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Abstract

Motivation: Genome alignment of reads is the first step of most genome analysis workflows. In
the case of RNA-Seq, transcriptome pseudoalignment of reads is a fast alternative to genome
alignment, but the different “coordinate systems” of the genome and transcriptome have made it
difficult to perform direct comparisons between the approaches.

Results: We have developed tools for converting genome alignments to transcriptome
pseudoalignments, and conversely, for projecting transcriptome pseudoalignments to genome
alignments. Using these tools, we performed a direct comparison of genome alignment with
transcriptome pseudoalignment. We find that both approaches produce similar quantifications.
This means that for many applications genome alignment and transcriptome pseudoalignment are
interchangeable.

Availability and Implementation: bam2tcc is a C++14 software for converting alignments in
SAM/BAM format to transcript compatibility counts (TCCs) and is available at
https://github.com/pachterlab/bam?2tcc. kallisto genomebam is a user option of kallisto that
outputs a sorted BAM file in genome coordinates as part of transcriptome pseudoalignment. The
feature has been released with kallisto v0.44.0, and is available at
https://pachterlab.github.io/kallisto/.

Supplementary Material: N/A

Contact: Lior Pachter (Ipachter@caltech.edu)

Introduction

Read alignment programs are used to locate the genome coordinates from which a
sequenced read could originate (e.g., Langmead and Salzberg, 2012). In the case of RNA-Seq,
the sequenced reads correspond to cDNA that have been reverse transcribed from mRNA.
Because splicing occurs as part of post-transcriptional processing, the alignments to the genome
may span multiple exons and skip the introns between the exon-exon junctions. The task of
aligning RNA-Seq reads to the genome in a way that is robust to splicing is known as “genome
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spliced alignment.” There are several programs that perform this task, such as TopHat/TopHat2
(Trapnell et al., 2009; Kim et al.,2013), STAR (Dobin et al., 2013), and HISAT/HISAT2 (Kim
et al.,2015). When spliced alignment is used for RNA-Seq, subsequent analysis is required to
assign reads to genes (e.g., Liao et al., 2014) or to transcripts (e.g., Trapnell et al., 2010) as part
of quantification.

An alternative to align reads to the genome is to align reads directly to the transcriptome.
The transcriptome is defined as the set of sequences corresponding to mature mRNA after post-
transcriptional processing. Methods such as eXpress (Roberts and Pachter, 2013) and RSEM (Li
and Dewey, 2011) use transcriptome alignments for read assignment under a quantification
model. In previous benchmarks of RNA-Seq quantification methods, it has been unclear whether
performance improvements from transcriptome alignment are due to the mode of alignment or to
a different quantification model (Teng et al., 2016).

In 2016, Bray et al. introduced the concept of pseudoalignment to the transcriptome,
which, rather than a performing a full alignment, records information about the set of transcripts
a read is compatible with. Specifically, in pseudoalignment, reads are assigned to these sets of
transcripts, i.e. “equivalence classes” of transcripts (Nicolae et al., 2011). Transcript
compatibility counts (TCCs) constitute the number of reads within the equivalence classes and
serve as sufficient statistics for transcript quantification. (See Figure 1a for workflow of
pseudoalignment and quantification.) Transcriptome pseudoalignment is orders-of-magnitude
faster than traditional genome alignment (Bray et al., 2016; Patro et al., 2017), however while
pseudoalignment has increased in popularity since its introduction two years ago (Vivian et al.,
2017; Lachmann et al., 2018), genome alignment programs are still widely used.

While there have been comparisons of genome alignment and pseudoalignment methods
(Teng et al., 2016; Bray et al., 2016; Patro et al., 2017), the benchmarks have examined only the
final quantifications and have not teased apart the algorithmic components. The output of
peudoalignment, in the form of TCCs, is conceptually different from genome alignments. To
compare genome alignments directly to pseudoalignments, one must perform a conversion of the
underlying data models, a task that is considerably more complicated than converting file
formats. Furthermore, procedures for quantification after genome alignments are fundamentally
different than those that are used with pseudoalignments, making a direct comparison
challenging.

Results

To compare alignment to pseudoalignment methods, we created a tool, bam2tcc, that
converts genome alignments in the format of a BAM or SAM file to transcript compatibility
counts, the primary output of transcriptome pseudoalignment. We then quantified genome
alignments and transcriptome pseudoalignments using the exact same model and method (Figure
1b), thus separating the effects of alignment from those of quantification. We used bam2tcc to
convert HISAT2 and STAR genome alignments into transcript compatibility counts, which were
then quantified using the expectation maximization (EM) algorithm for a uniform coverage
model (Bray et al.,2016). We chose HISAT2 and STAR because of their popularity as well as
their accuracy in previous benchmarks (Baruzzo et al., 2017).

We compared the accuracy of the genome spliced alignment programs HISAT2 and
STAR and transcriptome pseudoalignment programs kallisto and Salmon on simulations where
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the true abundances are known. We ran the methods with default parameters and with minimal
parameterization. Performance of aligners and pseudoaligners on the simulations were
comparable, as demonstrated by their mean absolute relative differences (MARDs) on expressed
transcripts. We separately benchmarked accuracy on transcripts that were not expressed in the
simulation by examining their distances from zero and taking the mean of this distance across all
transcripts. On both measures, across 10 simulated samples, the results of methods were highly
concordant with each other (Figure 1b-e), with the exception of STAR. kallisto, Salmon and
HISAT?2 were more accurate than STAR (Tables 1-4), demonstrating that transcriptome
pseudoalignment methods can outperform genome alignment methods.

We also compared the results of the four methods on experimental RNA-Seq data from
Zika-infected human neuroprogenitor cells (Tang et al., 2016; Yi et al.,2017). Since a
simulation cannot capture all sources of variance in an experiment, the inter-method correlations
on experimental data were lower than on simulated data. Nonetheless, the cross-method
correlations show that the methods still produced concordant quantifications (Tables 5-6).

Examining the TCCs derived by each method on this experimental dataset also shows
concordance on the level of the TCCs, even prior to quantification. We examined the number of
transcripts in each equivalence classes as proxy for the uncertainty in read assignment. The
distribution of equivalence class size, defined as the number of transcripts per equivalence class,
weighted by the counts for the equivalence class, was similar for all methods (Figure 2a). The
weighted mean equivalence class size was similar across all methods and showed that each read
on average is compatible with 3.8 ambiguous transcripts (Figure 2b). An examination of the
intersections of identical equivalence classes across methods showed that the majority of
equivalence class were shared amongst all methods, and that almost all of the reads were in
equivalence classes that were common to all methods (Figure 2c).

One feature of genome alignment methods is that the output can be used to produce a
visualization of the reads along the genome. Such visualizations are important for quality control
and interpretation. To enable the feature with transcriptome pseudoalignment, we developed a
tool, kallisto quant --genomebam, that generates a BAM file that can be used for visualization,
alongside kallisto’s usual quantification. This will allow users to benefit from the speed of
pseudoalignment while still being able to visualize the pseudoalignments.

Discussion

Our analysis is the first direct comparison that specifically examines the differences in
alignment compared to pseudoalignment. Whereas previous comparisons confounded
alignment/pseudoalignment with quantification, we have controlled for quantification by
developing a new tool to convert genome alignments to TCCs. One application of our tool is to
convert preexisting alignments into pseudoalignments. Previous work has shown that using
TCC:s directly for clustering and differential expression is as good as or better than using
transcript quantifications (Ntranos et al., 2016; Yi et al., 2018; Ntranos et al., 2018). Direct
analysis of TCCs can be advantageous since it does not introduce inferential ambiguity through
transcript assignment and is feasible even in the absence of full length sequencing (Ntranos et
al.,2016; Yi et al., 2018; Ntranos ef al., 2018).

In choosing the benchmarking metrics for our analyses, we separated analysis of
expressed transcripts from non-expressed transcripts. This is not typically done but we found that
such a separation is important as metrics such as mean absolute difference (MARD) can be
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biased by zeroes. Because relative differences are more meaningful on expressed transcripts and
absolute differences are more meaningful on non-expressed transcripts, we propose that
subsequent benchmarks should always separately evaluate the two.

One advantage of performing genome spliced alignment with RNA-Seq reads is that
alignments can be readily visualized on browsers (e.g., Robinson et al., 2011). We provide, for
the first time, a tool for visualizing pseudoalignments as projections to the genome. Previously,
the pseudoalignment programs RapMap (Srivastava et al., 2016) and kallisto could output SAM
formatted alignments, but only with respect to the transcriptome, and were therefore not directly
useful for visualization.

Finally, our results demonstrate a practical point for bioinformaticians: for the purpose of
transcript quantification, transcriptomic pseudoaligners perform as accurately as aligners. One
key advantage of pseudoaligners is speed, and with our new feature, we can support visualization
of the pseudoalignments in genomic coordinates. Aside from cases where alignment to
noncoding regions is valued (e.g. when transcriptome annotations are incomplete) or where
alignments are important for the biology of interest (e.g. for the discovery of novel splice
junctions), pseudoalignment should suffice.

Conclusion

In a first direct comparison between aligners and pseudoaligners, we showed that
pseudoaligners are as accurate as genome aligners. We created tool that converts genome
alignment in the form of a SAM/BAM into TCCs that can be quantified with kallisto.
Furthermore, we implemented a new feature in kallisto for projecting pseudoalignments to the
genome, which is output as a BAM file and can be visualized like genome alignments. Our tools
place genome alignment and transcriptome pseudoalignment on an equal footing.

Methods

bam2tcc

bam?2tcc is written in C++14 and uses the SeqAn software library (Reinert et al., 2017) for
efficient parsing of BAM and GTF files. bam2tcc requires as inputs a GTF/GFF file for the
annotation and a sorted BAM or SAM file of alignments. The output of bamZ2tcc is a vector of
TCCs and a map of ECs to transcripts.

Briefly, bam2tcc first combines the transcript coordinates and the sorted read alignments. For
each alignment, and every transcript, it considers whether the alignment is compatible with the
transcript based on the exon coordinates of the transcript. An alignment is compatible with a
transcript if it starts within an exon of the transcript, ends within an exon of the transcript, and its
gaps coincide within the start and end coordinates of all the exons between the start and end
exon. For each alignment, the set of transcripts that are compatible with the alignment is its
equivalence class. In the case of reads with multiple genome alignments, bam2tcc computes the
union of the alignments’ equivalence classes to obtain the equivalence class of the read. For
paired-end sequencing, bam2tcc takes the intersection of the equivalence classes corresponding
to the two reads to obtain the equivalence class of the pair.
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GenomeBam

kallisto v0.44.0 adds a new option of projecting pseudoalignments of reads to genomic
coordinates, where alignments are annotated with the posterior probability of the alignment. To
this end, using a user-provided GTF file, kallisto constructs a model of the transcriptome
consisting of genes, transcripts and exon coordinates. The reporting of the alignment uses a two-
stage process. In the first stage, kallisto performs pseudoalignment and the equivalence class of
each read is recorded on disk in a temporary file. Following pseudoalignment, the EM algorithm
is run to obtain transcript quantifications. This is the usual workflow of kallisto quantification. In
the second stage, with quantification results available, kallisto then loads the temporary file of
equivalence classes in conjunction with the reads. For each read, kallisto identifies the first k-mer
in the read that maps to the transcripts of the equivalence class with non-zero abundances. Using
coordinates of the k-mer within the transcript, kallisto then projects the transcript coordinates to
genome coordinates, accounting for exon structure. This subsequent projection is done without
additional sequence information beyond the first matching k-mer. The set of genome projections
are collapsed, such that a read mapping to multiple transcripts but to a single genomic position
has a single alignment record in the BAM file. All multiple genome alignments are reported, but
the alignment supported by the highest transcript abundance is reported as the primary
alignment. The genome is divided into fixed intervals and each alignment is written to a
temporary BAM file on disk corresponding to the interval. After all reads have been processed,
each temporary BAM file is sorted and concatenated to a final sorted BAM file. Finally, the
sorted BAM file is indexed for fast random access.

Datasets

We used RSEM v1.3.0 to simulate paired end RNA-Seq samples with uniform coverage. The
RSEM model was built using data from single cell RNA-Seq (SMART-Seq) performed on
differentiating myoblasts (Trapnell et al., 2014). With this model, we simulated 10 samples with
an average of 2 million paired end reads per sample, and used the isoform counts that RSEM
reported to have simulated (RSEM’s ‘sim.isoform.results’ file) as ground truth. Isoform counts
were summed to gene counts to obtain ground truth gene counts.

The Zika-infected human neuroprogenitor cell (hNPC) dataset is available at GEO database
(GEO Series GSE78711). For summary statistics, we performed the analyses on all four paired
end samples in the dataset and reported the mean and standard deviations across all four samples.
For figures showcasing one sample, we used SRR3191542, although we performed the analysis
on all four samples and found similar results across them.

Genome and Transcriptome

We performed quantification and analysis using Ensembl Homo sapiens genome GRCh38
release 92 (ftp://ftp.ensembl.org/pub/release-92/fasta’homo_sapiens/dna/
Homo_sapiens.GRCh38.dna_sm.toplevel.fa) and its corresponding annotation (GRCh38 release
92, ftp://ftp.ensembl.org/pub/release-92/gtf/homo_sapiens). The transcriptome was extracted
from the annotation using tophat -G. This generation of the transcriptome file puts the genomic
and pseudoaligners on an equal footing, as transcripts originating from alternate loci are not
included in the transcriptome FASTA file.

Generating TCCs
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We used Salmon v0.11.2 (labeled “Salmon” or “Salmon_0.11.2" in figures) and kallisto v0.44.0
(labeled ‘kallisto’ in figures). We also included Salmon v0.8.2 in several benchmarks, which
would be labeled explicitly as “Salmon_0.8.2.” Salmon and kallisto indices were built using k-
mer length equal to 31. kallisto TCCs were obtained by running kallisto pseudo. Salmon TCCs
were obtained with Salmon’s quasimapping mode by running Salmon --dumpEQ and
reformatting Salmon’s output to match the format of TCCs in kallisto.

We used HISAT2 v2.1.0 and STAR version 2.4.2a to perform genome alignment. We used
samtools v.1.2 (Li et al., 2009) to sort the alignments by genomic coordinates. We then ran
bamZ2tcc on the STAR and HISAT? alignments to generate TCCs.

Quantification

The TCCs generated by all four methods were quantified using kallisto’s EM algorithm, which is
built on a uniform sequencing model. kallisto's EM algorithm was run by using a branch of
kallisto written specifically for this analysis
(https://github.com/pachterlab/kallisto/tree/pseudoquant) and invoking kallisto pseudoquant -1
187 -5 70 on the TCCs generated from all four methods. The -/ and -s parameters correspond to
the fragment size distribution (mean length and standard deviation), which are required for
quantification with the EM algorithm.

Benchmarking

In comparing the quantifications across the methods, we use the mean absolute relative distance
(MARD) and the mean absolute distance. We defined mean absolute relative distance (MARD)
as:

T

z o

=1 )

where T is the number of transcripts/genes considered, Lt is the estimated quantification for
transcript/gene ¢, and 2t is the ground truth quantification for transcript/gene ¢.

We define mean absolute distance as:
T
! N |
= Tt — Tt
T
t=1 .

Because we use mean absolute distance on only the set of unexpressed transcripts/genes, the
mean absolute distance simplifies to
T
F Yl
T t=1 .
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We use transcript and gene counts to calculate MARDs and mean absolute differences, obtaining
gene counts from summing counts of the corresponding transcripts. We perform the Pearson and
Spearman correlations on the log-transformed counts.

Availability and Implementation

bamZ2tcc is available at https://github.com/pachterlab/bam2tcc. kallisto v0.44.0 containing the
novel genomebam feature is available at https://pachterlab.github.io/kallisto/. The scripts and
code used to regenerate our analysis are available at https://github.com/pachterlab/YLMP_2018.
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Figure 1

(a) We compared genome aligners and pseudoaligners by obtaining transcript compatibility
counts from all methods and using kallisto to perform the same EM quantification. bam2tcc was
used to convert genome alignments from HISAT and STAR to transcript compatibility counts
prior to quantification. We then plotted the mean absolute relative distances (MARDs) across
ten simulations for transcripts and genes where the true expression is nonzero (b-¢) and the mean
absolute distance for transcripts and genes where the true expression is zero (d-e).
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Figure 2
Distribution of equivalence class sizes in a dataset of paired-end RNA-Seq of human
neuroprogenitor cells (SRR3191542). The size of an equivalence class is measured as the
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number of transcripts, weighted by the number of counts in the equivalence class. All methods
have similar distributions of equivalence class sizes (a), and furthermore, the methods have
comparable mean equivalence class size across the four samples in this dataset (b). The other
three samples in the dataset also had similar distributions of equivalence class sizes (data not
shown). (¢) shows the equivalence classes that are shared across methods using an upset plot.
The number of shared equivalence classes across the methods are plotted in the top bar graph.
The read density in these equivalence classes are plotted in the bottom bar graph, which was
calculated as the sum of the counts of the ECs within that intersection.
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Table 1: Pearson Correlations on Transcript Counts (log(counts+1)), Sim

kallisto  Salmon  HISAT2 STAR ground truth

kallisto 1 0.998 0.986 0.977 0.951
Salmon 0.998 1 0.987 0.977 0.951
HISAT?2 0.986 0.987 1 0.977 0.949
STAR 0.977 0.977 0.977 1 0.941
ground truth 0.951 0.951 0.949 0.941 1

Table 2: Spearman Correlations on Transcript Counts (log(counts+1)), Sim

kallisto ~ Salmon  HISAT2 STAR ground truth

kallisto 1 0.991 0.950 0.920 0.840
Salmon 0.991 1 0.950 0.919 0.840
HISAT?2 0.950 0.950 1 0.922 0.842
STAR 0.920 0.919 0.922 1 0.819
ground truth 0.840 0.840 0.842 0.819 1

Table 3: Pearson Correlations on Gene Counts (log(counts+1)), Sim

kallisto  Salmon  HISAT2 STAR  ground truth

kallisto 1 1.000 0.997 0.996 0.992
Salmon 1.000 1 0.997 0.996 0.992
HISAT?2 0.997 0.997 1 0.997 0.989
STAR 0.996 0.996 0.997 1 0.989
ground truth 0.992 0.992 0.989 0.989 1
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Table 4: Spearman Correlations on Gene Counts (log(counts+1)), Sim

kallisto ~ Salmon  HISAT2 STAR  ground truth

kallisto 1 0.998 0.987 0.985 0.982
Salmon 0.998 1 0.987 0.985 0.982
HISAT?2 0.987 0.987 1 0.986 0.975
STAR 0.985 0.985 0.986 1 0.974
ground truth 0.982 0.982 0.975 0.974 1

Table 5: Pearson correlation on Transcript Counts (log(counts+1)), Zika

kallisto  Salmon_0.8.2 Salmon_0.11.2 HISAT2 STAR

kallisto 1 0.998 0.966 0.936 0.934
Salmon_0.8.2 0.998 1 0.966 0.936 0.934
Salmon_0.11.2 0.966 0.966 1 0.970 0.966

HISAT2 0.936 0.936 0.970 1 0.976

STAR 0.934 0.934 0.966 0.976 1

Table 6: Spearman correlation on Transcript Counts (log(counts)+1), Zika

kallisto  Salmon_0.8.2 Salmon_0.11.2 HISAT2 STAR

kallisto 1 0.995 0.916 0.861 0.857
Salmon_0.8.2 0.995 1 0.917 0.861 0.858
Salmon_0.11.2 0.916 0.917 1 0.934 0.926

HISAT2 0.861 0.861 0.934 1 0.953

STAR 0.857 0.858 0.926 0.953 1
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