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Running title: Bias in gene-environment interactions with silent disease

Abstract

One of the most important research areas in case-control Genome-Wide
Association Studies is to determine how the effect of a genotype varies across
the environment or to measure the gene-environment interaction (GxE). We
consider the scenario when some of the “healthy” controls actually have the
disease and when the frequency of these latent cases varies by the
environmental variable of interest. In this scenario, performing logistic regression
of clinically defined case status on the genetic variant, environmental variable,
and their interaction will result in biased estimates of GXE interaction. Here, we
derive a general theoretical approximation to the bias in the estimates of the GXE
interaction and show, through extensive simulation, that this approximation is
accurate in finite samples. Moreover, we apply this approximation to evaluate the
bias in the effect estimates of the genetic variants related to mitochondrial

proteins a large-scale Prostate Cancer study.
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INTRODUCTION

One major objective in case-control Genome-Wide Association Studies (GWAS)
is to determine how the effect of a genotype varies across the environment, i.e.
to measure the gene-environment interaction (GXE). Understanding the GXE
interaction can provide valuable clues into the underlying pathophysiologic
mechanism of complex diseases (Ritz et al, 2017). A major complication is that
supposedly “healthy” controls are often undiagnosed cases and the frequency of
these latent cases may vary by environmental variables. Hence, the estimated
GXE interaction with respect to the true pathophysiologic disease status would be
biased if the analyses used only the clinically diagnosed disease status. The
problem of latent cases is relatively common. For example, Atrial Fibrillation is
undiagnosed in 5-17% of the population above the age of 75 (Panisello-Tafalla et
al. 2015), non-alcoholic fatty liver disease is undiagnosed in 14-30% of the adult
population (El-Kader et al., 2015), and acute coronary thrombosis is undiagnosed
in >10% of individuals at the time of death (Anderson et al, 1989). Our specific
motivating example is a large GWAS of prostate cancer. At autopsy,
approximately 29%, 36%, and 47% of “healthy” men aged 60-69, 70-79 and 80+
years have undiagnosed prostate cancer, with the exact frequencies varying by

race and ethnicity (Jahn et al, 2015).

We illustrate below why the GXE can appear to be associated with the disease

status if presence of the silent cases is ignored based on a hypothetical example.
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Shown on Figure 1 is an example when frequency of a minor allele does differ
by the true diagnosis defined as D = 0 to indicate controls, D = 1* silent disease
and D = 1 cases, but not by the environmental variable X = 1,2. But because
frequency of the silent disease varies by the environment (10% of clinically
diagnosed controls are in fact silent cases when X = 1, and 30% of the controls

are silent cases when X = 2), there appears to be GxE on the clinical diagnosis.

In this paper, we focus on estimating the bias of the GXE interaction when logistic
regression is performed with the observed disease status as the dependent
variable and the gene, environment, and their interaction as the independent
variables. Our discussion builds on the literature that describes the bias of the
main effects (i.e. gene or environment) in the presence of silent cases (Carroll et
al, 2006) and, more specifically, Neuhaus’s (1999) approximation to the bias of
the main effects when the data are collected using prospective sampling and

analyzed in a prospective likelihood function.

Our paper proceeds as follows. First, in the Material and Methods section, we
describe our notation and derive the theoretical approximation bias that results
from ignoring the presence of silent disease. Next, in the Simulation Experiments
section, we compare the theoretical approximation to empirical estimates of the
bias across multiple scenarios. Then, we apply our approach to a Prostate

Cancer GWAS (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
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bin/study.cqgi?study id=phs000207.v1.pl, Yeager et al, 2007). Finally, we

conclude our paper with a brief Discussion section.

MATERIALS AND METHODS

For individual i, let G; be the genotype, X; be the environmental variable
potentially interacting with the genotype, and Z; be a vector of other
environmental variables. Furthermore, let D; = {0,1} be a binary indicator of the
true, and unobserved, disease status and let DX = {0,1} be a binary indicator of
clinically diagnosed disease status. In the overall population, let 7, = pr(D¢ = 0)
and m; = pr(D = 1) and in our study population let n, be the number of
controls (i.e. DL = 0), n, be the number of cases (i.e. DX = 1), and n = ny + n,.
For clarity of presentation we suppose that all variables are binary, but the
discussion could be easily extended to categorical variables, though the
interpretation of GXE can then be notoriously difficult.

If 8 is the frequency of minor allele a when the major allele is A, then the Hardy-

Weinberg Equilibrium model (Hardy, 1908) states

2X60x(1-06),if g=Aa
G~Q(g,0) = Pr(G =gl|o) = 6%, if g =aa
(1-0)?, ifg=AA

We assume that individuals with a clinical diagnosis have the true disease, i.e.

pr(D = 1|D‘ = 1) = 1, and that a substantial proportion of “controls” also have
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the true disease and that this proportion can vary by environmental factors:
pr(D = 1|DL =0,X) = (X) > 0.

We next assume that the probability of the true disease follows a logistic model

_ _ _ _ _exp{Bo+BxXx+Bzxz+PeXg+BexxXgXxx}
Prs (D =116 = gX=x2= z) = 1+exp{Bo+Pxxx+BzXz+PcXg+Paxxxgxx} 1)

Define B = (By, Bx, Bz, Bs, Bexx) 10 be the vector of coefficients of interest.

The observed data are collected using retrospective sampling design, hence the
likelihood function of the observed data is based on the probability pr[G = g,X =
x,Z = z|D = d‘] and we define Qg (d‘t, g,x,2z) = pr[G = g,X = x,Z = z|D‘L =

Ya pr[D¢"|D=d X]xprg[D=d'|G,X,Z]xpr[G X,Z]
Yd gz pr[DCL|D=d" X=x"|xprg[D=d'|G=g ,X=x",Z=z"|xpr[G=g ,X=x",Z=7"]

] = (2)

The usual analyses with the clinical diagnosis as an outcome variable and hence
ignores presence of silent disease is based on the disease risk model

prB*(DCL _ 1|G _ g,X —x,7 = Z) _ exp{Bo+BxXx+PyXz+PeXg+Prxx Xg*x} (3)

1+exp{Bo+ By xx+ByXz+BEXG+PE X gxx )

Estimation and inference in this setting is performed based on the likelihood

function in the form Qg+(d‘*, g,x,2) = prg:[D* =dG =g, X =x,Z = z] =

exp{(dt==1)«(By+Bx xx+Byxz+BeXg+BixxXgxx)} 4)
1+exp{Bs+Byxxx+ByXz+BEX g+ By xXgxx } ’

We are interested to find an analytic solution that relates parameters B* =

(Bs, Bx, Bz, Bé, Bexx) from the misspecified model (4) to the parameters B =

(Bo, Bx» Bz, Ber Bexx) from the true model (1)-(2).
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The next steps are motivated by the developments in Kullback (1959), Neuhaus
(1999). Kullback (1959) showed that parameters B* = (B, Bx, Bz, Be, Béxx)
estimated in the misspesified model (4) converge to values that minimize the
Kullback-Leibler divergence between the true and false models with expectations

taken with respect to the true model, i.e.

N . 0g(DCL G x z
B = argmln (EX,G,Z [EDCL|X,G,Z10g {Q;*((DCLIG'_X,Z))}]) . (5)

We define y(X) = pr(D* = 1|D = 1,X).

Derivations shown in Appendix arrive at the following approximation of the
relationship between the parameters of the misspecified model (4) and the true
model (1). For clarity of presentation we first assume that variable Z is not in the

risk model. Generalization to include Z is described in Web-based supplementary

materials.
. y(0) 1 .
ﬁo = lOg {1+{1—y(0)}} T 1+{1-y(0)} X BO’ (6)
" y(1)xexp (Bo) v (0)xexp(fo) 1
~ — X
Bx = log {1+{1—Y(1)}><eXp (ﬁo)} log {1+{1—7(0)}><eXp(Bo)} + {1+{1—V(1)}X6Xp(ﬁo)} Bx (1)

1
P~ X
1+{1-y(0)}xexp(Bo)

Beé; 8)
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Bexx =

g { y(1)xexp (Bo+Bx+B¢) }—l g { y(1)xexp(Bo+Bx) }_
1+{1-y(D)}xexp (Bo+Lx+B¢) 1+{1-y(1)}xexp(Bo+PBx)

(0)xexp(Bo+Bg) v (0)xexp(By) 1
] 14 1
& {1+{1—y(0)}xexp(ﬁo+ﬁa)} & {1+{1—Y(0)}Xexp(ﬁo)} {1+{1—V(1)}><exp(ﬁo+/3x+ﬁa)}

Bexx- 9)

We now derive alternative formulation. In retrospective design cases and controls
are sampled conditionally on the disease status. We therefore introduce an
imaginary indicator of being selected into the study, A= 1. Cases and controls
are then selected into the study with probabilities §,,« = pr(A= 1|D* = d") «
nyect/T e The true disease model then becomes

prg(D =1|G =g,X =x,Z = z,A=1)

_ 8y X y(0) X exp{Bo + Bx X x + B X g + Boxx X g X x }
8y + [6o X {1 —y(0)} + & xy(0)] X exp{By + Bx X x + B X g+ Poxx X g X x}

We then derive

" [ d1xy(0)xexp{Bo ]}
=~ ; 1
Bo = 10 |55 -y @)xexpiall (10)

% [ 61 xy(0)xexp{fo+Bs} 61 xy(0)xexp{fo } .
o ) 11
Be = 10g |55 <ty xexp(Boria) [60+60x{1—y(o>}xexp{ﬁo}]’ (11)

" [ §ixy(Dxexp{Bo+PBx}
~ | 1
Bx = log [80+80%{1-y(1)}xexp{Bo+Bx}

61 xy(0)xexp{fo } ]; (12)

-log [60+60><{1—Y(0)}><exr){ﬁo}

B ~ o [51><Y(1)><eXp{ﬁo+ﬁx+ﬁc+ﬁaxx} ] [ 81 xy (1) xexp{Bo+Bx) _
GxX So+8ox{1-y(1}xexp{Bo+Bx+Bexx} 8o +80x{1-y(1)}xexp{Bo+Bx}

81 xy(0)xexp{fo+fs}
8o+89x{1-y(0)}xexp{Bo+PL¢}

81xy(0)xexp{fis} (13)

+log [60+60><{1—V(0)}><6Xp{/>’o} '

log[
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Remarks:

1.

Appendix provides formulas (A11)-(A15) for the setting with environmental
variable Z that does not interact with the SNP genotype and environmental
variable X.

Appendix also provides formulas (A16)-(A21) for the setting when the
environmental variable Z interacts with the environmental variable X, but
does not interact with the SNP genotype.

When the clinical diagnosis and pathologic disease status correspond,
i.e.y(0) = y(1) =1, then all parameter estimates are unbiased.

If B; = 0,then B; = 0. Hence the usual logistic regression yields a
consistent estimate of the null g;.

If B = 0,then g5 # 0. Similarly, if 5x = 0,then g% # 0; and if B;xx = 0, then
Bixx # 0. Hence the usual logistic regression does not yield a consistent
estimate of the null effect By, Bx, Boxx-

If B; = 0 and By = 0 then B; = 0 and Sx.; = 0. Hence the usual logistic
regression yields consistent estimate of the null 5; and Sy-

If the misclassification is non-differential, i.e. y(0) = y(1); and if By =
0,then 5z = 0. That is then the usual logistic regression model yields
consistent estimate of the null effect fy.

If the misclassification is non-differential, i.e. y(0) = y(1); then g, = 0,

Bx =0,B; =0, Bxxc = 0 imply Bsx = 0. That is then the usual logistic

regression model yields consistent estimate of the null effect of S, x.
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9. Taylor series expansion of (10)-(13) around the true parameters equal to

zero arrives to (6)-(9).

SIMULATION EXPERIMENTS

We first perform a set of simulation studies to investigate a false positive rate for
Bexx estimates. We define the false positive rate to be the proportion of p-values
<0.05 from the usual logistic regression with the clinical diagnosis as an outcome
variable across 10,000 studies. We simulate X to be binary with frequency 0.488
and G with frequency 0.10. Next, we simulate the true disease status according
to the risk model with coefficients g, = —1,1,

Be = log(1),log(1.5),log(2),log(2.5),log(3),log(3.5),log(4) ,log (4.5),Bx =
log(2), Bsxx = 0. To simulate the clinical diagnosis we define the clinical-
pathological diagnoses relationship to be as in the Prostate Cancer data
analyses, i.e. pr(D = 1|D* = 0,X) = 0.252 and 0.389 for X = 0, 1. We simulate
datasets with n, = n, = 3,000, n, = n, = 1,000. False positive rates shown in
Table 1 indicate that the rate is the nominal when main effect of the genotype is
zero, and increases as the value of g increases. When frequency of the true
disease is higher (8, = 1 vs.—1), then overall the false positive rates are lower.
For example, in a study with n, = n, = 3,000, when g, = log(3) = 1.1, the rates
are 0.19 and 0.14, when 5, = —1 and 1, respectively. The false discovery rates

are persistently elevated in studies with n, = n, = 10,000.
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We conducted simulation studies to evaluate the accuracy of the theoretical
approximation that we derived in (6)-(9) and in the Appendix. These studies are

presented in Web-based Supplementary Materials.

We next describe the magnitude of bias in estimates of §;.x = 0 for various
frequencies of the clinical diagnosis and the true disease state in the population.
We simulate X as Bernoulli with frequency 0.488 and G as Bernoulli with
frequency 0.10. We next simulate the true disease status using coefficients

B, = —3.5,—-3,-2.5,-2,—1.5,—1,-0.5,0,0.5,1,1.5,2,2.5,3,3.5; B, = log(1.5) =
0.41, Bx = log(3) = 1.099, Bs;xx = 0. We next simulate the clinical diagnosis with
frequencies

y(0) = pr(D¢* =1|D = 1,X = 0) = 0.000001,0.0001,0.001,0.005,0.01, 0.10, and
y(1) = pr(D* =1|D = 1,X = 1) = 0.000001,0.0001,0.001,0.005,0.01,0.10. We

then estimate bias in estimates of .. x using (13) for each of the above settings.

Shown on Figure 2 are frequencies of the true probability of disease across
values of 8, on the x-axis. Figure 3 presents probabilities of the clinical diagnosis
across values of 8, on the x-axis, values of y(1) on the panels, and values of
y(0) indicated by color. We note that the setting of prostate cancer example
corresponds to the values of g, around -2 and y(0) = y(1) = 0.000001. Bias in
the estimates of B;.x shown on Figure 4 differs across values of 8, y(0),y(1).

Magnitude of bias can be substantial and is usually smaller when y(0) = y(1).
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PROSTATE CANCER DATA ANALYSES

We performed GxE analyses for Prostate Cancer using data collected as part of
the Prostate, Lung, Colon and Ovarian (PLCO) Screening trial (dbGAP:

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cqgi?study id=phs000207.v1.p1, study accession phs000207.v1.p1l,

Yeager et al, 2007). The study included 965 cases and 1,035 controls of
European ancestry with 550,000 genotyped SNPs. The number of cases in 50-69
and 70+ year age groups were 636, 329, respectively; the number of controls in
the same groups were 727 and 308. Furthermore, 11.3% of cases and 6.2% of
controls had a family history of prostate cancer. In the following analyses, we
focus on SNPs serving mitochondria. We mapped the SNPs onto human
chromosomes using NCBI dbSNP database

https://www.nchi.nlm.nih.gov/projects/SNP/ and recorded chromosome location,

proximal gene or genes in the gene structure location (e.g. intron, exon,
intergenic, UTR). Based on these data, we inferred 1,867 SNPs serving
mitochondria according to MitoCarta database

(https://www.broadinstitute.org/scientific-community/science/programs/metabolic-

disease-program/publications/mitocarta/mitocarta-in-0 ).

For each of the 1,867 SNPs, we assumed the relationship between the true
disease status and the combination of SNP, family history, and age can be

described by logistic regression, i.e. model (3).
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logit{pr(D = 1|Age, FamHist,G)} = By + fage X Age + Brammise X FamHist +

Bagexramnist X Age X FamHist + Bz X G + Bgxage X G X Age. (10)

We assumed the relationship between clinical disease status and the true
disease status is pr(D = 1|D¢ = 0,Age) = 0.252 and 0.389 for age groups of 50-
69 and 70+, respectively (Jahn et al, 2015). We suppose that the clinical
diagnosis is correct for all cases (Canto and Slawin, 2002).

We first estimate the coefficients using the usual logistic regression model
without considering the correction for the silent disease. Then we estimate the
corresponding coefficient of the true model from the approximation derived in
Appendix (A16)-(A21) with the consideration of the relationship between the

clinical disease status and the true disease status.

The usual logistic regression estimate for the intercept is -0.19, while the
approximation to the bias is -0.60. In the usual logistic regression Brgmzise = 0.60
and the bias is estimated to be -0.23. Across all SNPs, the usual estimate of
Bagels on average 0.21, while the bias is approximated to be -0.68; and the usual
estimate of B4 gexramnuist IS ON average 0.08, while the bias is approximated to be
-0.82. Shown on Figure 5A is the histogram of bias in B; across 1,975 SNPs that
ranges from -0.19 to 0.20 with an average of 0.0042. Shown on Figure 5B is the

histogram of bias in Sy 44 ranging from -1.87 to 0.81 with an average of -0.07.

DISCUSSION
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We derived a general and convenient theoretical approximation to the bias in
GXE parameter estimates for studies where a substantial fraction of the controls
are undiagnosed cases. In case-control studies the usual logistic regression
model produces biased estimates either because the presence of the latent
cases is ignored, or because the sampling design is misspecified (analysis of
case-control data by a prospective likelihood function while the data was

collected retrospectively), or both.

While we have recently proposed a solution that eliminates the bias (Lobach et
al, 2018), the implementation requires optimization of a complex non-linear
equation. The approximation that we’'ve developed provides convenient
estimates of the bias and a clear explanation of how all parameter estimates can
be biased. The presence of the silent disease distorts the true link between the

GxE interaction and the true disease status.

In the analyses of Prostate Cancer, we note that bias in GXE estimates can be in
either direction resulting in either under- or over-estimation of the magnitude of

the effect. Similarly, the bias in S, manifested itself in either direction.

The approximation that we've developed is a first order Taylor series expansion
of a solution that minimizes Kullback-Leibler divergence criteria between the true

and the misspecified models. While the Kullback-Leibler divergence could have
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multiple local minima, in the extensive simulations studies that we considered the
numerical optimization did find the minimum that was accurate relative to the
empirical estimates. The theoretical approximation can be improved by deriving

further order Taylor series expansions.

We note that the bias in GXE generally decreases as the frequency of the true
disease and the clinical diagnosis decrease. The magnitude of bias, however,
can be substantial even when the disease is common, similarly to what has been
described for common diseases in trio designs (Peyrot et al, 2016). Specifically,
when frequency of the silent disease varies by the environmental variable. The
bias is more elastic as a function of how frequencies of the environmental
variable are different by the environment, i.e. there is more change in the

parameter estimates.

The proposed analyses rely on knowing the estimates of silent disease in the
population subgroups. These estimates are often available in epidemiologic
studies or can be estimated in an internal reliability study. For example, in the
study of Prostate Cancer, the rates of silent disease are estimated based on a
sample of size 3,799 US Whites and Europeans. If the estimates of the rates are
with high uncertainty, the approximation that we derived provides a convenient
and general formulae to understand how much the estimates can change across
various settings defined by frequencies of the silent disease and frequencies of

the disease and the clinical diagnoses in the population. If the proportion of silent
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cases is not known, the approximations that we derived provide a simple way to
examine potential bias across various rates for silent disease that are plausible.
Such analyses might inform how elastic the effect estimates can be for a given

value of the estimate and frequency of the clinical diagnosis.

The goal for exploring GXxE is to investigate if the effect of a genetic variables
varies by non-genetic (environmental) variables. We described one source of
bias in estimates of GXE, namely due to ignoring presence of silent cases. Other
biases in the estimates have been noted in literature. For example, Keller (2014)
note the widespread bias in GXE due to inappropriately controlling for covariates
while studying GXE. We have recently analyzed bias in the estimates due to

omitting GXE (Lobach, 2018).
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Log(1) Log(1.5) Log(2) Log(2.5) Log(3) Log(3.5) Log(4) Log(4.5)

B = =0 =0.41 =0.69 =0.69 =11 =1.3 =14 =1.5
Ng =1 Bo=-—1 0.047 0.066 0.098 0.14 0.19 0.24 0.27 0.32
= 3,000 Bo=1 0.05 0.057 0.087 0.11 0.14 0.16 0.19 0.22
ny =M, By = —1 0.051 0.11 0.23 0.31 0.41 0.53 0.68 0.72
= 10,000 Bo=1 0.05 0.08 0.18 0.26 0.36 0.44 0.51 0.57

Table 1. False positive rate for ;. x estimates. We define the false positive rate to be the proportion of p-values <0.05

from the usual logistic regression with the clinical diagnosis as an outcome variable across 10,000 studies. We simulate X

to be binary with frequency 0.488 and G with frequency 0.10. Next, we simulate the true disease status according to the

risk model with coefficients g, = —1,1, B; = log(1),log(1.5),log(2),log(2.5),log(3),log(3.5),log(4),log (4.5),Bx =

log(2), Bsxx = 0. To simulate the clinical diagnosis we define the clinical-pathological diagnoses relationship to be as in

the Prostate Cancer data analyses, i.e. pr(D = 1|D¢ = 0,X) = 0.252 and 0.389 for X = 0, 1. We simulate datasets with

ny, =n, = 3,000, n, =n, = 1,000.
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Figure 1. Frequency of the minor allele by a binary environmental variable ( ) on
the x-axis for the true disease state (controls: , Silent disease and case
) and for the clinically diagnosed status that includes both true controls

and silent cases. Shown is a hypothetical example when frequencies of the minor allele
do not differ by the environmental variable on the true disease status and genotype is
associated with the true disease status. Because frequency of the silent disease within
the set of clinically diagnosed controls varies by the environment (10% of clinically
diagnosed controls are in fact silent cases when , and 30% of the controls are

silent cases when ), there appears to be GxE on the clinical diagnosis.
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Figure 2: Frequencies of the true disease status in the population for various values of
the intercept. We simulate X as Bernoulli with frequency 0.488 and G as Bernoulli with
frequency 0.10. We next simulate the true disease status using coefficients g, =
-3.5,-3,-2.5,-2,—-1.5,-1,-0.5,0,0.5,1,1.5,2,2.5,3,3.5; B; = log(1.5) = 0.41, By =

log(3) = 1.099, Bgxy = 0.
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Figure 3: Frequencies of the clinical diagnosis in the population for various values of the intercept along the x-axis, values

of y(1) = pr(D‘t = 1|D = 1,X = 1) across the panels and values of y(1) = pr(D‘‘ = 1|D = 1,X = 0) as indicated by color.

We simulate X as Bernoulli with frequency 0.488 and G as Bernoulli with frequency 0.10. We next simulate the true
disease status using coefficients g, = —-3.5,—-3,-2.5,-2,-1.5,-1,-0.5,0,0.5,1,1.5, 2,2.5,3,3.5; B; = log(1.5) = 0.41,

Bx =log(3) = 1.099, B;xx = 0. We next simulate the clinical diagnosis with frequencies
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y(0) = pr(D*t = 1|D = 1,X = 0) = 0.000001,0.0001,0.001,0.005,0.01,0.10, and y(1) = pr(D* =1|D =1,X = 1)

0.000001,0.0001, 0.001, 0.005, 0.01, 0.10.
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Figure 4. Bias in the estimates of S, for various values of the intercept along the x-axis, values of

y(1) = pr(D = 1|D = 1,X = 1) across the panels and values of y(1) = pr(D = 1|D = 1,X = 0) as indicated by color.

We simulate X as Bernoulli with frequency 0.488 and G as Bernoulli with frequency 0.10. We next simulate the true
disease status using coefficients g, = —-3.5,—-3,-2.5,-2,-1.5,-1,-0.5,0,0.5,1,1.5, 2,2.5,3,3.5; f; = log(1.5) = 0.41,
Bx =log(3) = 1.099, Bs;xx = 0. We next simulate the clinical diagnosis with frequencies

y(0) = pr(D = 1|D = 1,X = 0) = 0.000001,0.0001,0.001,0.005,0.01,0.10, and y(1) = pr(D* = 1|D = 1,X = 1) =
0.000001,0.0001,0.001,0.005,0.01, 0.10.
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Figure 5A (left panel): Histogram of the bias of the usual logistic regression estimate of  in Prostate Cancer dataset.

The bias is approximated using equations (A16)-(A21) and Figure 5B (right panel): Histogram of the bias of the usual

logistic regression estimate of in Prostate Cancer dataset. The bias is approximated using equations (A16)-(A21).
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