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Abstract 

Isolation of cell populations is untangling complex biological interactions, but 
studies comparing methodologies lack in vivo complexity and draw limited conclusions 
about the types of transcripts identified by each technique. Furthermore, few studies 
compare FACS-based techniques to ribosomal affinity purification, and none do so 
genome-wide. We addressed this gap by systematically comparing nuclear-FACS, 
whole cell-FACS, and RiboTag affinity purification in the context of D1 or D2 dopamine 
receptor-expressing medium spiny neuron (MSN) subtypes of the nucleus accumbens 
(NAc), a key brain reward region. We find that nuclear-FACS-seq generates a 
substantially longer list of differentially expressed genes between these cell types, and a 
significantly larger number of neuropsychiatric GWAS hits than the other two methods. 
RiboTag-seq has much lower coverage of the transcriptome than the other methods, but 
very efficiently distinguishes D1- and D2-MSNs. We also demonstrate differences 
between D1- and D2-MSNs with respect to RNA localization, suggesting fundamental 
cell type differences in mechanisms of transcriptional regulation and subcellular 
transport of RNAs. Together, these findings guide the field in selecting the RNAseq 
method that best suits the scientific questions under investigation. 
 
Introduction 

The ability to isolate individual populations of cells with a homogeneous 
molecular profile has allowed biological inquiry to address new, more refined regulatory 
functions. Studies are parsing biological signals from complex, heterogeneous tissues 
and thereby revealing effects masked by cell type variability1–4. This work brings us one 
step closer to understanding the quantum nature of biology and to developing 
therapeutics that leverage its heterogeneity, rather than ones that lose efficacy as a 
consequence of it. We report here a comprehensive, technical comparison of cell 
isolation methodologies for RNAseq, and leverage the biological context of our study to 
provide new insight into the function of D1- and D2-type medium spiny neurons (MSNs) 
of the nucleus accumbens (NAc), part of the ventral striatum. 
 While techniques to isolate cell populations have been widely used in various 
tissues, they have not been systematically compared in a well-controlled framework for 
brain. There are substantial differences between methods; for example, whole cell-FACS 
and RiboTag extract cells from fresh tissue, while nuclear-FACS does so typically from 
frozen tissue; RiboTag and nuclear-FACS use a mechanical dissociation protocol, while 
whole cell-FACS uses an enzymatic one; and each recovers a different subpopulation of 
RNA species. Based on the literature and on procedural documentation for these 
methods, we hypothesize that they uncover related but only partially overlapping gene 
sets and biological functions. 

Unlike library preparation methods for whole-genome and whole-transcriptome 
analysis, which have been carefully compared and assessed for biasing effects5–8, cell 
isolation protocols have been inconsistently compared and have yielded conflicting 
results. Several studies have analyzed differences generated by isolation of either whole 
cells or nuclei, but these studies are often performed in cell culture9,10, which lacks the 
heterogeneity and variability of in vivo tissues, and they draw limited conclusions about 
the biological types of transcripts isolated by each technique. Comparative studies on 
more complex tissues confine their interpretation to effects of each technique on a 
subset of differentially expressed genes, transcript length or RNA biotype11. 

Few RNAseq studies have included a comparison between FACS-isolated 
cells/nuclei and ribosomal purification techniques like TRAP or RiboTag, and therefore 
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ignore the important question about which RNA species are isolated by the latter 
methods that capture active translation12–14. Those studies that include such a 
comparison have relatively simple biological endpoints like method repeatability and 
contamination, and lack the comprehensiveness of a whole-genome analysis10,15,16. 

The absence of a methodical comparison of whole cell-FACS, nuclear-FACS, 
and RiboTag affinity purification is becoming increasingly problematic as an increasing 
number of studies using these techniques are published and their results taken at face 
value. These techniques capture different cellular processes while simultaneously 
defining the same cellular identity. Only a head-to-head comparison for the same cell 
types can demonstrate if they predominantly capture differences or similarities, and 
identify the nature of those biases. The present study was designed to address this 
deficiency in the field. 
 Our two cell types of choice are both principal GABAergic MSNs of the NAc, a 
forebrain region implicated in reward and motivation. Both MSN subtypes respond to 
dopamine, but do so through the activity of different dopamine receptors17,18, display 
different physiology in response to reward-related stimuli19–21, and generate different 
behavioral outcomes22–29. Whole cell-FACS17 and TRAP12 have been used to distinguish 
between D1- and D2-MSNs, but the two methods have not been compared directly and 
these prior studies focused on the entire striatal complex of which the NAc represents a 
small sub-region. Here, we use all three RNA isolation methods – whole cell-FACS, 
nuclear-FACS, and RiboTag – to provide a deeper characterization of these behaviorally 
relevant NAc cell types than ever before. Most importantly, this study presents the first 
genome-wide, biological network-focused analysis of the contribution of these three 
methods to RNA characterization. 
 
Results 
 
Comparison of library complexity and distribution 

As noted in the Introduction, whole cell-FACS, nuclear-FACS, and RiboTag 
affinity purification have methodological differences and retrieve different subcellularly-
located RNAs (Fig. 1a). To compare the ability of these methods to distinguish D1- and 
D2-MSN populations from the NAc, we generated RNAseq libraries using ribo-depleted, 
total RNA isolated from the NAc of individual D1- or D2-Cre mice (see Methods). The 
libraries were prepared using the same kit and sequenced on the same platform using 
the same parameters. Thirty-nine samples were used for downstream analyses, 
constituting 16 whole cell-FACS (D1 n=9, D2 n=7), 11 nuclear-FACS (D1 n=6, D2 n=5), 
and 12 RiboTag (D1 n=6, D2 n=6) samples. We first confirmed that nuclear sequencing 
produces a larger percentage of intronic reads (Supplementary Fig. 1a), consistent with 
previous findings30,31. 

Differential RNA expression between D1 and D2 MSNs was performed within 
each method, and signatures were compared across methods. Using standard FPM (≥1 
in ≥2 samples) and differential expression filtering (pAdj ≤ 0.05, 30% change, top 75% of 
mean size factor normalized counts), overlap in differentially expressed genes (DEGs) 
between conditions was not very high (Supplementary Fig, 1b), and the nuclear DEG 
pool was large and non-specific. Based on this nuclear DEG observation, we 
implemented a strict filter to remove genes with very low and very high value FPKMs 
(keeping genes with FPKM ≥ 1 in at least one sample and ≤ 5x104 in all samples, 
Supplementary Fig. 1c). These filters reduced intronic and intergenic noise32 and 
eliminated artifacts of sample-specific overamplification of short-length genes. In 
contrast to nuclear and whole cell libraries, the RiboTag method had more lowly-
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expressed genes (Fig. 1b), necessitating different filtering cut-offs. This is consistent with 
previous literature33. We therefore implemented a less strict low-FPKM filter for the 
RiboTag dataset balanced by requiring observations in multiple samples (FPKM ≥0.1 in 
≥2 samples). This filter dramatically increased RiboTag overlap compared to that found 
using the stringent FPKM filter for all methods (Supplementary Fig. 1d). These 
empirically-determined FPKM filtering parameters optimized comparison between the 
conditions, generating similar transcriptome-wide FPKM distributions across method 
(Fig. 1c). 

Nuclear DEGs appeared to still be somewhat non-specific, and we ran a logistic 
regression to determine parameters contributing to nuclear DEG overlap vs. non-overlap 
(Supplementary Table 1). Perhaps due to increased variance in the set of nuclear DEGs 
(Fig. 1d), StandardError(log2foldchange) was significantly higher in non-overlapping 
nuclear DEGs compared to overlapping ones (logistic regression β = 5.4, p = 2.0 x 10-2). 
We therefore removed nuclear DEGs within the top quartile of 
StandardError(log2foldchange), greatly improving the specificity of this pool (Fig. 1d), 
and generating a robust population of cross-method D1-MSN- and D2-MSN-enriched 
genes, whose fold change followed similar patterns across method (Fig. 1e)  

More genes were differentially expressed between the two cell types in the 
nuclear (2,361) compared to the whole cell (1,416) and RiboTag (133) datasets (Fig. 1d, 
Supplementary Table 2). These nuclear DEGs included genes of a wide variety of 
coding and non-coding biotypes (Fig. 1g), and the percentage of protein-coding DEGs 
increased steadily from nuclear (61.59%) to whole cell (69.52%) to RiboTag (82.71%). 
This bias towards protein-coding genes in the RiboTag dataset manifests before the 
implementation of differential expression, as demonstrated by the method’s relatively 
lower capture of short-length genes across the transcriptome, an effect which 
disappears when analyzing only protein-coding genes (Supplementary Fig. 1e)   
 Density plots of whole cell and RiboTag DEG average FPKMs within D1-MSNs 
and D2-MSNs did not show a detectable difference in distribution between cell types 
(Fig. 1e, Supplementary Table 3). However, in the nuclear dataset, there was a notable 
difference between cell types, with D2-enriched DEGs having a lower average FPKM 
than D1-enriched DEGs. Given its lower expression level and small overlap with 
RiboTag D2-DEGs, the D2 nuclear profile may represent stochastic transcriptional noise 
in D2-MSNs which, at baseline, does not correspond to active translation, but which 
poises cells to respond to future stimuli. 

Nuclear DEGs had a higher median log(FPKM + 1) (0.76) than whole cell (0.61) 
or RiboTag (0.24) DEGs, as well as a higher median variance (nuclear = 0.24, whole cell 
= 0.13, RiboTag = 0.02) (Fig. 1f). This is largely driven by the higher median variance of 
nuclear D2-DEGs (0.31) than nuclear D1-DEGs (0.21). Importantly, within genes 
passing the FPKM filter in all conditions, FPKM is significantly correlated across method, 
as is variance (Supplementary Table 4). 

Finally, we demonstrate that these data can be used to model RNA regulatory 
dynamics across cellular compartments, extending previous work with ribosomal and 
whole cell data34. Using a negative binomial generalized linear model (Supplementary 
Fig. 2a), effects of transcriptional, cytosolic and translational regulation were deduced. 
Genes undergoing one or more of these levels of regulation were overlapped 
(Supplementary Fig. 2b). The largest overlap was seen for genes transcriptionally 
enriched in D1 nuclei, but cytosolically enriched in D2-MSNs. Upstream miRNA analysis 
of this list using miRTarBase35 generated 27 mouse miRNAs (Fisher's exact test two-
sided adjusted p-value < 0.05), and 4 of these were differentially enriched in D2-nuclei 
but not in D2-whole cells (Supplementary Fig. 2c), pointing to cell type-specific 
mechanisms of subcellular transcriptional regulation. Numbers of genes falling into each 
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category of regulation suggest that D1-MSNs undergo predominantly transcriptional and 
translational regulation, while D2-MSNs undergo predominantly cytosolic regulation. 

 
Variance partitioning of the combined datasets 

Having assessed the transcriptome-coverage and basic library composition for 
each method, we analyzed the major sources of variance between and within the three 
datasets. A principal component analysis revealed strong separation of samples by 
method (Fig. 2a), with RiboTag samples differing the most from the other two methods, 
and clustering together most tightly. The Euclidean distances between Method cluster 
centroids were higher for RiboTag (d(WholeCell,Nuclear)=41, d(RiboTag,Nuclear)=75, 
d(RiboTag,WholeCell)=69) and the mean Euclidean distances within Method to each 
cluster centroid were significantly smaller for RiboTag (��RiboTag=1.7, ��WholeCell=5.9, 
��Nuclear=10.9, two-sided t-test p<5x10-5 for both RiboTag comparisons, p=0.005 for 
WholeCell vs Nuclear). Samples from each method separated clearly by cell type (Fig. 
2a, insets), and this was also seen in PC5/PC6 of the combined data (Supplementary 
Fig. 3a). Method accounted for more variability than cell type, though this is likely due to 
the similarity of the two cell types studied. When comparing our datasets to published 
RiboTag RNAseq from liver cells33, most of the variability in the combined data (PC1, 
50.5%) was due to tissue, while less variability (PC2, 30.6%) separated RiboTag 
datasets from whole cell and nuclear (Supplemental Fig. 3b) 
 Variation within the total data was further explored using variance partitioning 
analysis (Fig. 1b). Variance in expression of a given gene that was not explained by 
method of separation or by cell type was categorized as ‘residual’. On average, 65.3% of 
transcriptome-wide variance is explained by residual factors, which could include 
parameters such as the duration and method of trituration36–38. This number goes down 
to 53.6% when only analyzing genes found in all datasets (Supplementary Fig. 3c, 
Supplementary Table 5). Method accounted for 32.0% of transcriptional variance, and 
such method-variable genes enriched for expected GO terms relating to cellular 
localization, which likely has to do with the range of biotypes represented in this gene list 
(Supplementary Table 6). Our biological variable of interest (cell type) exerted a small 
effect on transcriptional variance across samples, with only 2.7% of variance explained 
by cell type (Fig. 2b). This is consistent with the fact that D1- and D2-MSNs are highly 
similar neurons as noted earlier, which in fact cannot be readily distinguished by PCA on 
single cell RNAseq of whole striatum39. Interestingly, Gene Ontology (GO) analysis of 
this small list of cell type-variable genes using g:Profiler40,41 showed enrichment for 
expected functions relating to dopamine signaling (Fig. 2b, Supplementary Table 7). This 
striking – though unsurprising – result highlights the importance of normalizing the 
method of cellular separation in order to reduce noise in a given dataset and magnify the 
focus on biological variability.  
 The top 20 method-variable genes are displayed along with the z-score of their 
library-normalized expression across method (Fig. 2c). It is interesting to note that many 
of these top method-variable genes are uncharacterized (8/20, 40%). The percentage of 
annotated genes steadily increased as the list length increased, demonstrating a bias 
towards unannotated genes among the most highly method-variable transcripts. 
 Whole cell- and nuclear-variable genes largely cluster together (Fig. 2c). 
RiboTag-variable genes comprise a largely non-overlapping pool, though some are 
shared with whole cell. Future experiments using only one of the methods included here, 
but seeking to discover consistent biology across cellular compartments, can reduce the 
technological bias in their data by removing method-enriched genes identified in this 
study (Supplementary Table 8).  
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 Using RNAlocate, a database of subcellular RNA transcript localization 
generated across tissues and biological timepoints42, we investigated cellular distribution 
of method-variable genes (Fig. 2d). Our results show the expected subcellular 
distribution of these genes based on the compartments for which each method 
respectively enriches. We demonstrate the bias of nuclear isolation towards nuclear-
located transcripts, and RiboTag purification towards ribosomal transcripts, with whole 
cell showing an intermediate profile. Interestingly, the nuclear-variable list showed the 
highest percentage of exosomally-located transcripts. 
 
Method-associated topological networks 
 Variance partitioning analysis revealed genes whose transcriptional variability 
was determined most by method and cell type. Because many of the method-variable 
genes were unannotated, potential for further biological interpretation of them was 
limited. Therefore, in order to generate more functional conclusions about method-
related genes, we employed Weighted Gene Co-expression Network Analysis 
(WGCNA)43, which generates transcriptional networks based on the co-expression of 
genes across a population of samples. For every network module calculated with 
WGCNA, the eigengene (i.e., first principal component) was used to capture the relative 
expression changes observed in each module across samples. These eigengenes were 
further clustered and correlated with each other as well as cell type, method, and/or sex. 
 Network modules were generated by collapsing across all methods, which 
resulted in 9 unique modules. Of these 9, correlation analysis discovered one RiboTag-
associated module, one nuclear-associated module, and one whole cell-associated 
module. The top 20 hub genes and their first level connections were extracted in order to 
generate “hub networks” for modules of interest (see Methods), and these hub networks 
were probed for functional and biological enrichments using g;Profiler (Fig. 4). 
 The RiboTag-associated module enriched for terms relevant to protein-coding 
activity (GO:0005515, p = 1.48 x 10-14; GO:0006412, p = 9.02 x 10-4; KEGG:03010, p = 
2.21 x 10-3; REAC:R-MMU-72702, p = 1.29 x 10-2) (Supplementary Table 7). Many of the 
top twenty hub genes in this network are involved in crucial neuronal functions: 
organization of DNA (Hist2h2aa2, Zbtb7a, Hcfc1, Hnrnpa3, Chd3), regulation of cell 
growth (Celsr2, Clstn1), microtubular organization (Pcdhgc4, Gphn), and protein quality 
control (Vcp, Bag6). Their centrality in the RiboTag-associated hub network is congruent 
with their high levels of expression (all above the 70th percentile of expression by FPKM 
across method) and their importance in baseline cellular functioning.  

The whole cell module enriched for terms relating to cellular energetics 
(GO:0022900, p = 3.52 x 10-6; GO:0006119, p = 1.14 x 10-5; GO:0044265, p = 3.61 x 10-

3) and to RNA processing (GO:0003723, p = 6.04 x 10-5; REAC:R-MMU-72163, p = 1.12 
x 10-2). In comparison, the nuclear module enriched for behaviorally relevant terms 
(GO:0007610, p = 8.17 x 10-4; GO:0050890, p = 4.57 x 10-3) and “Voltage-gated 
potassium channels” (REAC:R-MMU-1296072, p = 1.26 x 10-2), highlighting the 
importance of transcriptional control as a means of regulating K+ channel activity44–46, as 
well as perhaps the function of nuclear K+ channels in transducing signals of neuronal 
activity to the nucleus47,48.  

Using data from the NHGRI-EBI GWAS Catalog49, we overlapped hub networks 
with known risk loci for neuropsychiatric diseases (Supplementary Table 9). In the 
nuclear hub network, we found a significant overall enrichment (OR = 5.36, Fisher's 
exact test two-sided p = 3.23 x 10-3, 5/146 term genes), as well as specific enrichments 
for Lewy body dementia (OR = 145.98, p = 0.014, 1/2 term genes), non-alcoholic drug-
related phenotypes (OR = 73.38, p = 0.020, 1/3 term genes), cognitive decline (OR = 
73.38, p = 0.020, 1/3 term genes), and cognitive ability (OR = 8.46, p = 0.026, 2/37 term 
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genes). Neither of the other two method-associated hub networks showed overall 
enrichment for neuropsychiatric GWAS hits, and the only other specific enrichment was 
in whole cell for Lewy body dementia (OR = 137.89, p = 0.014, 1/2 term genes). This 
demonstrates an ability of the nuclear method, over and above the other two, to detect 
disease-relevant genes. 
 
Cell type-associated topological networks 
 To investigate the ability of each method to characterize these biologically similar 
cell types, we performed WGCNA separately on samples from each method. Within 
each method, hub networks were derived, as above, for modules most correlated to cell 
type eigengenes. These networks are displayed in Fig. 4 and 5, with node size scaled 
for relative, within-network degree of connectivity, and hub genes labeled. 
 Despite a small overlap in hub network genes across methods for D1-MSNs 
(73/1622, 4.5%) and D2-MSNs (22/1713, 1.3%) (Supplementary Fig. fa), convergent 
conclusions can be made from the separate techniques. These hub networks were 
characterized using g:Profiler (Supplementary Table 7) and significantly enriched GO, 
KEGG and Reactome pathway terms are displayed (Fig. 4c, Fig. 5c). Overlap of genes 
predicting the same term in separate hub networks is much higher than overall overlap 
of network genes. For example, both nuclear and RiboTag D1 modules enrich for 
“anterograde trans-synaptic signaling”, and 12.2% (12/98) of the predictive genes 
overlap across the two methods. 

The top 100 transcription factor binding sites (TFBSs) by enrichment p-value 
were selected and overlapped for each method. 25 of the top TFBSs for D1 hub 
networks overlapped, and these corresponded to 20 transcription factors, 14 of which 
were unique to D1 modules (Fig. 4d). Elk-1 is enriched in D1 nuclei (two-sided t-test, p = 
0.02, Fig. 4e), and Creb1 and Sp1 show a trend towards enrichment in D1 whole cells (t-
test, p = 0.09, 0.08, Fig. 4e). The fact that not all predicted transcription factors are 
enriched in the expected cell type – in fact, E2f1 is surprisingly enriched in D2 nuclei 
despite our upstream analysis indicating it as D1-unique (two-sided t-test, p = 0.01) – 
can likely be explained either by the inability of upstream analyses to differentiate 
between multiple members of a transcription factor family or by genome architectural 
differences between D1- and D2-MSNs, which must be mapped out in order to fully 
understand the transcriptional dynamics of these cell types. 
 D1 hub networks generated several terms relating to synaptic function (nuclear, 
GO:0098916, p = 1.03 x 10-10, GO:0060291, p = 2.39 x 10-5; RiboTag, GO:0098916, p = 
4.36 x 10-16; GO:0099504, p = 1.67 x 10-13; GO:0007269, p = 3.83 x 10-10) (Fig. 4c, 
Supplementary Table 7). The combined data implicate a D1-enriched function in 
regulation of synaptic dynamics involving second messenger signaling from the synapse 
and regulation of vesicle formation and release. 

24 of the top 20 TFBSs for D2 whole cell and RiboTag hub networks overlapped, 
corresponding to 6 overall and 2 D2-unique transcription factors, though none 
overlapped with the one site predicted from the nuclear dataset (Fig. 5d). However, 6 of 
the 30 predicted TFBSs for nuclear D2-DEGs did overlap with whole cell and RiboTag 
module TFBSs (Supplementary Fig. 4b). This suggests that upstream analysis of 
nuclear sequencing datasets with low average expression levels (Fig. 1e) should be 
performed on differential expression rather than on network analyses, given the high 
level of gene co-expression that the nuclear method uncovers. In fact, upstream TFBS 
analysis on nuclear D1-DEGs also improves overlap of predicted sites (Supplementary 
Fig. 4c). Despite the failure of the nuclear method to predict overlapping TFBSs, it did 
most reliably show enrichment by FPKM of these factors in D2-MSNs. Osx and Zac 
showed significant enrichment in D2-MSN nuclei (two-sided t-test p = 0.006, 0.001, Fig. 
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5e). RiboTag FPKMs showed enrichement of Egr2 in D2 cells (two-sided t-test, p = 
0.02). 

Nuclear and RiboTag D2 hub networks showed enrichment for functional terms 
relating to RNA processing (Fig. 5c, Supplementary Table 7), implicating post-
transcriptional mechanisms in the maintenance of D2-MSN identity (nuclear, 
GO:0035195, p = 5.72 x 10-25, GO:1903231, p = 4.27 x 10-27; RiboTag, GO:0003723, p = 
6.16 x 10-13; REAC:R-MMU-8953854, p = 2.12 x 10-6). The importance of post-
transcriptional regulation in D2-MSNs helps to explain the higher variance observed in 
D2 compared to D1 MSN nuclei (Supplementary Fig. 5). 
 
Analyzing sex differences using RiboTag-RNAseq 
 The RiboTag-RNAseq dataset was considerably less complex than those 
generated by the other two methods, and therefore showed the most robust separation 
of cell types on PCA. We thus expected it to most powerfully separate two biological 
types – namely, MSNs from male and female mice – whose difference has not yet been 
characterized. We compared the aforementioned male mice to 10 RiboTag-RNAseq 
samples (D1 n=5, D2 n=5) from female mice. WGCNA performed on RiboTag-purified 
male and female D1- and D2-MSN RNA generated modules (Fig. 6b, 6c), which 
correlated with the eigengenes for male and female sex. Notably, the correlation p-value 
for the male-enriched module did not meet statistical significance (Pearson correlation p 
= 0.2; female, p = 0.008). This suggests that MSN differences by sex are less 
pronounced than differences between cell types within a given sex. Nevertheless, male- 
and female-correlated modules were both enriched for terms relating to metabolism of 
genetic material (p < 9.6 x 10-2), a result mirrored in GO analysis of previous whole 
tissue RNAseq50 (Supplementary Table 7). The female hub network predicted Tel1, a 
regulator of telomere maintenance, as an upstream transcription factor (Fig. 6c). This 
prediction is in line with evidence of sexual dimorphism in telomeric structure51,52, and 
demonstrates that sex differences in the brain can be investigated at the cell type-
specific level. This is possible even when cell type-enriched DEGs are highly 
overlapping across sex (Fig. 6d). 
 
Discussion 
 RNAseq is a powerful method for examining the baseline, homeostatic 
mechanisms that determine cellular identity, but its output is highly dependent on the 
method by which libraries are prepared. We examined, in particular, the effect of cell 
separation technique on RNAseq of biologically similar populations of dopamine 
receptor-expressing D1- and D2-MSNs in the NAc. Our results highlight, foremost, the 
importance of reducing technique-induced noise by implementing well-controlled 
experiments and using strict FPKM minimum and maximum cutoffs to eliminate 
sequencing artifacts. 

This work also provides several gene lists that will inform future work. Our 
modeling of transcriptional control mechanisms can be used to make further predictions 
about the subcellular transcriptional regulation of various transcripts. Our variance 
partitioning data present a resource of technique-variable genes with which to normalize 
when comparing datasets generated using different cell separation techniques. As well, 
our findings expand on existing RNA localization datasets by demonstrating a robust list 
of genes expressed only in the nuclear and whole cell datasets, including genes whose 
transcripts are restricted to the nuclear compartment.  
 We confirm the bias of RiboTag affinity purification towards isolation of protein-
coding genes, a fact which affords both advantages and disadvantages. The 
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disadvantage is, of course, the failure of this technique to recover large sets of non-
coding regulatory genes which differ dramatically between cell types (as indicated by 
nuclear and whole cell sequencing) and are known to play an important role in biological 
regulation. Its advantage is the superior separation of cell types as compared to the 
other methods. The RiboTag dataset showed the clearest separation of D1- and D2-
MSNs, although it also showed the lowest fold-change in differential expression of cell 
type-enriched genes. 
 Nuclear- and whole cell-FACS-based isolation similarly have advantages and 
disadvantages. One challenge is their extreme complexity – strict cutoffs must be set, 
especially when using the nuclear method, in order to focus on only the most robust 
results. This complexity is furthered by the presence of immature mRNAs, which may or 
may not be destined for translation. For cell types whose nucleus contains lowly 
expressed, high variance genes, nuclear sequencing generates noisier results than 
either whole cell or RiboTag sequencing, and upstream analysis of differential 
expression, as opposed to co-expression data, generates more reliable conclusions.  

However, the nuclear method does offer advantages. A methodological 
advantage of nuclear isolation is the fact that it can be performed on frozen tissue, 
making implementation of large experiments and/or use of banked human tissues much 
more manageable. A conceptual advantage of the nuclear method is demonstrated by 
our GWAS hit enrichment analysis, which reveals that this method captures more 
disease-relevant loci than either of the other two, making it an appealing option for those 
studying the genetic basis of neuropsychiatric disease. 
 Despite these differences between methods, and the relatively low overlap of 
differentially expressed genes, convergent conclusions can be made about cell type-
enriched transcription. We were able to robustly identify regulatory transcription factors, 
central biological functions, and enriched protein complexes across methods. 
 An important future question concerns the ability of these techniques to capture 
transcriptional response of cell populations to various stimuli. We would expect nuclear 
and RiboTag-generated datasets to represent different stages of response, and to be 
differentially valuable during given post-stimulus time windows. This is a question which 
requires empirical investigation, and to which baseline normalization based on our 
results can be applied. 
 
 
Methods 
 
Transgenic animal lines 

All animal protocols were approved by IUCAC. All mice were bred on a C57BL/6J 
background. Mice used for nuclear isolation heterozygously expressed a nuclear GFP 
label under the promoter of either Drd1 or Drd2 (Drd1-cre x Thy1-loxPSTOPloxP-EGFP-F; 
Drd2-cre x Thy1-loxPSTOPloxP-EGFP-F). Mice used for whole cell isolation heterozygously 
expressed a cytoplasmic fluorophore under the promoter of either Drd1 or Drd2. Mice 
used for RiboTag affinity purification expressed an HA-tagged ribosomal subunit under 
the control of Drd1 and Drd2 (Drd1-cre x Rpl22-loxPexon4loxP-exon4-HA; Drd2-cre x 
Rpl22-loxPexon4loxP-exon4-HA). 
 
Cell isolation  

Each sample represents tissue from a unique mouse. Nuclear samples were 
obtained from frozen tissue. This tissue was mechanically dissociated and nuclei lysed 
using a glass douncer in ice-cold lysis buffer (10.94% w/v sucrose, 5 mM CaCl2, 3 mM 
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Mg(CH3COO)2, 0.1 mM EDTA, 10 mM Tris-HCl pH 8, 1 mM DTT, in H2O). Samples were 
centrifuged and supernatant removed and placed on top of a 60% sucrose solution (60% 
w/v sucrose, 3 mM Mg(CH3COO)2, 10 mM Tris-HCl pH 8, 1 mM DTT, in H2O). The 
sucrose gradient was centrifuged at 24,400 rcf for an hour, and nuclei at the bottom of 
the gradient were resuspended in PBS. DAPI was added at a concentration of 0.5 
μg/mL. Whole cell samples were obtained from fresh tissue, which was rotated at 37°C 
for 45 minutes in 1 mg/mL papain suspended in digestion buffer (5% w/v D-trehalose, 
0.05 mM APV, 0.0125 mg/mL DNAse, in HibernateTM-A (Thermofisher, A1247501)). 
Tissue was then placed in FACS buffer (0.58 mg/mL albumin inhibitor (Worthington 
Biochemical, LK003182), 5% w/v D-trehalose, 0.05 mM APV, 0.0125 mg/mL DNAse, in 
HibernateTM-A) and triturated using progressively smaller pipette tips. Samples were 
passed through a 70 µm filter and placed on top of a layer of 10 mg/mL ovomucoid-
albumin in FACS buffer. The pellet was resuspended in FACS buffer and DAPI was 
added at a concentration of 0.5 μg/mL. RiboTag samples were obtained from fresh 
tissue as previously described53,54. 
 
Library preparation and sequencing 

All isolated RNA was prepared using the Clontech SMARTer® Stranded library 
preparation kit (cat. no. 634838). Briefly, samples were ribo-depleted, and total RNA was 
reversed transcribed, classified using Illumina indices and amplified with 8 cycles of 
PCR. Samples were sequenced to a minimum depth of 30 million reads using paired-
end reads with V4 chemistry on an Illumina Hi-Seq machine. 
 
RNAseq alignment preprocessing 

Reads were aligned to GRCm38 with HISAT255. All aligned samples were 
reviewed for quality control with FASTQC (see URLs). Reads were counted for 
Mus_musculus.GRCm38.90 using featurecounts with the settings strandSpecific=0 
allowMultiOverlap=T, countMultiMappingReads=F, and isPairedEnd=T56. Gene level 
counts were generated from both only exons and all features. The percent of introns per 
gene was obtained by subtracting gene-level exon counts from all counts. Gene-level 
counts from all features were used unless otherwise specified. 

Data were processed in three tranches: (1) male samples from all methods 
pooled, (2) male samples within each method, and (3) male and female RiboTag 
samples pooled. Genes with >1 fragments per million in ≥2 samples were kept for initial 
analyses. Final filters were ≥1 fragments per million per kilobase (FPKM) in at least one 
sample for nuclear and whole cell, and ≥0.1 FPKM in at least two samples for RiboTag. 
Counts were normalized to effective library size, and variance stabilized with DESeq2 b 
Design matrix covariates, depending on the tranche, method (whole cell, RiboTag, or 
nuclear), cell type (D1 or D2) and/or sex (male or female). Variance stabilized transcripts 
(from the DESeq2 vst function) were used for both principal component analyses (PCA) 
and weighted gene co-expression network analysis (WGCNA)57. Two RiboTag samples 
were excluded because they were PCA outliers and had >80% of reads unmapped. 
 
Differential expression 

Differential expression was assessed between D1 and D2 MSNs within each 
method using DESeq258. To determine cell type-enriched genes, lists were filtered for 
|log2foldchange| > 0.38 corresponding to a 30% change (past work has demonstrated 
that at least a 15% change is needed to replicate with qPCR59), pAdj ≤ 0.05, mean 
normalized counts above the 25th percentile within method. Nuclear data were also 
filtered for log2foldchange standard error below the 75th percentile. Length and biotype 
data for each gene were obtained using the R package biomaRt60. 
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Variance partitioning 

Euclidean distance was calculated from PC1 and PC2. Centroids were 
determined from the mean PC values within each method. Distance was calculated with 
Euclidean distance from the cluster centroid, and pairwise t-tests between all groups 
were performed for Euclidean distances. 

To calculate the percent variance explained by every covariate for every gene, 
VariancePartition was run on all genes and the intersection of genes passing minimum 
detection thresholds within each method61. 

Based on the percent variance explained, genes were assigned to one of three 
covariate categories (method, cell type, residual). Genes within each category were 
analyzed using g:Profiler, and five of the top ten most significantly enriched terms are 
displayed. Method-variable genes were further divided by enrichment within method. 
Genes were assigned to the method in which they had the highest RPKM, and 
overlapped with the RNAlocate database. Genes in our analysis that were not 
represented in the RNAlocate database were removed from the subcellular localization 
analysis. 
 
High confidence co-expression networks 

Networks were generated in three tranches specified previously, all male 
samples, separately for each method, and for RiboTag with both male and female. 
DESeq2 variance stabilized transcript expression matrices were used as input. 

For WGCNA, soft power thresholds for signed correlations were chosen to 
achieve approximate scale-free topology (R2 > 0.8): βAllMale=18, βNuclear=12, βWholeCell=18, 
βRiboTAG=9, βRiboTAGwithFemale=6. The WGCNA function blockwiseModules was run with the 
appropriate power and the parameters networkType = "signed", TOMType = "signed", 
detectCutHeight = 0.99, minModuleSize = 100, reassignThreshold = 0, minKMEtoStay = 
0.1, mergeCutHeight = 0.2, corType="bicor", numericLabels = TRUE, and pamStage = 
FALSE. Networks were then plotted and modules were exported as edge and node files 
from the topological overlap matrix. 

ARACNE networks were generated using the minet R package by first building a 
mutual information matrix (build.mim function with estimator = "mi.empirical" and disc = 
"equalfreq")62,63. 

Edges detected independently with both WGCNA and ARACNE were kept, and 
these edges were used to determine the top 20 hubs per network (by degree) as well as 
their first degree neighbors. 

Genes within each network were analyzed using g:Profiler, and representative 
terms from those most significantly enriched are displayed. 
 
GWAS gene set enrichment 

The GWAS catalog v1.0.2 (release 2018-08-14) was downloaded from the 
NHGRI-EBI catalog (see URLs)49. Associations were kept if the lead variants had 
p<5x10-8 and mapped within a gene's start and stop coordinates (i.e., was not 
intergenic). The gene associated with the lead variant was then mapped to its 
ENSEMBL mouse orthologue (see URLs)64. The remaining 1843 traits were manually 
curated for neuropsychiatric relevance, and categorized into 20 superseding traits, 
resulting in a final set of 554 genes from 733 gene-trait pairs. 

Gene set enrichment between GWAS genes and network hubs was calculated 
from a 2x2 contingency table with a Fisher's Exact Test. The contingency table 
comprised all genes used as input for WGCNA and ARACNE for a given tranche, with 
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rows labeling a gene as GWAS or not and columns labeling genes as belonging to a 
given hub network. 
 
All custom code is available under the MIT license (see URLs). 
 
URLS 
Custom code: https://github.com/frichter/d1_d2_rnaseq/ 
FASTQC: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 
GWAS catalog: https://www.ebi.ac.uk/gwas/docs/file-downloads 
Human-mouse orthologues: http://useast.ensembl.org/biomart/martview/ 
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Main figure legends 

Figure 1 

Library characterization demonstrates fewer differentially expressed 

transcripts and a predominance of protein coding genes in RiboTag compared 

to whole cell and nuclear RNAseq 

(A) Method scheme for whole cell FACS, nuclear FACS, and RiboTag affinity 

purification showing key differences in steps involving sample preparation, cell 

dissociation, and retrieval of cellular fractions 

(B) Density plot for all methods of ln([average RPKM] +1) of all genes captured 

shows that RiboTag does not capture a number of genes 

(C) Density plots for all methods of  ln([average RPKM] +1) of differentially 

expressed genes shows similar distributions across method 

(D) Overlap of D1- and D2-enriched differentially expressed genes across all 

methods (total D1 overlap = 134; total D2 overlap = 64) 

(E) Fold change of differentially expressed genes from most D1-enriched in yellow 

to most D2-enriched in blue, sorted by fold change in whole cell (black = low fold 

change, grey = not detected in the dataset) 

(F) Density plots for each method of ln([average RPKM] +1) of D1 (dark line) and D2 

(light line) differentially expressed genes in the respective cell types; medians are 

indicated with dashed lines 

(G) Mean-variance plots comparing ln(variance) to ln([average RPKM] +1) of 

differentially expressed genes in pooled D1- and D2-MSNs show only slight 

differences across methods 

(H) Gene biotype distributions for each method’s differentially expressed genes 

show a decreasing proportion of protein coding genes from the RiboTag to the 

whole cell to the nuclear dataset 

 

Figure 2 

Method accounts for the most variance and method-variable genes are 

associated with their expected subcellular compartments 

(A) Principal component analysis (PCA) across all samples showing separation by 

method; PCA within method showing separation by cell type (insets) 

(B) Percent variance explained by method, cell type and residuals with GO 

enrichment of method-, cell type-, and residual-variable genes 

(C) Gene expression profiles of the top 20 and top 10 most method- and cell type-

variable genes, respectively 

(D) Subcellular localization of method-variable genes shows enrichment of nuclear-

variable genes in the nucleus, and RiboTag-variable genes in the ribosome, as 

expected 

 

Figure 3 

Method-correlated WGCNA modules provide insight into biological function of 

key regulatory and unannotated genes 
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(A) Dendrogram showing hierarchical relationship and cluster-map showing 

correlation values of module and method eigengenes 

(B) Whole cell hub network including top 20 hub genes (labeled) and their first 

degree edges; enrichment of GWAS genes among whole cell hub network genes 

(Fisher's Exact Test) 

(C) RiboTag hub network including top 20 hub genes (labeled) and their first degree 

edges; enrichment of GWAS genes among ribosomal hub network genes 

 

(D) Nuclear hub network including top 20 hub genes (labeled) and their first degree 

edges; enrichment of GWAS genes among nuclear hub network genes 

 

Figure 4 

D1 hub networks from multiple methods demonstrate convergent biological 

function and transcriptional regulation 

(A) WGCNA cluster-map with correlations among module eigengenes and D1 cell 

type; D1 was most correlated with the cyan module in whole cell (Pearson 

correlation coefficient = 0.91; p-value = 7.0 x 10-7), the brown module in nuclear 

(corr = 0.81; p-value = 2.0 x 10-3), and the turquoise module in RiboTag (corr = 0.94; 

p-value = 8.0 x 10-6) 

(B) D1 module hub networks for each method with hub nodes labeled  

(C) D1 module GO and KEGG/reactome pathway terms with –log(p-value) of 

enrichment 

(D) Overlap of top 100 whole cell, nuclear and RiboTag TFBSs with number of 

corresponding transcription factors indicated above the arrow 

(E) Expression (average RPKM) of D1-unique transcription factors across method 

(asterisk indicates differential expression, pAdj ≤ 0.05) 

 

 

Figure 5 

D2 hub networks from multiple methods demonstrate convergent biological 

function and transcriptional regulation 

(A) WGCNA cluster-map with correlations among module eigengenes and D2 cell 

type; D2 was most correlated with the purple module in whole cell (corr =0.83; p-

value = 7.0 x 10-5), the turquoise module in nuclear (corr = 0.86; p-value = 6.0 x 10-

4), and the blue module in RiboTag (corr = 0.98; p-value = 6.0 x 10-8) 

(B) D2 module hub networks for each method with hub nodes labeled  

(C) D2 module GO and KEGG/reactome pathway terms with –log(p-value) of 

enrichment 

(D) Overlap of top 100 whole cell, nuclear and RiboTag TFBSs with number of 

corresponding transcription factors indicated above the arrow 

(E) Expression (average RPKM) of D2-unique transcription factors across method 

(asterisk indicates differential expression, pAdj ≤ 0.05) 

 

Figure 6 

RiboTag data can discern small-variance biological variables, with WGCNA 

generating sex-correlated modules 
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(A) RiboTag WGCNA cluster-map showing correlation values of module eigengenes 

and sex; male sex was most correlated with the black module (corr = 0.27; p-value = 

0.2) and female sex was most correlated with the pink module (corr = 0.55; p-value 

= 8.0 x 10-3) 

(B) Black module hub network (male) with hub nodes labeled; GO and pathway 

terms with –log(p-value) of enrichment displayed 

(C) Pink module hub network (female) with hub nodes labeled; GO terms and TFBS 

prediction with –log(p-value) of enrichment displayed 

(D) Overlap of D1- and D2-DEGs from male and female datasets; union heatmap of 

these DEGs showing log2foldchange (D1 vs. D2) in each dataset (black = low fold 

change, grey = not detected in the dataset) 
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Supplementary figure legends 
 
Supplementary Figure 1. Differences in genomic distribution and differential 

expression across methods. 

(A) Percent of intronic reads across samples for each gene, median indicated as a 

line in method color 

(B) Differential expression overlap using lenient filters on all (1 FPM in at least 

two samples) 

(C) Differential expression overlap using strict filters on all (FPKM ≥ 1 in at least 

one sample and all samples with FPKM < 5.0 x 104) 

(D) Differential expression overlap using strict filter for whole cell and nuclear 

and a less strict filter for RiboTag (FPKM ≥ 0.1 in at least two samples and all 

samples with FPKM < 5.0 x 104) 

(E) Density plots of gene lengths for all genes, protein-coding genes, and non-

coding genes for each method (whole cell = black, nuclear = blue, RiboTag = 

red) 

 

Supplementary Figure 2. Hub network overlaps and nuclear DET-predicted 

TFBSs 

(A) Overlap of hub network genes for D1- and D2-correlated modules across 

method 

(B) Overlap of genes showing regulation by transcription, cytosolic mechanisms, 

or translation in D1- and D2-MSNs. 0 overlaps are not labeled. 

(C) List of 27 miRNAs predicted upstream of the (Transcription D1) / (Cytosol 

D2) overlap (overlap p-value < 0.05) and FPKM values of the 4 miRNAs from 

this list that are differentially expressed in D2-nuclei (but not in D2-whole 

cells) 

 

 

Supplementary Figure 3. Variance in just genes detected in all three methods. 

(A) PCA of combined data showing separation of samples by cell type on 

PC5/PC6. Key is shown in figure 

(B) PCA of nuclear, whole cell, and RiboTag datasets from this study along with 

RiboTag RNA-sequencing from Song et al, 2018. Key is shown in figure 

(C) Variance explained by method, cell type and residuals across the 

transcriptome. Central bars represent median 

 

 

Supplementary Figure 4. Hub network overlaps and nuclear DET-predicted 

TFBSs 

(D) Overlap of hub network genes for D1- and D2-correlated modules across 

method 

(E) Overlap of predicted TFBSs for D2 whole cell and RiboTag hub networks with 

predicted TFBSs for nuclear D2-DEGs 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2018. ; https://doi.org/10.1101/444315doi: bioRxiv preprint 

https://doi.org/10.1101/444315
http://creativecommons.org/licenses/by-nc/4.0/


(F) Overlap of predicted TFBSs for D1 whole cell and RiboTag hub networks with 

predicted TFBSs for nuclear D1-DEGs 

 

Supplementary Figure 5. Variance distributions for D1- and D2-DETs across 

methods. 

(A) Variance distribution for nuclear D1- and D2-DEGs (top of the box = 3rd 

quartile, midline = median, bottom of the box = 1st quartile) 

(B) Variance distribution for RiboTag D1- and D2-DEGs (top of the box = 3rd 

quartile, midline = median, bottom of the box = 1st quartile) 

(C) Variance distribution for whole cell D1- and D2-DEGs (top of the box = 3rd 

quartile, midline = median, bottom of the box = 1st quartile) 

 
 
Supplementary table list 
Supplementary Table 1: Nuclear DEG logistic regression 
Supplementary Table 2: Differential expression by method 
Supplementary Table 3: FPKM by method 
Supplementary Table 4: FPKM and variance correlations across methods 
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