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Abstract 
 
Motivation: Genome alignment of reads is the first step of most genome analysis workflows. In 
the case of RNA-Seq, transcriptome pseudoalignment of reads is a fast alternative to genome 
alignment, but the different “coordinate systems” of the genome and transcriptome have made it 
difficult to perform direct comparisons between the approaches.  
 
Results: We have developed tools for converting genome alignments to transcriptome 
pseudoalignments, and conversely, for projecting transcriptome pseudoalignments to genome 
alignments. Using these tools, we performed a direct comparison of genome alignment with 
transcriptome pseudoalignment. We find that both approaches produce similar quantifications. 
This means that for many applications genome alignment and transcriptome pseudoalignment are 
interchangeable. 
 
Availability and Implementation:  bam2tcc is a C++14 software for converting alignments in 
SAM/BAM format to transcript compatibility counts (TCCs) and is available at 
https://github.com/pachterlab/bam2tcc. kallisto genomebam is a user option of kallisto that 
outputs a sorted BAM file in genome coordinates as part of transcriptome pseudoalignment. The 
feature has been released with kallisto v0.44.0, and is available at 
https://pachterlab.github.io/kallisto/. 
 
Supplementary Material: N/A 
 
Contact: Lior Pachter (lpachter@caltech.edu) 
 
Introduction 
 

Read alignment programs are used to locate the genome coordinates from which a 
sequenced read could originate (e.g., Langmead and Salzberg, 2012). In the case of RNA-Seq, 
the sequenced reads correspond to cDNA that have been reverse transcribed from mRNA. 
Because splicing occurs as part of post-transcriptional processing, the alignments to the genome 
may span multiple exons and skip the introns between the exon-exon junctions.  The task of 
aligning RNA-Seq reads to the genome in a way that is robust to splicing is known as “genome 
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spliced alignment.” There are several programs that perform this task, such as TopHat/TopHat2 
(Trapnell et al., 2009; Kim et al., 2013), STAR (Dobin et al., 2013), and HISAT/HISAT2 (Kim 
et al., 2015).  When spliced alignment is used for RNA-Seq, subsequent analysis is required to 
assign reads to genes (e.g., Liao et al., 2014) or to transcripts (e.g., Trapnell et al., 2010) as part 
of quantification. 

An alternative to align reads to the genome is to align reads directly to the transcriptome. 
The transcriptome is defined as the set of sequences corresponding to mature mRNA after post-
transcriptional processing. Methods such as eXpress (Roberts and Pachter, 2013) and RSEM (Li 
and Dewey, 2011) use transcriptome alignments for read assignment under a quantification 
model. In previous benchmarks of RNA-Seq quantification methods, it has been unclear whether 
performance improvements from transcriptome alignment are due to the mode of alignment or to 
a different quantification model (Teng et al., 2016). 

In 2016, Bray et al. introduced the concept of pseudoalignment to the transcriptome, 
which, rather than a performing a full alignment, records information about the set of transcripts 
a read is compatible with. Specifically, in pseudoalignment, reads are assigned to these sets of 
transcripts, i.e. “equivalence classes” of transcripts (Nicolae et al., 2011). Transcript 
compatibility counts (TCCs) constitute the number of reads within the equivalence classes and 
serve as sufficient statistics for transcript quantification. (See Figure 1a for workflow of 
pseudoalignment and quantification.) Transcriptome pseudoalignment is orders-of-magnitude 
faster than traditional genome alignment (Bray et al., 2016; Patro et al., 2017), however while 
pseudoalignment has increased in popularity since its introduction two years ago (Vivian et al., 
2017; Lachmann et al., 2018), genome alignment programs are still widely used. 

While there have been comparisons of genome alignment and pseudoalignment methods 
(Teng et al., 2016; Bray et al., 2016; Patro et al., 2017), the benchmarks have examined only the 
final quantifications and have not teased apart the algorithmic components. The output of 
peudoalignment, in the form of TCCs, is conceptually different from genome alignments. To 
compare genome alignments directly to pseudoalignments, one must perform a conversion of the 
underlying data models, a task that is considerably more complicated than converting file 
formats. Furthermore, procedures for quantification after genome alignments are fundamentally 
different than those that are used with pseudoalignments, making a direct comparison 
challenging. 
 
 
Results 
 

To compare alignment to pseudoalignment methods, we created a tool, bam2tcc, that 
converts genome alignments in the format of a BAM or SAM file to transcript compatibility 
counts, the primary output of transcriptome pseudoalignment. We then quantified genome 
alignments and transcriptome pseudoalignments using the exact same model and method (Figure 
1b), thus separating the effects of alignment from those of quantification. We used bam2tcc to 
convert HISAT2 and STAR genome alignments into transcript compatibility counts, which were 
then quantified using the expectation maximization (EM) algorithm for a uniform coverage 
model (Bray et al., 2016). We chose HISAT2 and STAR because of their popularity as well as 
their accuracy in previous benchmarks (Baruzzo et al., 2017). 

We compared the accuracy of the genome spliced alignment programs HISAT2 and 
STAR and transcriptome pseudoalignment programs kallisto and Salmon on simulations where 
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the true abundances are known.  We ran the methods with default parameters and with minimal 
parameterization. Performance of aligners and pseudoaligners on the simulations were 
comparable, as demonstrated by their mean absolute relative differences (MARDs) on expressed 
transcripts. We separately benchmarked accuracy on transcripts that were not expressed in the 
simulation by examining their distances from zero and taking the mean of this distance across all 
transcripts. On both measures, across 10 simulated samples, the results of methods were highly 
concordant with each other (Figure 1b-e), with the exception of STAR. kallisto, Salmon and 
HISAT2 were more accurate than STAR (Tables 1-4), demonstrating that transcriptome 
pseudoalignment methods can outperform genome alignment methods. 

We also compared the results of the four methods on experimental RNA-Seq data from 
Zika-infected human neuroprogenitor cells (Tang et al., 2016; Yi et al., 2017). Since a 
simulation cannot capture all sources of variance in an experiment, the inter-method correlations 
on experimental data were lower than on simulated data. Nonetheless, the cross-method 
correlations show that the methods still produced concordant quantifications (Tables 5-6). 

Examining the TCCs derived by each method on this experimental dataset also shows 
concordance on the level of the TCCs, even prior to quantification. We examined the number of 
transcripts in each equivalence classes as proxy for the uncertainty in read assignment. The 
distribution of equivalence class size, defined as the number of transcripts per equivalence class, 
weighted by the counts for the equivalence class, was similar for all methods (Figure 2a). The 
weighted mean equivalence class size was similar across all methods and showed that each read 
on average is compatible with 3.8 ambiguous transcripts (Figure 2b). An examination of the 
intersections of identical equivalence classes across methods showed that the majority of 
equivalence class were shared amongst all methods, and that almost all of the reads were in 
equivalence classes that were common to all methods (Figure 2c). 

One feature of genome alignment methods is that the output can be used to produce a 
visualization of the reads along the genome. Such visualizations are important for quality control 
and interpretation. To enable the feature with transcriptome pseudoalignment, we developed a 
tool, kallisto quant --genomebam, that generates a BAM file that can be used for visualization, 
alongside kallisto’s usual quantification. This will allow users to benefit from the speed of 
pseudoalignment while still being able to visualize the pseudoalignments. 
 
Discussion 
 

Our analysis is the first direct comparison that specifically examines the differences in 
alignment compared to pseudoalignment. Whereas previous comparisons confounded 
alignment/pseudoalignment with quantification, we have controlled for quantification by 
developing a new tool to convert genome alignments to TCCs. One application of our tool is to 
convert preexisting alignments into pseudoalignments. Previous work has shown that using 
TCCs directly for clustering and differential expression is as good as or better than using 
transcript quantifications (Ntranos et al., 2016; Yi et al., 2018; Ntranos et al., 2018). Direct 
analysis of TCCs can be advantageous since it does not introduce inferential ambiguity through 
transcript assignment and is feasible even in the absence of full length sequencing (Ntranos et 
al., 2016; Yi et al., 2018; Ntranos et al., 2018). 

In choosing the benchmarking metrics for our analyses, we separated analysis of 
expressed transcripts from non-expressed transcripts. This is not typically done but we found that 
such a separation is important as metrics such as mean absolute difference (MARD) can be 
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biased by zeroes. Because relative differences are more meaningful on expressed transcripts and 
absolute differences are more meaningful on non-expressed transcripts, we propose that 
subsequent benchmarks should always separately evaluate the two. 

One advantage of performing genome spliced alignment with RNA-Seq reads is that 
alignments can be readily visualized on browsers (e.g.,  Robinson et al., 2011). We provide, for 
the first time, a tool for visualizing pseudoalignments as projections to the genome. Previously, 
the pseudoalignment programs RapMap (Srivastava et al., 2016) and kallisto could output SAM 
formatted alignments, but only with respect to the transcriptome, and were therefore not directly 
useful for visualization. 

Finally, our results demonstrate a practical point for bioinformaticians: for the purpose of 
transcript quantification, transcriptomic pseudoaligners perform as accurately as aligners. One 
key advantage of pseudoaligners is speed, and with our new feature, we can support visualization 
of the pseudoalignments in genomic coordinates. Aside from cases where alignment to 
noncoding regions is valued (e.g. when transcriptome annotations are incomplete) or where 
alignments are important for the biology of interest (e.g. for the discovery of novel splice 
junctions), pseudoalignment should suffice. 
 
Conclusion 

 
In a first direct comparison between aligners and pseudoaligners, we showed that 

pseudoaligners are as accurate as genome aligners. We created tool that converts genome 
alignment in the form of a SAM/BAM into TCCs that can be quantified with kallisto. 
Furthermore, we implemented a new feature in kallisto for projecting pseudoalignments to the 
genome, which is output as a BAM file and can be visualized like genome alignments. Our tools 
place genome alignment and transcriptome pseudoalignment on an equal footing. 
 
Methods 
 
bam2tcc 
bam2tcc is written in C++14 and uses the SeqAn software library (Reinert et al., 2017) for 
efficient parsing of BAM and GTF files. bam2tcc requires as inputs a GTF/GFF file for the 
annotation and a sorted BAM or SAM file of alignments. The output of bam2tcc is a vector of 
TCCs and a map of ECs to transcripts. 
 
Briefly, bam2tcc first combines the transcript coordinates and the sorted read alignments. For 
each alignment, and every transcript, it considers whether the alignment is compatible with the 
transcript based on the exon coordinates of the transcript. An alignment is compatible with a 
transcript if it starts within an exon of the transcript, ends within an exon of the transcript, and its 
gaps coincide within the start and end coordinates of all the exons between the start and end 
exon.  For each alignment, the set of transcripts that are compatible with the alignment is its 
equivalence class. In the case of reads with multiple genome alignments, bam2tcc computes the 
union of the alignments’ equivalence classes to obtain the equivalence class of the read. For 
paired-end sequencing, bam2tcc takes the intersection of the equivalence classes corresponding 
to the two reads to obtain the equivalence class of the pair. 
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GenomeBam 
kallisto v0.44.0 adds a new option of projecting pseudoalignments of reads to genomic 
coordinates, where alignments are annotated with the posterior probability of the alignment. To 
this end, using a user-provided GTF file, kallisto constructs a model of the transcriptome 
consisting of genes, transcripts and exon coordinates. The reporting of the alignment uses a two-
stage process. In the first stage, kallisto performs pseudoalignment and the equivalence class of 
each read is recorded on disk in a temporary file. Following pseudoalignment, the EM algorithm 
is run to obtain transcript quantifications. This is the usual workflow of kallisto quantification. In 
the second stage, with quantification results available, kallisto then loads the temporary file of 
equivalence classes in conjunction with the reads. For each read, kallisto identifies the first k-mer 
in the read that maps to the transcripts of the equivalence class with non-zero abundances. Using 
coordinates of the k-mer within the transcript, kallisto then projects the transcript coordinates to 
genome coordinates, accounting for exon structure. This subsequent projection is done without 
additional sequence information beyond the first matching k-mer. The set of genome projections 
are collapsed, such that a read mapping to multiple transcripts but to a single genomic position 
has a single alignment record in the BAM file. All multiple genome alignments are reported, but 
the alignment supported by the highest transcript abundance is reported as the primary 
alignment. The genome is divided into fixed intervals and each alignment is written to a 
temporary BAM file on disk corresponding to the interval. After all reads have been processed, 
each temporary BAM file is sorted and concatenated to a final sorted BAM file. Finally, the 
sorted BAM file is indexed for fast random access. 
 
Datasets 
We used RSEM v1.3.0 to simulate paired end RNA-Seq samples with uniform coverage. The 
RSEM model was built using data from single cell RNA-Seq (SMART-Seq) performed on 
differentiating myoblasts (Trapnell et al., 2014). With this model, we simulated 10 samples with 
an average of 2 million paired end reads per sample, and used the isoform counts that RSEM 
reported to have simulated (RSEM’s ‘sim.isoform.results’ file) as ground truth.  Isoform counts 
were summed to gene counts to obtain ground truth gene counts. 
 
The Zika-infected human neuroprogenitor cell (hNPC) dataset is available at GEO database 
(GEO Series GSE78711).  For summary statistics, we performed the analyses on all four paired 
end samples in the dataset and reported the mean and standard deviations across all four samples. 
For figures showcasing one sample, we used SRR3191542, although we performed the analysis 
on all four samples and found similar results across them. 
 
Genome and Transcriptome  
We performed quantification and analysis using Ensembl Homo sapiens genome GRCh38 
release 92 (ftp://ftp.ensembl.org/pub/release-92/fasta/homo_sapiens/dna/ 
Homo_sapiens.GRCh38.dna_sm.toplevel.fa) and its corresponding annotation (GRCh38 release 
92, ftp://ftp.ensembl.org/pub/release-92/gtf/homo_sapiens). The transcriptome was extracted 
from the annotation using tophat -G. This generation of the transcriptome file puts the genomic 
and pseudoaligners on an equal footing, as transcripts originating from alternate loci are not 
included in the transcriptome FASTA file. 
 
Generating TCCs 
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We used Salmon v0.11.2 (labeled “Salmon” or “Salmon_0.11.2” in figures) and kallisto v0.44.0 
(labeled ‘kallisto’ in figures).  We also included Salmon v0.8.2 in several benchmarks, which 
would be labeled explicitly as “Salmon_0.8.2.”  Salmon and kallisto indices were built using k-
mer length equal to 31.  kallisto TCCs were obtained by running kallisto pseudo. Salmon TCCs 
were obtained with Salmon’s quasimapping mode by running Salmon --dumpEQ and 
reformatting Salmon’s output to match the format of TCCs in kallisto. 
 
We used HISAT2 v2.1.0 and STAR version 2.4.2a to perform genome alignment. We used 
samtools v.1.2 (Li et al., 2009) to sort the alignments by genomic coordinates. We then ran 
bam2tcc on the STAR and HISAT2 alignments to generate TCCs. 
 
Quantification 
The TCCs generated by all four methods were quantified using kallisto’s EM algorithm, which is 
built on a uniform sequencing model. kallisto's EM algorithm was run by using a branch of 
kallisto written specifically for this analysis 
(https://github.com/pachterlab/kallisto/tree/pseudoquant) and invoking kallisto pseudoquant -l 
187 -s 70 on the TCCs generated from all four methods. The -l and -s parameters correspond to 
the fragment size distribution (mean length and standard deviation), which are required for 
quantification with the EM algorithm. 
 
Benchmarking 
In comparing the quantifications across the methods, we use the mean absolute relative distance 
(MARD) and the mean absolute distance.  We defined mean absolute relative distance (MARD) 
as: 
 

, 
 
where T is the number of transcripts/genes considered,  is the estimated quantification for 
transcript/gene t, and  is the ground truth quantification for transcript/gene t.  
 
We define mean absolute distance as: 
 

. 
 
Because we use mean absolute distance on only the set of unexpressed transcripts/genes, the 
mean absolute distance simplifies to 
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We use transcript and gene counts to calculate MARDs and mean absolute differences, obtaining 
gene counts from summing counts of the corresponding transcripts. We perform the Pearson and 
Spearman correlations on the log-transformed counts. 
 
 
Availability and Implementation 
bam2tcc is available at https://github.com/pachterlab/bam2tcc.  kallisto v0.44.0 containing the 
novel genomebam feature is available at https://pachterlab.github.io/kallisto/. The scripts and 
code used to regenerate our analysis are available at https://github.com/pachterlab/YLMP_2018. 
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Figure 1 
(a) We compared genome aligners and pseudoaligners by obtaining transcript compatibility 
counts from all methods and using kallisto to perform the same EM quantification. bam2tcc was 
used to convert genome alignments from HISAT and STAR to transcript compatibility counts 
prior to quantification.  We then plotted the mean absolute relative distances (MARDs) across 
ten simulations for transcripts and genes where the true expression is nonzero (b-c) and the mean 
absolute distance for transcripts and genes where the true expression is zero (d-e).
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Figure 2 
Distribution of equivalence class sizes in a dataset of paired-end RNA-Seq of human 
neuroprogenitor cells (SRR3191542). The size of an equivalence class is measured as the 
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number of transcripts, weighted by the number of counts in the equivalence class. All methods 
have similar distributions of equivalence class sizes (a), and furthermore, the methods have 
comparable mean equivalence class size across the four samples in this dataset (b). The other 
three samples in the dataset also had similar distributions of equivalence class sizes (data not 
shown). (c) shows the equivalence classes that are shared across methods using an upset plot. 
The number of shared equivalence classes across the methods are plotted in the top bar graph. 
The read density in these equivalence classes are plotted in the bottom bar graph, which was 
calculated as the sum of the counts of the ECs within that intersection. 
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Table 1: Pearson Correlations on Transcript Counts (log(counts+1)), Sim

kallisto Salmon HISAT2 STAR ground truth

kallisto 1 0.998 0.986 0.977 0.951
Salmon 0.998 1 0.987 0.977 0.951
HISAT2 0.986 0.987 1 0.977 0.949
STAR 0.977 0.977 0.977 1 0.941

ground truth 0.951 0.951 0.949 0.941 1

Table 2: Spearman Correlations on Transcript Counts (log(counts+1)), Sim

kallisto Salmon HISAT2 STAR ground truth

kallisto 1 0.991 0.950 0.920 0.840
Salmon 0.991 1 0.950 0.919 0.840
HISAT2 0.950 0.950 1 0.922 0.842
STAR 0.920 0.919 0.922 1 0.819

ground truth 0.840 0.840 0.842 0.819 1

Table 3: Pearson Correlations on Gene Counts (log(counts+1)), Sim

kallisto Salmon HISAT2 STAR ground truth

kallisto 1 1.000 0.997 0.996 0.992
Salmon 1.000 1 0.997 0.996 0.992
HISAT2 0.997 0.997 1 0.997 0.989
STAR 0.996 0.996 0.997 1 0.989

ground truth 0.992 0.992 0.989 0.989 1

1
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Table 4: Spearman Correlations on Gene Counts (log(counts+1)), Sim

kallisto Salmon HISAT2 STAR ground truth

kallisto 1 0.998 0.987 0.985 0.982
Salmon 0.998 1 0.987 0.985 0.982
HISAT2 0.987 0.987 1 0.986 0.975
STAR 0.985 0.985 0.986 1 0.974

ground truth 0.982 0.982 0.975 0.974 1

Table 5: Pearson correlation on Transcript Counts (log(counts+1)), Zika

kallisto Salmon 0.8.2 Salmon 0.11.2 HISAT2 STAR

kallisto 1 0.998 0.966 0.936 0.934
Salmon 0.8.2 0.998 1 0.966 0.936 0.934
Salmon 0.11.2 0.966 0.966 1 0.970 0.966

HISAT2 0.936 0.936 0.970 1 0.976
STAR 0.934 0.934 0.966 0.976 1

Table 6: Spearman correlation on Transcript Counts (log(counts)+1), Zika

kallisto Salmon 0.8.2 Salmon 0.11.2 HISAT2 STAR

kallisto 1 0.995 0.916 0.861 0.857
Salmon 0.8.2 0.995 1 0.917 0.861 0.858
Salmon 0.11.2 0.916 0.917 1 0.934 0.926

HISAT2 0.861 0.861 0.934 1 0.953
STAR 0.857 0.858 0.926 0.953 1
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