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ABSTRACT

Despite considerable efforts to characterize the ecology of bacteria and fungi in the built
environment (BE), the metabolic mechanisms underpinning their colonization and successional
dynamics remain unclear. Here, we applied bacterial/viral particle counting, qPCR, 16S and ITS
rRNA amplicon sequencing, and metabolomics to longitudinally characterize the ecological
dynamics of four commonly used building materials maintained at high humidity conditions
(~94% RH). We varied the natural inoculum provided to each material by placing them in different
occupied spaces, and we wet the surface of half of the samples of each material to simulate a
flooding event. As expected, different materials showed different bacterial and viral particle
abundance, with wet materials having higher growth rates and lower alpha diversity compared to
non-wetted materials. Wetting described the majority of the variance in bacterial, fungal and
metabolite structure, and material type only influenced bacterial and metabolic diversity, while
location of inoculation was only weakly associated with bacterial and fungal beta diversity.
Metabolites indicative of microbial activity were identified, as were those that were native to the
surface material. Glucose-phosphate was abundant on all materials (except mold-free gypsum) and
was correlated with Enterobacteriaceae, which could indicate a potential bacterial nutrient source.
A compound consistent with scopoletin, a plant metabolite with antimicrobial activity, was
significantly negatively correlated with Bacillus and positively correlated with Pseudomonas and
enriched in medium density fiberboard (MDF) materials. In wet samples, the alkaloids nigragillin
and fumigaclavine C, both with antimicrobial properties, were significantly positively correlated
with the fungal phylum Ascomycota. Nigragillin, was also negatively correlated with Bacillus and
Pseudomonas abundance. Thiabendazole and azoxystrobin (anti-fungal compounds) were highly
abundant on mold-resistant gypsum wallboard and likely directly influenced the decreased fungal
growth observed on this material. The mold-resistant gypsum material also showed a significant
increase in bacterial alpha diversity, and bacterial and viral particle abundance, as well as a
decrease in metabolite diversity, likely a result of reduced fungal growth. Penicillium taxa were
positively correlated with thiabendazole, which suggested the persistence of resistant strains. Also,
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specific to the wet samples, Bacillus abundance was positively correlated with the azoxystrobin,
suggesting bi-directional competitive adaptation, and positively correlated with metabolites known
to interfere with Pseudomonas biofilm formation, which could explain the anti-correlation
between these taxa. As expected, high moisture conditions enabled faster growth of inoculating
microorganisms, whose composition, chemistry, and competition was shaped by surface material,
suggesting that both fungal and bacterial growth need to be considered when determining the
impact of dampness in built environments.

INTRODUCTION

The microbiology of the built environment comprises bacteria, archaea, fungi, viruses and
protists, all of which maintain growth potentials under varying physicochemical regimes. Many
recent studies of this ecosystem have applied molecular sequencing techniques to characterize
microbial community relationships and dynamics under varying occupant density, building type
and location, environmental conditions, and material type (Lax et al., 2017; Adams et al., 2016;
Chase et al., 2016; Stephens, 2016; Lax et al., 2014). However, most of these studies have
investigated communities sampled from relatively dry materials on which microbes are likely
biologically inactive unless they experience liquid water or high relative humidity (RH) (Chase et
al., 2016). It is widely accepted that fungal growth can occur at RH >75-80% and material decay
can occur at RH >95%, depending on material (Viitanen et al., 2010, Johansson et al., 2012).

Dampness is a fairly common occurrence in buildings, with approximately half of all
homes in the U.S. having experienced dampness or mold (IAQ Report - Prevalence of Building
Dampness). Building material dampness occurs for different reasons, including: bulk liquid entry
from floods, extreme weather events, and plumbing system problems; rain or snow entry through
leaks in building envelopes and roofing systems; and high water vapor content resulting from
moisture migration through building materials or condensation of warm humid air on cold surfaces
(IAQ Report - Nature and Causes of Building Dampness). Dampness and the presence of visible
mold have been consistently associated with adverse human health outcomes, including respiratory
and allergic effects (Mendell et al., 2011, Quansah et al., 2012, Fisk et al., 2010, Jaakkola et al.,
2013). Hypotheses to potentially explain these associations include a combination of exposure to
specific microbial agents (Institute of Medicine, 2004), varied gene expression and metabolism
(Hegarty et al., 2018), and the release of fungal metabolites including mycotoxins (Miller et al.,
2014) and microbial volatile organic compounds (mVOCs) (Roze et al., 2013).

Although fungal growth on building materials has been studied for decades (Hyvérinen et
al., 2002, Gravesen et al., 1999, Hoang et al., 2010; Pasanen et al., 1992), only a limited number
of studies have used molecular techniques to investigate bacterial and fungal growth, microbial
community dynamics, and/or metabolic activity on common buildings materials exposed to liquid
water and/or high humidity conditions (Coombs et al., 2017). Therefore, we characterized the
bacterial and fungal concentration and diversity, as well as the production of microbial metabolites,
on samples of four common building materials incubated at ~94% relative humidity: oriented
strand board (OSB), medium density fiberboard (MDF), gypsum wallboard, and mold-resistant
gypsum wallboard. We varied the BE source of inoculation and purposely wet half of the samples
to assess how indoor microbial sources and the presence of liquid water influence community
structure and metabolite profiles of these materials over multiple time points. We used several
techniques to quantify microbial growth and microbial community composition and functional
metabolism including: bacterial and viral like particle counts, image processing of visible mold
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74 growth, qPCR, amplicon sequencing of 16S and ITS rRNA marker genes, and metabolomics.
75 Results from these different methods were integrated via co-occurrence network approaches,
76 which provided insights into microbial community organization and environmental interaction.
77 Improved understanding of how bacterial and fungal metabolism is shaped by environmental
78 properties (e.g., the presence of water, surface material composition) and inoculating source (e.g.,
79 building location, occupancy patterns) could have important implications for architectural design,
g0 construction, building management, and occupant health (Rand ef al., 2017). Therefore,
87 determining the microbial metabolic dynamics in these high RH environments should be an
82 important research priority.

83

s4  RESULTS

85

86  Experimental Setup
87

88  Our study used four building materials types: oriented strand board (OSB), medium density
89 fiberboard (MDF), regular gypsum wallboard, and mold-resistant (i.e., mold-free, or ‘MF’)
90  gypsum wallboard. Coupons of 5 cm x 5 cm of each material type were naturally inoculated at
91 two different locations for about 50 days each. After the inoculation period concluded, the time
92 that occupants were coming in close proximity was reported with similar values, a 0.16% and
93 0.18% of total time. The material coupons were sampled for off-line biological and chemical
94 analysis at 7 different sampling time points, referred to here as TPO, TP1, TP2, TP3, TP4, TP5,
95 and TP6. The initial samples (TP0) were taken just after retrieving the samples from the field
96  inoculation and represent non-wetted, naturally inoculated samples previously held at normal
97 residential humidity condition. After inoculation, half of each set of materials from each location
9¢  were submerged in tap water in separate pans for ~12 hours to simulate the process of wetting of
99 building materials due to a flood or leak. Different sampling strategies were tested and after
100 statistical verification all samples of the same type were combined as technical replicates (Figure
101 S1). Microbial datasets were later rarefied to same sequencing depth: 1,000 reads for bacteria and
102 10,000 reads for fungi. Unfortunately, rarefaction removed all bacterial samples from MDF
703 materials, which had very low read counts. After rarefying the data, a comparison of the control
104  and non-control samples reflected that control samples looked very similar in bacterial and fungi
105 diversity than non-control samples, (mantel >= 0.49 and >= 0.43 for location 1 and location 2
106 respectively, all with a p < 1E-05), perhaps because air could still transmit through the non-
107 hermetic foil cover and microbes from the interior of the wood (not killed with the sterilization)
108 could have found their way to the surface. Highlighting that the coupon itself could still be an
709 important contributor to microbial diversity for all samples. From these results, the control location
170 was treated indistinctly than the other two locations. For more details see Materials and Methods
117 section.

112

113 Visible growth, particulate counts and gPCR

114

115 Visible microbial growth occurred much faster and covered a far greater percentage of the surface
116 area on wet tiles than on non-wetted tiles (Figure 1A). OSB and MDF had the greatest coverage
117 and fastest growth: all wet OSB and MDF tiles reached at least 50% visible microbial coverage by
118 day 20, while non-wetted tiles of these types reached < 25% coverage. No growth was ever visible
1179 on the mold-resistant gypsum tiles. Epifluorescence microscopy revealed that counts of bacterial
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120 like particles (BLP) and viral-like particles (VLPs) calculated on samples TPO to TP3 were
121 strongly correlated (R? = 0.65, p = 2.8¢2%) (Figure 1B), with VLP counts statistically lower than
122 bacterial counts in all samples (ANOVA <=10"*) and in both wet and non-wet conditions (two
123 sided non-parametric t-test p <=0.035) Figure 1C). This is in keeping with previous research that
124  found very low VLP:bacteria ratios in the indoor environment (Prussin et al., 2015, Gibbons et al.,
125 2015). In our dataset, the mean VLP-bacteria ratio was 0.86 + 0.07, with a minimum of 0.61 and
126 a maximum of 1.02 across all samples.

127

128 While BLP (only estimated for TPO to TP3 samples) and bacterial qPCR agree that wetted samples
7129 had higher counts than non-wetted samples, cell counts inferred from these two methods
130  drastically differ for different material types and over time. Most notably, the MF-gypsum had the
131 greatest BLP counts but also the lowest 16S rRNA qPCR counts (6-fold or more lower than other
132 materials). Moreover, the BLP cell counts were essentially constant over time, while qPCR counts
133 steadily increased, with TP6 being 4-fold greater than TP1 and 209-fold greater than TPO counts.
134  To further confirm the differences, we calculated the overall correlation between paired bacterial
135 qPCR and BLP counts and the results were not significant, emphasizing different biases for each
136 method.

137

138 For fungal qPCR we observed MF-gypsum had the lowest abundance, while all other materials
139 had arange of 20 to 118-fold increase over MF-gypsum. Wetted samples revealed a 4-fold increase
140 in qPCR read abundance over non-wetted samples. Also, the qPCR read abundance increased
141 steadily over time, in such a way that TP6 was 11-fold greater than TP1 and 750-fold greater than
142 TPO counts.

143

144 Bacterial, fungal and metabolite diversity

145 The bacterial and fungal communities in our study tended to decrease in diversity over time, as
146 measured by the Shannon Index (Shannon H”), which incorporates both the richness and evenness
147 of the community. Given that our data was rarified to an even depth before analysis, this decrease
7148 in diversity is indicative of the increasing relative abundance of certain community members, and
149 suggests the preferential proliferation of certain taxa in the inoculating community. In our 16S
150  dataset, wet samples experienced faster declines in diversity than non-wetted samples, and were
151 significantly lower in diversity at the end of the study than non-wetted samples (Figure 2A),
152 suggesting that certain bacterial taxa grew quickly in the wet environment and became dominant
153 within the community. In our ITS dataset, we also observed a faster decline in diversity in wet
154 samples, although wet samples were significantly more diverse than non-wetted samples by the
155 end of the study (Figure 2B). The decrease in fungal diversity in wetted samples was not
156 monotonic, with an initially steep decline and a subsequent increase. This may reflect fast growth
157 by a small number of taxa that quickly dominated the community, followed by the growth of other
158  taxa with slower growth rates. Similar patterns are observed when looking at the diversity changes
159 for each individual material (Figure S2) with the exception of a lack of bacterial growth for wet
160 MDF samples and reduced bacterial growth on dry OSB after the study was half way completed.
161 In contrast, we observed no significant changes in the metabolic diversity over time for either wet
162 or non-wetted samples (Figure 2C).

Microbial Compositional Changes
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163 Across all samples, the diversity of bacteria within the community was significantly correlated to
164  the diversity of fungi (Corr = 0.28, p=0.0003) (Figure 3A). Interestingly, neither bacterial nor
165 fungal diversity was significantly correlated to the metabolite diversity, perhaps because of a
166 narrower range of observed metabolite diversity compared to the taxonomic datasets. We observed
167 striking changes in the relative abundance of certain bacterial (Figure 3B) and fungal (Figure 3C)
168 genera over time, which were largely dependent on wetting condition. In the 16S rRNA dataset,
169 Bacillus almost immediately came to dominate wet samples, with an average relative abundance
170 as high as 50% after the 2" time point, even though it represented a negligible part of the
771 community at the start of sampling. Bacillus abundance also increased in non-wetted samples,
172 although to a much smaller extent. A similar pattern was observed for the genera Pseudomonas
173 and Erwinia, which also represented a very small fraction of community diversity at the start of
174 sampling but quickly increased in abundance in wet (but not non-wetted) samples. Interestingly, a
175 very large percentage of reads from early time point samples, both wet and non-wet, were of
176 chloroplast origin. In wet samples, the number of chloroplast reads quickly declined as the
177 bacterial genera proliferated. In non-wetted samples, chloroplast read abundance remained high,
178 and dominated the sequencing effort to such an extent that discarding those reads would have
179 dropped the majority of non-wetted samples below the rarefaction depth. While these likely
180 represent residual DNA signatures from the plant material used to construct each tile material, we
181 have chosen to keep them in the analysis. Figure S3A shows how this dynamic slightly vary for
182 each different material type.

183 The majority of reads in the ITS dataset that could be taxonomically assigned to a genus belonged
184  to one of two genera: Eurotium and Penicillium. Eurotium abundance was negligible at the
185 beginning of community succession but quickly flourished in non-wetted samples, becoming the
186 most abundant known genus in those samples by time point 2 (Figure 3C). By contrast, Eurotium
187 did not become abundant across wet samples. Penicillium abundance was, on average, consistently
188 higher in wet samples than in non-wetted samples, and its abundance was significantly anti-
189 correlated to Eurotium relative abundance (corr = -0.12, p = 0.033). These taxa-specific changes
190 were mirrored by community level differentiation, where wet vs. non-wetted tiles of the same
791 material and inoculating location became significantly more dissimilar (Bray Curtis, Spearman’s
192 Correlation, p<0.01) in both their bacterial and fungal community structure over time (Figure 3D).
193 Figure S3B shows how this dynamic slightly vary for each different material type.

194

195 Environmental Factors Associate with Microbial and Metabolite Diversity

196 Weused ANOSIM to calculate the factors significantly correlated with differences in the microbial
197~ communities across our three datasets. Bray-Curtis dissimilarity was calculated for the 16S, ITS,
198  and metabolite datasets, and ANOSIM was used to determine whether distances between samples
199 of the same metadata factor (i.e. wetting condition, inoculating location, and material) were
200  significantly lower than distances between samples of different types (Figure S4). In our 16S
201 rRNA dataset, wetting condition, location, and material each had a significant impact on bacterial
202 community structure (all p <0.0001 based on 10° randomized permutations), with wetting having
203 the most pronounced effect (R = 0.418). In general, non-wetted samples tended to be more similar
204  to each other than wet samples were to each other, which is likely due to the dominance of a single
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205 chloroplast OTU. Material had a less pronounced effect (R=0.247) and location had the least
206 evident effect on bacterial community structure (R=0.133).

207 Interestingly, fungal community structure was not significantly described by variance in material,
208 while location had a relatively weak (R = 0.129) though highly significant (p <0.0001) association,
209 suggesting that variations in fungal communities that settle on materials (which have been shown
210 tobe driven largely by outdoor fungal communities, e.g., Adams et al., 2013) influence community
217 structure upon experiencing wetting and high RH conditions. Wetting condition was by far the
272 most influential factor influencing fungal community structure (R = 0.564, p < 0.0001), and in
213 contrast to the bacterial data, wet samples were much more similar to each other than were non-
214 wetted samples. Metabolite diversity within the community was also affected by wetting condition
215 (R=0.276, p < 0.0001), with non-wetted samples more similar to each other than wet samples.
216 Material also played a significant role in metabolite diversity (R = 0.231, p < 0.0001), and mold-
217 free gypsum samples were particularly metabolically similar, likely due to the lack of fungal
218 growth and the underlying chemical composition of the material. Inoculating location had no
219 significant effect on the diversity of metabolites despite having a significant effect on both the
220  bacterial and fungal community membership. We visualized sample similarity using non-metric
221 multi-dimensional scaling (NMDS) ordination based on Bray-Curtis dissimilarity (Figure 4). We
222 converted material, location, and wetting condition into binary variables (1 = yes, 0 = no), which
225 were fit onto the ordination, keeping only the significant vectors (R? values for each vector and
224 their significance is presented in Table S1). Visually, both bacterial and fungal beta diversity was
225 more differentiated by wetting condition due to the significant increase in growth on wetted tiles,
226 while metabolites were visually differentiated by both wetting condition and surface material,
227 likely due to the underlying chemistry of the material and then the subsequent metabolic activity
228 of the microbes when tiles were wetted.

229

250  Bacterial and fungal network co-occurrence

231 Using SparCC (Friedman & Alm, 2012), an algorithm developed to quantify correlations on
252 microbial compositional data (data that has been subject to rarefaction), and a correlation threshold
233 >0.4, uncovered co-occurrence patterns between taxa from each kingdom. In the bacterial network
234  (Figure S5) three co-occurrence clusters were identified, the Bacillus cluster, Pseudomonas
235 cluster, and a cluster comprising chloroplasts and mitochondria. As expected these groups
2356 correspond with the most abundant taxa. On all wet materials and on all samples of gypsum (both
237 wet and non-wet), 95% of associations between Bacillus and Pseudomonas were negative
238 correlations (Figure S6 and S7). On non-wetted OSB, MDF and MF-Gypsum there were no
239 negative correlations between Pseudomonas and Bacillus. Interestingly, there is a dramatic
240 increase in the absolute number of significant co-occurrence relationships between bacterial OTUs
241 in wet (74) versus non-wetted samples (48), which is a 54% increase in the number of edges. In
242 the fungal correlation network, Penicillium OTUs co-occurred with many unknown fungal genera,
243 while OTUs corresponding to Aspergillus and its subset, Furotium, maintained monophyletic
244  clusters (Figure S8). As with the bacterial co-occurrence networks, fungal OTUs associated with
245 wet tiles had negative correlations among each other, although the number was much smaller than
246 for bacteria. Only 7 fungal OTUs were negatively correlated on wet materials, mainly between
247 unknown genera and an abundant Penicillium OTU (Figure S9). Strikingly, unlike bacteria, the
248 absolute number of significant co-occurrence relationships between fungal OTUs declined in wet
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249 (555) versus non-wetted samples (1,133), which was a 104% decrease in the number of edges,
250  suggesting an inverse co-abundance response between bacteria and fungi during growth.

251 To better understand the co-associations between bacteria and fungi, 16S and ITS OTUs were co-
252 correlated in a single network. A random walk-based method uncovered four distinct modules
253 within the network, with a modularity of 0.45 (Figure 5A). In general, the taxa present in each
254 sample tended to cluster within an individual network module (median sample association to
255 module = 0.88). We correlated various metadata factors to module membership (Figure 5B) and
256 observed that wetting condition had a significant impact on which samples dominated each
257 module: modules 1 and 3 were associated with wet samples, while modules 2 and 4 were associated
258 with non-wetted samples (Figure 5C). Location 1 samples dominated module 3, while Location 2
259 samples dominated module 1 (Figure 5D). Overall, wetting condition appears to be the most
260  important factor driving community succession, resulting in two different community structures
261 even when the source community is identical. We also visualized the nodes that were assigned to
262 the genera previously discussed in Figure 3. Nodes in the bacterial genera Bacillus, Pseudomonas,
263 and Erwinia, as well as the fungal genus Penicillium, were nearly exclusively enriched in the two
264  wet-associated modules (1 and 3), while chloroplast reads and Eurotium nodes all clustered within
265 the non-wetted modules (2 and 4; Figure 5E).

266  Metabolite network co-occurrence

267 A co-occurrence network correlation was calculated for the sample metabolite profiles (Figure 6).
268 As these data are not compositional, we built this network using significantly positive Spearman
269 correlations between nodes and included only the 1,000 most abundant metabolites in the dataset.
270 This resulted in a network with 149,316 edges (density = 0.30) when the significance threshold
271 (alpha) was set to 0.001. Using the same module discovery method described above, we uncovered
272 7 distinct modules (modularity = 0.32), excluding 12 metabolites around the periphery of the
273 network that clustered into modules of <5 nodes. Three modules (3, 4, and 7) were significantly
274 correlated with wet samples, while modules 1, 2, 5 and 6 were associated with non-wetted samples.
275 There was almost no correlation between network modules and inoculating locations, further
276 suggesting that while location (and hence the primary inoculating microbes) may influence
277 community taxonomic diversity, it does not appear to strongly affect metabolic diversity during
278 growth. The abundance of metabolites in module 7 were anti-correlated with all other modules,
279 but specifically with module 2 (corr =-0.87, p<0.001). Module 7 is dominated by wet samples at
280 later time points, suggesting that community succession in wet environments may converge to a
281 common metabolic profile, which is wholly distinct from the non-wetted samples in module 2.
282

283 Metabolite features can predict sample type

284

2¢5  Random Forest analysis was employed to determine the metabolites associated with various
286 sample types. Models classifying whether a sample was wet had an average accuracy of 98% (error
287 ratio = 25, with expected random error 0.5), and wet-samples were never misclassified as a non-
288 wetted sample in any of the 10 model iterations. Models classifying samples based on material
289 were similarly successful, with an average accuracy of 97% (error ratio = 25, with expected
290 random error 0.75). Metabolomics models were much less successful at predicting the inoculating
291 location, with a mean success of 72% (error ratio = 2.36 with expected random error 0.67). We
292 sought to gain insight into the chemical composition of metabolites that comprise the signatures
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293 observed in these models. Feature importance scores were assigned to compounds based on their
294  relative contributions to predicting sample type. For both the wetting condition dependent and
295 material dependent groups, we selected the 100 highest-scoring metabolite features for further
296  examination and chemical identification (Figure S10). Wet samples were enriched with 98 of the
297 100 top-scoring metabolites that differentiated wet and non-wetted. None of these compounds
298  were automatically identified by mzCloud, so the metabolites were analyzed via external database
299 searches, and compound classes were designated based on fragmentation spectra. A diverse set of
500 compound families was observed, including compounds likely to be carbohydrates and
501 glycoconjugates, fatty acids, prenol lipids, sterol lipids, polyketides, and glycerolipids, as well as
502 several pyridine derivatives including a form of vitamin B6, indicative of microbial activity and
503 growth and compounds associated with the surface materials.

304

505  Metabolites that were highly enriched in wet vs non-wetted conditions underwent additional
506 manual analysis for confident structural identification. One of these metabolites was identified as
507 Nigragillin (C13H22N20, accurate mass = 222.1723), which is a fungal alkaloid first identified in
508 Aspergillus niger (Isogai et al., 1975). Nigragillin abundance was significantly enriched in wet
509 MDF and OSB samples (505- and 280-fold, respectively) compared to non-wetted samples.
310 However, no significant differences in nigragillin were observed for gypsum or MF-gypsum. In
317 both wet MDF and OSB the nigragillin concentration increases over time (Figure S11). Another
312 high-scoring metabolite showed MS/MS fragmentation consistent with Fumigaclavine C
313 (C23H30N202, accurate mass = 366.2291), which is a fungal alkaloid first identified in Aspergillus
314 fumigatus (Cole et al., 1977). Fumigaclavine C was enriched in wet samples of gypsum, MDF,
315 and OSB (23-, 26-, and 13-fold increase in comparison to non-wetted samples, respectively), with
316 equivalent abundance in mold-free gypsum regardless of wetting. While the concentration of
317 Fumigaclavine C remained flat or increased slowly in most materials, wet gypsum showed a
318  dramatic increase in abundance at TP3 and 4 (Figure S11).

319

320  Metabolites that were predictive of material type (OSB, MDF, Gypsum and MF-Gypsum) were
521 also further analyzed to determine how these materials influence the chemical composition of
322 metabolites. Of these metabolites, 80% eluted with a retention time of >7 minutes, indicating a
323 skew toward more hydrophobic compounds. This suggests that hydrophobic compounds are more
524 diverse between the materials and therefore could have greater influence on microbial metabolism
525 than the ubiquitous hydrophilic components. Two of these metabolites were identified by MzCloud
526 search: glucose-phosphate, which was about 10-fold less abundant in MF-gypsum compared to all
327 other materials, and scopoletin, a metabolite produced by the plants with antimicrobial activity
328 Leratetal., 2009, Gnonlonfin ez al., 2012, Nascimento et al., 2013), which was about 60-fold more
529 abundant in MDF samples than in other materials and could be influencing the reduced bacterial
330  growth on this material (Figure S11). Thiabendazole and azoxystrobin, known anti-fungal
331 compounds (Clausen & Yang, 2007, Balba, 2007), were highly overrepresented on MF-Gypsum,
332 333 and 595-fold respectively more abundant than the average content for the other three materials,
333 and as such are likely some of the active compounds in MF-Gypsum.

334

335 Microbe-metabolite co-occurrences

336

337 The abundances of Nigragillin and Fumigaclavine C were each significantly positively correlated
338 with a fungal OTU annotated to the phylum Ascomycota (corr = 0.66, FDR p = 0.0004), which
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339 contains species known to produce such alkaloids. Both Nigragillin and Fumigaclavine C have
340 been reported to display antibacterial activity (Magdy et al., 2017 & Pinheiro et al., 2013).
347 Interestingly, Nigragillin was negatively correlated with the abundance of Bacillus and
342 Pseudomonas OTUs; this could suggest fungal competition for space and resources (Mille-
343 Lindblom et al., 2006) against bacteria, and in the specific case of MDF, when Nigragillin
344  abundance was greatest no bacterial growth was detected (Figure S2, Figure S11). The abundance
345 of glucose-phosphate was significantly correlated to the proportion of a dominant
346 Enterobacteriaceae OTU, a genus which is known to synthesize it (Herter et al., 2006) (corr = 0.72,
347 FDR p =0.000002). Thiabendazole was positively correlated with Penicillium abundance (corr =
348 0.80, FDR p < 10”). As thiabendazole is prevalent and persistent in the natural environment, this
349  correlation may indicate the presence of thiabendazole-resistant Penicillium strains colonizing the
350  material from the built environment (Holmes & Eckert, 1999).

351

352 Co-occurrence networks were constructed between the bacterial OTUs and metabolites (SparCC
353 correlation of >0.4; Figure S12) to explore further specific microbe-metabolite associations and
354 possible mechanistic interactions. Significant correlations were observed between Bacillus OTUs
355 and lipids including fatty acids and monoacylglycerophosphocholine compounds, which are likely
356 toindicate cell wall and biofilm formation (Diomande et al., 2015, Dubois-Brissonnet ez al., 2016).
357 Interestingly, Bacillus OTUs were also positively correlated to other lipid classes including diols
358 and flavonoids, which have all been observed to interfere with Pseudomonas biofilm formation
359 (Kong et al., 2014; Jensen et al., 2014). In addition, the abundance of two fatty acids, one diol,
560  and azoxystrobin, were positively correlated with Bacillus and negatively correlated with
361 Pseudomonas. Conversely, scopoletin was positively correlated with Pseudomonas and negatively
562 correlated with Bacillus (Figure S13). These additional antagonistic compound interactions
363 between Bacillus and Pseudomonas could represent either competitive interactions between these
564  organisms or different adaptation to the different materials and wetting conditions.

365

366 DISCUSSION

367 As expected, wetted materials had higher bacterial and fungal growth rates and were dominated
568 by a few particular microbes, most notably the bacterial genera Bacillus, Erwinia, and
369  Pseudomonas and the fungal genera Eurotium and Penicillium. This dominance led to an overall
370 lower alpha diversity compared to non-wetted tiles. Wetting condition and material type described
371 the majority of the variance in bacterial, fungal and metabolite structure. Interestingly, each wetted
372 material showed its own unique microbe-metabolite dynamics.

373 Gypsum and MF gypsum were mostly colonized by Bacillus, with gypsum being a less selective
374  environment, which allowed for several bacterial species to thrive on the same coupon
375 simultaneously, each of them with high relative abundance and apparently sharing both the
376 physical space and resources. In contrast, MF gypsum prevented most fungal growth and allowed
377 Bacillus to dominate with little competition. MDF selected for fungal growth primarily, which
378 allowed for the rapid accumulation of the antibacterial chemical, nigragillin, which is known to be
379 made by the Aspergillus fungi. On OSB material, nigragillin and fumigaclavine C, a second
380 fungal-synthesized antibacterial metabolite, may play important roles in microbial growth
381 dynamics. Nigragillin, Fumigaclavine C, and Aspergillus relative abundance each gradually
382  increases over time, whereas the abundance of Pseudomonas declines after the antibacterial
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383 metabolites reach peak abundance, suggesting a dose dependent response (Figure S11). These
384  observations bolster our hypothesis that production of antibacterial metabolites by Aspergillus may
3¢5 inhibit the proliferation of surrounding bacteria. Also, there is a human health risk associated with
386 the proliferation of the Aspergillus fungi in the BE. While the most common species identified in
387 our data was Aspergillus penicillioides, a common indoor fungus in damp buildings with known
388  associations to allergies and asthma (Edwards et al., 2012, Hay et al., 1992), other Aspergillus
389  species are known to be able to produce mycotoxins (including aflatoxins), molecules that have
390  been associated with cancer and immunosuppression on humans (Roze et al., 2013).

391 MOLD-RESISTANT GYPSUM

392

393 Traditional wood-based building materials contain natural polymers such as cellulose and lignin
394  that are susceptible to degradation by fungal colonization (Gravesen ef al., 1999, Pasanen et al.,
395 1992). With some fungi having been shown to produce mycotoxins including aflatoxins that could
396  affect human health (Roze et al., 2013, Rand et al., 2017), building materials such as mold-resistant
397 gypsum have been developed, which contain antifungal compounds intended to discourage fungal
398 growth. We were particularly interested to examine the microbial communities on these surfaces
399 and as expected, found that fungal growth was diminished on MF-gypsum compared to other
400  materials. However, it appeared that the scarcity of fungal colonies made way for bacterial species
401 to flourish with less competition; on non-wetted materials we observed MF-gypsum bacterial
402 particle counts greater than on the other three materials, and on wetted materials while the MF-
403 gypsum bacterial counts were second to MDF, the abundance level between non-wetted and wetted
404  tiles, unlike MDF, remained minimally changed. This raises the potential that pathogenic bacteria
405 colonization could occur on MF-gypsum and if wetted could grow and lead to negative health
406 outcomes. In terms of metabolite production, thiabendazole and azoxystrobin were some of the
407 anti-fungal compounds found in high abundance and overall a similar subset of compounds
408  accounted for most of the metabolite abundance on this material, indicating lower metabolic
409 diversity when the colonization is dominated by bacterial growth. We also detected a correlation
410 between thiabendazole and Penicillium, which suggested the persistence of thiabendazole-resistant
417 fungal strains.

412

413 DIVERSITY AND INTERACTION BETWEEN MICROBES AND ENVIRONMENT

414

415 Additionally, certain lipid metabolites (indicative of biofilm formation) showed significant
416 positive correlation with both Bacillus and Pseudomonas OTUs, and these lipids were negatively
417 correlated with the abundance of chloroplast OTUs, indicating that when bacteria and metabolites
418 indicative of biofilm formation are detected in greater abundance, we see a proportional reduction
479 in plant-associated signal. Similar to the lipids, metabolites annotated to organic molecules and
420  vitamins were also negatively correlated with the chloroplast OTUs, which suggests that bacterial
421 growth, indicated by increased proportion of 16S, cellular counts and associated metabolites, tends
422 to swamp out the background material-chloroplast signal. We hypothesize that this may be because
425 these molecules are being produced by bacteria colonizing and forming biofilms on the woody
424  material. When the relative abundance of the bacteria increases, it reduces our ability to detect
425 chloroplast sequences (based on a given sequencing depth); as such this negative correlation is
426 likely due to the increased abundance of the microbes that mediate the production of these
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427 metabolites, reducing the detection frequency of specific chloroplast OTUs, and not due to some
42¢  mechanistic relationship between the wood and these molecules

429

430  MICROBIAL-METABOLITE INTERACTIONS.

431

432 Pseudomonads and Bacillus are often the main contributors to biofilm formation on material
433 surfaces in the built environment (Ronan et al., 2013; Powers et al., 2015; Raaijmakers et al.,
434 2010). Biofilms are complex extracellular matrices formed by bacteria through the excretion of
435 lipopeptide biosurfactants, to provide attachment to a surface to support colocalization with a
436 nutrient source and protection from dehydration and chemical activity. Some of these lipopeptide
437 biosurfactants produced by Pseudomonas and Bacillus species have been shown to have lytic or
438 growth-inhibitory activity against many microorganisms such as bacteria, viruses, mycoplasmas,

439 and fungi (Raaijmakers et al., 2010). Powers et al. demonstrated that Pseudomonas protegens
440 produces antibiotics that inhibit biofilm formation and sporulation in Bacillus subtilis. They also
441 found that Pseudomonas putida secretes an unknown inhibitory compound that prevented biofilm-
442  associated gene expression. In our study we demonstrate a number of compounds known to have
443 potential biofilm inhibitory qualities that also co-correlate with either Pseudomonas or Bacillus
444  abundance, suggesting potential competitive activity between these organisms. While
445 Pseudomonas—Bacillus interactions have been shown to be competitive, interspecies interactions
446 within the genus Bacillus are also important in the formation of biofilms, lipids like hydroxy fatty
447  acids and mono-acyl-glycerophosphocholines could be building blocks or residual products of the
448 biofilm creation (Shank et al., 2011, Diomande et al., 2015, Dubois-Brissonnet et al., 2016).

449

450

451 CONCLUSION

452

453 The simultaneous collection of environmental, metabolomic and microbial profiles reveals
454  insights into the chemical signals that may govern BE microbial communities under high humidity
455 conditions, as well as providing evidence that these the membership compete for space and
456 resources. Here we show that wetting condition can profoundly alter both fungal and bacterial
457 community succession, and that the taxa which dominate samples after wetting or exposure to high
45 humidity are not abundant in non-wetted materials and have little relation to the skin-associated
459 taxa which dominate samples of indoor environments. After wetting, the microbial community
460 undergoes a successional trajectory that can result in similar metabolic diversity even when
461 taxonomic diversity remains variable. We further show that while material choice significantly
462 influences bacterial diversity, the same is not true of fungal diversity. In summary, BE microbial
463 ecology once seen as a wasteland (Gibbons, 2016) could rather be seen as a desert environment
464  mostly formed with smaller assemblages that can rapidly become an active ecologically dynamic
465 community if water, in liquid or vapor form, is added. When a material experience high moisture
466 conditions, both fungal and bacterial growth rapidly accelerate and the metabolites associated with
467 their adaptation to different surface materials and competition for resources demonstrate ready
468  made eco-evolutionary adaptation to this sporadic availability of a crucial resource; this
469 phenomenon is very similar to what has been observed in real desert soil microbiomes (Neilson et
470  al., 2017), as well as in very different ecosystems, such as sediments exposed to oil pollution
471 (Handley et al., 2017).
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472 Methods

473 Test materials

474  Four building materials were used in this study: oriented strand board (OSB), medium density
475 fiberboard (MDF), regular gypsum wallboard, and mold-resistant (i.e., mold-free, or ‘MF’)
476 gypsum wallboard. All samples were purchased new from a home improvement store in Chicago,
477 IL. The building materials were cut into 5 cm x 5 cm coupons for testing. The material coupons
478  were sterilized by UV irradiation for 20 minutes followed by surface cleaning with a 70% ethanol
479 solution.

480  Inoculation

481 The building material coupons were naturally inoculated by placing them uncovered on the floor
482 inside two residences for a period of approximately 50 days each. The goal was to allow for natural
483 settling of microbes from each indoor environment onto the material surfaces. Another set of test
484  coupons was covered with aluminum foil and kept in the laboratory for the same duration to be
485 used as a control group. Each set of test coupons included 44 coupons for each type of building
486 material (i.e., 176 coupons in total) to allow for multiple subsequent sampling strategies. One set
487 of test coupons was placed inside a 6" floor apartment unit with two adult occupants and a medium
488 sized dog located in downtown Chicago, IL (Location 1). The other set of materials was placed
489 inside a 2-story single-family residence without any pets near the main campus of Illinois Institute
490  of Technology, approximately 8 km south of the downtown residence (Location 2). During the
491 inoculation periods, built environment metadata (Ramos & Stephens 2014) were collected in each
492 residence, including temperature (T) and relative humidity (RH) using Onset HOBO U12 data
493 loggers and occupant presence within ~1 m range of the samples using Onset UX90 data loggers.
494 Coupons at a third location (the Built Environment Research Laboratory at the of Illinois Institute
495 of Technology) were covered with aluminum foil to minimize natural inoculation, serving as a
496 control group.

497 Wetting and incubation

498  After inoculation, half of each set of materials (i.e., 22 coupons each) from each location, as well
499 as 22 coupons from the control group, were submerged in sterilized tap water in separate pans for
500  ~12 hours to simulate the process of wetting of building materials due to a flood or leak. The other
501 half of each set of materials (i.e., the other 22 coupons each) from each location and the other 22
502 coupons from the control group were not submerged in water. Next, to encourage fungal growth
503 on all of the building materials, all of the material coupons were placed in trays (each tray
504 contained all 22 coupons of one type of material from one location or control group) and were
505 incubated at room temperature (24 + 2.7°C) inside a static airtight chamber (0.9 m x 1.2 m x 0.4
506 m). Salt solutions (potassium nitrate) were used to maintain high RH near ~94% for the duration
507 of the experiment. Temperature and RH in the chamber were also recorded using Onset HOBO
508 Ul2 data loggers.

509 Sampling procedures

570 The material coupons were sampled for off-line biological and chemical analysis at 7 different
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511 sampling time points, referred to here as: TPO, TP1, TP2, TP3, TP4, TP5, and TP6. The initial
512 samples (TPO) were taken just after retrieving the samples from the field inoculation and represent
573 non-wetted, naturally inoculated samples previously held at normal residential humidity
5714 conditions. The remaining sampling time points occurred every ~5 days. At each time point, a new
575 coupon of each material from each condition that had never been swabbed before was swabbed,
516 while duplicates of previously un-swabbed samples were also swabbed periodically (at TPO, TP2,
517 TP4, and TP6) for comparison. Two samples (‘TP0’ and ‘TPO duplicated’) were also swabbed at
518 every time point to investigate whether repeatedly swabbing the surfaces impacted the results.
519 Duplicates of both previously swabbed and previously un-swabbed samples were also included to
520 investigate whether or not natural inoculation and subsequent growth was evenly distributed across
521 multiple coupons. Figure S1 illustrates the experimental setup and Figure S14 shows coupons’
522 photographs at TP5 and TP6 for each one of the three locations. Details of swabbing procedure at
525 each time point are described below.

524 First, sampling reagents were prepared as follows. Phosphate-buffered saline (PBS) was used for
525 microbial samples that were to be analyzed for DNA and formaldehyde was used for microbial
526 samples that were to be analyzed by microscopy. For PBS, 500 pl 1X PBS was added to 1.7 ml
527 microtubes for each sample to be collected. For formaldehyde, 100 pl 4% paraformaldehyde was
528 added to 1.7 ml microtubes for each sample. Microcentrifuge tubes were filled with ethanol
529 solution (200 pl 50% EtOH) to preserve samples for surface chemistry/metabolomics analysis.

530  For subsequent DNA sequencing and analysis, the entire surface of the test coupons was swabbed
531 using two BD Screw Cap SWUBETM Polyester swabs for approximately 20 sec. The same
532 researcher swabbed every time to keep the swabbing process consistent. One of the double swabs
533 was placed into the tube with PBS and frozen for shipping for subsequent sequencing. The tip of
53¢ the other of the double swabs was placed into microtubes and the swab tips were vortexed for 10
535 seconds. 100 pL of sample buffer was removed added to the tube containing 100 puL 4%
536 paraformaldehyde for fixation. These fixed samples were stored in a refrigerator at 4°C and then
537 sent to the San Diego State University team for running numerical counts of cells and virus
538  particles using microscopy.

539 For surface and microbial chemistry analysis (i.e., metabolomics), another test coupon was
540 swabbed using a cotton-tipped applicator that is dipped in ethanol (Petras et al., 2016). The end of
541 the swabs were cut directly into pre-prepared collection tubes, stored at 4 ‘C for 2-3 hours, and then
542 stored at -20 C overnight. Swabs were then removed with clean forceps the next morning, then re-
543 sealed into the microcentrifuge tubes and sent to the Northwestern University team on ice at -20°C
544 or lower. Overhead photos of each tray of coupons were also taken at each time point for image
545 analysis using ImagelJ to calculate the percentage of visible microbial growth coverage (Hoang et
546 al. 2010).

547 Viral-like particle and bacterial microscopy counts

548 Epifluorescence microscopy was used to ensure that all samples contained bacteria and virus-like
549 particles and to estimate their abundance. 100 pL of the paraformaldehyde-fixed samples were
550  resuspended into 5 mL of sterile 0.02 um filtered water. Each suspended sample was then filtered
557 onto a 0.02 pm Whatman Anodisc filter membrane (Thurber et al., 2009). The filters were stained
552 with 1X SYBR Gold and incubated for 10 minutes in the dark. Each filter was washed and mounted

13


https://doi.org/10.1101/444521
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/444521; this version posted October 17, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

553 onto slides to be observed. Visualization was performed using a QImaging Retiga EXi Fast Cooled
554 Mono 12-bit microscope and Image-Pro Plus software was used to collect digital images and
555 estimate VLP and bacterial abundances.

556 Metabolomics analysis

557 Samples were analyzed by High-Performance Liquid Chromatography and High-Resolution Mass
558 Spectrometry and Tandem Mass Spectrometry (HPLC-MS/MS). Specifically, the system
559 consisted of a Thermo Q-Exactive in line with an electrospray source and an Agilent 1200 series
560 HPLC stack including a binary pump, degasser, and autosampler, outfitted with a column (Waters
561 XBridge BEH Shield RP18, 100x2.1 mm, Sum particle size with matching guard). The mobile
562 phase A was H,O with 0.1% Formic Acid; B was Acetonitrile with 0.1% Formic Acid. The
563 gradient was as follows: 0-0.5 min, 98% A; 5 min, 80% A; 10-10.5 min, 5% A; 10.6-15 min, 98%
564 A, with a flow rate of 400 pL/min. The capillary of the ESI source was set to 275 °C, with sheath
565 gas at 40 arbitrary units and the spray voltage at 4.0 kV. In positive polarity mode, MS1 data was
566 collected at a resolution of 35,000. The precursor ions were subsequently fragmented using the
567 higher energy collisional dissociation (HCD) cell set to 30% normalized collision energy in MS2
568 at a resolution power of 17,500. Data were processed with Compound Discoverer 2.0 (Thermo
569 Fisher) with MS/MS metabolite identifications made by comparing experimental MS/MS spectra
570 with library spectra from MZCloud (lower cutoff score of 90% match).

571

572 For the metabolites that were selected for more in-depth characterization, classification of structure
573 or substructure was performed by searching databases such as the Dictionary of Natural Products,
574  the LIPID MAPS Structure Database, and GNPS (Global Natural Products Social Molecular
575 Networking). Predicted structures resulting from a matched intact mass (<10 ppm error) were
576 subsequently validated through manual analysis of fragmentation mass spectra.

577

578  Metabolite differential abundances (fold calculations) were calculated from Compound Discoverer
579 median peak areas for each compound including all three sampled locations.

580

581 DNA extraction and sequencing

582 To perform DNA extraction, the Qiagen DNeasy Powersoil HTP kit was used with a modified
583 protocol optimized for low-biomass samples. Swab tips were inserted into each well of the bead
584 plate, and then cut off using a sterilized wire cutter. The manufacturer’s protocol was then
585 followed, with the following modifications: before cell lysis, the bead plates (containing beads,
586 bead solution, swabs, and the C1 solution) were heated for 20 minutes at 60°C in a water bath.
587 Additionally, the protocol steps using solutions C2 and C3 were combined into a single step, by
588 adding 150 pl each of C2 and C3 together to the lysed sample in the 1 ml plate.

589 The DNA obtained from the DNA extraction was used for both high-throughput 16S/ITS
590 sequencing, and qPCR. The 16S sequencing targeted the V4 region of the bacterial 16S rRNA
591 gene, using the primer pairs 515F/806R. The ITS sequencing targeted the highly variable fungal
592 internal transcribed spacer region located between the 5.8S and 18S rRNA genes. Both primer sets
593 used the same reaction mix and thermocycler instructions: Reaction mix: 9.5 pL of molecular
594 biology grade H20, 12.5 pL of Accustart II PCR Toughmix, 1 pL each of forward and reverse

595 primers at 5 uM, and 1 pL of sample DNA for a total reaction volume of 25 pL.
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596 To make both the 16S and ITS amplicons, the following PCR program was used: Initial denaturing
597 step at 94°C for 3 minutes, followed by 35 cycle of: 94°C for 45 seconds, 50°C for 60 seconds,
598 and 72°C for 90 seconds, followed by a final extension step of 72°C for 10 minutes. The resulting
599 amplicons were quantified using the Picogreen dsDNA binding fluorescent dye on a Tecan Infinity
600 M200 Pro plate reader and pooled to 70 ng DNA per sample using the Eppendorf epMotion 5075
601 liquid handling robot. Primers and PCR reagents were removed using Agencourt AMPure beads,
602  and then the clean amplicon pool was sequenced at Argonne National Laboratory’s Environmental
603 Sample Preparation and Sequencing Facility, following the Earth Microbiome Protocol (Caporaso
604 et al., 2011). Sequencing was performed on an Illumina Miseq using V3 chemistry, generating
605 2x150nt reads.

606  qPCR was performed using a Roche LightCycler 480 II. The 515F/806R primer pair was used
607 again for amplification, using a mix of 10 pL Light Cycler 480 SYBR Green I Master mix, 6 uL
608  of molecular biology grade H20, 1 pL of 515F primer (10 uM), 1 uL of 806R primer (10 uM),
609 and 2 pL of template DNA for a total of 20 puL per reaction. The following thermocycler conditions
610 were used: (1) 95°C for 5 minutes, (2) 95°C for 10 seconds, (3) 45°C for 45 seconds, (4) Measure
611 fluorescence, with steps 2 through 4 repeated 50 times. To determine the copy number of the 16S
612 gene (and therefore the number of organisms per swab), a standard curve was generated using a
613  serial dilution of a plasmid containing the E. coli 16S rRNA gene.

614
615  Treatment of Technical Replicates

616 We used Mantel test to determine whether the bacterial communities on replicate tiles (tiles on the
617 same tray sampled at the same time) significantly resembled each other and preserved patterns of
618  beta-diversity. We began by calculating the Bray-Curtis dissimilarity between each pair of samples
619 taken from the same tile type using the beta diversity.py function from the software QIIME 1.9.1
620  (Caporaso et al., 2010), producing dissimilarity matrices for each sampling type. Then the Mantel
621 test and false discovery rate adjustment was performed using the mantel and p.adjust functions in
622 the Vegan and stats R packages. For all comparisons between the sampling types the mantel
623 statistic (which measures the stress in the fit of the two matrices) was significantly high (mantel
624  >=0.67 for fungi and >= 0.5 bacteria (all p < 1E-05) (Table S2 (Fungi) and S3 (Bacteria)). Based
625 on the highly significant resemblance between tile types, we treated all samples of the same type
626 as technical replicates, meaning that all combinations of material, location, wetting condition, and
627 time point had either 2 (time point 0), 3 (time points 1, 3, and 5), or 4 (time points 2, 4, and 6)
628  replicates.

629 Rarefaction and statistical analyses

630  After sequencing and sample merging, bacterial and Fungi OTU tables were rarefied to 1,000 and
631 10,000 reads respectively for statistical analyses. Rarefaction and statistical analyses were
632 performed using R.

633 Random forest analyses

634  Random forest models were implemented using the “randomForest” R package. Samples from
635  timepoint 0 were removed from the dataset. Models were built with 1000 trees and 10-fold cross
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636 validation. For each of the 10 models for each metadata criterion, a randomly drawn 70% of
637 samples (100 samples) were used for model training and the remaining 30% (44 samples) were
638  used for validation.

639  NMDS

640  We visualized sample similarity using non-metric multi-dimensional scaling (NMDS) ordination
641 based on Bray-Curtis dissimilarity. Metadata vectors were fit onto the ordination using the envfit
642 command in the Vegan R package. We converted material, location, and wetting condition into
643  dummy variables (1 = yes, 0 = no) and, in the case of the bacterial and fungal datasets; also fit
644  vectors of relative abundance for the common genera described in Figure 3. We assessed
645  significance of each of the vectors using 10° permutations, and removed non-significant vectors
646 from the figure. The R? values for each vector and their significance is presented in Table S1

647 Co-occurrence networks

648  Traditional correlation networks are unsuited to genomic survey data as these data are relative,
649  rather than absolute, measures of community composition. Since the relative abundances of all
650  taxa within each sample must sum to 1, the fractions are not independent and will often exhibit
651 negative correlations to each other regardless of the true correlation in absolute abundance. To
652 avoid these compositional effects, we generated our networks using SparCC (Friedman & Alm,
653 2012), a correlation metric based on log-ratio transformed data that is specifically suited to
654  compositional genomic surveys. Pseudo-p values for each correlation were generated through
655 comparison from 100 to 1,000 bootstraps of the permuted OTU table.

656  For the same kingdom and microbe-metabolite networks only samples where either bacteria or
657 fungi and metabolites were found in detectable levels after rarefaction were used (N=83, N= 91
658  respectively). Additionally, only bacterial OTUs with >9 reads, fungi OTUs with >99 reads, and
659  metabolites with > 5’000,000 abundance in the rarified dataset were used for a total number of 630
660  bacterial OTUs, 352 fungi OTUs and 426 metabolites. Figures were generated using CAVNet R
661 package (Cardona, 2017) and only displayed the higher correlation threshold (positive or negative)
662  greater than 0.4.

663 For the network encompassing both bacteria and fungi, the OTUs reads threshold remained the
664  same but only samples with both 16S and ITS data were kept (N = 153) producing a new subset
665  of bacterial and fungi OTUs, 590 and 581 OTUs respectively. This dataset produced a co-
666  occurrence network with 1,171 nodes. Only positive correlations with a pseudo-p < 0.05 were
667 included, resulting in a network with 33,509 edges (density = 0.052). The network was ordinated
668  using the Fruchterman-Reingold Algorithm (edge-weighted, force-directed) in the igraph R
669  package, with node size based on the log read count of each OTU across all samples (with ITS
670  counts first divided by 10 to equalize rarefaction depth between datasets). We used the Walktrap
671 method (Pons & Latapy, 2005) to uncover dense subgraphs (modules) within the network, which
672 may correspond to distinct community structures. We chose Walktrap (which is based on random
673 walks within the network) as our method of community inference due to its computational
674  tractability and its accuracy at uncovering subgraphs regardless of network size (Yang et al., 2016).
675 We used random walks of four steps, which resulted in four distinct modules with a network
676 modularity of 0.45
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855 Figure 1: Microbial growth rates vary across sample types. (A) Percent of surface area covered
856 by visible microbial growth through time (n=168, 4 materials, 3 locations, 2 wetting conditions, 7
857 time points). Color indicates tile material, point shape indicates inoculating location, and line type
858  indicates whether the tile was wet before incubation. (B) Correlation in the counts of bacteria-like
859 (BLP) and viral-like particles (VLP) across all tiles (n=96 samples, 4 materials, 3 locations, 2
s60  wetting conditions, 4 time points). (C) Boxplots of BLP and VLP counts by wetting condition and
861 by material (n=96 samples).
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863 Figure 2: Change in the Shannon Index of samples over time. Points represent individual
864+  samples and the trend lines are a smoothed moving-average of the mean and shaded regions
865 indicate the standard error (n=338, 330 and 144 samples for 16S, ITS and Metabolomics,
866 respectively)
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867 Figure 3: Overview of community succession. (A) Fungal diversity and bacterial diversity are
s6s  significantly correlated across communities (n=153 samples). Points represent individual samples,
869 colored by the time point at which the sample was taken. (B) Changes in the relative abundance
870 of selected bacterial genera over the course of succession (n=338 samples). Lines represent a
871 smoothed moving average of the mean. Genus is indicated by color and wetting condition is
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872 indicted by line style. Average community diversity (Shannon H’ at OTU level, as in Figure 3) is
873 indicated by black lines with standard error indicated by the gray shaded region. Genus abundance
874 1s indicated on the left y-axis and Shannon H’ is indicated on the right y-axis. (C) Changes in the
§75  relative abundance of selected fungal genera over the course of succession (n=330 samples).
876 Formatting is as in (B). (D) Wet vs. non-wetted replicates of tiles of the same material and
877 inoculating location become increasingly dissimilar over the course of community succession
878 (n=338, 330 samples for 16S and ITS, respectively). The y-axis is the Bray-Curtis distance
879 between replicates. Spearman correlation between community dissimilarity and time is indicated
880 in the legend error
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881 Figure 4: NMDS plots illustrate clustering of sample diversity by sample type. Each row
882 comprises four identical NMDS plots (n=338, 330 and 144 samples for 16S, ITS and
883 Metabolomics, respectively). The leftmost plot illustrates the ordination’s association with
884  environmental variables and the remaining plots color sample points by various metadata factors.
885 The stress on the NMDS plot is indicated in the rightmost plot in each row error

22


https://doi.org/10.1101/444521
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/444521; this version posted October 17, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

A B Module
(O 165 Node ®
[] ITS Node : P 0.16 2=
5z .0.° -0. - Module1
@E Wodule 1 o o 09
QO Module2 o ot
QO Module 3 ° -023 Module1
@M WModule 4 o o
Module1
-0.29 020 Timepoint
° 0.32 -0.41 0.31 - Wetted
-0.25 0.31 Location Control
. 0.28 Location 2
-0.22 Location 1
-0.27 0SB
-0.41 026 023 MF Gypsum
032 MDF

=020 Gypsum

O 165 Node () 168 Neoe
[ TS Node [ 1S Node ®
L@ o
Q[ Non-Wetted-Associated @M Conrol-Assocated
QO welco-Assccialed @@ Loc 1-Associaled

QM Loc 2-Associated
O[O Conrol & Loc1-Associated

(O Bacillus

@ Pseudomoenas
O Erwinia

@ Chiloroplasl

23


https://doi.org/10.1101/444521
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/444521; this version posted October 17, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

sss  Figure 5: Network of SparCC OTU correlations. (A) Edge-weighted, spring-embedded
887 network ordination, with nodes colored by module membership. Node shape represents node type
888 (16S or ITS) and node size is based on the log-transformed abundance of each node (n=153 with
889 both 16S and ITS, respectively). (B) Correlations between metadata factors (treated as dummy
890  variables where true = 1 and false = 0) and the percent of reads in network modules. Non-
891 significant correlations are not shown. (C) Taxa enriched in wet or non-wetted samples, as
892 determined through a two-sided non-parametric t-test with 10° permutations. (D) Taxa enriched in
893 samples originating from an individual inoculating location, with statistical methods as in (A). (E)
894  Taxonomy of nodes in the genera included in Figure 4.
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895  Figure 6: Metabolite co-occurrence network. (A) Network of significantly positive spearman
896  correlations between metabolites, with network module indicated by color (n=144 samples). (B)
897 Metabolites enriched in wet or non-wetted samples, as determined through a two-sided non-
898  parametric t-test with 10° permutations. (B) Metabolites enriched in samples originating from an
899 individual inoculating location, with statistical methods as in (B). (C) Correlations between
900  metadata factors (treated as dummy variables where true = 1 and false = 0) and the percent of
901 metabolites in network modules. Non-significant correlations are not shown.
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902 Figure S1: Experimental setup of project. Illustration of the experimental setup and coupon
903 sampling procedures.
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904  Figure S2: Change in the Shannon Index by material over time. Points represent individual
905 samples (n=338, 330 samples for 16S and ITS, respectively) and the trend lines are a smoothed
906  moving-average of the mean and shaded regions indicate the standard error
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908
909 Figure S3: Microbial succession by material over time Changes in the relative abundance of

910 selected microbial genera for each material over the course of succession. (n=338, 330 samples for
911 16S and ITS, respectively). (A) Lines represent a smoothed moving average of the mean. Genus
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is indicated by color and wetting condition is indicted by line style. (B) Changes in the relative
abundance of selected fungal genera over the course of succession. Formatting is as in (A)
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Figure S4: ANOSIM quantifies the influence of metadata factors on the dissimilarity

between samples. Columns represent different metadata factors and rows represent the three
datasets in this study (n=338, 330 samples for 16S and ITS, respectively). Boxplots depict the
range of ranked Bray-Curtis dissimilarities within and between factors (lower rank = lower
dissimilarity). Boxplot width indicates the number of samples represented by the boxplot
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922 Figure S5: Bacteria-Bacteria co-occurrence network. Co-occurrence network (from n=83
925 bacteria samples) shows highly correlated bacteria form monophyletic clusters for samples

924  containing more abundant taxa
925
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926
927 Figure S6: Bacteria-Bacteria co-occurrence network on wet samples. Co-occurrence network

928  (from n=39 wet samples) shows how Pseudomonas and Bacillus are anticorrelated on wet samples
929 for samples containing more abundant taxa

930

931
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933 Figure S7: Bacteria-Bacteria co-occurrence network on gypsum samples. Co-occurrence

934 network (from n=24 gypsum samples) shows how Pseudomonas and Bacillus are anticorrelated
935 on all gypsum samples

936

937
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939  Figure S8: Fungi-Fungi co-occurrence network. Co-occurrence network (from n=91 fungi

940 samples) shows highly correlated fungi forms mostly monophyletic clusters
941
942
943
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944
945 Figure S9: Fungi-Fungi co-occurrence network on wet samples. Co-occurrence network (from

946 n=58 wet samples) shows how certain Fungi OTUs are anticorrelated on wet samples
947
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948
949  Figure S10: Random forest metabolite selection heatmap. Random forest learning was used to

950  select the metabolites that most distinctly identify each environmental condition, wetted or non-
951 wetted, wood material type and inoculation location (n=144 samples and 3187 metabolites), the
952 100 highest-scoring metabolite features for each condition where selected for further examination.
953
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955 Figure S11: Metabolite and microbial succession on wet samples by material over time.
956 Changes in the relative abundance of selected bacterial genera for each material over the course of
957 succession (n=39, 58 and 72 wet samples for bacteria, fungi and metabolites, respectively). Lines
958  represent a smoothed moving average of the mean. Genus and metabolites are indicated by
959 different colors
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960
961 Figure S12: Bacteria-Metabolite co-occurrence network. Bacteria and Metabolite paired co-

962 occurrences suggesting biochemical exchanges (from n=83, 144 samples, respectively). Lipid and
963 hydroxyl compounds are strongly connected to Bacillaceae groups. Some specific lipids correlate
964  positively with bacteria and negatively with wood material (plants). Vitamins and small carbon
965 compounds negatively correlate with the wood material (plants).
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966
967 Figure S13: Bacteria-Metabolite co-occurrence network for Bacillus and Pseudomonas

96  interactions only. Bacteria and Metabolite paired co-occurrences suggesting biochemical
969  exchanges (from n=83, 144 samples, respectively). Nigragillin is negatively correlated with both
970  Pseudomonas and Bacillus. Azoxystrobin correlates negatively with Pseudomonas, but positively
971 with Bacillus. Hydroxyl compounds correlates negatively with Pseudomonas but positively with
972 Bacillus
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Figure S14: Photographs of wood coupons from different materlals and wetting conditions
at TP5 and TP6. Bacterial and Fungal growth on coupons surface photographs for (A) location
1 (B) location 2 and (C) control location.

Bacteria (16S) Fungi (ITS) Metabolomics

R? p R? p R? p

Wetted 0.374 < 0.00071 0.450 < 0.0001 0.204 < 0.0001
Timepoint 0.130 < 0.0001 0.094 < 0.0001 0.178 < 0.0001
Control 0.074 < 0.00071 0.107 < 0.0001

Location 1 0.045 0.0006 0.076 0.0006
Location2 0.214 < 0.0007 0.303 < 0.0001
Gypsum 0.085 < 0.0001 0.022 0.0271 0.141 <0.00071
MDF 0.108 < 0.00071 0.238 <0.00071
MF Gypsum 0.027  0.0095 0.209 <0.0001
0SB 0.041 00015 0.503 <0.0001

Bacillus 0.259 < 0.0001
Pseudomonas 0.088 < 0.0001
Erwinla 0.098 < 0.0001
Chloroplast 0.196 < 0.0001

Peniciliium 0.106 <0.0001
Eurotium 0.185 <0.0001

Table S1: ANOSIM results calculate the factors significantly correlated with differences in the
microbial communities across our three datasets, Bacteria, fungi, Metabolomics
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REG RE RE.DUP DUP
mantel significance n |mantel significance n |mantel significance n |mantel significance n
REG <NA>
RE 0.67 1E-05 74 <NA>
RE.DUP 0.71 1E-05 79 0.85 1E-05 77 <NA>
DUP 0.81 1E-05 44 0.75 1E-05 40 0.79 1E-05 39 <NA>

Table S2: Mantel test results calculate the correlation among fungi samples across different
sampling strategies.

REG RE RE.DUP DUP
mantel significance n |mantel significance n |mantel significance n [mantel significance n
REG <NA>
RE 0.62 1E-05 75 <NA>
RE.DUP 0.56 1E-05 75 0.72 1E-05 80 <NA>
DUP 0.63 1E-05 56 0.53 1E-05 36 0.50 1E-05 35 <NA>

Table S3: Mantel test results calculate the correlation among bacteria samples across different
sampling strategies.
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