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Running title: Bias in gene-environment interactions with silent disease 

 

Abstract 

 

One of the most important research areas in case-control Genome-Wide 

Association Studies is to determine how the effect of a genotype varies across 

the environment or to measure the gene-environment interaction (GxE). We 

consider the scenario when some of the “healthy” controls actually have the 

disease and when the frequency of these latent cases varies by the 

environmental variable of interest. In this scenario, performing logistic regression 

of clinically defined case status on the genetic variant, environmental variable, 

and their interaction will result in biased estimates of GxE interaction. Here, we 

derive a general theoretical approximation to the bias in the estimates of the GxE 

interaction and show, through extensive simulation, that this approximation is 

accurate in finite samples. Moreover, we apply this approximation to evaluate the 

bias in the effect estimates of the genetic variants related to mitochondrial 

proteins a large-scale Prostate Cancer study.   
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INTRODUCTION 

 

One major objective in case-control Genome-Wide Association Studies (GWAS) 

is to determine how the effect of a genotype varies across the environment, i.e. 

to measure the gene-environment interaction (GxE). Understanding the GxE 

interaction can provide valuable clues into the underlying pathophysiologic 

mechanism of complex diseases (Ritz et al, 2017). A major complication is that 

supposedly “healthy” controls are often undiagnosed cases and the frequency of 

these latent cases may vary by environmental variables. Hence, the estimated 

GxE interaction with respect to the true pathophysiologic disease status would be 

biased if the analyses used only the clinically diagnosed disease status.  The 

problem of latent cases is relatively common. For example, Atrial Fibrillation is 

undiagnosed in 5-17% of the population above the age of 75 (Panisello-Tafalla et 

al. 2015), non-alcoholic fatty liver disease is undiagnosed in 14-30% of the adult 

population (El-Kader et al., 2015), and acute coronary thrombosis is undiagnosed 

in >10% of individuals at the time of death (Anderson et al, 1989). Our specific 

motivating example is a large GWAS of prostate cancer. At autopsy, 

approximately 29%, 36%, and 47% of “healthy” men aged 60-69, 70-79 and 80+ 

years have undiagnosed prostate cancer, with the exact frequencies varying by 

race and ethnicity (Jahn et al, 2015).  

 

We illustrate below why the GxE can appear to be associated with the disease 

status if presence of the silent cases is ignored based on a hypothetical example. 
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Shown on Figure 1 is an example when frequency of a minor allele does differ 

by the true diagnosis defined as � � 0 to indicate controls, � � 1� silent disease 

and � � 1 cases, but not by the environmental variable � � 1,2. But because 

frequency of the silent disease varies by the environment (10% of clinically 

diagnosed controls are in fact silent cases when � � 1, and 30% of the controls 

are silent cases when � � 2), there appears to be GxE on the clinical diagnosis. 

 

In this paper, we focus on estimating the bias of the GxE interaction when logistic 

regression is performed with the observed disease status as the dependent 

variable and the gene, environment, and their interaction as the independent 

variables. Our discussion builds on the literature that describes the bias of the 

main effects (i.e. gene or environment) in the presence of silent cases (Carroll et 

al, 2006) and, more specifically, Neuhaus’s (1999) approximation to the bias of 

the main effects when the data are collected using prospective sampling and 

analyzed in a prospective likelihood function.  

 

Our paper proceeds as follows. First, in the Material and Methods section, we 

describe our notation and derive the theoretical approximation bias that results 

from ignoring the presence of silent disease. Next, in the Simulation Experiments 

section, we compare the theoretical approximation to empirical estimates of the 

bias across multiple scenarios. Then, we apply our approach to a Prostate 

Cancer GWAS (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
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bin/study.cgi?study_id=phs000207.v1.p1, Yeager et al, 2007). Finally, we 

conclude our paper with a brief Discussion section.  

 

MATERIALS AND METHODS 

 

For individual 	, let 
�  be the genotype, ��  be the environmental variable 

potentially interacting with the genotype, and �� be a vector of other 

environmental variables. Furthermore, let �� � �0,1
 be a binary indicator of the 

true, and unobserved, disease status and let ��
�� � �0,1} be a binary indicator of 

clinically diagnosed disease status. In the overall population, let �� � pr���� � 0� 

and �� � pr���� � 1� and in our study population let �� be the number of 

controls (i.e. ��� � 0), �� be the number of cases (i.e. ��� � 1), and � � �� � ��. 

For clarity of presentation we suppose that all variables are binary, but the 

discussion could be easily extended to categorical variables, though the 

interpretation of GxE can then be notoriously difficult.  

If � is the frequency of minor allele a when the major allele is A, then the Hardy-

Weinberg Equilibrium model (Hardy, 1908) states  

 


~���, �� � ���
 � �|�� � �2 � � � �1 � ��, 	� � �  !      ��,              	� � � !!�1 � ���,      	� � �   "
 

 

We assume that individuals with a clinical diagnosis have the true disease, i.e. 

pr�� � 1|��� � 1� � 1, and that a substantial proportion of “controls” also have 
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the true disease and that this proportion can vary by environmental factors: 

pr�� � 1|��� � 0, �� � #��� > 0.  

We next assume that the probability of the true disease follows a logistic model 

pr��� � 1|
 � �, � � $, � � %� � 	
��
��
����
����
����
������� �

��	
��
��
����
����
����
������� �
.                (1) 

Define Β � �(�, (�, (�, (�, (���� to be the vector of coefficients of interest.  

 

The observed data are collected using retrospective sampling design, hence the  

likelihood function of the observed data is based on the probability  )�*
 � �, � �
$, � � %|��� � +��, and we define ���+��, �, $, %� � )�*
 � �, � � $, � � %|��� �
+��,  � ∑ ������|�� ·,�"�	· ��
��� ·|�,�,�"�����,�,�"

∑ ������|�� ·,���·"���
	·,�·,
·,�· ��� ·|���·,���·,���·"�������·,���·,���·"
.  (2)  

 

The usual analyses with the clinical diagnosis as an outcome variable and hence 

ignores presence of silent disease is based on the disease risk model 

pr������ � 1|
 � �, � � $, � � %� � 	
��
�
��
�

� ���
�
����
�

����
���
� ���� �

��	
�#
�
��
�

� ���
�
����
�

����
���
� ���� $

.            (3) 

 

Estimation and inference in this setting is performed based on the likelihood 

function in the form ����+��, �, $, %� �  pr��*��� � +��|
 � �, � � $, � � %, �
	
�#% �����&�'
�

��
�
� ���
�

����
�
����
���

� ���� ($

��	
�#
�
��
�

� ���
�
����
�

����
���
� ���� $

.                                                         �4� 

 

We are interested to find an analytic solution that relates parameters Β� �
�(�

�, (�
� , (�

�, (�
� , (���

� � from the misspecified model (4) to the parameters Β �
�(�, (�, (�, (� , (���� from the true model (1)-(2). 
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The next steps are motivated by the developments in Kullback (1959), Neuhaus 

(1999). Kullback (1959) showed that parameters Β� � �(�
�, (�

� , (�
�, (�

� , (���
� � 

estimated in the misspesified model (4) converge to values that minimize the 

Kullback-Leibler divergence between the true and false models with expectations 

taken with respect to the true model, i.e.  

Β� � !��.	� /0�,�,� 10���|�,�,�log 5 )
'���,�,�,�(

)
�%���,�,�,�&
678.                                   (5) 

 

We define 9��� � pr���� � 1|� � 1, ��.  

 

Derivations shown in Appendix arrive at the following approximation of the 

relationship between the parameters of the misspecified model (4) and the true 

model (1). For clarity of presentation we first assume that variable � is not in the 

risk model. Generalization to include � is described in Web-based supplementary 

materials. 

 

(�
� : log ; *'�(

����+*'�(�
< � �

����+*'�(�
� (�;                                                                  (6) 

(�
� : log ; *'�(�	
� '
�(

����+*'�(��	
� '
�(
< � log ; *'�(�	
�'
�(

����+*'�(��	
�'
�(
< � ; �

����+*'�(��	
�'
�(
< � (�  (7) 

 

(�
� : �

����+*'�(��	
�'
�(
� (�;                                                                                  (8) 
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(���
� :
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��
��
�(

����+*'�(��	
� '
��
��
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�(
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�'
��
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��
�(
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�'
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����+*'�(��	
�'
�(
< � ; �

����+*'�(��	
�'
��
��
�(
< �

(���.                                                                                                                 (9) 

 

We now derive alternative formulation. In retrospective design cases and controls 

are sampled conditionally on the disease status. We therefore introduce an 

imaginary indicator of being selected into the study, ∆� 1. Cases and controls 

are then selected into the study with probabilities > �� � )��∆� 1|��� � +��� ?
� ��/� ��. The true disease model then becomes 

pr��� � 1|
 � �, � � $, � � %, ∆� 1�
� >� � 9�0� � exp�(� � (� � $ � (� � � � (��� � � � $ 
>� � *>� � �1 � 9�0�
 � >� � 9�0�, � exp�(� � (� � $ � (� � � � (��� � � � $ 
. 

 

We then derive  

(�
� : CD� E ,��*'�(�	
��
� �

,��,����+*'�(��	
��
��
F;                                                                          (10) 

(�
� : CD� E ,��*'�(�	
��
��
� �

,��,����+*'�(��	
��
��
��
F- CD� E ,��*'�(�	
��
� �

,��,����+*'�(��	
��
��
F;                           (11) 

(�
� : CD� E ,��*'�(�	
��
��
� �

,��,����+*'�(��	
��
��
��
F- CD� E ,��*'�(�	
��
�  �

,��,����+*'�(��	
��
��
F;                           (12) 

(���
� : CD� E ,��*'�(�	
��
��
��
��
��� �

,��,����+*'�(��	
��
��
��
����
F- CD� E ,��*'�(�	
��
��
��

,��,����+*'�(��	
��
��
��
F �

 CD� E ,��*'�(�	
��
��
��

,��,����+*'�(��	
��
��
��
F � CD� E ,��*'�(�	
��
��

,��,����+*'�(��	
��
��
F.                                (13)  
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Remarks:  

1. Appendix provides formulas (A11)-(A15) for the setting with environmental 

variable � that does not interact with the SNP genotype and environmental 

variable �. 

2. Appendix also provides formulas (A16)-(A21) for the setting when the 

environmental variable � interacts with the environmental variable �, but 

does not interact with the SNP genotype. 

3. When the clinical diagnosis and pathologic disease status correspond, 

i.e. 9�0� � 9�1� �1, then all parameter estimates are unbiased. 

4. If (� � 0, then (�
� � 0. Hence the usual logistic regression yields a 

consistent estimate of the null (�. 

5. If (� � 0, then (�
� G 0. Similarly, if (� � 0, then (�

� G 0; and if (��� � 0, then 

(���
� G 0. Hence the usual logistic regression does not yield a consistent 

estimate of the null effect (�, (�, (���. 

6. If (� � 0  and (��� � 0  then (�
� � 0 and (���

� � 0. Hence the usual logistic 

regression yields consistent estimate of the null (� and (��� . 
7. If the misclassification is non-differential, i.e. 9�0� � 9�1�; and if (� �

0, then (�
� � 0. That is then the usual logistic regression model yields 

consistent estimate of the null effect (�. 
8. If the misclassification is non-differential, i.e. 9�0� � 9�1�; then (� � 0, 

(� � 0, (� � 0, (��� � 0 imply (���
� � 0. That is then the usual logistic 

regression model yields consistent estimate of the null effect of (���. 
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9. Taylor series expansion of (10)-(13) around the true parameters equal to 

zero arrives to (6)-(9). 

 

SIMULATION EXPERIMENTS 
 
 
We first perform a set of simulation studies to investigate a false positive rate for 

(��� estimates. We define the false positive rate to be the proportion of p-values 

H0.05 from the usual logistic regression with the clinical diagnosis as an outcome 

variable across 10,000 studies. We simulate � to be binary with frequency 0.488 

and 
 with frequency 0.10. Next, we simulate the true disease status according 

to the risk model with coefficients (� � �1,1, 

(� � log�1� , log�1.5� , log�2� , log�2.5� , log�3� , log�3.5�, log�4� , log �4.5� , (� �
log�2� , (��� � 0. To simulate the clinical diagnosis we define the clinical-

pathological diagnoses relationship to be as in the Prostate Cancer data 

analyses, i.e. pr�� � 1|��� � 0, X� � 0.252 and 0.389 for � � 0, 1. We simulate 

datasets with �� � �� � 3,000, �� � �� � 1,000. False positive rates shown in 

Table 1 indicate that the rate is the nominal when main effect of the genotype is 

zero, and increases as the value of (� increases. When frequency of the true 

disease is higher ((� � 1 QR. �1�, then overall the false positive rates are lower. 

For example, in a study with �� � �� � 3,000, when (� � log�3� � 1.1, the rates 

are 0.19 and 0.14, when (� � �1 and 1, respectively.  The false discovery rates 

are persistently elevated in studies with �� � �� � 10,000. 
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We conducted simulation studies to evaluate the accuracy of the theoretical 

approximation that we derived in (6)-(9) and in the Appendix. These studies are 

presented in Web-based Supplementary Materials. 

 

We next describe the magnitude of bias in estimates of (��� � 0 for various 

frequencies of the clinical diagnosis and the true disease state in the population. 

We simulate � as Bernoulli with frequency 0.488 and 
 as Bernoulli with 

frequency 0.10. We next simulate the true disease status using coefficients 

(� � �3.5, �3, �2.5, �2, �1.5, �1, �0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5; (� � log�1.5� �
0.41, (� � log�3� � 1.099, (��� � 0. We next simulate the clinical diagnosis with 

frequencies 

9�0� � pr���� � 1|� � 1, � � 0� � 0.000001, 0.0001, 0.001, 0.005, 0.01, 0.10, and 

9�1� � pr���� � 1|� � 1, � � 1� � 0.000001, 0.0001, 0.001, 0.005, 0.01, 0.10. We 

then estimate bias in estimates of (��� using (13) for each of the above settings. 

 

Shown on Figure 2 are frequencies of the true probability of disease across 

values of (� on the x-axis. Figure 3 presents probabilities of the clinical diagnosis 

across values of (� on the x-axis, values of 9�1� on the panels, and values of 

9�0� indicated by color. We note that the setting of prostate cancer example 

corresponds to the values of (� around -2 and 9�0� : 9�1� : 0.000001.  Bias in 

the estimates of (��� shown on Figure 4 differs across values of (�, 9�0�, 9�1�. 
Magnitude of bias can be substantial and is usually smaller when 9�0� � 9�1�. 
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PROSTATE CANCER DATA ANALYSES 

 

We performed GxE analyses for Prostate Cancer using data collected as part of 

the Prostate, Lung, Colon and Ovarian (PLCO) Screening trial (dbGAP: 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000207.v1.p1,  study accession phs000207.v1.p1, 

Yeager et al, 2007). The study included 965 cases and 1,035 controls of 

European ancestry with 550,000 genotyped SNPs. The number of cases in 50-69 

and 70+ year age groups were 636, 329, respectively; the number of controls in 

the same groups were 727 and 308. Furthermore, 11.3% of cases and 6.2% of 

controls had a family history of prostate cancer. In the following analyses, we 

focus on SNPs serving mitochondria. We mapped the SNPs onto human 

chromosomes using NCBI dbSNP database 

https://www.ncbi.nlm.nih.gov/projects/SNP/ and recorded chromosome location, 

proximal gene or genes in the gene structure location (e.g. intron, exon, 

intergenic, UTR). Based on these data, we inferred 1,867 SNPs serving 

mitochondria according to MitoCarta database 

(https://www.broadinstitute.org/scientific-community/science/programs/metabolic-

disease-program/publications/mitocarta/mitocarta-in-0 ). 

For each of the 1,867 SNPs, we assumed the relationship between the true 

disease status and the combination of SNP, family history, and age can be 

described by logistic regression, i.e. model (3).   
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logit�pr�� � 1| �U, V!.W	RX, 
�
 �  (� � (-�. �  �U � (/012�34 � V!.W	RX �
(-�.�/012�34 �  �U � V!.W	RX � (� � 
 � (��-�. � 
 �  �U.                      (10) 

 

We assumed the relationship between clinical disease status and the true 

disease status is pr�� � 1|�� � 0, Age� � 0.252 and 0.389 for age groups of 50-

69 and 70+, respectively (Jahn et al, 2015). We suppose that the clinical 

diagnosis is correct for all cases (Canto and Slawin, 2002).  

We first estimate the coefficients using the usual logistic regression model 

without considering the correction for the silent disease. Then we estimate the 

corresponding coefficient of the true model from the approximation derived in 

Appendix (A16)-(A21) with the consideration of the relationship between the 

clinical disease status and the true disease status. 

 

The usual logistic regression estimate for the intercept is -0.19, while the 

approximation to the bias is -0.60. In the usual logistic regression (Z/012�34 � 0.60 

and the bias is estimated to be -0.23.  Across all SNPs, the usual estimate of  

(-�.is on average 0.21, while the bias is approximated to be -0.68; and the usual 

estimate of (-�.�/012�34  is on average 0.08, while the bias is approximated to be 

-0.82. Shown on Figure 5A is the histogram of bias in (� across 1,975 SNPs that 

ranges from -0.19 to 0.20 with an average of 0.0042. Shown on Figure 5B is the 

histogram of bias in (��-�.  ranging from -1.87 to 0.81 with an average of -0.07. 

 

DISCUSSION 
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We derived a general and convenient theoretical approximation to the bias in 

GxE parameter estimates for studies where a substantial fraction of the controls 

are undiagnosed cases. In case-control studies the usual logistic regression 

model produces biased estimates either because the presence of the latent 

cases is ignored, or because the sampling design is misspecified (analysis of 

case-control data by a prospective likelihood function while the data was 

collected retrospectively), or both.  

 

While we have recently proposed a solution that eliminates the bias (Lobach et 

al, 2018), the implementation requires optimization of a complex non-linear 

equation. The approximation that we’ve developed provides convenient 

estimates of the bias and a clear explanation of how all parameter estimates can 

be biased. The presence of the silent disease distorts the true link between the 

GxE interaction and the true disease status. 

 

In the analyses of Prostate Cancer, we note that bias in GxE estimates can be in 

either direction resulting in either under- or over-estimation of the magnitude of 

the effect. Similarly, the bias in (� manifested itself in either direction. 

 

The approximation that we’ve developed is a first order Taylor series expansion 

of a solution that minimizes Kullback-Leibler divergence criteria between the true 

and the misspecified models. While the Kullback-Leibler divergence could have 
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multiple local minima, in the extensive simulations studies that we considered the 

numerical optimization did find the minimum that was accurate relative to the 

empirical estimates. The theoretical approximation can be improved by deriving 

further order Taylor series expansions.  

 

 We note that the bias in GxE generally decreases as the frequency of the true 

disease and the clinical diagnosis decrease. The magnitude of bias, however, 

can be substantial even when the disease is common, similarly to what has been 

described for common diseases in trio designs (Peyrot et al, 2016). Specifically, 

when frequency of the silent disease varies by the environmental variable. The 

bias is more elastic as a function of how frequencies of the environmental 

variable are different by the environment, i.e. there is more change in the 

parameter estimates.  

 

The proposed analyses rely on knowing the estimates of silent disease in the 

population subgroups. These estimates are often available in epidemiologic 

studies or can be estimated in an internal reliability study. For example, in the 

study of Prostate Cancer, the rates of silent disease are estimated based on a 

sample of size 3,799 US Whites and Europeans.  If the estimates of the rates are 

with high uncertainty, the approximation that we derived provides a convenient 

and general formulae to understand how much the estimates can change across 

various settings defined by frequencies of the silent disease and frequencies of 

the disease and the clinical diagnoses in the population. If the proportion of silent 
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cases is not known, the approximations that we derived provide a simple way to 

examine potential bias across various rates for silent disease that are plausible. 

Such analyses might inform how elastic the effect estimates can be for a given 

value of the estimate and frequency of the clinical diagnosis. 

 

The goal for exploring GxE is to investigate if the effect of a genetic variables 

varies by non-genetic (environmental) variables. We described one source of 

bias in estimates of GxE, namely due to ignoring presence of silent cases. Other 

biases in the estimates have been noted in literature. For example, Keller (2014) 

note the widespread bias in GxE due to inappropriately controlling for covariates 

while studying GxE. We have recently analyzed bias in the estimates due to 

omitting GxE (Lobach, 2018). 
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�� � 

Log(1) 

=0 

Log(1.5) 

=0.41 

Log(2) 

=0.69 

Log(2.5) 

=0.69 

Log(3) 

=1.1 

Log(3.5) 

=1.3 

Log(4) 

=1.4 

Log(4.5) 

=1.5 

�� � ��

� 3,000 

�� � �1 0.047 0.066 0.098 0.14 0.19 0.24 0.27 0.32 

�� � 1 0.05 0.057 0.087 0.11 0.14 0.16 0.19 0.22 

�� � ��

� 10,000 

�� � �1 0.051 0.11 0.23 0.31 0.41 0.53 0.68 0.72 

�� � 1 0.05 0.08 0.18 0.26 0.36 0.44 0.51      0.57 

 

Table 1. False positive rate for ���� estimates. We define the false positive rate to be the proportion of p-values 	0.05 

from the usual logistic regression with the clinical diagnosis as an outcome variable across 10,000 studies. We simulate 
 

to be binary with frequency 0.488 and � with frequency 0.10. Next, we simulate the true disease status according to the 

risk model with coefficients �� � �1,1, �� � log�1� , log�1.5� , log�2� , log�2.5� , log�3� , log�3.5�, log�4� , log �4.5� , �� �

log�2� , ���� � 0. To simulate the clinical diagnosis we define the clinical-pathological diagnoses relationship to be as in 

the Prostate Cancer data analyses, i.e. pr�� � 1|��� � 0, X� � 0.252 and 0.389 for 
 � 0, 1. We simulate datasets with 

�� � �� � 3,000, �� � �� � 1,000.
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Figure 1: Frequency of the minor allele by a binary environmental variable ( ) on 

the x-axis for the true disease state (controls: , silent disease  and case 

) and for the clinically diagnosed status  that includes both true controls 

and silent cases. Shown is a hypothetical example when frequencies of the minor allele 

do not differ by the environmental variable on the true disease status and genotype is 

associated with the true disease status. Because frequency of the silent disease within 

the set of clinically diagnosed controls varies by the environment (10% of clinically 

diagnosed controls are in fact silent cases when , and 30% of the controls are 

silent cases when ), there appears to be GxE on the clinical diagnosis.  

 

le 
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Figure 2: Frequencies of the true disease status in the population for various values of 

the intercept. We simulate � as Bernoulli with frequency 0.488 and � as Bernoulli with 

frequency 0.10. We next simulate the true disease status using coefficients �� �

�3.5, �3, �2.5, �2, �1.5, �1, �0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5; �� � log�1.5� � 0.41, �� �

log�3� � 1.099, ���� � 0.  
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Figure 3: Frequencies of the clinical diagnosis in the population for various values of the intercept along the x-axis, values 

of ��1� � pr���� � 1|� � 1, � � 1� across the panels and values of ��1� � pr���� � 1|� � 1, � � 0� as indicated by color. 

We simulate � as Bernoulli with frequency 0.488 and � as Bernoulli with frequency 0.10. We next simulate the true 

disease status using coefficients �� � �3.5, �3, �2.5, �2, �1.5, �1, �0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5; �� � log�1.5� � 0.41, 

�� � log�3� � 1.099, ���� � 0. We next simulate the clinical diagnosis with frequencies 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted O
ctober 17, 2018. 

; 
https://doi.org/10.1101/444596

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/444596
http://creativecommons.org/licenses/by-nc-nd/4.0/


��0� � pr���� � 1|� � 1, � � 0� � 0.000001, 0.0001, 0.001, 0.005, 0.01, 0.10, and ��1� � pr���� � 1|� � 1, � � 1� �

0.000001, 0.0001, 0.001, 0.005, 0.01, 0.10. 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted O
ctober 17, 2018. 

; 
https://doi.org/10.1101/444596

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/444596
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 4. Bias in the estimates of ���� for various values of the intercept along the x-axis, values of 

��1� � pr�	�� � 1|	 � 1, � � 1� across the panels and values of ��1� � pr�	�� � 1|	 � 1, � � 0� as indicated by color. 

We simulate � as Bernoulli with frequency 0.488 and � as Bernoulli with frequency 0.10. We next simulate the true 

disease status using coefficients �� � �3.5, �3, �2.5, �2, �1.5, �1, �0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5; �� � log�1.5� � 0.41, 

�� � log�3� � 1.099, ���� � 0. We next simulate the clinical diagnosis with frequencies 

��0� � pr�	�� � 1|	 � 1, � � 0� � 0.000001, 0.0001, 0.001, 0.005, 0.01, 0.10, and ��1� � pr�	�� � 1|	 � 1, � � 1� �

0.000001, 0.0001, 0.001, 0.005, 0.01, 0.10. 
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Figure 5A (left panel): Histogram of the bias of the usual logistic regression estimate of  in Prostate Cancer dataset. 

The bias is approximated using equations (A16)-(A21) and Figure 5B (right panel): Histogram of the bias of the usual 

logistic regression estimate of  in Prostate Cancer dataset. The bias is approximated using equations (A16)-(A21).
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