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Abstract

Monitoring a population for a disease requires the hosts to be sampled and tested for the
pathogen. This results in sampling series from which to estimate the disease incidence,
i.e. the proportion of hosts infected. Existing estimation methods assume that disease
incidence is not changing between monitoring rounds, resulting in underestimation of the
disease incidence. In this paper we develop an incidence estimation model accounting for
epidemic growth with monitoring rounds sampling varying incidence. We also show how
to accommodate the asymptomatic period characteristic to most diseases. For practical
use, we produce an approximation of the model, which is subsequently shown accurate
for relevant epidemic and sampling parameters. Both the approximation and the full
model are applied to stochastic spatial simulations of epidemics. The results prove their
consistency for a very wide range of situations.
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Introduction 1

Monitoring programs are used to keep track of the invasion and spread of human, animal 2

and plant pathogens. They are often structured in discrete rounds of inspection, during 3

which subsamples of the host population are assessed for disease status (Parnell et al., 4

2017). Given a sequence of monitoring rounds, a key question in interpreting these data 5

is the estimation of the incidence1 of the disease in the host population. There are two 6

special cases of this general question that have received some attention. 7

Firstly, monitoring is often motivated by the need for early responses to enable 8

eradication or containment. For example, early detection of the disease permits reduced 9

cullings of animal and plant hosts (Carpenter et al., 2011; Cunniffe et al., 2015, 2016), as 10

well as reduced resorts to emergency quarantines or travel restrictions for human hosts 11

(applied e.g. for SARS, Smith, 2006). 12

Secondly, monitoring is frequently motivated by the desire of proving disease absence 13

from a host population (Caporale et al., 2012), which is of key importance for the 14

transport and trade of hosts. The main question then concerns the sufficient sample 15

size (Cannon, 2002). An example of this is the practical “rule of three” (Louis, 1981; 16

Hanley & Lippman-Hand, 1983). It gives the upper bound of the 95% confidence 17

interval (CI) of the incidence when all of the N sampled hosts are assessed as healthy: 18

1We use here the plant pathology definition where incidence is the fraction of host units infected. In
human and other animal pathology this is termed prevalence.
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q95 = 3/(N + 1). Estimating a disease incidence (noted q hereafter), or proving its 19

absence, is mostly interesting during the early stages of epidemics, i.e. when incidences 20

are low and containment measures are still promising. 21

Simple practices like the “rule of three” make the assumption that the samples 22

are independent binomial draws of probability q. However, epidemics are structured 23

processes, and samples are very likely to carry dependencies to those structures. For 24

example, by pooling all the samples together, we neglect the fact that early monitoring 25

rounds have most likely sampled a lower incidence q than the current one, resulting in 26

an underestimation of the incidence. An alternative and unbiased solution consists in 27

estimating q only from the last round to date. But obviously, such a poor use of data 28

would only be tolerable in cases where the monitoring interval and epidemic growth rate 29

are both very large, so that the previous monitoring rounds can be deemed uninformative 30

of the last one. The temporal dependence of samples has been addressed by Metz et al. 31

(1983) in the design of appropriate monitoring programs, as well as by Bourhis et al. 32

(2018) for the incidence estimation problem in the specific case of disease absence, i.e. 33

when all samples return healthy. 34

Making use of all monitoring data, we propose here a generalised solution to the 35

incidence estimation problem. Building on the simple logistic equation, we develop an 36

estimation model that accounts for the evolution of the disease during the monitoring 37

period. Following the idea of the rule of three, and in the way of Parnell et al. (2012) and 38

Alonso Chavez et al. (2016), we produce an approximation of this model. Its derivation 39

only requires simple algebraic operations which makes it more suitable for practitioners. 40

The full model and its approximation are shown accurate when tested against stochastic 41

sampling of logistic epidemic simulations. Finally, they are taken one step further and 42

conclusively tested against spatially explicit stochastic simulation models. 43

Material and Methods 44

Monitoring a population for a disease results in sampling series like Table 1. We define 45

K as the number of monitoring rounds iterated in time. Nk is the sampling size of 46

monitoring round k, i.e. the number of hosts whose pathological status is assessed at 47

time tk. Mk is the number infected hosts detected during round k. Finally, ∆k is the 48

time interval between monitoring rounds k and k + 1. 49

Table 1. Variables and structure of a sampling series.

Monitoring round 1 2 ... k ... K-1 K
Number of samples N1 N2 ... Nk ... NK−1 NK

Number of positives M1 M2 ... Mk ... MK−1 MK

Time interval ∆1 ∆2 ... ∆k ... ∆K−1 —

One monitoring round 50

Considering q the disease incidence in the population, the probability of any sampling 51

size N and respective result M , is given by the binomial probability density function 52

P (M |q) =

(
N

M

)
(1− q)N−MqM . (1)
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A more general form, accounting for the occurrences of false positives and negatives in 53

the detection process, would be 54

P (M |q) =

(
N

M

)
[(1− q)(1− θfp) + qθfn)]

N−M
[(1− q)θfp + q(1− θfn)]M , (2)

where θfn and θfp are respectively the rates of false negatives and false positives. But 55

we will not expand this further here. 56

In a practical context, q is the variable that we want to estimate from samples 57

characterised by their size N and their outcome M . To this end we use Bayes’ rule: 58

P (q|M) =
P (q)P (M |q)∫ 1

0
P (q)P (M |q)dq

, (3)

where P (q|M) is the probability density of q given M and N . Assuming no information 59

on the incidence before sampling, we set a uniform prior P (q), simply resulting in 60

P (q|M) ∝ P (M |q) (Gelman et al., 2003). 61

K monitoring rounds 62

To account properly for the dynamic incidence between monitoring rounds, our proposi- 63

tion is to inform the binomial probability density with an epidemiological component, 64

noted Zk: 65

P (M |q) =

K∏
k=1

(
Nk
Mk

)
(1− Zkq)Nk−Mk(Zkq)

Mk , (4)

where M on the left-hand side represents the whole sampling series, i.e M1, M2,...,MK . 66

In Eq. 4, the parameter Zk ∈ [0, 1] modulates the value of q for the samples to be 67

compared to the disease incidence that was actually found in the population when 68

they were made (i.e. at time tk). For the last monitoring round, Zk=K = 1, and then 69

decreases with k < K. 70

We assume that the disease incidence, q, evolves logistically (van der Plank, 1963; 71

Murray, 2002) in time t as: 72

q(t) =
q0e

rt

1 + q0(ert − 1)
, (5)

where q0 is the incidence at time t0 and r is the epidemic growth rate. To include this 73

logistic growth into the binomial probability density, we define Zk as: 74

Zk =
qertk

1 + q(ertk − 1)

/
q =

ertk

1 + q(ertk − 1)
, (6)

where tk =
∑K
i=k −∆i are the sampling dates, with the last date defined as tK = 0. Eq. 75

5 can be fed negative time values to derive incidence backward in time (so that q0 in Eq. 76

5 is in fact the incidence at the end of monitoring, i.e. the one to estimate). 77

Similarly to the case of one monitoring round, we use Bayes’ rule to get the un- 78

normalised posterior distribution P (q|M). Practically, it is given by Eq. 4, which is 79

computed for a discretised array of q ∈ [0, 1], and from which quantiles can be derived 80

(a method called grid approximation, see e.g. Kruschke, 2014). This estimation model 81

has been deployed as an online app (see Supplementary Materials for details). 82

A useful approximation 83

As mentioned in the introduction, the upper bound of the confidence interval (CI) is a 84

useful measure of the highest, still likely, incidence we can expect in the population given 85
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the outcome of our monitoring program. Deriving an approximation from the estimation 86

model previously described proved itself intractable. However, various methods exist for 87

approximating the CI of a binomial probability density (Wallis, 2013), and they appeared 88

to fit the binomial-shaped probability density given by Eq. 4. After preliminary testing 89

of those methods, we choose the Agresti-Coull interval for its accuracy for low incidences 90

(Agresti & Coull, 1998). The Agresti-Coull interval is defined as 91

p̃ =
1

N + z2

(
M +

z2

2

)
, (7)

and then 92

qX = min

(
1, p̃+ z

√
max

(
0,

p̃

N + z2
(1− p̃)

))
. (8)

where qX is the upper limit of the X% CI and z is the corresponding 1− α/2 quantile 93

of the standard normal distribution. For the one-sided 95% CI that we used in the 94

examples hereafter, z = 1.645. 95

As previously, the estimation of qX needs to account for the epidemic growth. Because 96

of the density dependence of the logistic equation, we cannot ground this new Z̃k on the 97

logistic model, as it would need q to estimate q. Therefore, we assume an exponential 98

growth of the disease in the population. In practice, this assumption is realistic as, 99

during early infection, the epidemic growth is exponential, even according to the logistic 100

model (van der Plank, 1963). Then, Z̃k quantifies the disease evolution between rounds 101

as 102

Z̃k = exp

(
−r

K∑
i=k

∆i

)
. (9)

Finally, we aggregate the samples together with respect to the epidemic growth via Z̃k: 103

M =
K∑
k=1

Mk, and N =
K∑
k=1

NkZ̃k. (10)

These aggregated values of M and N are then substituted in Eqs. 7 and 8 to derive 104

qX . By scaling the size of the historic samples with the disease incidence they actually 105

sampled, we adjust their contribution to the total sampling effort. The min and max 106

operators in Eq. 8 are added to deal with the possibility of having N < M for some 107

values of Z̃k. 108

As discussed in the introduction early detection of epidemics and the establishment 109

of disease absence have received some attention in the epidemiological literature. Two 110

specific approximations have been produced for the estimation of the disease incidence 111

(1) when the first infected hosts are detected (first discovery event, Parnell et al., 2012), 112

and (2) while no infected hosts have yet been detected (sampling for disease absence, 113

Bourhis et al., 2018). See Supplementary Materials for details. The general estimation 114

model we provide in this study encompasses those specific contexts but extends to any 115

sampling series, being irregularly structured or not, and whatever their outcoming Mk. 116

Asymptomatic period 117

In most diseases, infected hosts produce symptoms after an asymptomatic period. Often, 118

asymptomatic hosts contribute to the epidemic dynamics by spreading the disease while 119

still undetectable (cryptic) when sampled. The logistic equation handles this period, 120

noted σ, as 121

qT (t) =
qer(tk+σ)

1 + q(er(tk+σ) − 1)
, (11)
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where qT is the total incidence of the disease, while q becomes the detectable incidence 122

(in our problem, q is the sampled incidence and qT the estimated one). Hence, Eq. 6 123

becomes 124

Zk =
er(tk−σ)

1 + qT (er(tk−σ) − 1)
, (12)

Therefore, Zk now expresses the ratio q(tk)/qT (tK), instead of q(tk)/qt(tK), and is then 125

no longer equal to 1 for the last round (if σ > 0). For the exponential approximation, 126

the Eq. 9 simply becomes 127

Z̃k = exp

(
−r

(
σ +

K∑
i=k

∆i

))
. (13)

Testing the model 128

The consistency of the full model and the accuracy of its approximation are first tested 129

against simulations of stochastic sampling on non-spatial logistic epidemics. We consider 130

a uniform distribution of incidences qT that we want to estimate individually. For each 131

one of them, a monitoring program is designed with Nk and ∆k drawn from Poisson 132

distributions of mean N and ∆. From the logistic equation (Eq. 5), the detectable 133

incidence q is derived for every sampling dates tk. Then binomial draws with probability 134

p = q(tk) and size n = Nk simulate the sampling process of the hosts, resulting in Mk. 135

For every qT an exact upper bound of its CI, qX , is derived with the full model, while an 136

approximated one, q̃X , is derived with the approximation. A relevant test then consists 137

in checking that the upper limits of the X% CI are above qT in X% of cases. This test 138

is done for contrasted values of the sampling (N and ∆) and epidemic parameters (r 139

and σ). 140

The full model and its approximation are also tested against a spatial stochastic 141

simulation model. In this case, the epidemics are no longer modelled with the logistic 142

equation but through a transmission rate and a dispersal kernel of the pathogens. To 143

this end, the hosts are distributed in a 2D-space and aggregated randomly in field- 144

like structures mimicking the distribution of the trees in an orchard. Details on this 145

landscape model are given as Supplementary Material. The epidemic progress follows an 146

exponential power kernel (Rieux et al., 2014). The probability of a susceptible individual 147

to become infected in a unit of time is then given by 148

p(s ∈ S) = β
bA

2πθ2Γ(2/b)

∑
i∈I

exp(−|xi − xs|b/θb). (14)

Where s is a susceptible host among the set of all susceptible hosts S. Similarly, i 149

and I represent the infected hosts. A is the area occupied by one host and Γ is the 150

Gamma function. β is the probability of infection, θ is the dispersal scale and b is a 151

shape parameter (producing fat-tailed kernels for b < 1). The coordinates x mark the 152

location of the hosts. Following Klein et al. (2006), the mean dispersal distance for this 153

2D kernel is given by: 154

δ = θ Γ(3/b) / Γ(2/b). (15)

The spatial dynamics are simulated with the τ -leap Gillespie algorithm (Keeling & 155

Rohani, 2008). Three sampling methods of increasing realism are tested: random (i.e. 156

host locations have no impact on sampling), stratified (i.e. sampling equally distributed 157

among fields) and systematic (i.e. sampling occurs every n hosts along ranks). As 158

no effect of the sampling method is observed, results are shown for the random one. 159

Apart from this, the model and its approximation are evaluated in the same way as the 160

non-spatial case. 161
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Results 162

Model behaviours 163

Figure 1 illustrates the effects of the epidemic and sampling parameters on the resulting 164

probability densities of the incidence and upper quantiles q95. Increasing M , the number 165

of positive/infected hosts in the sample, unsurprisingly increases the estimated incidence. 166

Increasing the sample size N reduces the uncertainty in the estimates. Increasing the 167

sampling interval ∆ decreases their impact on the estimation. This reflects the fact 168

that samples taken further back in time are less informative of current disease incidence. 169

Regarding the epidemic parameters, the growth rate r and the asymptomatic period σ 170

(not shown on Figure 1 for dimensional reasons) have very similar effects to ∆. They both 171

increase the estimated incidence by decreasing the impact of the historic samples, i.e. 172

the ones which sample lower incidences q. By doing that, ∆, r and σ reduce the effective 173

sample size (i.e.
∑K
k=1NkZk), which also contributes in increasing the uncertainty on 174

the estimates (i.e. producing densities with larger variance). 175

r = 0.02 r = 0.1

N
=

20
N

=
100
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Figure 1. Probability densities of the incidence q given by Eqs. 4 and 3. The vertical lines mark the
upper limit of the 95% CI. The densities result from a sampling series composed of K=3 monitoring rounds,
of which the first two are fully negative (i.e. M1 = M2 = 0) and the last varies from M3 = 0 (i.e. all
sampled hosts are negative) to M3 = N (i.e. all sampled hosts are positive). These probability densities are
represented for varying values of epidemic growth rate r, sampling size N and sampling interval ∆.

Test against logistic epidemics 176

Figure 2 shows the distribution of the exact and approximated upper bounds of the 177

95% CI, q95 and q̃95, for uniform distributions of qT and different values of the epidemic 178

and sampling parameters. The full model, which like the simulations builds on the 179

logistic equation, behave exactly as expected: it ensures that 95% of the q95 are 180

above their respective qT , for every set of parameters tested. On the other hand, the 181

approximation displays another behaviour easily explained by its underlying exponential 182

growth model. For the low incidences which are relevant to practice (i.e. say qT < 0.25), 183

the approximation is accurate (the distributions of q95 and q̃95 do overlap). For higher 184
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incidences, i.e. when the logistic growth decelerates unlike the exponential growth, the 185

approximation tends to overestimate the incidence (increasingly with r, σ and ∆). 186

Another model behaviour is of particular interest: when r and σ are large (cf. the 187

rightmost column), we observe that the estimated q95 and q̃95 do not align well with the 188

diagonal for small incidences qT . For those cases of very hazardous pathogens with high 189

epidemic growth rates and long asymptomatic periods, the sampling size N is too small 190

to allow discrimination between the non-detection cases (i.e. the one for which all the 191

Mk = 0), and that larger sampling effort is needed for the estimation to be useful. 192

Although increasing r and σ accelerates the divergence between the logistic and 193

the exponential curves, the approximation appears accurate for early infections even 194

considering very high values of epidemic parameters such as r = 0.1 day−1 or σ = 195

100 days. 196

Figure 2. Estimation of q95 and q̃95 from sampling series of non-spatial epidemics, i.e. simulated with the logistic equation (Eq. 5). These
estimations are made for contrasted values of sampling and epidemic parameters (and for K = 5 monitoring rounds). Using here the 95% CI, we
expect 95% of the estimated q95 and q̃95 to be above the actual incidence in the field at the end of monitoring qT , i.e. above the oblique black line.
The inserted texts summarise these scores for the full model (in red) and its approximation (in blue).

Test against spatial epidemics 197

When locating the hosts in space, the epidemic becomes driven by two new elements: 198

the dispersal range of the pathogen and the intensity of host clustering (Brown & Bolker, 199

2004). Both determine how easily the pathogen spreads across the landscape or remains 200

restricted to a local group of hosts. Random distributions of hosts and long dispersal 201

ranges result in smooth progressions of the pathogen across the landscape, following 202

a logistic-like curve. However, as the dispersal range decreases and host aggregation 203

increases, the simulated epidemics will tend to include interruptions between periods 204

of seemingly logistic growth within host clusters. Questions then arise regarding the 205

performance of our estimation model on such epidemics. 206

In this regard, the estimation model and its approximation are tested for varying host 207
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aggregations and dispersal ranges. Host aggregation is summarised by µ, the number of 208

hosts in a field (sensu host cluster). For a given landscape-scale population of hosts, 209

more hosts by fields means fewer but more populated fields (see the Supplementary 210

Material for an illustration). The dispersal scale θ is translated in terms of mean dispersal 211

distance δ (see Eq. 15), while µ is translated in terms of d, a landscape metric measuring 212

the mean minimal distance between the fields within a landscape (see Euclidean Nearest 213

Distance in Leitao et al., 2006). 214

Figure 3. Estimation of q95 and q̃95 from sampling series realised on spatially explicit epidemics, i.e. simulated with the dispersal kernel (Eq. 14).
These estimations are made for varying dispersal ranges θ and hosts aggregations µ, while maintaining constant values of the non-spatial parameters
(N = 100, ∆ = 30, σ = 30, K = 5, as well as β = 75 and b = 0.45 for the remaining kernel parameters). For better understanding, θ and µ are
shown with their distance translation in meters, δ and d. The identified logistic growth rate r is given for each experiment. The resulting distributions
of q95 and q̃95 are qualitatively similar for other realistic values of the fixed parameters.

In the same way as Figure 2, Figure 3 shows the performance of the model and its 215

approximation for gradients of dispersal scales θ (in columns) and host aggregations µ 216

(in rows). For each parameter set θ and µ (i.e. each panel in Figure 3), 50 epidemics are 217

first simulated for 50 different landscapes in order to identify the value of r producing 218

the best fitting logistic curve. This r then informs the incidence estimation model and its 219

approximation for the subsequent testing set of 2000 epidemics and landscapes. Most of 220

the figure is in agreement with expectations: the estimated q95 do align neatly above the 221

diagonal, showing in practice the accuracy of the estimation model. The approximation 222

appears to be a good simplification of the full model for early detection. However, the 223

estimation model also produces overestimations of the incidence, in bottom row and 224

left column (i.e. where the dots do not align above the diagonal), cases for which the 225

distance between host clusters (quantified by d) is too large for the pathogen dispersal 226

range (quantified by δ), restricting the usefulness of the model to cases where d/δ ≤ 0.5. 227
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We notice also that p(qT < q95) can be below the 95% expectation. As stochasticity 228

scatters the realised epidemic curves symmetrically around the fitted logistic one, such 229

effect is mechanical. Yet, this is of no practical concern as, when various epidemic growth 230

estimates are available for a disease, the highest is chosen for caution (and not the mean 231

as we did here). 232

Discussion 233

The model developed in this paper is suitable for many monitoring designs, including 234

those with irregular sampling sizes and time intervals between rounds. The model 235

weights the monitoring outcomes according to an estimation of the population incidence 236

at their respective sampling time, before aggregating them into a single binomial-shaped 237

probability density of the incidence whose quantiles have practical interests. The model 238

is directly applicable for situations in which surveillance is not built on the self-reporting 239

of symptomatic hosts, which makes it appropriate for most animal and plant species. 240

Deriving the probability density of the incidence from the sampling series is compu- 241

tationally inexpensive, but still requires the use of a computing language. Therefore, 242

we have produced an online app interfacing the full model as exhaustively as possible, 243

as well as an approximation of the model which can be derived with simple algebraic 244

operations. Our intention is to equip the widest audience of practitioners with this 245

incidence estimation capability. The approximation is as flexible as the original model, 246

and we have shown that its inaccuracies are restricted to high level of incidences that 247

are less relevant when dealing with emerging epidemics. However, in case such high 248

incidence estimation is needed, we have seen that the approximation is conservative, i.e. 249

biased towards an overestimation of disease progress. 250

The model relies on the simple and deterministic logistic equation. That it is 251

consistent with more complex systems is not obvious. The tests presented here against 252

spatial, stochastic and non-logistic based simulations of epidemics, are very promising. 253

They show that our non-spatial model is robust against the decisive impact of spatiality 254

and stochasticity. The model gives accurate estimates of the disease incidence for 255

most simulated epidemics. However, highly aggregated host distributions, as well as 256

short distance dispersing pathogens, support epidemics that diverge from the logistic 257

equation. In those contexts, the disease progression across the landscape is not steady 258

but punctuated by rare events: the pathogen jumps between distant host clusters. 259

Then, the very distinctive trajectories this epidemic can take do not simplify well into 260

a single logistic curve. In such cases, reduced pathogen dispersal and increased host 261

aggregation result in the habitat fragmentation of the pathogen. This allows us to 262

consider the pathogen dispersal between distant host clusters as a primary infection. 263

Theoretically, we consider that the epidemic is composed of multiple smaller epidemics 264

running simultaneously, that can be dealt with individually, or be given multiscale 265

considerations (as in Cameron & Baldock, 1998; Coulston et al., 2008). 266

Recent technological innovations are changing epidemiological surveillance for more 267

timely and exhaustive censuses. For example, the monitoring of human epidemics is 268

already augmented by the supervision of social networks (Chen et al., 2014) and internet 269

search queries (Yuan et al., 2013; Yang et al., 2015). Tree monitoring could also be 270

assisted by satellite high-resolution imagery (Li et al., 2014; Salgadoe et al., 2018). Those 271

forthcoming innovations will still need robust and epidemiologically informed estimation 272

methods and, even featuring continuous monitoring, there is no reason to see them 273

incompatible with an adaptation of our model. However, in any foreseeable future, most 274

contagions will still be monitored through discrete and censored inspections and hence, 275

remain within the immediate scope of the estimation model presented here. 276
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