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Abstract

Monitoring a population for a disease requires the hosts to be sampled and tested for the
pathogen. This results in sampling series from which to estimate the disease incidence,
i.e. the proportion of hosts infected. Existing estimation methods assume that disease
incidence is not changing between monitoring rounds, resulting in underestimation of the
disease incidence. In this paper we develop an incidence estimation model accounting for
epidemic growth with monitoring rounds sampling varying incidence. We also show how
to accommodate the asymptomatic period characteristic to most diseases. For practical
use, we produce an approximation of the model, which is subsequently shown accurate
for relevant epidemic and sampling parameters. Both the approximation and the full
model are applied to stochastic spatial simulations of epidemics. The results prove their
consistency for a very wide range of situations.
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Introduction

Monitoring programs are used to keep track of the invasion and spread of human, animal
and plant pathogens. They are often structured in discrete rounds of inspection, during
which subsamples of the host population are assessed for disease status (Parnell et al.,
2017). Given a sequence of monitoring rounds, a key question in interpreting these data
is the estimation of the incidence! of the disease in the host population. There are two
special cases of this general question that have received some attention.

Firstly, monitoring is often motivated by the need for early responses to enable
eradication or containment. For example, early detection of the disease permits reduced
cullings of animal and plant hosts (Carpenter et al., 2011; Cunniffe et al., 2015, 2016), as
well as reduced resorts to emergency quarantines or travel restrictions for human hosts
(applied e.g. for SARS, Smith, 2006).

Secondly, monitoring is frequently motivated by the desire of proving disease absence
from a host population (Caporale et al., 2012), which is of key importance for the
transport and trade of hosts. The main question then concerns the sufficient sample
size (Cannon, 2002). An example of this is the practical “rule of three” (Louis, 1981;
Hanley & Lippman-Hand, 1983). It gives the upper bound of the 95% confidence
interval (CI) of the incidence when all of the N sampled hosts are assessed as healthy:

1We use here the plant pathology definition where incidence is the fraction of host units infected. In
human and other animal pathology this is termed prevalence.
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gos = 3/(N + 1). Estimating a disease incidence (noted ¢ hereafter), or proving its 1o
absence, is mostly interesting during the early stages of epidemics, i.e. when incidences 2
are low and containment measures are still promising. 2

Simple practices like the “rule of three” make the assumption that the samples 2
are independent binomial draws of probability q. However, epidemics are structured 2
processes, and samples are very likely to carry dependencies to those structures. For
example, by pooling all the samples together, we neglect the fact that early monitoring 2
rounds have most likely sampled a lower incidence ¢ than the current one, resulting in 2
an underestimation of the incidence. An alternative and unbiased solution consists in 2
estimating ¢ only from the last round to date. But obviously, such a poor use of data s
would only be tolerable in cases where the monitoring interval and epidemic growth rate 2
are both very large, so that the previous monitoring rounds can be deemed uninformative 3
of the last one. The temporal dependence of samples has been addressed by Metz et al. =«
(1983) in the design of appropriate monitoring programs, as well as by Bourhis et al. =
(2018) for the incidence estimation problem in the specific case of disease absence, i.e. 3
when all samples return healthy. 34

Making use of all monitoring data, we propose here a generalised solution to the s
incidence estimation problem. Building on the simple logistic equation, we develop an 3
estimation model that accounts for the evolution of the disease during the monitoring
period. Following the idea of the rule of three, and in the way of Parnell et al. (2012) and 3
Alonso Chavez et al. (2016), we produce an approximation of this model. Its derivation 1
only requires simple algebraic operations which makes it more suitable for practitioners. 4o
The full model and its approximation are shown accurate when tested against stochastic
sampling of logistic epidemic simulations. Finally, they are taken one step further and «
conclusively tested against spatially explicit stochastic simulation models. a3

Material and Methods w“

Monitoring a population for a disease results in sampling series like Table 1. We define 4
K as the number of monitoring rounds iterated in time. Nj is the sampling size of
monitoring round k, i.e. the number of hosts whose pathological status is assessed at 4
time t. M} is the number infected hosts detected during round k. Finally, Ay is the s
time interval between monitoring rounds k£ and k + 1. 49

Table 1. Variables and structure of a sampling series.

Monitoring round 1 2 k K-1 K

Number of samples N1 No ... Ng .. Ng_1 Ng

Number of positives M; Ms ... M .. Mg 1 Mg

Time interval A1 Ao .. Ap ... Agrg_q —
One monitoring round 50
Considering ¢ the disease incidence in the population, the probability of any sampling =
size N and respective result M, is given by the binomial probability density function 52

N N—M, M
Pt = (3 ) - 0" Ve, )
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A more general form, accounting for the occurrences of false positives and negatives in
the detection process, would be

POt = 3p) (0= 00 = 0) + 0" = g, + 4l - 05, (@)

where 0y, and 6, are respectively the rates of false negatives and false positives. But
we will not expand this further here.

In a practical context, ¢ is the variable that we want to estimate from samples
characterised by their size N and their outcome M. To this end we use Bayes’ rule:

P(q)P(M]q)
P(q|M) = — ;
o Pla)P(M|q)dq
where P(q|M) is the probability density of ¢ given M and N. Assuming no information

on the incidence before sampling, we set a uniform prior P(q), simply resulting in
P(q|M) x P(M|q) (Gelman et al., 2003).

3)

K monitoring rounds

To account properly for the dynamic incidence between monitoring rounds, our proposi-
tion is to inform the binomial probability density with an epidemiological component,
noted Zy:

K
patlo) =TT (3 )1 -z (20, ¢
k=1 Nk
where M on the left-hand side represents the whole sampling series, i.e My, Ms,...,M.
In Eq. 4, the parameter Zj, € [0,1] modulates the value of ¢ for the samples to be
compared to the disease incidence that was actually found in the population when
they were made (i.e. at time ¢;). For the last monitoring round, Zy—x = 1, and then
decreases with k < K.
We assume that the disease incidence, g, evolves logistically (van der Plank, 1963;
Murray, 2002) in time ¢ as:
P = 0" 5)
M= gy =1y (
where qq is the incidence at time #y and 7 is the epidemic growth rate. To include this
logistic growth into the binomial probability density, we define 7, as:

rig Tk
qe e
Z = = V— 6
4§ 1+q(em1)/q 1+ g(erts — 1) (6)

where t;, = Zfik —A,; are the sampling dates, with the last date defined as tx = 0. Eq.
5 can be fed negative time values to derive incidence backward in time (so that ¢p in Eq.
5 is in fact the incidence at the end of monitoring, i.e. the one to estimate).

Similarly to the case of one monitoring round, we use Bayes’ rule to get the un-
normalised posterior distribution P(¢|M). Practically, it is given by Eq. 4, which is
computed for a discretised array of ¢ € [0,1], and from which quantiles can be derived
(a method called grid approximation, see e.g. Kruschke, 2014). This estimation model
has been deployed as an online app (see Supplementary Materials for details).

A useful approximation

As mentioned in the introduction, the upper bound of the confidence interval (CI) is a
useful measure of the highest, still likely, incidence we can expect in the population given
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the outcome of our monitoring program. Deriving an approximation from the estimation
model previously described proved itself intractable. However, various methods exist for
approximating the CT of a binomial probability density (Wallis, 2013), and they appeared
to fit the binomial-shaped probability density given by Eq. 4. After preliminary testing
of those methods, we choose the Agresti-Coull interval for its accuracy for low incidences
(Agresti & Coull, 1998). The Agresti-Coull interval is defined as

- 1 22
PW(M+2), (7)

o = min (1, b+ z\/max (0, ﬁ (1 —ﬁ))) . (8)

where ¢x is the upper limit of the X% CT and z is the corresponding 1 — a;/2 quantile
of the standard normal distribution. For the one-sided 95% CI that we used in the
examples hereafter, z = 1.645.

As previously, the estimation of ¢x needs to account for the epidemic growth. Because
of the density dependence of the logistic equation, we cannot ground this new Z, on the
logistic model, as it would need ¢ to estimate q. Therefore, we assume an exponential
growth of the disease in the population. In practice, this assumption is realistic as,
during early infection, the epidemic growth is exponential, even according to the logistic
model (van der Plank, 1963). Then, Z; quantifies the disease evolution between rounds

as ) .
Zy, = exp (rz Ai> . (9)

i=k

and then

Finally, we aggregate the samples together with respect to the epidemic growth via Zj:

K K
M:Zthd N:ZM%, (10)
k=1 k=1

These aggregated values of M and N are then substituted in Egs. 7 and 8 to derive
gx. By scaling the size of the historic samples with the disease incidence they actually
sampled, we adjust their contribution to the total sampling effort. The min and max
operators in Eq. 8 are added to deal with the possibility of having N < M for some
values of Zj,.

As discussed in the introduction early detection of epidemics and the establishment
of disease absence have received some attention in the epidemiological literature. Two
specific approximations have been produced for the estimation of the disease incidence
(1) when the first infected hosts are detected (first discovery event, Parnell et al., 2012),
and (2) while no infected hosts have yet been detected (sampling for disease absence,
Bourhis et al., 2018). See Supplementary Materials for details. The general estimation
model we provide in this study encompasses those specific contexts but extends to any
sampling series, being irregularly structured or not, and whatever their outcoming M.

Asymptomatic period

In most diseases, infected hosts produce symptoms after an asymptomatic period. Often,
asymptomatic hosts contribute to the epidemic dynamics by spreading the disease while
still undetectable (cryptic) when sampled. The logistic equation handles this period,
noted o, as

qer(tk +o)

T 1 g(ertnto) — 1)’

qr(t)

(11)
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where g7 is the total incidence of the disease, while g becomes the detectable incidence
(in our problem, ¢ is the sampled incidence and ¢r the estimated one). Hence, Eq. 6
becomes

er(tk—a)
C L gp(ertemo) — 1)’

Therefore, Z) now expresses the ratio ¢(tx)/qr(tx), instead of q(tr)/q:(tx), and is then
no longer equal to 1 for the last round (if o > 0). For the exponential approximation,

the Eq. 9 simply becomes
. K
Z = exp <—7" (a + Z Al>> . (13)
i=k

The consistency of the full model and the accuracy of its approximation are first tested
against simulations of stochastic sampling on non-spatial logistic epidemics. We consider
a uniform distribution of incidences ¢ that we want to estimate individually. For each
one of them, a monitoring program is designed with N and Ay drawn from Poisson
distributions of mean N and A. From the logistic equation (Eq. 5), the detectable
incidence ¢ is derived for every sampling dates t;. Then binomial draws with probability
p = q(tx) and size n = Ni simulate the sampling process of the hosts, resulting in M.
For every gr an exact upper bound of its CI, ¢x, is derived with the full model, while an
approximated one, §x, is derived with the approximation. A relevant test then consists
in checking that the upper limits of the X% CI are above ¢r in X% of cases. This test
is done for contrasted values of the sampling (N and A) and epidemic parameters (r
and o).

The full model and its approximation are also tested against a spatial stochastic
simulation model. In this case, the epidemics are no longer modelled with the logistic
equation but through a transmission rate and a dispersal kernel of the pathogens. To
this end, the hosts are distributed in a 2D-space and aggregated randomly in field-
like structures mimicking the distribution of the trees in an orchard. Details on this
landscape model are given as Supplementary Material. The epidemic progress follows an
exponential power kernel (Rieux et al., 2014). The probability of a susceptible individual
to become infected in a unit of time is then given by

p(s € S) = 5271_9;);}2/1)) Zemp(—\mi —x,|/6). (14)
iel

7 (12)

Testing the model

Where s is a susceptible host among the set of all susceptible hosts S. Similarly, i
and I represent the infected hosts. A is the area occupied by one host and I' is the
Gamma function. S is the probability of infection, € is the dispersal scale and b is a
shape parameter (producing fat-tailed kernels for b < 1). The coordinates  mark the
location of the hosts. Following Klein et al. (2006), the mean dispersal distance for this
2D kernel is given by:

d=0T(3/b) / T'(2/b). (15)

The spatial dynamics are simulated with the 7-leap Gillespie algorithm (Keeling &
Rohani, 2008). Three sampling methods of increasing realism are tested: random (i.e.
host locations have no impact on sampling), stratified (i.e. sampling equally distributed
among fields) and systematic (i.e. sampling occurs every n hosts along ranks). As
no effect of the sampling method is observed, results are shown for the random one.
Apart from this, the model and its approximation are evaluated in the same way as the
non-spatial case.
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Results -

Model behaviours 163

Figure 1 illustrates the effects of the epidemic and sampling parameters on the resulting 14
probability densities of the incidence and upper quantiles gg5. Increasing M, the number 165
of positive/infected hosts in the sample, unsurprisingly increases the estimated incidence. 166
Increasing the sample size N reduces the uncertainty in the estimates. Increasing the 167
sampling interval A decreases their impact on the estimation. This reflects the fact 168
that samples taken further back in time are less informative of current disease incidence. 10
Regarding the epidemic parameters, the growth rate r» and the asymptomatic period ¢ 1o
(not shown on Figure 1 for dimensional reasons) have very similar effects to A. They both
increase the estimated incidence by decreasing the impact of the historic samples, i.e. 1
the ones which sample lower incidences ¢. By doing that, A, r» and o reduce the effective 173
sample size (i.e. 22{:1 Ny Zy), which also contributes in increasing the uncertainty on 17

the estimates (i.e. producing densities with larger variance). 175
r=0.02 r=0.1
0.04
0.03
=
0.02 n
o
A
0.01 —10
2 /\"~ : ':'"“‘J -- 30
T 0.00] —¥el A N A
32 M
g 0.04 K
o 0
0.03 = N2
N
=
1l
0.02

00T

050 0.75 1.000.00 025 050 0.75 1.00
Incidence, q

Figure 1. Probability densities of the incidence ¢ given by Eqs. 4 and 3. The vertical lines mark the
upper limit of the 95% Cl. The densities result from a sampling series composed of K=3 monitoring rounds,
of which the first two are fully negative (i.e. M1 = M2 = 0) and the last varies from M3 = 0 (i.e. all
sampled hosts are negative) to M3 = N (i.e. all sampled hosts are positive). These probability densities are
represented for varying values of epidemic growth rate r, sampling size N and sampling interval A.

Test against logistic epidemics 176

Figure 2 shows the distribution of the exact and approximated upper bounds of the 17
95% CI, q95 and §o5, for uniform distributions of gr and different values of the epidemic 17
and sampling parameters. The full model, which like the simulations builds on the 1
logistic equation, behave exactly as expected: it ensures that 95% of the gg5 are 10
above their respective qr, for every set of parameters tested. On the other hand, the 1=
approximation displays another behaviour easily explained by its underlying exponential 1
growth model. For the low incidences which are relevant to practice (i.e. say ¢p < 0.25), 183
the approximation is accurate (the distributions of gg5 and Go5 do overlap). For higher  1s
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Upper limit of the 95% CI, gg5 and qgs

incidences, i.e. when the logistic growth decelerates unlike the exponential growth, the
approximation tends to overestimate the incidence (increasingly with r, o and A).
Another model behaviour is of particular interest: when r and o are large (¢f. the
rightmost column), we observe that the estimated gg5 and go5 do not align well with the
diagonal for small incidences q7. For those cases of very hazardous pathogens with high
epidemic growth rates and long asymptomatic periods, the sampling size N is too small
to allow discrimination between the non-detection cases (i.e. the one for which all the
My, = 0), and that larger sampling effort is needed for the estimation to be useful.
Although increasing r and o accelerates the divergence between the logistic and
the exponential curves, the approximation appears accurate for early infections even

considering very high values of epidemic parameters such as r = 0.1 day * or o =
100 days.
Epidemic parameters =0 =30
r=0.01 r=0.1 r=0.01 r=0.1
1.00 1 » 328 < ? &
0.75 * & ‘ > _a
0.50 3 - iz
~ ~ ~ - o
0.25+ P(QT<Q95;:0-992 P(QT<%5%:O-992 P(ar<Gos)=0.995 P(qr<Gos) =1 B
0.004 P(q7<qggs)=0.955 P(q7<Qges)=0.953 P(q7<qggs)=0.957 P(g7<qes)=0.954 g
A @ . .
1.001 » o o} Estimation
1]
0.75 ‘ - method
N 0l
0.50 - .~ o f' ©  Approx.
0.254 i P(QT<§95):0-997 P(q7 < Gos) =0.968 p(qr < gos) =0.991 P(qT < Ges) =0.996 = Full mod
000 P(q7<qggs)=0.955 p(qr<qos)=0.949 p(q7<qes)=0.95 P(q7<Qges)=0.941 8 ull mod.
1.00 A
0.75 S, > > q7<Ges. Jos
0.501 T l * TRUE
I I I - he o
0.25+ p(qr<Gos) =0.995 p(qr < Gos) =0.997 P(q7 < Gos)=0.995 p(q7 < Gos) =0.996
000 p(q7 < qgs) =0.955 p(qr<qes)=0.948 p(qr<gos)=0.943 p(gr<ges) =0.947 f' + FALSE
1.00 A p —12
o
0.751 o
E 0l
0.50 o
0.25+ P%QT<595)=0-993 p(,QT<§95)=O-975 " p(gr<Gos)=0.998 'f.P(QT<695):O-997
0.004 P(q7<qes)=0.944 pP(q7<qes)=0.957 P(q7<qe5)=0.95 P(g7<qes)=0.955
0.00 025 050 075 1.000.00 025 050 0.75 1.00000 025 050 0.75 1.000.00 025 050 0.75 1.00

Real incidence of the disease, gt

Figure 2. Estimation of gg5 and ggs from sampling series of non-spatial epidemics, i.e. simulated with the logistic equation (Eq. 5). These
estimations are made for contrasted values of sampling and epidemic parameters (and for K = 5 monitoring rounds). Using here the 95% Cl, we
expect 95% of the estimated gg5 and Ggs to be above the actual incidence in the field at the end of monitoring g7, i.e. above the oblique black line.
The inserted texts summarise these scores for the full model (in red) and its approximation (in blue).

Test against spatial epidemics

When locating the hosts in space, the epidemic becomes driven by two new elements:
the dispersal range of the pathogen and the intensity of host clustering (Brown & Bolker,
2004). Both determine how easily the pathogen spreads across the landscape or remains
restricted to a local group of hosts. Random distributions of hosts and long dispersal
ranges result in smooth progressions of the pathogen across the landscape, following
a logistic-like curve. However, as the dispersal range decreases and host aggregation
increases, the simulated epidemics will tend to include interruptions between periods
of seemingly logistic growth within host clusters. Questions then arise regarding the
performance of our estimation model on such epidemics.

In this regard, the estimation model and its approximation are tested for varying host
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aggregations and dispersal ranges. Host aggregation is summarised by pu, the number of
hosts in a field (sensu host cluster). For a given landscape-scale population of hosts,
more hosts by fields means fewer but more populated fields (see the Supplementary
Material for an illustration). The dispersal scale  is translated in terms of mean dispersal
distance § (see Eq. 15), while  is translated in terms of d, a landscape metric measuring
the mean minimal distance between the fields within a landscape (see Euclidean Nearest
Distance in Leitao et al., 2006).

0=15, &=542m 0=35 &=1264m 0=75 &=2709m 0=150, ©&=5417m
1007 r=0.013 r=0.015 r=0.013 r=0.01 p .
0.754 d/5=0.2 d/5=0.1 d/s5=0.047 d/s5=0.023 1N
0.50 3 ‘”L'
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0.00 1
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= r=002_ A r =0.021 r=0.016 r=0.011 -
o T/ — T8 — T8 — 3 T8 — 1
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Real incidence of the disease, g1

Figure 3. Estimation of qg5 and o5 from sampling series realised on spatially explicit epidemics, i.e. simulated with the dispersal kernel (Eq. 14).
These estimations are made for varying dispersal ranges 6 and hosts aggregations i, while maintaining constant values of the non-spatial parameters
(N =100, A =30, 0 =30, K =5, as well as 3 =75 and b = 0.45 for the remaining kernel parameters). For better understanding, 6 and p are
shown with their distance translation in meters, § and d. The identified logistic growth rate 7 is given for each experiment. The resulting distributions
of gqg95 and Gg5 are qualitatively similar for other realistic values of the fixed parameters.

In the same way as Figure 2, Figure 3 shows the performance of the model and its
approximation for gradients of dispersal scales 6 (in columns) and host aggregations p
(in rows). For each parameter set 6 and p (i.e. each panel in Figure 3), 50 epidemics are
first simulated for 50 different landscapes in order to identify the value of r producing
the best fitting logistic curve. This r then informs the incidence estimation model and its
approximation for the subsequent testing set of 2000 epidemics and landscapes. Most of
the figure is in agreement with expectations: the estimated ggs do align neatly above the
diagonal, showing in practice the accuracy of the estimation model. The approximation
appears to be a good simplification of the full model for early detection. However, the
estimation model also produces overestimations of the incidence, in bottom row and
left column (i.e. where the dots do not align above the diagonal), cases for which the
distance between host clusters (quantified by d) is too large for the pathogen dispersal

range (quantified by 6), restricting the usefulness of the model to cases where d/§ < 0.5.
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We notice also that p(gr < gg5) can be below the 95% expectation. As stochasticity
scatters the realised epidemic curves symmetrically around the fitted logistic one, such
effect is mechanical. Yet, this is of no practical concern as, when various epidemic growth
estimates are available for a disease, the highest is chosen for caution (and not the mean
as we did here).

Discussion

The model developed in this paper is suitable for many monitoring designs, including
those with irregular sampling sizes and time intervals between rounds. The model
weights the monitoring outcomes according to an estimation of the population incidence
at their respective sampling time, before aggregating them into a single binomial-shaped
probability density of the incidence whose quantiles have practical interests. The model
is directly applicable for situations in which surveillance is not built on the self-reporting
of symptomatic hosts, which makes it appropriate for most animal and plant species.

Deriving the probability density of the incidence from the sampling series is compu-
tationally inexpensive, but still requires the use of a computing language. Therefore,
we have produced an online app interfacing the full model as exhaustively as possible,
as well as an approximation of the model which can be derived with simple algebraic
operations. Our intention is to equip the widest audience of practitioners with this
incidence estimation capability. The approximation is as flexible as the original model,
and we have shown that its inaccuracies are restricted to high level of incidences that
are less relevant when dealing with emerging epidemics. However, in case such high
incidence estimation is needed, we have seen that the approximation is conservative, i.e.
biased towards an overestimation of disease progress.

The model relies on the simple and deterministic logistic equation. That it is
consistent with more complex systems is not obvious. The tests presented here against
spatial, stochastic and non-logistic based simulations of epidemics, are very promising.
They show that our non-spatial model is robust against the decisive impact of spatiality
and stochasticity. The model gives accurate estimates of the disease incidence for
most simulated epidemics. However, highly aggregated host distributions, as well as
short distance dispersing pathogens, support epidemics that diverge from the logistic
equation. In those contexts, the disease progression across the landscape is not steady
but punctuated by rare events: the pathogen jumps between distant host clusters.
Then, the very distinctive trajectories this epidemic can take do not simplify well into
a single logistic curve. In such cases, reduced pathogen dispersal and increased host
aggregation result in the habitat fragmentation of the pathogen. This allows us to
consider the pathogen dispersal between distant host clusters as a primary infection.
Theoretically, we consider that the epidemic is composed of multiple smaller epidemics
running simultaneously, that can be dealt with individually, or be given multiscale
considerations (as in Cameron & Baldock, 1998; Coulston et al., 2008).

Recent technological innovations are changing epidemiological surveillance for more
timely and exhaustive censuses. For example, the monitoring of human epidemics is
already augmented by the supervision of social networks (Chen et al., 2014) and internet
search queries (Yuan et al., 2013; Yang et al., 2015). Tree monitoring could also be
assisted by satellite high-resolution imagery (Li et al., 2014; Salgadoe et al., 2018). Those
forthcoming innovations will still need robust and epidemiologically informed estimation
methods and, even featuring continuous monitoring, there is no reason to see them
incompatible with an adaptation of our model. However, in any foreseeable future, most
contagions will still be monitored through discrete and censored inspections and hence,
remain within the immediate scope of the estimation model presented here.
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