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Abstract

Targeted identification and purging of deleterious genetic variants has been proposed as a
novel approach to animal and plant breeding. This strategy is motivated, in part, by the
observation that demographic events and strong selection associated with cultivated species pose
a “cost of domestication.” This includes an increase in the proportion of genetic variants where a
mutation is likely to reduce fitness. Recent advances in DNA resequencing and sequence
constraint-based approaches to predict the functional impact of a mutation permit the
identification of putatively deleterious SNPs (ASNPs) on a genome-wide scale. Using exome
capture resequencing of 21 barley 6-row spring breeding lines, we identify 3,855 dSNPs among
497,754 total SNPs. In order to polarize SNPs as ancestral versus derived, we generated whole
genome resequencing data of Hordeum murinum ssp. glaucum as a phylogenetic outgroup. The
dSNPs occur at higher density in portions of the genome with a higher recombination rate than in
pericentromeric regions with lower recombination rate and gene density. Using 5,215 progeny
from a genomic prediction experiment, we examine the fate of dSNPs over three breeding cycles.

Average derived allele frequency is lower for dSNPs than any other class of variants. Adjusting
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for initial frequency, derived alleles at dSNPs reduce in frequency or are lost more often than
other classes of SNPs. The highest yielding lines in the experiment, as chosen by standard
genomic prediction approaches, carry fewer homozygous dSNPs than randomly sampled lines
from the same progeny cycle. In the final cycle of the experiment, progeny selected by genomic
prediction have a mean of 5.6% fewer homozygous dSNPs relative to randomly chosen progeny

from the same cycle.

Author Summary

The nature of genetic variants underlying complex trait variation has been the source of debate in
evolutionary biology. Here, we provide evidence that agronomically important phenotypes are
influenced by rare, putatively deleterious variants. We use exome capture resequencing and a
hypothesis-based test for codon conservation to predict deleterious SNPs (dASNPS) in the parents
of a multi-parent barley breeding population. We also generated whole-genome resequencing
data of Hordeum murinum, a phylogenetic outgroup to barley, to polarize dSNPs by ancestral
versus derived state. dSNPs occur disproportionately in the gene-rich chromosome arms, rather
than in the recombination-poor pericentromeric regions. They also decrease in frequency more
often than other variants at the same initial frequency during recurrent selection for grain yield
and disease resistance. Finally, we identify a region on chromosome 4H that strongly associated
with agronomic phenotypes in which dSNPs appear to be hitchhiking with favorable variants.
Our results show that targeted identification and removal of dSNPs from breeding programs is a
viable strategy for crop improvement, and that standard genomic prediction approaches may

already contain some information about unobserved segregating dSNPs.
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Introduction

Gains from selection in plant and animal breeding could be improved through a better
understanding of the genetic architecture of complex traits. One current source of debate is the
relative frequency of genetic variants that contribute to complex traits. At mutation-drift
equilibrium, the majority of genetic variants segregating in a population are expected to be rare
[1,2]. If a genetic variant affects a phenotype, it is more likely to be subject to selection, with the
strength of selection proportional to the magnitude of phenotypic impact [3]. Since most new
mutations with a phenotypic impact are expected to be deleterious [4—6], variants contributing to
complex trait variation will likely be under purifying selection [7,8]. Thus, a substantial portion
of genetic variants that affect phenotypes may occur as “rare alleles of large effect” (RALE) [3].
Consistent with the RALE hypothesis, association mapping studies find evidence that rare alleles
have larger estimated phenotypic effects than common alleles [9]. Because of their frequency,
rare alleles are more difficult to associate with a phenotype. Alleles with relatively large effects
on phenotype are more readily detected [10,11] but are unlikely to be representative of the

majority of genetic variants that contribute to phenotypic variation [10,12].

Segregating variants that affect fitness are more likely to be deleterious than beneficial [13]
and are thus more likely to be under purifying selection. Consistent with this postulate, low
frequency genetic variants in human populations are enriched for amino acid replacements [e.g.,
14], which likely have direct effects on protein function. The effect of individual dSNPs on
fitness is expected to be small, but in aggregate their impact may be substantial [cf. 13].
Domesticated plants and animal populations have often experienced reductions in effective

population size and strong selection associated with domestication and improvement that could
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result in exacerbated effects of deleterious variants as a genetic “cost of domestication” [15].
Empirical evidence from a variety of organisms appears to support this conjecture, with
comparisons in cassava [16], dogs [17], grapes [18], and rice [19] showing evidence of an
increased proportion of both fixed and segregating dSNPs relative to wild progenitors [see also

20,21].

Putative dSNPs can be readily identified based on phylogenetic conservation, particularly
for coding polymorphisms [22,23]. SNPs that are phenotype-changing in Arabidopsis thaliana
are more likely to annotate as deleterious than “tolerated” (less conserved) amino acid changing
SNPs at similar frequencies [24]. Indeed, a number of putatively causative amino acid changing
SNPs that contribute to agronomic phenotypes annotate as deleterious [25]. However, individual
inbred lines for many cultivated species carry hundreds to thousands of dSNPs [25,26]. The vast
majority of dSNPs occur at low frequency [19,25] and thus are unlikely to serve as the primary
causative variants for essential agronomic traits. Because of their relative ease of identification,
elimination of dSNPs either through selection against them in aggregate [20,27-29] or through
targeted replacement of individual dSNPs [27,28,30] provides a potential means of crop

improvement.

The phenotypic consequences of dSNPs is determined by their relative degree of dominance,
the proportion of variants that occur in the homozygous state, and the fitness effects of individual
dSNPs [17,20,31-34]. Additionally, the genomic locations of dSNPs is an important factor in
how effective purifying selection can be in culling them from populations. This is due to
recombination rate variation placing limits on the efficacy of purifying selection [35,36]. A
larger proportion of variants may be deleterious in low recombination regions of a genome [13]

as has been observed in sunflower [26], rice [19], and soybean [25]. There is evidence from
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studies of humans that variants in low recombination regions may have larger fitness

consequences or explain more of the variation for quantitative traits [37,38].

Modern breeding programs use genome-wide prediction approaches which are designed to
integrate large numbers of markers in the estimation of phenotypic values for quantitative traits
[39]. This typically involves the use of a training panel of individuals with both genotypic and
phenotypic information. Prediction and selection can be performed in a panel of related
individuals with only genotypic data. There is evidence that the probable effect of genetic
variants on quantitative phenotypic variation can vary by functional class and that prediction

accuracy can be improved through differential weighting of variants [34,40].

The purpose of this study is to assess the fate of dSNPs in a breeding population subject to
genomic prediction and selection. The experimental barley breeding population was developed at
the University of Minnesota [41]. Genomic prediction was used to select lines with
improvements in yield and resistance to the fungal disease Fusarium head blight (FHB), two
unfavorably correlated quantitative traits. Phenotypic data was collected for yield,
deoxynivalenol (DON) concentration (a measure of severity of fungal infection), and for plant
height, which was not under selection. The population showed gains in both yield and FHB
resistance over three cycles of crossing and selection, with an index of yield and reduced DON
concentration showing consistent gain over cycles [41]. The pedigreed design brings the rarest
variants to ~3% frequency, thus improving the potential to assess the contributions of putative
dSNPs to agronomic phenotypes. The major questions we seek to address are: (1) How common
are putative dSNPs in elite barley breeding material? (2) Are putative dSNPs uniformly
distributed across the genome or concentrated in genomic regions with lower rates of

recombination?; and (3) What is their fate through rounds of selection and breeding gain in an
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117  experimental breeding population? We also make use of a linear mixed model to estimate the
118  proportion of phenotypic variance that can be explained based on SNPs genotyped in our panel
119  or imputed from parents onto progeny. We find a genomic region associated with agronomic

120  traits in which dSNPs may be hitchhiking due to strong selection in this population.

121  Results

122 Summary of Resequencing Data

123 We make use of exome capture resequencing to identify nucleotide sequence variants in 21
124  barley breeding lines from three barley breeding programs (S1 Table). The 5,215 progeny in the
125  experiment were genotyped using a 384 SNP Illumina assay [41]. Based on observed genotypes
126  in progeny in the known pedigree, we track the fate of genotyped and imputed SNPs through
127  three breeding cycles (S1 Fig). All lines are part of a genomic prediction experiment [41] where
128  sets of progeny were selected based on genomic prediction for yield and fungal disease

129  resistance. A second pool of progeny was drawn at random in each cycle and subject to the same

130  field testing for yield and disease resistance as selected progeny.

131 The 21 parents (Cycle 0) in the experiment were subjected to exome capture

132 resequencing, resulting in the identification of 497,754 SNPs. Of these, 407,285 map to portions
133 of the reference genome that could be assigned to barley chromosomes and are subject to further
134 analysis (Table 1). The intersections of three deleterious annotation approaches identified 3,855
135  dSNPs at 62,826 nonsynonymous sites, including 1,877 early stop codons in the founding

136  parents. More of the the dSNPs are private to North Dakota lines than to the other programs

137  (Table 2), which has more private SNPs across classes. The numbers of dSNPs is remarkably
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138  similar among lines with a mean of 677.67 (£ 16.51), though the number of dSNPs private to a
139  line varies more dramatically (from 11 to 172) (S2 Table). The unfolded site frequency spectrum
140  (SFS) for 283,021 SNPs with inferred ancestral state indicates that dSNPs in the founders occur
141  primary in the rarest frequency classes (Figure 1), a trend that is also evident among all variants

142 in the folded SFS (S2 Fig).

143 SNP density was highest along chromosome arms and lower in pericentromeric regions (S3
144  Fig), consistent with the reports of the distribution of gene density [42,43]. Using

145  pericentromeric regions as defined based on barley recombination rate and gene density reported
146 by [42], we identify 71,939,192 bp (81.3%) of capture targets in euchromatic regions and

147 16,511,574 bp (18.7%) in pericentomeres (A BED file of positions covered by exome capture is

148  available at http://conservancy.umn.edu/XXXX). Codon density was similar within exome

149  capture from the two regions. Euchromatic regions include 6,945,584 bp (81.3%) of codons

150  within capture targets and 1,592,281 bp (18.7%) in pericentromeric regions. The euchromatic
151  regions include 401,148 (86.6%) of SNPs versus 62,060 (13.4%) of SNPs in pericentromeres.
152 This resulted in 3,331 (87.7%) dSNPs in euchromatin and 466 (12.3%) dSNPs in pericentromeric
153 regions. Thus the proportion of dSNPs per codon is lower in the pericentromere than in higher

154  recombination regions (Figure 2).

155 To infer the ancestral state of variants in cultivated barley, we performed whole genome

156  resequencing of H. murinum ssp. glaucum, yielding 371,255,479 reads. A divergence rate setting
157  of 3% in Stampy [44] resulted in the largest percentages of reads mapping to the reference

158  genome. Genome-wide coverage was estimated as 37 X. This permitted estimation of ancestral
159  state for 283,021 or 69.5% of barley SNPs. Results of ancestral state inference by functional

160  class of variants is show in S3 Table.
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161  Genotyping Data

162 The final dataset used for analysis consisted of 5,215 individuals. Of the 384 SNPs on the
163 custom Illumina Veracode assay [41], four were eliminated because of errors in Mendelian

164  inheritance between parents and progeny. Three SNPs with >20% missing genotypes were also
165  excluded, resulting in 377 SNPs segregating among progeny (S3 Fig). For 16 SNPs, either

166  genetic or physical positions needed to be interpolated from flanking SNPs (see Supplemental
167  Text). The parental lines and progeny produced an average of 366.5 (+ 40.1) genotyped SNPs.
168  Pairwise diversity averaged 0.32 across cycles, with observed heterozygosity between 8 and 15%

169  in CI through C3 (S4 Table).

170 Using the 377 genotyped Veracode SNPs, we imputed genotypes for all variants in the
171  pedigreed populations using the program AlphaPeel [45]. Imputed genotypes are reported in

172 AlphaPeel output as the expected dosage of the non-reference allele at each site. Recombination
173  probabilities are modeled from interpolated genetic distances between observed markers with
174  known genetic distances [45]. Both the unfolded (S4 Fig) and folded SFS (with all variants) (S5
175  Fig), demonstrate that dSNPs remain at low frequency across generations in the population.

176  Average pairwise diversity for SNPs resequenced in the founder lines and imputed onto progeny
177  was ~0.19 for synonymous SNPs and ~0.12 for dSNPS, with noncoding and nonsynonymous

178  having intermediate levels of diversity (S5 Table).

179  Putatively Deleterious SNPs and Phenotypic Variation

180 A total of 676 of the 5,215 individuals have phenotypic data for grain yield, DON

181  concentration, and plant height. Yield increased and average DON concentration decreased over
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182  three cycles of selection (Figure 3). An index of yield and DON concentration showed steady
183  improvement in each cycle [41]. Plant height, which was not subject to selection in this

184  population, increased over the course of the experiment (Figure 3). The number of putative

185  dSNPs that were homozygous for the derived allele within an individual is significantly

186  correlated with all three measured phenotypes (Figure 4). Yield is negatively correlated with the
187  number of homozygous derived SNPs across all classes. The correlation is greatest for

188  noncoding (the largest class of) SNPs. Based on a product moment correlation, the correlation is
189  significant at p < 0.05 for noncoding and nonsynoymous, and at p < 0.001 for dSNPs (Table 3).
190  For DON concentration and plant height, where larger values are the less desirable trait, the

191  correlations with the number of homozygous derived SNPs are positive. These correlations are

192  significant with the notable exception of DON and dSNPs (Table 3).

193 The proportion of phenotypic variance explained by all genotypes jointly, also referred to as
194  “SNP heritability” was estimated using a linear mixed model implemented in GEMMA [46]. The
195  removal of SNPs with a minimum minor allele frequency (MAF) of < 1% resulted in the

196  inclusion of 357 of the 377 SNPs genotyped in all progeny. Heritability estimates for this SNP

197  set were 0.198 for yield, 0.357 for DON concentration, and 0.237 for height.

198 Among the SNPs directly genotyped in the progeny, three (11_10196, 11 20422, and

199 11 20777) were identified as contributing to yield with a p < 0.01. The first SNP had a favorable
200  effect on yield while the latter two SNPs were associated with reduced yield and with the

201  favorable trait of reduced DON concentration. All three SNPs are at relative high minor allele
202  frequencies (~ 0.3 - 0.4) and increase in frequency from CO to C3. All three occur in

203  chromosomal regions on 2H and 4H previously identified as under selection in Minnesota barley

204  breeding lines subject to introgression for increased Fusarium head blight resistance [47]. A
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205  region on chromosome 4H (18.7 - 35.8 Mb) contributes six of eight associations with p <0.01
206  for DON concentration and overlaps with a region of the genome that [47] demonstrated had

207  been subject to strong selection for Fusarium resistance. The region covers ~ 2.6% of the 647 Mb
208  of chromosome 4H and includes 110 annotated genes. Fifteen dSNPs were identified in this

209 interval. For eight dSNPs with unambiguous ancestral state, frequencies were maintained or

210  increased over breeding cycles, resulting in a mean DAF of 0.60 in C3. The dSNPs were

211  included in a major haplotype contributed by one of three founders, FEG153-58, FEG154-47, or

212 FEG175-57, all from the Minnesota breeding program.

213 For linear mixed model analysis using SNPs identified in exome capture, the =2 1% frequency

214  threshold resulted in retention of 419,956 SNPs (86% of all SNPs). Heritability estimates were
215 0.250 for yield, 0.514 for DON concentration, and 0.358 for plant height. These values are

216  consistent with previous estimates: a study of a two-row barley double haploid population grown
217  across 25 locations reported average yield heritability of 0.35 and plant height of 0.33 [48].

218  Heritability for DON accumulation has been estimated as 0.46 in a separate study of crosses

219  between two-row and six-row barley [49].

220 Change in SNP Frequency over Cycles

221 Using the parental assignment of genomic segments in the progeny, it is possible to track
222 changes in frequency for segregating variation across various functional classes of SNPs. While
223 all classes of SNPs became more homozygous over generations, dSNPs are lost from the

224 population more frequently than synonymous SNPs (Table 4). Out of 37,766 synonymous SNPs

225  with unambiguous ancestral state (required for dSNPs to infer which variant is likely deleterious)
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226  1identified in the parents, 30,481 (80.7%) were still segregating in Cycle 3. Of the 1,913 dSNPs
227  identified with unambiguous ancestral state, 1,278 (66.8%) were segregating in Cycle 3.

228  However, this measure does not account for lower average derived allele frequencies for dSNPs.
229  If measured as relative fold change in derived allele frequency, dSNPs are more frequently

230  decreasing in frequency (Figure 5). The median change in DAF is -0.25 for dSNPs and closer to
231  zero for all other classes (Table 5). Slightly more than half of variants showed decreased DAF
232 over breeding cycles, but this trend is observed at 0.627 of dSNPs. When using the pedigree to
233 establish expectations for the allele frequencies in each cycle, we still observe a preferential loss
234 of dSNPs as segregating variation (S4 Fig; Table 4). When considering the variants with an

235 inferred ancestral state, dSSNPs have a larger proportion of variants that fix for the ancestral state
236 than other classes of variants (S6 Fig). Fold change across the genome for individual classes of
237  variants can be seen in S7 Fig). Of the 1,913 dSNPs with inferred ancestral state, 621 (32.5%)
238  are fixed for the ancestral allele, while 14.6%, 2.8%, and 2.7% of noncoding, synonymous, and

239  nonsynonymous SNPs were fixed for the ancestral allele, respectively.

240 The number of homozygous derived dSNPs is reduced in each cycle, but is reduced more
241  dramatically for the lines selected for yield and reduced DON concentration than for random
242 chosen lines from the same cycle (Figure 6). In other classes of variants, selected lines tend to
243 have slightly more homozygous derived variants than random chosen lines; across classes of

244 SNPs, derived homozygous variants become less frequent over cycles.

245 With regard to homozygous derived dSNPs, the difference in selected and random lines
246  differed by cycle. For Cycle 1, selected lines had a mean of 224.25 (+ 22.72) homozygous
247  dSNPs relative to 229.05 (£ 22.82) in randomly chosen lines, a difference that was not

248  significant in a one-sided t-test, p = 0.060. The dSNP mean homozygosity was a slight decrease
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from 225.50 ( 28.87) homozygous dSNPs in founders in Cycle 0. Selection in Cycle 2 saw
dramatic reduction in DON concentration but little change in yield (Figure 3), [see also41]. In
that generation, selected lines averaged more dSNPs than randomly chosen lines, 225.73 (+
19.87) versus 216.34 (= 2139). Cycle 3 progeny showed yield improvement, with minimal
change in DON. The difference in selected and random chosen lines for mean dSNPs was large,
with 205.86 (£ 16.43) versus 218.02 (£ 15.52), with p = 0.00017 in a one-sided t-test. The
number of homozygous dSNPs over generations changes more dramatically than the dosage of

dSNPs in individual lines (S8 Fig), consistent with effects of dSNPs being primarily recessive.

Discussion

We examined the fate of multiple classes of variants in a population subjected to genomic
prediction and selection for two unfavorably correlated quantitative traits over three cycles.
Selection was based on genomic prediction from a genome-wide set of 384 SNPs genotyped in
all progeny. This selection did not make use of any information on functional annotation of
variants. We identify 3,855 putative dSNPs segregating in protein coding regions; most of these
SNPs are at low frequency in the founding parents (Figure 1; S2 Fig) and on average, decrease
slightly in frequency over the course of the experiment (S4 Fig, S5 Fig). The highest yielding

progeny in the population carry fewer dSNPs than progeny drawn at random (Figure 6).

Over three cycles of intercrossing and selection, the proportion of dSNPs occurring in the
highest derived frequency class (S4 Fig) or reaching fixation (Table 4) is notably lower than
other classes of SNPs. Taken together, these lines of evidence suggest that dSNPs that contribute
to a diminution of yield are selected against despite the limitations of population size and the

countervailing effects of selection on predicted yield and FHB resistance.
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271 Though progeny were selected for both predicted yield and FHB resistance, lines selected
272  based on genomic breeding value typically have a lower total dosage of dSNPs (including SNPs
273  in both the heterozygous and homozygous state) (S8 Fig), and fewer dSNPs in the homozygous
274  state (Figure 6). The reduction in homozygous variants per line is consistent with the majority of
275  dSNPs constituting recessive, loss of function changes. The reduction in the number of

276  homozygous dSNPs occurs over successive generations in the experiment, resulting in a

277  significant negative correlation between both yield and the number of homozygous SNPS,

278  including dSNPs. A larger number of homozygous derived SNPs is associated with higher DON,
279  the undesirable state. The correlation of DON concentration and dSNPs is not statistically

280  significant (Table 3). This is consistent with the expectation that dSNPs are more likely to be
281  predictive to fitness-related phenotypes such as yield [16,30,34].Plant height was not under

282  selection, but increasing plant height is generally not desirable. It was positively correlated with

283  the number of homozgyous derived SNPs (Table 3).

284 The barley genome includes large pericentromeric regions with minimal crossover [42,43]
285  (S3 Figure). Based on our exome capture resequencing, these regions harbor fewer dSNPs per
286  codon than the distal arms of chromosomes (Figure 2). This should not be taken as evidence that
287  linked selection in these regions is unimportant, but rather that gene density plays an important
288  role in determining the distribution of dSNPs within coding regions. Previous studies have

289  suggested dSNPs occur at a higher frequency in lower recombination regions of the genome in
290  sunflower [26], rice [15,19], and soybean [25]. Evidence for this phenomenon in maize is mixed,
291  with no evidence for higher mutational load reported by [31] whereas it was identified by [50].
292 Comparison among studies is made more difficult by differences in approaches for dSNP

293  annotation and the sequence diversity statistics used as a point of comparison (e.g., density of
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synonymous SNPs) [see 20,19]. There may also be a weaker relationship between recombination
and diversity in predominantly self-fertilizing species [51]. An implication is that for barley, and
perhaps other species, the majority of dSNPs occur in genomic regions where crossover rates are
relatively high. Thus many dSNPs can potentially be removed from populations based on the

action of crossover and independent assortment.

This study involved simultaneous prediction and selection on two quantitative traits that are
unfavorably correlated. This represents a somewhat realistic scenario for many applications of
genomic prediction. Based on linear mixed model analysis of marker-trait association, we
identified a 17.1 Mb region on chromosome 4H that contributed to reduced disease severity but
also had negative impacts on yield. This region had been previously identified in a selection
mapping study for FHB resistance [47]. Selection for variants in this region contributed to
improved disease resistance but also provided the opportunity for at least 15 identified dSNPs to
be maintained in the population. For eight of those variants where the derived (and likely

deleterious state) is unambiguous, there is evidence of hitchhiking to higher frequencies.

The identification and weighting of deleterious variants in a genomic prediction framework
appears to be promising path for improving phenotypic prediction [27,34]. While we observed
little difference in the number of dSNPs per line, the number of private dSNPs varied
dramatically, providing the opportunity to select progeny with fewer rare and potentially
deleterious variant than either parent. It should be noted that the fitness effects of individual
deleterious variants in crops remains largely unknown and indeed, the shape of the distribution
of fitness effects of all variants is a challenging quantity to estimate [52,53]. The proportion of
variants with large effects on fitness could impact genomic prediction strategies. As with any

examination of a complex trait, sample sizes for phenotyped individuals are likely to limit power
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317  to detect effects among classes of variants. Also, because deleterious variants are completely
318  commingled with other classes of variants, limits on recombination within a population limit the
319  degree to which the effects of deleterious variants can be isolated. Given these caveats, the

320  potential to readily identify a class of fitness-related variants that can be subject to selection

321  holds considerable promise for phenotypic prediction.

322 Materials and Methods

323 Population Design

324 Our experimental population consists of spring, six-row, malting barley adapted to the Upper
325  Midwest of the United States. Three breeding programs (Busch Agricultural Resources, Inc.,
326  North Dakota State University, and University of Minnesota) contributed the 21 founders of the
327  population, denoted as Cycle 0 (CO) (S1 Table; S1 Figure). Founders were used to produce 45

328  crosses (pedigrees available at http://conservancy.umn.edu/XXXX). F; progeny from each of the

329  crosses were self-fertilized to the F; generation, resulting in 1,080 F; progeny, denoted as Cycle
330 1 (C1). A total of 98 lines were selected from C1 based on genomic estimated breeding value
331 (GEBYV) and randomly intercrossed to generate the next cycle of progeny. Training populations
332 used for genomic prediction and approaches for updating those populations are detailed in [41].
333 The progeny from the intercrosses among selected lines were selfed to the F3 generation. The
334  process of line selection, intercrossing, and inbreeding, was repeated, creating three cycles of
335  selection using genomic prediction. The total number of lines selected for C2 was 105, and the
336  total number of lines selected for C3 was 48 (S1 Fig). Breeding program progress was evaluated

337 by phenotypic comparison of the selected lines to a random subset of lines from each cycle. The
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numbers of randomly selected lines were 300, 101, 49 from C1, C2, and C3, respectively (S1

Fig).

Selection was based on the predicted phenotypic values for grain yield and for reduced
fungal disease severity using a proxy phenotype, the concentration of the mycotoxin,
deoxynivalenol (DON) which is created during an active Fusarium infection [41]. GEBV
prediction was based on 384 SNPs evenly distributed across the seven barley chromosomes and
chosen to maximize marker informativeness among the founders. Genotyping used an Illumina
Veracode assay [41]. Lines were selected for increased yield and reduced DON concentration.
GEBVs were estimated with ridge regression, as implemented in the ‘rrBLUP’ package [54] for

R [55].

Phenotypic Data Collection

F;.5 breeding lines in the selected and random pools for Cycles 1-3 were evaluated in yield
trials at five year-locations. Phenotypic data was collected on grain yield and DON
concentration. Phenotypic data were spatially adjusted with a moving average across the field
plots. Best linear unbiased estimates (BLUESs) for yield and DON concentration were then

produced for each line using the ‘rcrBLUP’ package for R.

Raw and adjusted phenotypic data, including planting locations in the field trials, are

available at https://github.com/ Morrell LAB/Deleterious GP and

http://conservancy.umn.edu/XXXX. For details of phenotypic data collection see [see 41].
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Genotypic Data Collection

A total of 5,215 F; progeny were genotyped across the three cycles using the 384 SNPs from
the barley oligo pooled assay (BOPA) marker panel [56]. The physical location of all SNPs were
determined based on automated BLAST searches against the barley reference genome [43],
using consensus genetic map position to resolve ambiguous positions [57]. A small number of
SNPs were missing either a genetic or physical position. For these SNPs we use linear

interpolation as described in the [S2 Appendix].

Genotypes were called using signal to noise ratios from the raw probe intensities, as
implemented in machine-scoring algorithm ALCHEMY [58]. ALCHEMY was used for
genotype calls because it does not rely on clustering of samples to identify genotypic classes,
thus avoiding Hardy-Weinberg equilibrium genotype frequency assumptions, and makes use of a
prior estimate of the inbreeding coefficient to model the number of expected heterozygous
genotypes. The prior inbreeding coefficient was specified as 0.99 for parental lines and as 0.75
for the F; progeny, the average expected inbreeding coefficient after two generations of self-
fertilization. Genotyping data was transformed to PLINK 1.9 format [59], and included pedigree

information for each individual (data available at http://conservancy.umn.edu/XXXX). PLINK

was used to test for Mendelian errors in inheritance of SNPs and to orient SNPs on the
appropriate strand relative to the barley reference genome sequence from the cultivar Morex
[43]. SNP genotypes from the barley BOPA markers genotyped in the Morex X Steptoe genetic
mapping population [60,61] were used to infer the reference strand of origin for each SNP. The
“hybrid peeling” approach of [45] was used for simultaneous imputation and phasing of

genotyping data and thus to infer the parental contribution of chromosomal segments to progeny.
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The approach of [45] makes use of an extended pedigree so that phased genotype inference is
improved by comparisons to both progenitors and progeny. The specified pedigree is available at

https://github.com/MorrellLAB/Deleterious GP/blob/master/Data/Pedigrees/AlphaPeel Pedigre

e.txt. PLINK was used for a second round of Mendel error checking with imputed genotypes.

Imputed genotypes in progeny were set to missing if their genotype probability was less than 0.7.

DNA Extraction, Sequence Analysis, and Variant Calling

DNA was extracted from young leaf tissue from each of the 21 founder lines using the Plant
DNAZzol extraction reagent and protocol from Thermo Fisher Scientific (Waltham, MA).
Genomic DNA was captured with liquid phase exome probes designed to capture 60 Mb of the
barley genome [62]. Eighteen of the samples were sequenced with 100 bp paired end technology
on an [llumina HiSeq2000, and three were sequenced with 125 bp paired end technology on an
[llumina HiSeq2500. Exomes were sequenced to a target depth of 30-fold coverage. Raw
FASTQ files were cleaned of 3" sequencing adapter contamination with Scythe

(https://github.com/vsbuffalo/scythe), using a prior on contamination rate of 0.05. Adapter

trimmed reads were then aligned to the Morex pseudo-molecule assembly (http://webblast.ipk-

gatersleben.de/registration/) with BWA-MEM [63]. Mismatch and alignment reporting

parameters were tuned to allow for approximately three high-quality mismatches between the
reads and the reference. This represents approximately the highest observed coding sequence
diversity in barley [64,65]. BAM files were cleaned of unmapped reads, split alignments, and
sorted with SAMtools version 1.3 [66]. Duplicate reads were removed with Picard version 2.0.1

(http://broadinstitute.github.io/picard/).
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Alignment processing followed the Genome Analysis Toolkit (GATK) best practices
workflow [67,68]. Cleaned BAM alignments were realigned around putative insertion/deletion
(indel) sites. Individual sample genotype likelihoods were then calculated with the
HaplotypeCaller, with a haploid model and “heterozygosity” value of 0.008 per base pair. This
value is the mean estimate of coding nucleotide sequence diversity, based on previous Sanger
resequencing experiments [65,69]. SNP calls were made from the genotype likelihoods with the

GATK tool GenotypeGVCFs [68].

Estimates of read depth and coverage made use of ‘bedtools genomecov’ relative to an
empirical estimate of exome coverage. Briefly, estimated exome coverage was based on BWA-
MEM mapping of roughly 241-fold exome capture reads from the reference barley line Morex
(SRA accession number ERR271711), against the Morex draft genome. Read mapping was
performed using the same parameters as for mapping the reads from the parental varieties against
the reference assembly. Regions covered by at least 50 reads were considered covered by exome
capture. Intervals that were separated by 50 bp or fewer were joined into a single interval. This
results in ~80 Mb of exome coverage relative to the 60 Mb based on capture probe design [62].
Recombination rate in cM/Mb was estimated based on physical positions of SNPs in the

reference genome [43] and the estimated crossover rate from the consensus genetic map of [61].

Scripts to perform adapter contamination removal, read mapping, alignment cleaning, and
implementing the GATK best practices workflow are available at

https://github.com/MorrellLAB/Deleterious_GP. The BED file describing the empirical estimate

of capture coverage is also available at the provided GitHub link and at

http://conservancy.umn.edu/XXXX.
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422  Inference of Ancestral State Using an Qutgroup Sequence

423 Whole genome resequencing data for Hordeum murinum ssp. glaucum was collected using
424  Illumina paired end 150 bp reads on a NextSeq system. We chose H. murinum ssp. glaucum for
425  ancestral state inference because phylogenetic analyses have placed this diploid species in a

426  clade relatively close to H. vulgare [70]. Previous comparison of Sanger and exome capture

427  resequencing from the most closely related species, H. bulbosum, identified shared

428  polymorphisms at a proportion of SNPs, resulting in ambiguous ancestral states [65,65]. After
429  adapter trimming, sequencing reads from H. murinum ssp. glaucum were mapped to the Morex
430  reference genome using Stampy version 1.0.31 [44], with prior divergence estimates of 3%, 5%,
431  7.5%, 9%, and 11%. Cleaned BAM files were generated using Samtools version 1.3.1 [66] and

432 Picard version 2.1.1 (http://broadinstitute.github.io/picard) and realigned around

433 insertion/deletions (indel) using GATK version 3.6. A H. murinum ssp. glaucum FASTA file
434  was created using ANGSD/ANGSD-wrapper [71,72]. Inference of ancestral state for SNPs in
435  this set of 21 parents was performed using a custom Python script. For the above sequence
436  processing pipeline, the following steps were performed using “sequence handling” [73] for
437  quality control, adapter trimming, cleaning BAM files, and coverage summary. All other steps
438  for processing H. murinum ssp. glaucum and inferring ancestral state are available on GitHub

439  (https://github.com/liux1299/Barley Outgroups).

440 Deleterious Predictions

441  Variant annotation, including the identification of nonsynonymous variants used gene models
442  provided by [43]. Annotations were applied to the reference genome using ANNOVAR [74].

443  Nonsynonymous SNPs were tested with three prediction approaches: PROVEAN [75],
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Polymorphism Phenotyping 2 (PPH2) [76], and BAD Mutations [25,77] which implements a
likelihood ratio test for neutrality [22]. All three approaches use phylogenetic sequence
constraint to predict whether a base substitution is likely to be deleterious. PROVEAN and PPH2
used BLAST searches against the NCBI non-redundant protein sequence database, current as of
30 August, 2016. BAD Mutations was run with a set of 42 publicly available Angiosperm

genome sequences, hosted on Phytozome (https://phytozome.jgi.doe.gov) and Ensembl Plants

(http://plants.ensembl.org/). A SNP was considered deleterious by PROVEAN if the substitution

score was less than or equal to -4.1528, as determined by calculating 95% specificity from a set
of known phenotype-altering SNPs in Arabidopsis thaliana [77]. PPH2 classifies SNPs as
neutral or deleterious; prediction was considered as deleterious if it output a ‘deleterious’ call for
a SNP. These programs use a heuristic for testing evolutionary constraint, as well as a training
model for known human disease-causing polymorphisms. A SNP was considered deleterious by
BAD Mutations if the p-value from a logistic regression [24] was less than 0.05. The logistic
regression model used for dSNP identification is an update to the BAD Mutations
implementation reported by [24]. For comparative analyses, nonsynonymous SNPs were
considered to be deleterious if they were identified as deleterious by all three approaches, or if

they form an early stop codon (nonsense SNP).

Population Summary Statistics

Pairwise diversity across classes of SNPs was calculated using VCFTools and diploid
genotypes for each individual. Calculations were partitioned across breeding cycles and among

functional classes including noncoding, synonymous, nonsynonymous, and deleterious. For
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progeny in C1-C3, calculations made use of imputed genotypes relative to the transmission of

the 384 SNP genotyping for each partition and functional class.

For SNP genotyping, the expected number of segregating markers in each family was
calculated based on the pedigree and based on SNPs that were polymorphic within families

based on parental genotypes.

Testing for segregation distortion at individual SNPs used the parental genotypes and the
pedigrees to generate the expected number of genotypes. The observed numbers of each
genotypic class in each cycle were calculated with PLINK. Observed genotype counts were
tested for significant departure from Mendelian expectations using Fisher’s Exact Test,

implemented in the R statistical computing environment [55].

Proportion of Phenotypic Variance Explained

The proportion of phenotypic variance that could be explained from the genotyping data was
estimated using linear mixed model approach as implemented in the program Genome-wide
Efficient Mixed Model Association (GEMMA) [46]. The model incorporates estimated a identity
matrix among samples that controls for family structure. We estimated the phenotypic variance
explained for three phenotypes, yield, DON concentration, and plant height, using spatially
adjusted BLUP (or BLUE) estimates averaged across years and locations as reported by [41].
The mixed model analysis involved a minimum minor allele frequency of 1% in the phenotyping
panel. Heritability was estimated for SNPs from the 384 SNP Veracode panel and for SNPs

imputed from parents to progeny based on exome capture resequencing.
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543  Figure 5

Fold Change in DAF Over Three Cycles of Selection
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546  Figure 6
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549

550 Figure Legends

551  Figure 1. Derived site frequency spectra, for 283,021 SNPs in the parental founders of the

552 genomic prediction population. Ancestral state was based on majority state from Hordeum

553 murinum spp. glaucum resequencing mapped to the Morex assembly. (For all SNPs, including
554  those with no inferred ancestral state see Figure S2.) “Noncoding” refers to SNPs in regions that
555  do not code for proteins, “Synonymous” refers to SNPs in coding regions that do not alter an
556  amino acid sequence, and “Nonsynonymous” refers to SNPs that alter the amino acid sequence.
557  SNPs listed as “Deleterious” are the intersect of variants that annotate as deleterious in each of

558  three approaches.

559  Figure 2. The number of dSNPs per covered codon in 1Mb windows across the barley genome.
560  The light grey shading shows the pericentromeric region, and the dark grey shading show the

561 centromere.

562  Figure 3. Plots of yield (A) and DON concentration (B) and plant height (C) data collected on the
563  experimental population. Values for check lines, founding parents (Cycle 0), and each of three
564  cycles are shown (C1 - C3). In C1 - C3, randomly selected lines are shown in white, and lines
565  selected based on genomic estimated breeding dvalues are shown in grey. Data shown is the

566 linear unbiased estimates (BLUESs) for individual lines based on yield, DON, and plant height

567  observations at five year-locations.

568  Figure 4. The number of homozygous dSNPs in each cycle of the experiment compared to the

569  BLUE for yield, DON concentration, and plant height. Values are shown for Cycle 0 to Cycle 3.
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570  Figure 5. The fold change in derived allele frequency (DAF) in SNPs from four classes of
571  variants. The nonsynonymous class includes only SNPs determined to be ‘tolerated’ based on

572  deleterious variant annotation.

573  Figure 6. Number of dSNPs in the homozygous state in parents and progeny over three breeding
574  cycles, C1 - C3. Values for all individuals are shown, with random samples in C1 - C3 in black

575 and selected samples in red. Boxplots summarize the data for each partition of samples.

576

577

578  SI1 Fig. A schematic of the barley genomic prediction population used in this study.

579  S2 Fig. The folded site frequency spectra (SFS) for all SNPs in the parental founders and three
580  cycles of progeny in the genomic prediction population. The SFS for progeny is imputed relative

581  to genotyped SNPs. SNPs are partitioned by functional classes.

582  S3 Fig. Exome capture target density (dark blue line), recombination rate in cM/Mb (green line),
583  and the genomic distribution of SNPs identified in the parental varieties (vertical light blue

584  lines). Purple triangles indicate SNPs genotyped in parents and progeny. Exome capture target
585  density is the number of exome capture targets per 100kb. Recombination rate estimates are

586  derived from the genetic map of [61], and Lowess-smoothed in windows of 3Mb, using 2% of

587  the points in each window for smoothing.
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588  S4 Fig. The derived site frequency spectrum (SFS) for all sites with estimated ancestral state
589  based on imputed genotypes relative to genotyped SNPs in progeny for each cycle. SNPs are

590 partitioned by functional classes.

591 S5 Fig. The folded site frequency spectrum (SFS) for all imputed variants in all cycles. SNPs are

592  partitioned by functional classes.

593  S6 Fig. Proportion of variants that fixed for ancestral states in C3 at various initial frequencies in

594  the founders. Variants are partitioned by functional class.

595  S7 Fig. Fold change in derived allele frequency for all variants with unambiguous ancestral

596  states from C1 to C3 across the genome. Grey shading indicates pericentromeric regions.

597 S8 Fig. Average burden of dSNPs carried by each individual in the population, measured as

598  number of derived alleles at all identified deleterious sites.

599
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600 Tables

601  Table 1. Summary of SNPs identified in exome capture resequencing of parental accessions.

Type of Variation Count
SNP 497,754
SNPs on Barley Chromosomes 407,285
Coding SNP 119,137
Nonsynonymous SNP 62,826
Early Stop Codon 1,187
BAD Mutations Deleterious 18,071
PPH2 Deleterious 13,922
PROVEAN Deleterious 5,892
Intersect of Deleterious 3,855

602

603  Table 2. The number of private SNPs per population across three classes of genic variants.

Breeding Program Synonymous Nonsynomymous Deleterious
Busch Ag 3,578 3,906 271
Minnesota 7,930 9,031 500
North Dakota 13,581 15,166 1,019

604

605  Table 3. The correlation between the number of homozygous derived genotypes and the

606  phenotypes across each functional class of variants.
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607

608

609

610

611

612

613

614

615

616

617

Class Yield Yield p-
value
Noncoding -0.081 0.0169
Synonymous -0.061 0.0706
Nonsynonymous  -0.075 0.0277
Deleterious -0.018 0.0014

DON

0.0860
0.0992
0.0859

0.0109

DON p-
value

0.0113
0.0034
0.0112

0.7486

Height

0.1090
0.0893
0.1009

0.7470

Height p-
value

0.0013
0.0083
0.0028

0.0273

Table 4. The proportion of variants in the founding parents from each functional class that were

lost, segregating, or fixed in progeny in Cycle 03.

Class Segregating Lost Fixed

Noncoding 120,289 22,083 6,774
Synonymous 30,481 5,282 2,003
Nonsynonymous 25,633 6,047 1,610
Deleterious 1278 621 14

Table 5. The change in SNP frequency by class. Nonsynonymous includes SNPs that are amino

acid-changing but are annotated as “tolerated.” The values reported are the median change in

derived allele frequency (DAF), and the proportions of SNPs increasing or decreasing over the

three breeding cycles.

Class
DAF

Median Change in

Increasing Decreasing


https://doi.org/10.1101/442020
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/442020; this version posted October 12, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

618

619

620

621

622

623

624

625

626

627

628

629

630

631
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Noncoding -0.0125 0.460 0.527
Synonymous -0.0075 0.465 0.519
Nonsynonymous -0.0220 0.439 0.543
Deleterious -0.2510 0.343 0.627

Supplemental Materials

S1 Appendix — Yield Trials

For yield trials in 2014, lines were evaluated at Crookston, MN; Morris, MN; and Saint Paul,
MN. For 2015 yield trials, lines were evaluated at Crookston and Morris. Lines were grown in an
augmented block design [78]. The check varieties were to adjust for spatial variation across trial
plots. Checks included ‘Lacey’ (96 replicates), ‘Quest’ (24 replicates), ‘Stellar-ND’ (20

replicates), and ‘Tradition’ (20 replicates).

For DON concentration trials, each chosen F3.5 line was evaluated at five year-locations in
disease nurseries [79]. Similar to the yield trials, lines were grown in an augmented block design.
DON concentration was evaluated at Crookston, MN in 2013, 2014, and 2015. DON
concentration was evaluated at Saint Paul, MN in 2013 and 2014. Check varieties for DON trials
were ‘Quest’ (123 replicates), ‘ND20448” (26 replicates), ‘Tradition’ (25 replicates), and ‘Lacey’

(25 replicates).
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632  S2 Appendix — Linear Interpolation of Genetic and Physical SNP Positions

633 Among the 384 SNPs on the Veracode assay, two were missing genetic positions and 14
634  were missing physical positions. To interpolate genetic or physical positions, we use the

635  positions of flanking SNPs. We take half the distance between known positions. In the formulas,
636 D is average distance, G is genetic distance, P is physical distance, and the subscripts k and u
637  refer to known and unknown positions and subscripts 1 and 2 refer to positions up and

638  downstream of the position to be interpolated.

639  Unknown genetic position

640 D= (P2 - Pk) / (P2 - P])
641 Gu:Gz—D*(Gz-Gl)
642 if G.=G» ; Gy = (G» - G1)/2

643  Unknown physical position

644 D =(Gy-Gy) /(G2 -Gy)
645 P,=P,-D*(P,-P))
646 lfPu = Pz, Pu = (P2 - P])/z
647

648

649  S1 Table. Founder parents used in the genomic prediction experiment along with exome capture

650  resequencing summaries.

Program Accession Name Median  Sequence Read Sequence # of Reads
mapped  Archive # Read Length
coverage
BuschAg 6B01-2218 10 PRINA399170 36-100 31468594
BuschAg 6B03-4304 9 PRINA399170 36-100 32128172
BuschAg 6B03-4478 8 PRINA399170 36-100 24757626
BuschAg 6B04-0290 9 PRINA399170 36-100 32386260

BuschAg 6B05-0922 9 PRINA399170 36-100 31107792
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BuschAg 6B06-1132 9 PRINA399170 36-100 28973814
UMN FEG141-20 12 PRINA399170 36-100 33409432
UMN FEG153-58 13 PRINA399170 36-100 37329190
UMN FEG154-47 15 PRINA399170 36-100 43448022
UMN FEG175-57 18 PRINA399170 36-100 52809584
UMN FEG183-52 7 PRINA399170 36-100 24110934
UMN M122 10 PRINA399170 36-100 27941342
UMN M138 3 PRINA399170 36-126 8612356
North Dakota ~ ND20448 10 PRINA399170 36-100 28281994
North Dakota ~ ND24906 8 PRINA399170 36-100 26300402
North Dakota ~ ND25160 9 PRINA399170 36-100 31682064
North Dakota ~ ND25652 8 PRINA399170 36-100 28941294
North Dakota ~ ND25728 10 PRINA399170 36-100 33773866
North Dakota ~ ND25986 10 PRINA399170 36-100 34760524
North Dakota ~ ND26036 16 PRINA399170 36-126 32741474
North Dakota ~ ND26104 17 PRINA399170 36-126 35278280

651

652

653  S2 Table. Summary of putatively dSNPs in the founder lines. BA: Busch Agricultural Resources,
654  Inc.; MN: University of Minnesota; ND: North Dakota State University. Values listed include

655  the number of dSNPs and private dSNPs per inbred line.

Breeding . o ID  dSNPs Private dSNPs
Program

BA 6B01-2218 680 83

BA 6B03-4304 668 24

BA 6B03-4478 670 37
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BA 6B04-0290 665 27
BA 6B05-0922 693 47
BA 6B06-1132 674 25
MN FEG141-20 690 107
MN FEG153-58 698 13
MN FEG154-47 673 18
MN FEG175-57 690 36
MN FEG183-52 695 38
MN M138 659 11
MN M122 686 15
ND ND20448 665 46
ND ND24906 664 40
ND ND25160 669 135
ND ND25652 633 32
ND ND25728 705 72
ND ND25986 690 23
ND ND26036 676 90
ND ND26104 688 172

656

657  S3 Table. The ancestral state of all variants was inferred with Hordeum murinum ssp. glaucum
658  used as an outgroup. The number of SNPs in each class and the proportion of SNPs for which

659  ancestral state could be inferred is shown.

660

Class Total Inferred Ancestral State Proportion of Variants
with Inferred Ancestral
State
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All 487,366 283,021 0.581
Noncoding 370,820 188,988 0.510
Synonymous 55,055 47,176 0.857
Nonsynonymous 57,723 44,258 0.767
Deleterious 3,768 2,599 0.510
661
662

663  S4 Table. Basic descriptive statistics from genotyping of the Veracode 384 SNP assay. Values

664  reported are based on observed genotypes in [llumina genotyping or exome capture resequencing

665  (for CO founder lines).

Standard
Proportio Average Average Average # Deviation
# of # of por orag heterozyg of SNPs
Cycle . . . - n missing  pairwise . of SNPs
individuals families . . osity per
data diversity . per
observed family .
family
Co 21 — 0.0471 0.3312 0.0372 — —
C1 1,872 78 0.0064 0.3025 0.0777 142.86 37.49
C2 1,904 80 0.0033 0.3027 0.1505 132.94 38.56
C3 1,439 60 0.0789 0.3248 0.1502 145.38 27.90

666 -

667 S5 Table. Average pairwise diversity among progeny for sites that were polymorphic in the CO
668  founder lines. The data is based on phased and imputed genotypes given observed genotypes

669  from the Veracode 384 SNP assay.

670

Cycle All Sites Noncoding Synonymous Nonsynonymous  Deleterious
All 0.170 0.168 0.186 0.165 0.122
Co 0.191 0.188 0.210 0.189 0.148
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672

673

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
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Cl 0.186 0.184 0.204 0.183 0.138
C2 0.161 0.160 0.177 0.157 0.115
C3 0.152 0.151 0.166 0.146 0.105
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