate and genotype missing rate for SNVs and indels, and genotype discordance rate to 986 

microarray data for SNVs are shown. Data are represented as the mean ± SEM. 987 

Figure S10: Sample-level quality metrics of good variants identified from gray variants in the BP dataset 988 

processed by four different methods, including no QC applied, ABHet approach, VQSR and ForestQC. 989 

(a) Total number of SNVs. (b) The number of SNVs found in dbSNP. (c) the number of SNVs not found 990 

in dbSNP. (d) Ti/Tv ratio of SNVs found in dbSNP. (e) Ti/Tv ratio of SNVs not found in dbSNP. (f) 991 
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Total number of indels. (g) the number of indels found in dbSNP. (h) the number of indels not found in 992 

dbSNP. The version of dbSNP is 150. 993 

Figure S11: Selected sample-level quality metrics of good variants in BP dataset identified by VQSR 994 

using “SOR” or not. (a) Ti/Tv ratio of SNVs not found in dbSNP, (b) the number of total SNVs and (c) 995 

the number of total indels in the BP dataset processed with VQSR using “SOR” or not. SOR stands for 996 

StrandOddsRatio, which is a metric for strand bias measured by the Symmetric Odds Ratio test. The 997 

version of dbSNP is 150. 998 

Figure S12: Overall quality of bad variants in the PSP dataset detected by four different methods, 999 

including no QC applied, ABHet approach, VQSR and ForestQC. The average genotype missing rate for 1000 

both SNVs and indels, and genotype discordance rate to microarray data for SNVs are shown. Data are 1001 

represented as the mean ± SEM. 1002 

Figure S13: Sample-level quality metrics of good variants in PSP dataset identified by four different 1003 

methods, including no QC applied, ABHet approach, VQSR and ForestQC. (a) Ti/Tv ratio of SNVs 1004 

found in dbSNP. (b) The number of SNVs found in dbSNP. (c) The number of indels found in dbSNP. 1005 

(d) The number of indels not found in dbSNP. The version of dbSNP is 150. 1006 

Figure S14: Overall quality of rare variants (MAF < 0.03) and common variants (MAF  0.03) in the PSP 1007 

dataset. The average genotype missing rate for SNVs and indels, and genotype discordance rate to 1008 

microarray data for SNVs are shown. Data are represented as the mean ± SEM. 1009 

Figure S15: Overall quality of good variants identified from gray variants in the PSP dataset processed 1010 

by four different methods, including no QC applied, ABHet approach, VQSR and ForestQC. The 1011 

average genotype missing rate for both SNVs and indels, and genotype discordance rate to microarray 1012 

data for SNVs are shown. Data are represented as the mean ± SEM. 1013 

Figure S16: Sample-level quality metrics of good variants identified from gray variants in the PSP 1014 

dataset processed by four different methods, including no QC applied, ABHet approach, VQSR and 1015 
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ForestQC. (a) Total number of SNVs. (b) The number of SNVs found in dbSNP. (c) the number of 1016 

SNVs not found in dbSNP. (d) Ti/Tv ratio of SNVs found in dbSNP. (e) Ti/Tv ratio of SNVs not found 1017 

in dbSNP. (f) Total number of indels. (g) the number of indels found in dbSNP. (h) the number of indels 1018 

not found in dbSNP. The version of dbSNP is 150. 1019 

Figure S17: Feature importance of each feature in the random forest model of ForestQC applied to the 1020 

BP and PSP datasets. DP stands for sequencing depth. GQ stands for genotyping quality. SD means 1021 

standard deviation. Outlier DP or GQ means the proportion of samples having genotyping quality or 1022 

sequencing depth lower than the first quartile of depth or genotyping quality in chromosome 1. GC 1023 

stands for the GC content of a 1000-bp window where the variant is located. (a) Feature importance in 1024 

SNV classification. (b) Feature importance in indel classification. 1025 

Figure S18: Pearson’s correlation coefficients between each pair of features in the BP and PSP dataset. 1026 

Figure S19: Quality of good SNVs identified by VQSR with two different settings of training resources 1027 

and ForestQC. (a) Ti/Tv ratio of SNVs not found in dbSNP v150 and (b) total number of SNVs in the 1028 

BP and PSP dataset. (c)-(e) Average Mendelian error rate, average genotype missing rate, and average 1029 

genotype discordance rate of good SNVs in the BP dataset. Data are represented as the mean ± SEM. 1030 

“Omni_Modified VQSR”: SNVs in Omni chip array call set are considered to contain both true and 1031 

false positive sites. “original VQSR”: SNVs in Omni chip array call set are considered to contain only 1032 

true sites. 1033 

  1034 

Table S1: Accuracy of eight different machine learning algorithms 1035 

Table S2: Thresholds of four filters for the selection of good variants from the original dataset 1036 

Table S3: Thresholds of four filters for the selection of bad variants from the original dataset 1037 

Table S4: Variant-level quality metrics of variants in the BP dataset processed by ForestQC with 1038 

different settings 1039 
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Table S5: Variant-level quality metrics of good variants in the BP dataset processed by different 1040 

methods 1041 

Table S6: Rare variants and common variants in the BP dataset processed by different methods 1042 

Table S7: Variant-level quality metrics of good variants identified from gray variants in the BP dataset 1043 

Table S8: Variant-level quality metrics of good variants in the PSP dataset processed by four different 1044 

methods 1045 

Table S9: Rare variants and common variants in the PSP dataset processed by different methods 1046 

Table S10: Variant-level quality metrics of good variants identified from gray variants in the PSP dataset 1047 

Table S11: Running time of ForestQC and VQSR in two datasets, measured in real time 1048 

Table S12: Definitions of 23 metrics for sequencing quality control calculated for sample-level and 1049 

variant-level 1050 
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Figures 1054 

   1055 

Figure 1: Workflow of ForestQC. ForestQC takes a raw variant call set in the VCF format as input. Then 1056 

it calculates the statistics of each variants, including MAF, mean depth, mean genotyping quality, etc.. 1057 

In the filtering step, it separates the variant call set into good, bad, and gray variants by applying various 1058 

hard filters, such as Mendelian error rate and genotype missing rate. In classification step, good and bad 1059 

variants are used to train a random forest model, which is then applied to assign labels to gray variants. 1060 

Variants predicted to be good among gray variants are combined with good variants from the 1061 

classification step for the final set of good variants. The same procedure applies to find the final set of 1062 

bad variants. 1063 
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  1064 

Figure 2: Overall quality of good variants in the BP dataset detected by four different methods, 1065 

including no QC applied, ABHet approach, VQSR and ForestQC. The average Mendelian error rate and 1066 

genotype missing rate for SNVs and indels, and genotype discordance rate to microarray data for SNVs 1067 

are shown. Data are represented as the mean ± SEM. 1068 
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  1069 

Figure 3: Sample-level quality metrics of good variants in the BP dataset identified by four different 1070 

methods, including no QC applied, ABHet approach, VQSR and ForestQC. (a) Ti/Tv ratio of SNVs not 1071 

found in dbSNP. (b) Total number of SNVs. (c) The number of SNVs not found in dbSNP. (d) Total 1072 

number of indels. The version of dbSNP is 150. 1073 

 1074 

 1075 

 1076 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2019. ; https://doi.org/10.1101/444828doi: bioRxiv preprint 

https://doi.org/10.1101/444828
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 
 

  1077 

Figure 4: Overall quality of good variants in the PSP dataset detected by four different methods, 1078 

including no QC applied, ABHet approach, VQSR and ForestQC. The average genotype missing rate for 1079 

both SNVs and indels, and genotype discordance rate to microarray data for SNVs are shown. Data are 1080 

represented as the mean ± SEM. 1081 
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Figure 5: Sample-level quality metrics of good variants in the PSP dataset identified by four different 1087 

methods, including no QC applied, ABHet approach, VQSR and ForestQC. (a) Ti/Tv ratio of SNVs not 1088 

found in dbSNP. (b) Total number of SNVs. (c) The number of SNVs not found in dbSNP. (d) Total 1089 

number of indels. The version of dbSNP is 150.   1090 
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