

1 **Modelling double strand break susceptibility to interrogate structural
2 variation in cancer**

3

4 **Authors:** Tracy J. Ballinger¹, Britta Bouwman², Reza Mirzazadeh², Silvano
5 Garnerone², Nicola Crosetto^{2*}, Colin A. Semple^{1*}

6 **Affiliations:**

7 1. MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine,
8 University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK

9 2. Science for Life Laboratory, Department of Medical Biochemistry and
10 Biophysics, Karolinska Institutet, Stockholm, Sweden

11 *These authors contributed equally to this work

12 **Corresponding Author:**

13 Dr Tracy Ballinger, MRC Human Genetics Unit, Institute of Genetics and
14 Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU,
15 UK; Tracy.Ballinger@igmm.ed.ac.uk

16 **Author Emails:**

17 Tracy Ballinger: tracy.ballinger@igmm.ed.ac.uk

18 Britta Bouwman: britta.bouwman@scilifelab.se

19 Reza Mirzazadeh: reza.mirzazadeh@scilifelab.se

20 Silvano Garnerone: silvano.garnerone@scilifelab.se

21 Nicola Crosetto: nicola.crosetto@scilifelab.se

22 Colin Semple: colin.semple@igmm.ed.ac.uk

23 **Running head:**

24 Modelling DNA double strand breaks

25

26 **Abstract**

27 **Background:** Structural variants (SVs) are known to play important roles in a
28 variety of cancers, but their origins and functional consequences are still poorly
29 understood. Many SVs are thought to emerge via errors in the repair processes
30 following DNA double strand breaks (DSBs) and previous studies have
31 experimentally measured DSB frequencies across the genome in cell lines.

32 **Results:** Using these data we derive the first quantitative genome-wide models
33 of DSB susceptibility, based upon underlying chromatin and sequence features.

34 These models are accurate and provide novel insights into the mutational
35 mechanisms generating DSBs. Models trained in one cell type can be successfully
36 applied to others, but a substantial proportion of DSBs appear to reflect cell type
37 specific processes. Using model predictions as a proxy for susceptibility to DSBs
38 in tumours, many SV enriched regions appear to be poorly explained by
39 selectively neutral mutational bias alone. A substantial number of these regions
40 show unexpectedly high SV breakpoint frequencies given their predicted
41 susceptibility to mutation, and are therefore credible targets of positive selection
42 in tumours. These putatively positively selected SV hotspots are enriched for

43 genes previously shown to be oncogenic. In contrast, several hundred regions
44 across the genome show unexpectedly low levels of SVs, given their relatively
45 high susceptibility to mutation. These novel ‘coldspot’ regions appear to be
46 subject to purifying selection in tumours and are enriched for active promoters
47 and enhancers.

48 **Conclusions:** We conclude that models of DSB susceptibility offer a rigorous
49 approach to the inference of SVs putatively subject to selection in tumours.

50

51 **Keywords:** Double strand break, cancer, structural variation, chromatin,
52 modelling

53

54 **Background**

55

56 Structural variation (SV) in tumour genomes is known to play important roles in
57 disease progression and may be critical in driving the development of certain
58 cancer types (1–3). However, challenges remain not only in ascertaining accurate
59 SV calls, as evidenced by the compendium of SV calling algorithms used in many
60 projects (4–6), but also in predicting their functional impact. Some SVs have
61 apparently direct consequences; for example, amplification of oncogenes leading
62 to overexpression, deletion of tumor suppressors leading to dysfunction, and
63 translocations generating oncogenic fusion proteins (4). Reportedly indirect
64 consequences of SVs include changes in enhancer targeting, affecting the
65 expression of nearby genes, or “enhancer hijacking” (7). However, it remains

66 challenging to distinguish the influences of evolutionary selection versus
67 primary mutation rate in generating the SVs concerned.

68

69 A recent study of whole genome sequencing (WGS) data from breast tumours
70 identified SV hotspots and putative driver SVs, but could not discern the relative
71 contributions of mutational bias and selection underlying these hotspots (8).
72 Resolving the influences of mutational bias versus selective forces has become
73 critical given that both single nucleotide variant (SNV) and SV mutation rates
74 vary widely across the genome, in parallel with replication timing and chromatin
75 structure (9,10). In analyses of tumour SNVs, variants are routinely prioritized
76 based on algorithms including corrections for estimates of SNV mutation rate
77 variation (11), but analogous methods are not yet applied to SVs.

78

79 Variable rates of SVs observed across the genome are likely to be affected by
80 differences in the efficiency of repair of DNA double strand breaks (DSBs). DSBs
81 can be repaired by homologous recombination (HR) at the G2 and S stages of the
82 cell cycle and, more commonly, by canonical non-homologous end joining (c-
83 NHEJ) which operates throughout the cell cycle (12). The c-NHEJ process is error
84 prone and has been shown to create structural variants initiating carcinogenesis
85 (13). A third repair process, alternative NHEJ (alt-NHEJ) uses microhomology to
86 mediate repairs when the c-NHEJ pathway is unavailable, and repair by alt-NHEJ
87 appears to increase the rate of deletions, insertions, and translocations further
88 (14). The efficiency of these repair processes is often dependent upon the
89 chromatin features and nuclear organization present where the damage occurs.
90 For example, the histone modification H3K36me3, associated with active

91 transcription, recruits the HR pathway, while H4K20me1, a mark of highly
92 transcribed genes, recruits components of the NHEJ pathway (15). The
93 associations between DSB repair and the underlying chromatin landscape may
94 therefore explain the observed correlations between tumour SV rates and
95 chromatin structure (9).

96

97 Previous studies have also shown DSB formation to be influenced by underlying
98 chromatin structures and genomic sequences. It has long been known that
99 certain cytogenetically mapped loci, termed “fragile sites” undergo recurrent
100 DSBs in cells under replicative stress and in cancer (16). More recent high
101 throughput sequencing (HTS) based approaches have been developed to profile
102 DSB rates more precisely within *in vitro* populations of cells (17–25). Three of
103 these methods, BLESS (18), DSBCapture (22), and BLISS (25) are closely related
104 and have been used to generate high-resolution maps of endogenous DSBs
105 occurring in human cell lines, resulting in continuous data reflecting the
106 propensities for DSBs across all chromosomes. These studies have suggested that
107 DSBs may preferentially occur within nucleosome-depleted regions, are
108 correlated with active promoter and enhancer histone modifications, and may
109 associate with G-quadruplex sites (22,26). Certain studies have also suggested
110 DSBs to be depleted in some transposon classes and enriched in some simple
111 repeat classes, and to be unusually frequent in long, late-replicating genes
112 (18,24). Overall, previous studies have found correlations and enrichments
113 between DSBs and various inter-correlated chromatin and genomic features,
114 making it difficult to accurately assess the contribution of any particular feature
115 to DSB susceptibility. Understanding such contributions can be valuable for

116 understanding the underlying mutational and repair mechanisms. In addition, a
117 fuller understanding of the relative contributions of many features to DSB
118 formation can allow reliable predictions of the expected DSB frequency in a given
119 genomic region.

120

121 Random forests have been used to model a variety of biological phenomena
122 because they perform well in the presence of inter-correlated input variables
123 showing non-linear relationships. For example, they have been used to predict
124 nuclear compartments (27), cancer SNV mutational landscapes (28), and
125 enhancer-promoter interactions (29). In this study we construct random forest
126 regression models to generate quantitative measures of the relative importance
127 of a variety of matched chromatin and other features to DSB susceptibility. We
128 use multiple, high-resolution DSB profiling datasets to compare modeling
129 accuracy across several platforms and cell types. The cell types selected have
130 also been extensively profiled for a variety of chromatin features by the ENCODE
131 Project (30) and others, allowing well-matched models to be constructed for all
132 datasets. We demonstrate that these models provide accurate estimates for the
133 expected rate of DSBs in a given region and can be cross applied between DSB
134 datasets. In addition the models can be used to explore tumour SV breakpoint
135 data, to nominate novel regions putatively subject to selection in cancer.

136

137 **Results**

138

139 We uniformly processed four DSB datasets from three related platforms
140 (DSBCapture and BLISS are both based upon modifications to the BLESS

141 protocol) and covering three different cell types, collating matched chromatin
142 data for each. These datasets include two novel DSB mapping datasets derived
143 from the K562 erythroleukemia and MCF7 breast cancer cell lines using the
144 recently developed BLISS method (25) (see Methods) and two previously
145 published DSB mapping datasets derived from the NHEK keratinocyte cell line
146 using BLESS and DSBCapture (22) protocols. DSB frequency is defined in each
147 dataset as the number of unique reads mapping to a given 50kb region, since
148 each read in a DSBCapture, BLESS, or BLISS experiment represents an exposed
149 DNA DSB end. Replicate experiments within each dataset were strongly and
150 significantly correlated (Pearson's $r = 0.905$ to 0.992 , $p < 2.2e-16$) and were
151 combined to reduce noise, although random forest models generated from any
152 single one of the replicates yielded very similar results (see Methods).
153 Comparisons among DSB profiling datasets showed moderate correlations in
154 genome-wide DSB frequency between the three cell types as expected ($r = 0.351$
155 to 0.635 , $p < 2.2e-16$), shown in Supp Figure 1. All three cell types correspond to
156 well-characterized ENCODE cell lines, providing numerous matched chromatin
157 and genomic features exhibiting a range of correlations to DSB (Figure 1), and
158 are also inter-correlated themselves (Supp Figure 2).

159

160 **Accurate models of genome-wide DSB frequency across cell types**

161

162 We modeled DSB frequency at 50kb resolution, using the same ten matched
163 genomic features from each cell type to construct random forest models (see
164 Methods): open chromatin assayed by DNase-seq, POL2B binding, CTCF binding
165 and five histone modifications assayed by ChIP-seq, replication timing assayed

166 by Repli-seq, and RNA-seq. We also included G-quadruplex forming regions as an
167 additional feature, since these DNA secondary structures are associated with
168 genomic instability (31). We found strong and significant correlations between
169 predicted and observed DSB frequency for all four datasets, with Pearson's
170 coefficients ranging from 0.83 to 0.92 (Figure 2). We also generated a model for
171 the NHEK DSBCapture dataset using an extended set of 21 features, including
172 additional histone modifications, histone variants, and nuclear
173 compartmentalization from Hi-C data (32). This extended model resulted in
174 better predictive results for a small fraction of the genome (Supp Figure 4, Box
175 B), and a modestly increased genome-wide Pearson's coefficient between
176 predicted and observed values (11 feature model $r = 0.918$; 21 feature model $r =$
177 0.922). We conclude that models constructed using the 11 selected genomic
178 features (Figure 2) provide high predictive accuracy across cell types, with
179 additional features likely to provide only marginal gains.

180

181 Variable importance metrics for these models reveal consistent trends in the
182 most influential features in DSB frequency prediction (Figure 2,E-H). Replication
183 timing is the most important feature across all three models with early
184 replication associated with high DSB regions and late replication with low DSB
185 (Figure 3C), in agreement with previous studies (33). In addition, the histone
186 modifications H3K36me3 and H3K9me3 (demarcating active genes and gene-
187 poor heterochromatin respectively) emerge as informative features, with
188 H3K36m3 enriched in high DSB regions and H3K9me3 in low DSB regions
189 (Figure 3C). This is consistent with observations that structural variants
190 disproportionately accumulate within the early replicating, relatively gene rich

191 regions of the genome in cancer, and are relatively depleted in late replicating
192 heterochromatin (9,10). DNase-seq open chromatin ranks second in three
193 datasets and fourth in the MCF7 model and is also the most important feature for
194 predicting DSB peaks in the study of Mourad et al. (34) in which they do not
195 include replication timing. The influence of G-quadruplex forming regions is
196 notably variable, ranking as a relatively important feature in the NHEK datasets,
197 but having little and no predictive value in the K562 and MCF7 datasets. RNA-seq
198 is not a strong predictor of DSB susceptibility although DNase-seq peaks are
199 often found at the promoter regions of active genes. This suggests that open
200 chromatin at transcriptionally active genes and associated regulatory elements
201 (reflected in DNase-seq, H3K4me3 and POL2B binding), rather than
202 transcription per se, is the dominant influence on DSB frequency. CTCF binding
203 also appears to be an informative variable, genome-wide in all models, though it
204 binds at sites constituting a very small fraction of the genome. Given the critical
205 roles of CTCF in chromatin architecture and regulation (32), there has been
206 intense interest in the causes and effects of structural variants disrupting CTCF
207 binding sites (35,36).

208

209 **Influential features underlying DSB frequency differ between genomic loci
210 and cell types**

211

212 Beyond the general, genome-wide trends described above, we see differences in
213 the behavior of certain classes of loci. These are evident as regions departing
214 from the linear relationship between observed and predicted DSB frequency
215 seen for the majority of the genome (Figure 3A; Supp Fig 4). Deeper exploration

216 of the relationships between underlying genomic features and DSB frequency
217 reveals diagnostic features for these discrepant classes. One class of loci (Figure
218 3, Box A) shows unusually low values for both predicted and observed DSB
219 frequencies, and is enriched for H3K9me3 marked heterochromatin and low
220 sequence mappability (Figure 3B). These regions are likely to correspond to
221 repeat-rich regions near centromeres and on the short arms of acrocentric
222 chromosomes, which are problematic for read mapping algorithms (37). Another
223 class of H3K9me3 heterochromatin enriched loci shows higher DSB predictions
224 than observed, in spite of high mappability values (Figure 3, Box B). This class of
225 regions is absent in DSB datasets generated by the BLISS protocol (Figure 2), so
226 these aberrant predictions may reflect technical and methodological differences
227 between datasets. In any case, it is clear that model predictions may reasonably
228 be expected to be less accurate in heterochromatic regions.

229

230 The similarities in relative variable importance across datasets (Figure 2)
231 suggest that many features have a similar influence on DSB frequency in each of
232 the three cell types. Thus, a model trained in one cell type might generalize well
233 to another cell type and allow us to generate predictive DSB frequency profiles
234 for model cell lines currently lacking high resolution DSB data. We cross-applied
235 models and found models trained in one cell type often performed well in
236 another (Figure 4). For example, a model trained in NHEK cells could be used to
237 predict DSB frequencies in K562 cells (inputting K562 genomic features) with
238 high accuracy (Pearson's $r = 0.85$ correlation; Figure 4). This offers a substantial
239 improvement over the base correlation ($r = 0.63$) between NHEK and K562
240 observed DSB profiles. We measured the correlation of observed and predicted

241 DSB frequencies across all nine model and feature combinations and always
242 found correlations ($r = 0.58$ to 0.85) that improved on the base correlations ($r =$
243 0.38 to 0.63) seen between the observed DSB datasets (Figure 4). These
244 improvements echo the similarities in variable importance between cell types
245 (Figure 2). The moderate correlations between DSB across cell types
246 demonstrate that a substantial proportion of DSB susceptibility across the
247 genome is cell type specific, which is consistent with the established cell type
248 specific properties of many SV breakpoint regions in tumours, such as common
249 fragile sites (38). Furthermore the larger performance gap in models for cell
250 lines with altered variable rankings indicates that DSB mechanisms may differ
251 across cell types and may not be completely captured via epigenomic features.

252

253 **Tumour SV breakpoints possess variable susceptibility to DSBs**

254

255 Keratinocytes are considered to be the cell type of origin for mucosal and
256 cutaneous carcinomas, particularly squamous cell carcinomas (39), and NHEK
257 cells are often used in the literature as a model for these cancers. Similarly, MCF7
258 cells and K562 cells have been used extensively as models for breast and blood
259 cancers respectively. This motivated us to ask how the DSB models for these
260 three cell types relate to the patterns of SV breakpoints observed in squamous
261 cell carcinomas, blood cancers, and breast tumours.

262

263 A number of large structural variant (SV) collections have been established for a
264 variety of tumour types, and each possesses advantages and shortcomings. The
265 International Cancer Genome Consortium (ICGC) provides high resolution SV

266 calls based upon whole genome sequencing (WGS) for 2,146 patients across 17
267 cohorts (40), but sample cellularities, sequencing depths and SV calling methods
268 vary across cancer cohorts, and are expected to affect results (Supp Figure 6).
269 The Cancer Genome Atlas (TCGA) produced consistently processed copy number
270 variant (CNV) calls from SNP chip data for 23,084 patients across 33 cohorts
271 (Supp Figure 7). However, breakpoint resolution is much lower than calls based
272 upon WGS, and copy neutral SVs such as inversions and translocations are
273 absent. We analyzed ICGC and TCGA data as pancancer datasets, combining all
274 cancer types together, but also as three cancer type subgroups. TCGA subgroups
275 comprised a squamous cell carcinoma subgroup, a blood cancers subgroup
276 including two blood cancers, and breast cancer as a separate group (see
277 Methods). Similar ICGC subgroups were formed (from cohorts independent of
278 TCGA), but with the squamous cell carcinoma subgroup replaced with a
279 carcinoma subgroup, which includes seven carcinoma cancer studies excluding
280 breast cancer (see Methods).

281

282 Analogously to the DSB datasets, we determined the number of tumour SV
283 breakpoints per 50kb region for each of the ICGC and TCGA SV datasets (see
284 methods) and compared these to the DSB predictions from our models. In ICGC
285 data overall we saw low correlations between the number of SV breakpoints and
286 DSB predictions (Supp Figure 8 and Supp Figure 9). Restricting our analysis to
287 ICGC enriched SV breakpoint regions, or ESBs for the purpose of this manuscript
288 (50kb regions with SV breakpoint counts in the top 5% genome-wide, see
289 Methods), increased the agreement with DSB model predictions. Significant
290 increases in NHEK and MCF7 model predictions were seen for pancancer,

291 carcinoma, blood, and breast tumour ESBs and in K562 model predictions for all
292 cancer subsets except blood ESBs (Figure 5). The significant increase in DSB
293 model predictions seen for carcinoma ESBs indicates that DSB susceptibility
294 (captured in the models) may shape the SV landscape of these cancer types. We
295 also see a significant increase in DSB predictions for TCGA blood cancer ESBs,
296 but not for any other subgroups in TCGA data (Supp Figure 10). However, as
297 mentioned, TCGA data is of low resolution and not suitable for accurate
298 breakpoint detection.

299

300 Certain classes of relatively simple SVs (deletions, duplications, inversions,
301 translocations) are often the product of one or two DSBs, while more complex
302 intrachromosomal rearrangements can be difficult to classify accurately, and
303 may have origins in poorly understood phenomena such as chromothripsis (41).
304 Indeed, even for simple SVs there may be some ambiguity, with an unknown
305 fraction arising by mechanisms that may not involve a DSB. For example,
306 insertions can arise from transposon activity, and duplications from replication
307 slippage (42). However, even if many SV breakpoints do not arise from DSBs, we
308 might reasonably expect to see shifts to higher median DSB model prediction
309 values for many simple SV classes. We determined ESBs as above for ICGC-
310 annotated SV classes across all ICGC tumour types to examine their DSB
311 frequency predictions, compared to non-ESBs, 50kb regions that do not attain SV
312 breakpoint counts in the top 5% with at least one tumour SV breakpoint
313 detected. Overall, the models show significant elevations for ESBs covering all SV
314 classes except insertions (Figure 5). Insertions may be less influenced by DSB
315 susceptibility because they may occur via transposable element activity rather

316 than through DNA damage and repair pathways. Crosetto et al. (18) find an
317 enrichment of satellite repetitive elements in regions enriched for DSB in cells
318 exposed to aphidicolin. However, regions that undergo DSB under replicative
319 stress, as induced by aphidicolin, may differ from DSB regions under normal cell
320 growth conditions.

321

322 **Interrogating tumour SV data at common fragile sites with DSB models**

323

324 The predicted DSB frequencies from our models and ICGC tumour SV breakpoint
325 frequencies differ in their scaling and distributions and are not directly
326 comparable. However, it is of interest to identify outlier regions, where model
327 predictions and observed tumour SV breakpoint rates diverge most, since these
328 regions may include loci under selection in tumours. We developed a novel
329 metric, the d-score, to measure this divergence between expectations given a
330 DSB model and observed SV breakpoint rates in tumours. In brief, this metric
331 relies on fitting known distributions to the observed SV breakpoint dataset and
332 to the predicted DSB dataset. Based upon the known distributions we then
333 transform the observed SV counts and predicted DSB values to p-values,
334 reflecting the probability that each value is drawn from the fitted distribution
335 (see Methods). For each 50kb region in the genome the difference between the
336 SV breakpoint log p-value and the predicted DSB log p-value is the d-score.
337 Regions with unexpectedly high d-scores contain more SV breakpoints than
338 expected, given our model, whereas regions with unusually low d-scores contain
339 fewer SV breakpoints than expected.

340

341 Common fragile sites (CFSs) have long been studied for their unusual properties
342 of generating SVs, both in normal cells and in cancer (38). These regions undergo
343 frequent DSBs in tumours and have been well studied in terms of their genomic
344 context, relationship to replication timing and origins, and correlations with
345 particular chromatin states (43). They tend to occur within large genes, in G-
346 negative chromosomal bands with high DNA flexibility, are unusually late
347 replicating (44), and it is thought that their instability derives from
348 transcription-associated replication stress (38). CFSs only exist in modest
349 numbers and are defined at low resolution (by cytogenetic bands or gene loci);
350 they therefore provide an interesting, though challenging, test set of regions to
351 examine d-score performance.

352

353 We examined predicted (NHEK model) DSB frequencies at 294 50kb regions
354 coinciding with annotated CFS gene loci across the genome, in comparison to
355 regions associated with all annotated genes, and regions associated with putative
356 cancer driver genes (Figure 6C). Although significant shifts to higher frequencies
357 are seen for the driver gene sets for predicted DSB frequencies, the CFSs do not
358 show a similar increase, most likely because the model predicts DSB in early
359 replicating regions, and CFS tend to be late-replicating. Thus, the dominant
360 features influencing DSB susceptibility genome-wide do not appear to drive the
361 elevated DSB rates at CFSs, consistent with CFS instability involving replicative
362 stress (38). However, CFS d-scores show a significant shift above the distribution
363 for all genes and above the driver gene sets as well (Figure 6D). This result is
364 replicated in the MCF7 BLISS model examined in conjunction with ICGC breast
365 cancer SV breakpoints (Sup Figure 11). We conclude that the d-score, a measure

366 of relative DSB enrichment, offers a robust metric for the classification of regions
367 showing unusual SV breakpoint rates in tumours.

368

369 **Identification of hot and cold spots for structural variant breakpoints in**
370 **tumours**

371

372 We have developed a classification of regions of interest within ICGC tumour
373 cohorts based upon the d-score metric. We call regions with significantly more
374 SV breakpoints than expected, or SV hotspots, cancHpredL (cancer high,
375 predicted low), and regions with fewer SV breakpoints than expected, or SV
376 coldspots, cancLpredH (cancer low, predicted high) (see Methods). Figure 6
377 depicts these classes of regions in d-score plots of ICGC SV breakpoint data. Many
378 previous studies have predicted oncogenic SV hotspots simply as regions
379 repeatedly rearranged in cancers. Here we refine such predictions by assessing
380 these raw SV breakpoint frequencies relative to the predicted susceptibility of
381 each region to breakage. It is not possible to predict coldspot regions without a
382 model of expected DSB frequency, and to our knowledge SV breakpoint coldspots
383 have not been studied before.

384

385 We also define a class of regions possessing both high predicted DSB values and
386 high SV breakpoint frequencies (cancHpredH), corresponding to regions
387 showing unusually high SV frequencies on the background of high susceptibility
388 to DSBs. Finally, we define a fourth class of regions that have predicted DSB rates
389 close to zero but high SV breakpoint frequencies (cancHpredL2). In principle,
390 these regions are a class of SV hotspots but, as shown in Figure 3B, they are likely

391 to be repetitive, heterochromatic, and enriched for artifacts (false positives and
392 negatives in SV breakpoint) due to their association with low mappability.

393

394 We examined a range of functional annotation enrichments in the four classes of
395 regions using circular permutation to assess significance (see Methods; Figure
396 6). The annotations included two putative cancer gene sets, 260 genes from the
397 Cancer5000 dataset (45) and 561 genes from the COSMIC collection (46)). We
398 also included a set of 15,415 super enhancers (47), common fragile sites, and
399 chromatin states from ENCODE chromHMM analysis (48). Notably, the majority
400 of genes in both cancer sets are predicted to be oncogenic based on unexpectedly
401 high and functionally significant SNV (rather than SV) loads and are not
402 necessarily expected to occupy regions with higher levels of SV breakpoints. In
403 fact, both gene sets demonstrate significant enrichments in the cancHpredL class
404 of hotspot regions (Figure 6D), although RefSeq genes do not, suggesting that
405 these genes may also frequently be altered in cancer through SV. The
406 cancHpredL regions are also significantly depleted in active chromatin regions,
407 such as promoters, enhancers, and insulator regions, most likely because these
408 types of regions do not have low predicted DSB. The high susceptibility
409 cancHpredH regions occupy gene-rich areas of the genome (enriched for known
410 RefSeq genes) including both cancer genes sets, and for active promoters, strong
411 enhancers, and insulators. This is consistent with reports that CTCF bound
412 insulator elements suffer recurrent mutations in tumours. Likewise, the
413 cancLpredH class of coldspot regions occupy gene rich neighbourhoods, active
414 promoters, and strong enhancers (Figure 6), suggesting some genes and distal
415 regulatory regions may have experienced purifying selection in tumours.

416

417 Given the discrepancies mentioned above between ICGC and TCGA experimental
418 platforms, data analysis, and sample cohorts, we do not expect strong agreement
419 between ICGC and TCGA derived SV datasets. Indeed, the correlation between
420 them is low (Spearman's rho of 0.099, $p < 2.2e-16$), and the pancancer ESBs from
421 either set do not significantly overlap ($p < 0.99$, see methods). However, the
422 cancLpredH class is again enriched in active promoter and strong enhancer
423 regions, in accordance with the results based upon ICGC SV data (Sup Figure 12).

424

425 We again wanted to test the utility of DSB random forest models applied to
426 different cell types by testing the accuracy of predictions made by a model
427 trained in one cell type given features for a different cell type, as in Figure 4.
428 Instead of looking at the correlation between the observed and predicted DSB
429 scores across the genome, we examined the overlap between cancHpredL,
430 cancHpredH, and cancLpredH 50kb regions for the MCF7 model versus the
431 NHEK model, using the MCF7 model as the truth set. Subsets of 50kb regions for
432 each model were derived from MCF7 features and ICGC breast cancer SV
433 breakpoints; only the training data for the models differ. We found a significant
434 overlaps between all three categories of d-score subsets, with 595/662
435 cancHpredL, 255/785 cancHpredH, and 253/594 cancLpredH regions detected
436 via the NHEK model ($p < 2.2e-16$), demonstrating that a given model can be used
437 to detect regions of interest in various cell types.

438

439 **Functional annotation of regions of interest**

440

441 We closely examined the ten 50kb regions with the highest (cancHpredL) d-
442 scores to uncover genes that might be reclassified as oncogenic due to a higher
443 than expected SV breakpoint frequency in cancer. Likewise, we investigated the
444 ten regions with the lowest d-scores (cancLpredH), which we predict to be under
445 purifying selection, for signals of potential functionality. For this analysis we
446 used the NHEK model predictions paired with ICGC carcinoma SV breakpoints.

447

448 Nine out of ten regions with the highest d-scores overlap a gene, and four
449 overlap COSMIC genes. *CHEK2* and *CDKN2A* are known tumor suppressors, and
450 *TMPRSS2* and *ERG* is frequently involved in translocation events forming fusion
451 oncogenes in certain cancers. For example, it fuses with *TMPRSS2* in most
452 prostate cancers, with *EWS* in Ewing's sarcoma, and with *FUS* in AML. Two
453 adjacent 50kb regions on *chr17q12* overlap *GRB7* and *IKZF3*. *GRB7* encodes a
454 protein that interacts with epidermal growth factor receptor (*EGFR*), a well-
455 known proto-oncogene, and *IKZF3* is a zinc finger protein and transcription
456 factor involved in B lymphocyte regulation and differentiation as well as
457 chromatin remodeling. This region also corresponds to a known fragile site
458 *FRA17A* (49). Of the ten regions with the lowest d-scores, seven overlap a known
459 gene and two known oncogenes. The oncogene, *CDC27*, or cell division cycle 27,
460 encodes a component of the *APC* and has been shown to interact with other
461 mitotic checkpoint proteins. It is highly conserved and may be necessary for cell
462 survival. There is also a non-coding RNA found on chr2 in the centromeric
463 region, *LOC654342*, which overlaps an H3K27ac peak, and may be acting as a
464 regulatory element.

465

466 **Discussion**

467

468 Recent *in vitro* studies of DSB frequency in cell lines have suggested that a
469 variety of underlying genomic features are associated with DSB susceptibility.
470 We have shown that accurate models of genome-wide DSB frequency can be
471 built from a modest number of such features, with replication timing, open
472 chromatin, and marks of active promoter or enhancer regions associated with
473 increased DSBs. Although active regulatory regions often harbor actively
474 transcribed genes, it appears that chromatin accessibility at these sites rather
475 than transcription itself determines DSB propensity. The variable importance
476 metrics also show certain features to be more influential in particular cell types,
477 with CTCF and H3K36me3 having more predictive power in MCF7 than in NHEK
478 or K562. Not only are DSB patterns cell type specific, but the factors influencing
479 those patterns also depend on cell type, suggesting different mutational
480 mechanisms at play. As a matter of course, our models' accuracies decline when
481 applied to cell lines other than the training set, but they still generate reasonable
482 DSB frequency predictions, with correlations between 0.57 and 0.83 to the
483 observed data, which are large improvements over a simple inference. Since
484 chromatin features influence mutation patterns and are cell type specific, it will
485 be important to use mutational propensity profiles for matched cell types in
486 future cancer studies.

487

488 Our models of genome-wide DSB susceptibility predict DSB frequencies for all
489 50kb loci, and reflect the established correlations between replication timing and
490 DSB frequency (50) as well as tumour SV rates (9,10). A recent complementary

491 study has shown that 84,946 high confidence peaks of NHEK DSBCapture signal
492 (22), marking small (median: 391bp) sites of unusually high DSB susceptibility,
493 can be accurately classified from control sites using underlying genomic features
494 (34). Consistent with our results, this binary classifier suggested prominent roles
495 for DNase accessible regulatory sites and CTCF binding, and recapitulated many
496 of the patterns reported by Lensing et al (2016). However, the model of Mourad
497 et al (2018) omitted replication timing and does not provide quantitative
498 predictions of DSB susceptibility across the genome.

499

500 We used our genome-wide models of DSB susceptibility to interrogate the largest
501 tumour SV breakpoint collections and found surprising levels of agreement, such
502 that SV breakpoint enriched regions often show shifts to higher predicted DSB
503 susceptibility. In spite of variable sample sizes, the classes of simple SV likely to
504 arise by one or two DSBs (deletions, duplications, inversions, translocations)
505 showed significant increases in predicted DSB susceptibility. The NHEK model
506 best predicted the patterns of DSB susceptibility in tumours, showing genome-
507 wide elevations of predicted DSBs for all of these SV classes relative to control
508 regions. Thus, the chromatin-mediated DSB susceptibility captured in the model
509 may shape the landscape of SV recurrence in these classes.

510

511 There are many reasons why one might expect a much poorer agreement
512 between the predictions of in vitro DSB frequency models and the patterns of SV
513 breakpoints observed in tumour sequencing studies. The available collections of
514 SV breakpoints in tumours are far from perfect, and even the best ICGC data
515 suffer large variations in sample size, sample heterogeneity, sequencing depths

516 and SV calling methods across tumour cohorts. In addition, fundamental aspects
517 of tumour biology (cellular heterogeneity, disrupted repair pathways, chromatin
518 alterations etc.) are expected to place distinct limits on the agreement we can see
519 with the DSB patterns seen in cell lines. Evidence is also emerging that there are
520 important properties of the mutational landscape in tumours that are unlikely to
521 be captured by in vitro model systems. For example, a recent study of intra-
522 tumour diversification in colorectal cancer suggests that most mutations occur
523 during the final clonal expansion of these tumours, resulting from mutational
524 processes that are absent from normal colorectal cells (51). Enhanced rates of
525 DSB formation have also been observed in vitro at cryptic replication origins
526 activated by oncogene-induced replication stress, though these cryptic sites
527 seem to explain only a minority of SV breakpoints (<8%) across a variety of
528 TCGA tumour types (52). Given the many known and possible differences
529 between in vitro DSB model predictions and observed tumour SV breakpoints, it
530 is remarkable that significant agreement is found on any level.

531

532 There is great interest in 'hotspot' genomic regions harbouring recurrent SVs in
533 tumours, on the basis that such regions may be under positive selection,
534 conferring a proliferative or survival advantage to tumour cells. However,
535 rigorous inference of selection requires a proxy for the expected rate of
536 recurrence within such regions. Using model predictions as this proxy we have
537 produced refined hotspot predictions, reflecting SV breakpoint frequencies
538 relative to the predicted susceptibility of each region. Since our predictions of
539 DSB susceptibility are genome-wide it was also possible to predict coldspot
540 regions, regions possessing unexpectedly low SV breakpoint rates given model

541 predictions, and putatively subject to negative or purifying selection in tumours.
542 If selection in tumours is prominent in driving SV breakpoint frequencies away
543 from DSB model predictions, we might expect hotspot and coldspot regions to
544 show unusual functional enrichments. Multiple caveats apply to the annotations
545 examined but analysis using the NHEK model shows that ICGC carcinoma
546 hotspots are enriched for putative oncogenes. Coldspots occupy gene-rich
547 neighbourhoods but are also enriched in active promoters and strong
548 enhancers, and insulators, indicating regulatory regions that may have
549 experienced purifying selection in tumours.

550

551 **Conclusions**

552

553 When inferring selection on single nucleotide variants it is standard practice to
554 make comparisons between the observed variant frequencies and the
555 frequencies expected, according to a model of single nucleotide mutation rates.
556 We have developed models of DSB mutation rates that can be used to generate
557 expected SV breakpoint frequencies and illuminate regions with significant
558 deviations from these expectations. This approach provides statistically rigorous
559 protocols to prioritize novel loci putatively under selection in tumours,
560 generating testable hypotheses for further experimental studies.

561

562

563 **Methods**

564

565 *Derivation of DSB data in the K562 and MCF7 cell lines*

566 DSB profiles were generated with an adapted version of the Breaks labeling *in*
567 *situ* and sequencing protocol (25), in which DSB ends are labeled with a dsDNA
568 BLISS adapter in cell suspensions of 1 million cells. Afterwards the published
569 protocol is followed with only minor modifications. Labeled DSBs are selectively
570 amplified using T7-driven linear amplification, after which sequencing libraries
571 are generated and sequenced with single-end 1x75 v2 chemistry on an Illumina
572 NextSeq 500. Raw sequencing reads were demultiplexed by Illumina's
573 BaseSpace, after which FASTQ files were downloaded and processed as
574 described in Yan et al. 2017 (SRA accession SRP150602). In brief, reads with the
575 expected prefix of 8nt UMI and 8nt sample barcode sequence were filtered using
576 SAMtools and *scan for matches*, allowing at most one mismatch per barcode.
577 Trimmed reads were then aligned to GRCh37 using bwa mem, and reads with
578 mapping scores below 30 were discarded. Next, PCR duplicates were identified
579 by searching for proximal reads (within 30bp of the reference genome) with at
580 most two mismatches in the UMI sequence, which were then grouped and
581 collapsed into a single break location. Finally, we generated .bed files with DSB
582 locations and the number of unique UMIs indicating that location.

583

584 *Generating random forest models*

585 We downloaded ten tracks from ENCODE for multiple chromatin marks,
586 replication timing, open chromatin, several DNA binding proteins, and
587 nucleosome pull-downs from the UCSC genome browser (53). We used G-
588 quadruplex data generated by Chambers et al, (GSE63874). In their study, they
589 make separate .bedgraph files available with the G-quadruplex density for each
590 strand. We used the sum of the plus and minus strands in our analysis. The list of

591 bigwig files used for each cell line along with their sources and graphical labels is
592 in Supplementary Table 1. We used the bigWigAverageOverBed tool from the
593 kentUtils tool library to produce average signal per 50kb in non-overlapping
594 windows across hg19 for each track. We combined the results to a single matrix
595 per cell line composed of 61,903 rows, one for each 50kb bin, and 11 columns,
596 one for each chromatin or genomic feature. These feature matrices are available
597 in supplementary data and scatter plots of each feature with the NHEK
598 DSBCapture data are shown in Supplementary Figure 3.

599

600 For the extended model in Supplementary Figure 4, we downloaded an
601 additional nine features from the UCSC genome browser (53), which were
602 processed in the same way as the ten ENCODE features used in the primary
603 feature matrix. We also downloaded .hic files for NHEK, K562, and HMEC cells
604 generated from Rao, et al. (GSE63525). We used their custom toolbox, Juicer, to
605 calculate eigenvectors per chromosome, and generated 50kb resolution
606 eigenvector profiles using the bedGraphToBigWig and bigWigAverageOverBed
607 tools from kentUtils. The figure labels and sources for these data are in
608 Supplementary Table2, and the extended feature matrices are in supplementary
609 data.

610

611 We generated DSB frequency scores from each of four HTS DSB profiling
612 datasets: two in NHEK cells, one for K562, unpublished, and one for MCF7,
613 unpublished. As mentioned in the results, two replicates for each of two DSB HTS
614 profiling methods, DSBCapture and BLESS, were available from Lensing et al.
615 (22). We took the average per 50kb of the replicates to create an NHEK

616 DSBCapture profile and an NHEK BLESS profile. We combined three replicates of
617 MCF7 BLISS data (via a sum operation) to serve as our MCF7 DSB profile. A
618 fourth MCF7 BLISS dataset is available, but we excluded it from our analysis
619 because it had a distinctly lower correlation to the other three datasets (0.90-
620 0.92 as opposed to 0.97-0.99). These scores are available as supplementary files.

621

622 We used the randomForest package in R to generate random forest models with
623 500 trees and five OOB permutations per tree (options ntree=500, nPerm=5). To
624 calculate variable importance, we used the importance command within the
625 randomForest package ([https://cran.r-
626 project.org/web/packages/randomForest/index.html](https://cran.r-project.org/web/packages/randomForest/index.html)), which calculates the
627 average prediction error rate (MSE) for each datapoint (50kb bin) across all
628 trees in the random forest. Then, for each feature variable, the values are
629 randomly permuted and the MSE for each 50kb bin is calculated again. The final
630 variable importance score is the average difference in MSE before and after the
631 permutation, normalized by the standard deviation of these differences. Because
632 many features are inter-correlated, their importance measures were very
633 similar. Therefore, in order to determine a consistent ranking of features'
634 importance values, we generated ten random forest models per dataset and
635 calculated the average and standard deviation of importance across the ten
636 models.

637 Although random forest models are not susceptible to overfitting, to confirm that
638 our models were not overfit to the DSB data, we also generated a random forest
639 model for the NHEK DSBCapture dataset, holding out one third of the data as the
640 test set and training the model on the remaining two thirds. This model showed

641 0.93 Pearson's correlation between the predictions and the observed data for the
642 training set, similar to the model trained on the full dataset (Sup Figure 5).

643

644 *Determining tumour ESBs and their predicted DSB scores*

645 To determine SV DSB rates in from TCGA data, we downloaded CNV data from
646 TCGA (54), which came from Affymetrix SNP 6.0 arrays processed by the
647 DNAcopy R-package (https://docs.gdc.cancer.gov/Data/PDF/Data_UG.pdf).
648 DNAcopy generates a set of continuous segments, outputting regions with little
649 or no copy number change, so we filtered these, defining segments with a CN
650 ratio >1 as amplifications and ratios < -1 as deletions. The segments were lifted
651 from hg38 to hg19 using UCSC's liftOver tool. For each CNV, we counted a single
652 DSB to occur in a 50kb bin if either or both ends of the segment overlapped the
653 bin. The TCGA-BLOOD group includes the two blood cancer cohorts: acute
654 myeloid leukemia (LAML) and lymphoid neoplasm diffuse large B-cell lymphoma
655 (DLBC), while the TCGA-SCCA group includes three squamous cell carcinomas:
656 cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC),
657 head and neck squamous cell carcinoma (HNSC), and lung squamous cell
658 carcinoma (LUSC). The BRCA group includes only the TCGA breast cancer cohort
659 (BRCA), and the PANC group includes all 33 cancer types, shown in
660 Supplementary Figure 7. Counts for various groups and CNV types are available
661 as Supplementary Files.

662 We downloaded available WGS SV calls from the ICGC Data Portal
663 (<https://dcc.icgc.org/projects>). As with the TCGA CNV, a single DSB was counted
664 per 50kb bin if either one or two ends of a SV overlapped the region. The ICGC
665 pancancer group contains SVs from 17 cancer studies, shown in Supplementary

666 Figure 6. The carcinoma group contains all available carcinoma cancer studies,
667 excluding breast cancer: early onset prostate cancer (EOPC-DE), liver cancer
668 (LIRI-JP), pancreatic cancer (PACA-CA, PAEN-AU, PAEN-IT), prostate cancer
669 (PRAD-CA, PRAD-UK), and skin adenocarcinoma (SKCA-BR). The ICGC blood
670 group contains chronic lymphocytic leukemia (CLLE-ES) and malignant
671 lymphoma (MALY-DE), and the breast group contains breast cancer studies
672 (BRCA-EU and BRCA-FR). A table of DSB counts per 50kb broken up by group
673 and SV type is in supplementary data.

674

675 We determined enriched SV breakpoint regions (ESBs) per cohort or SV type
676 grouping by ranking the 50kb bins by the number of DSB, excluding regions with
677 no DSB in the group, and using the number of DSB in the top 5% as the cutoff. All
678 50kb regions with a DSB count greater than or equal to the cutoff were
679 designated ESBs. We used a Wilcoxon ranked sum test (R `wilcox.test` command)
680 to test for significant increase in the predicted DSB values for ESBs compared to
681 all other regions, and we excluded regions in which no DSB were found in any
682 cancer study since these are likely to be unmappable or blacklisted regions.

683

684 The correlation between TCGA and ICGC pancancer SV breakpoint counts was
685 calculated using Spearman's rho and excluding 50kb regions with no SV
686 breakpoints in either the TCGA or ICGC datasets. The top 5% ESBs were found
687 for each dataset, with 2,839 regions found in TCGA and 3,072 in ICGC, and the
688 significance of the overlap was calculated using a hypergeometric test (R
689 command `phyper` with $q=177$, $m=2,839$, $n=61,903-2,839$, and $k=3,072$).

690

691 *Calculating d-scores*

692 We used the R package `fistdistrplus` (55) to determine the distributions with the
693 best fit to the DSB prediction values and the SV breakpoint frequencies. We used
694 a likelihood maximization test (`method="mle"`) and the BIC (Bayesian
695 Information Criterion) measure of goodness of fit to choose the best distribution.
696 We tested a lognormal, log-logistic, gamma, normal, and an exponential
697 distribution, and fitted the distributions to the bulk of the SV breakpoint or DSB
698 prediction data. We excluded 50kb regions with breakpoint frequencies greater
699 than six times the interquartile range from the median in order to exclude
700 extreme outliers. While we aimed to emphasize the fit of the tails of our data's
701 distributions, including these outliers resulted in poorly fitting distributions to
702 the bulk of the real data. Once we found the best of the three candidate model
703 distributions, we assigned a p-value to each 50kb bin from the fitted distribution
704 (using the `plnorm`, `pllogis`, or `pgamma` functions in R) which represent the
705 probability of seeing a given breakpoint frequency or DSB prediction or greater
706 in the known distribution. The actual and fitted distributions and quantile-
707 quantile plots are shown in Supplementary Figures 13 and 14.

708

709 Next, for each 50kb bin, we calculated the difference in log p-values between the
710 predicted DSB and the actual SV breakpoints, called d-scores. Using the
711 `fistdistrplus` R package again, we determined the best-fit distribution for the d-
712 scores, choosing between a t-distribution, a normal, and a Cauchy distribution.
713 Again, we used a maximum likelihood method and the BIC measurement and
714 excluded extreme outliers. In all cases, a t-distribution with four degrees of
715 freedom ($df=4$) was the best fit, so each 50kb bin was assigned a p-value from

716 this distribution according to its d-score. The histograms and quantile-quantile
717 plots of the d-scores and fitted distributions are shown in Supplementary Figure
718 15.

719

720 *Calculating gene set and chromatin domain enrichments*

721 We used the d-score p-values to categorize regions into informative subsets,
722 using the R command `qt(p=0.01, df=4, lower.tail=FALSE)` to determine the d-
723 score cutoffs. The `cancHpredL` class of regions have d-scores in the upper one
724 percentile (> 3.75), and the `cancLpredH` have d-scores in the lower one
725 percentile (< -3.75). The `cancHpredH` class has d-scores in the 40th to 70th
726 percentiles and SV breakpoint frequencies or DSB predictions with p-values less
727 than 0.01, so these regions have significantly (p-value < 0.01) high SV
728 breakpoints or DSB predictions but insignificant d-scores (p-value < 0.6). The
729 `cancHpredL2` class consists of regions with SV breakpoint p-values less than
730 0.01, and DSB predictions less than 0.5 for the NHEK models and less than 0.001
731 for the MCF7 model.

732 We used a binomial test to measure the significance of overlaps between sets
733 when comparing results from the MCF7 model and the NHEK model applied to
734 ICGC breast cancer data and MCF7 cell line features (R command `binom.test`).

735

736 We used the R package `regioneR` (56) to compute the overlap significance
737 between each set of regions and various genome and chromatin annotation files.
738 A list of annotation sets and their original sources are in Supplementary Table 2.
739 We matched Cancer5000 genes and Cosmic gene lists to RefSeq gene names in
740 order to get their genome coordinates, so the cancer gene lists are RefSeq gene

741 subsets. The super enhancer set (SEA) came from A549 cells, derived from a lung
742 carcinoma (47). Common fragile sites (CFS) were collected from NCBI's gene
743 archive by searching for "common fragile site" or "fragile site" within human
744 genes. Many fragile sites are annotated by chromosome band but do not have
745 exact coordinates; we filtered these out because they are low resolution. The
746 chromHMM (48) annotation came from the UCSC genome browser. We tested
747 enrichment of the NHEK states with the NHEK model d-score classes and the
748 HMEC track, from primary mammary epithelial cells, with the MCF7 model's d-
749 score classes. The regioneR package performs random circular permutation of
750 regions of interest and then computes the number of overlaps between the
751 permuted set and a second set of regions. The p-value represents how often,
752 over the course of the permutations, the two sets overlap to the same extent that
753 they do without any permutation. We used 1,000 iterations to achieve a
754 maximum p-value of 0.001.

755

756 **Declarations**

757

758 *Ethics Approval*

759 Approval for access and use of ICGC variant data was obtained from the ICGC
760 Data Access Compliance Office. Use of TCGA CNV does not require ethics
761 approval.

762

763 *Consent for Publication*

764 Not applicable

765

766 *Availability of data and materials*

767 All analysis was done using GRCh37 as the reference genome. The raw BLISS
768 sequencing data is available on SRA with accession SRP150602. All scripts and
769 commands used to do this analysis are available on github
770 (https://github.com/TracyBallinger/dsb_model). In addition, we have made
771 ipython notebooks for the figures used in this manuscript to ease reproducibility
772 and allow further exploration of the data, also available on github. All
773 supplementary files are available for download at
774 <https://datashare.is.ed.ac.uk/handle/10283/3103>.

775

776 *Competing Interests*

777 The authors declare they have no competing interests.

778

779 *Funding*

780 This study was funded by core funding of the UK Medical Research Council
781 (MRC) to the MRC Human Genetics Unit to C.S.; by grants from the Karolinska
782 Institutet, the Ragnar Söderberg Foundation, the Swedish Foundation for
783 Strategic Research (N.C.: BD15-0095), and the Strategic Research Programme in
784 Cancer (StratCan) at Karolinska Institutet to N.C.; and by a Rubicon fellowship
785 from the Netherlands Organisation for Scientific Research (NWO) to B.B.

786

787 *Authors' Contributions*

788 BB and RM generated the BLISS DSB profiles. SG developed the BLISS alignment
789 pipeline and generated .bed files of DSB profiles. TB performed all subsequent

790 data analysis and produced figures. TB and CS wrote the manuscript. NC and CS
791 supervised the project. TB, BB, NC, and CS edited the final manuscript.

792

793 *Acknowledgements*

794 We are indebted to the ICGC and TCGA projects for the timely public release of
795 tumour genome sequencing data and SV calls.

796

797

798 **References**

799

- 800 1. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging
801 landscape of oncogenic signatures across human cancers. *Nat Genet.* 2013
802 Oct;45(10):1127–1133.
- 803 2. Patch A-M, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S,
804 et al. Whole-genome characterization of chemoresistant ovarian cancer.
805 *Nature.* 2015 May;521(7553):489–494.
- 806 3. Scarpa A, Chang DK, Nones K, Corbo V, Patch A-M, Bailey P, et al. Whole-
807 genome landscape of pancreatic neuroendocrine tumours. *Nature.* 2017
808 Mar;543(7643):65–71.
- 809 4. Alaei-Mahabadi B, Bhadury J, Karlsson JW, Nilsson JA, Larsson E. Global
810 analysis of somatic structural genomic alterations and their impact on gene
811 expression in diverse human cancers. *Proc Natl Acad Sci U S A.* 2016
812 Nov;113(48):13768–13773.
- 813 5. Li Y, Roberts N, Weischenfeldt J, Wala JA, Shapira O, Schumacher S, et al.
814 Patterns of structural variation in human cancer. *bioRxiv.* 2017
815 Aug;181339.
- 816 6. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et
817 al. An integrated map of structural variation in 2,504 human genomes.
818 *Nature.* 2015 Oct;526(7571):75–81.
- 819 7. Weischenfeldt J, Dubash T, Drainas AP, Mardin BR, Chen Y, Stütz AM, et al.
820 Pan-cancer analysis of somatic copy-number alterations implicates IRS4
821 and IGF2 in enhancer hijacking. *Nat Genet.* 2017 Jan;49(1):65–74.

822 8. Glodzik D, Morganella S, Davies H, Simpson PT, Li Y, Zou X, et al. A somatic-
823 mutational process recurrently duplicates germline susceptibility loci and
824 tissue-specific super-enhancers in breast cancers. *Nat Genet*. 2017
825 Jan;49(3):341–348.

826 9. Morganella S, Alexandrov LB, Glodzik D, Zou X, Davies H, Staaf J, et al. The
827 topography of mutational processes in breast cancer genomes. *Nat
828 Commun*. 2016 May;7:11383.

829 10. Schuster-Böckler B, Lehner B. Chromatin organization is a major influence on
830 regional mutation rates in human cancer cells. *Nature*. 2012
831 Aug;488(7412):504–507.

832 11. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al.
833 Somatic mutations affect key pathways in lung adenocarcinoma. *Nature*.
834 2008 Oct;455(7216):1069–1075.

835 12. Jackson SP, Bartek J. The DNA-damage response in human biology and
836 disease. *Nature*. 2009 Oct;461(7267):1071–1078.

837 13. Biehs R, Steinlage M, Barton O, Juhász S, Künzel J, Spies J, et al. DNA Double-
838 Strand Break Resection Occurs during Non-homologous End Joining in G1
839 but Is Distinct from Resection during Homologous Recombination. *Mol Cell*.
840 2017 Feb;65(4):671–684.e5.

841 14. Nussenzweig A, Nussenzweig MC. A backup DNA repair pathway moves to
842 the forefront. *Cell*. 2007 Oct;131(2):223–225.

843 15. Clouaire T, Legube G. DNA double strand break repair pathway choice: a
844 chromatin based decision? *Nucl Austin Tex*. 2015;6(2):107–113.

845 16. Glover TW, Berger C, Coyle J, Echo B. DNA polymerase alpha inhibition by
846 aphidicolin induces gaps and breaks at common fragile sites in human
847 chromosomes. *Hum Genet*. 1984;67(2):136–142.

848 17. Canela A, Sridharan S, Sciascia N, Tubbs A, Meltzer P, Sleckman BP, et al. DNA
849 Breaks and End Resection Measured Genome-wide by End Sequencing. *Mol
850 Cell*. 2016 Sep;63(5):898–911.

851 18. Crosetto N, Mitra A, Silva MJ, Bienko M, Dojer N, Wang Q, et al. Nucleotide-
852 resolution DNA double-strand break mapping by next-generation
853 sequencing. *Nat Methods*. 2013 Mar;10(4):361–365.

854 19. Frock RL, Hu J, Meyers RM, Ho Y-J, Kii E, Alt FW. Genome-wide detection of
855 DNA double-stranded breaks induced by engineered nucleases. *Nat
856 Biotechnol*. 2015 Feb;33(2):179–186.

857 20. Iacovoni JS, Caron P, Lassadi I, Nicolas E, Massip L, Trouche D, et al. High-
858 resolution profiling of gammaH2AX around DNA double strand breaks in
859 the mammalian genome. *EMBO J*. 2010 Apr;29(8):1446–1457.

860 21. Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, et al. Digenome-seq: genome-wide
861 profiling of CRISPR-Cas9 off-target effects in human cells. *Nat Methods*.
862 2015 Mar;12(3):237–43– 1 p following 243.

863 22. Lensing SV, Marsico G, Hänsel-Hertsch R, Lam EY, Tannahill D,
864 Balasubramanian S. DSBCapture: in situ capture and sequencing of DNA
865 breaks. *Nat Methods*. 2016 Aug;13(10):855–857.

866 23. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally
867 engineered Cas9 nucleases with improved specificity. *Science*. 2016
868 Jan;351(6268):84–88.

869 24. Wei P-C, Chang AN, Kao J, Du Z, Meyers RM, Alt FW, et al. Long Neural Genes
870 Harbor Recurrent DNA Break Clusters in Neural Stem/Progenitor Cells. *Cell*.
871 2016 Feb;164(4):644–655.

872 25. Yan WX, Mirzazadeh R, Garnerone S, Scott D, Schneider MW, Kallas T, et al.
873 BLISS is a versatile and quantitative method for genome-wide profiling of
874 DNA double-strand breaks. *Nat Commun*. 2017;8:15058.

875 26. De S, Michor F. DNA secondary structures and epigenetic determinants of
876 cancer genome evolution. *Nat Struct Mol Biol*. 2011 Jul;18(8):950–955.

877 27. Moore BL, Aitken S, Semple CA. Integrative modeling reveals the principles of
878 multi-scale chromatin boundary formation in human nuclear organization.
879 *Genome Biol*. 2015 May;16(1):1270.

880 28. Polak P, Karlic R, Koren A, Thurman R, Sandstrom R, Lawrence MS, et al. Cell-
881 of-origin chromatin organization shapes the mutational landscape of cancer.
882 *Nature*. 2015 Feb;518(7539):360–364.

883 29. Whalen S, Truty RM, Pollard KS. Enhancer–promoter interactions are
884 encoded by complex genomic signatures on looping chromatin. *Nat Genet*.
885 2016 Apr;48(5):488–496.

886 30. Consortium TEP. An integrated encyclopedia of DNA elements in the human
887 genome. *Nature*. 2012 Sep;489(7414):57–74.

888 31. Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP,
889 Balasubramanian S. High-throughput sequencing of DNA G-quadruplex
890 structures in the human genome. *Nat Biotechnol*. 2015 Jul;33(8):877–881.

891 32. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et
892 al. A 3D Map of the Human Genome at Kilobase Resolution Reveals
893 Principles of Chromatin Looping. *Cell*. 2014 Dec;159(7):1665–1680.

894 33. Drier Y, Lawrence MS, Carter SL, Stewart C, Gabriel SB, Lander ES, et al.
895 Somatic rearrangements across cancer reveal classes of samples with
896 distinct patterns of DNA breakage and rearrangement-induced
897 hypermutability. *Genome Res*. 2013 Feb;23(2):228–235.

898 34. Mourad R, Ginalska K, Legube G, Cuvier O. Predicting double-strand DNA
899 breaks using epigenome marks or DNA at kilobase resolution. *Genome Biol.*
900 2018 Dec;19(1):34.

901 35. Canela A, Maman Y, Jung S, Wong N, Callen E, Day A, et al. Genome
902 Organization Drives Chromosome Fragility. *Cell.* 2017 Jul;170(3):507–
903 521.e18.

904 36. Kaiser VB, Semple CA. When TADs go bad: chromatin structure and nuclear
905 organisation in human disease. *F1000Research.* 2017;6.

906 37. Altemose N, Miga KH, Maggioni M, Willard HF. Genomic Characterization of
907 Large Heterochromatic Gaps in the Human Genome Assembly. *PLoS Comput
908 Biol.* 2014 May;10(5):e1003628.

909 38. Glover TW, Wilson TE, Arlt MF. Fragile sites in cancer: more than meets the
910 eye. *Nat Rev Cancer.* 2017 Aug;17(8):489–501.

911 39. Quint KD, Genders RE, de Koning MN, Borgogna C, Gariglio M, Bavinck JNB, et
912 al. Human Beta-papillomavirus infection and keratinocyte carcinomas. *J
913 Pathol.* 2015 Jan;235(2):342–354.

914 40. Zhang J, Baran J, Cros A, Guberman JM, Haider S, Hsu J, et al. International
915 Cancer Genome Consortium Data Portal—a one-stop shop for cancer
916 genomics data. *Database.* 2011 Sep;2011(0):bar026–bar026.

917 41. Weckselblatt B, Rudd MK. Human Structural Variation: Mechanisms of
918 Chromosome Rearrangements. *Trends Genet.* 2015 Oct;31(10):587–599.

919 42. Viguera E, Canceill D, Ehrlich SD. Replication slippage involves DNA
920 polymerase pausing and dissociation. *EMBO J.* 2001 May;20(10):2587–
921 2595.

922 43. Fungtammasan A, Walsh E, Chiaromonte F, Eckert KA, Makova KD. A
923 genome-wide analysis of common fragile sites: what features determine
924 chromosomal instability in the human genome? *Genome Res.* 2012
925 Jun;22(6):993–1005.

926 44. Irony-Tur Sinai M, Kerem B. DNA replication stress drives fragile site
927 instability. *Mutat Res.* 2018 Mar;808:56–61.

928 45. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR,
929 et al. Discovery and saturation analysis of cancer genes across 21 tumour
930 types. *Nature.* 2014 Jan;505(7484):495–501.

931 46. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, et al. COSMIC:
932 somatic cancer genetics at high-resolution. *Nucleic Acids Res.* 2017
933 Jan;45(D1):D777–D783.

934 47. Wei Y, Zhang S, Shang S, Zhang B, Li S, Wang X, et al. SEA: a super-enhancer
935 archive. *Nucleic Acids Res.* 2016 Jan;44(D1):D172–D179.

936 48. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and
937 characterization. *Nat Methods*. 2012 Feb;9(3):215–216.

938 49. Mrasek K, Schoder C, Teichmann A-C, Behr K, Franze B, Wilhelm K, et al.
939 Global screening and extended nomenclature for 230 aphidicolin-inducible
940 fragile sites, including 61 yet unreported ones. *Int J Oncol*. 2010
941 Apr;36(4):929–940.

942 50. Sima J, Gilbert DM. Complex correlations: replication timing and mutational
943 landscapes during cancer and genome evolution. *Curr Opin Genet Dev*. 2014
944 Apr;25:93–100.

945 51. Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB, Behjati S, et al.
946 Intra-tumour diversification in colorectal cancer at the single-cell level.
947 *Nature*. 2018 Apr;556(7702):457–462.

948 52. Macheret M, Halazonetis TD. Intragenic origins due to short G1 phases
949 underlie oncogene-induced DNA replication stress. *Nature*. 2018
950 Mar;555(7694):112–116.

951 53. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The
952 human genome browser at UCSC. *Genome Res*. 2002 Jun;12(6):996–1006.

953 54. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al.
954 Toward a Shared Vision for Cancer Genomic Data. *N Engl J Med*. 2016
955 Sep;375(12):1109–1112.

956 55. Delignette-Muller ML, Software CDJ of S, 2015. *fitdistrplus*: An R package for
957 fitting distributions. rdrr.io.

958 56. Gel B, Díez-Villanueva A, Serra E, Buschbeck M, 2015. *regioneR*: an
959 R/Bioconductor package for the association analysis of genomic regions
960 based on permutation tests. academic.oup.com.

961

962 **Figure Legends**

963

964 **Figure 1:** DSB frequency and genomic features display similar patterns. The
965 tracks show DSBCapture profiles in NHEK cells, BLESS profiles in NHEK cells,
966 BLISS in K562 cells, and BLISS in MCF7 cells. All tracks are at 50kb resolution
967 over a representative region of chromosome 1, with a variety of chromatin and
968 sequence features to illustrate the similarities between them. Numbers in

969 parenthesis are the spearman's rho between the associated track and the NHEK
970 DSBCapture 1 dataset.

971

972 **Figure 2:** Accurate models of DSB frequency built from chromatin and sequence
973 features. Panels A-D show random forest regression model predictions built
974 upon eleven genomic features at 50kb resolution compared to observed DSB
975 frequencies for four datasets: NHEK DSBCapture, NHEK BLESS, K562 BLISS, and
976 MCF7 BLISS. The y-values reflect the sequencing depth of each dataset. The
977 models' predictions are all highly correlated with the observed data, as shown by
978 the noted Pearson's correlations ($p < 2.2\text{e-}16$ for each dataset). Panels E-H show
979 the predictive features ranked by variable importance, a measure of how useful a
980 particular feature is for the model (see methods).

981

982 **Figure 3:** Modelling accuracy and the polarity of genomic features. A) NHEK
983 DSBCapture 50kb regions data is split into three distinct groups with differing
984 modelling accuracies. Panels B and C show the values of the model features for
985 the two boxes, A and B, and for group C, which contains randomly chosen points
986 along the spectrum of DSB frequency values for the majority of the genome. The
987 columns are ordered by observed DSB frequency, shown on the top row, and the
988 rows for features used to build the model (the third to second to last row) are
989 ordered by average variable importance. The number of 50kb regions in each
990 group is shown in parenthesis above each heatmap. Each feature was
991 normalized, setting the 1st to 99th quantiles to values between 0 and 1, with high
992 outliers (in the top percentile) set to 1.1. B) Group A has high H3K9me3 and low
993 mappability scores, indicative of heterochromatin and repetitive sequence, while

994 B has feature patterns that closely match low DSB values in group C. C) For most
995 of the genome, high H3K9me3 corresponds to low DSB regions, and high, or
996 early, replication timing values and open chromatin values signify high DSB
997 regions.

998

999 **Figure 4:** DSB models improve predictions for non-model cell types. Models
1000 trained using a dataset from one cell type were used to generate predictions for a
1001 different cell type, given the matched features. The dark blue lines mark the
1002 Pearson's correlation between the two cell types. The cell type used to train the
1003 model is indicated by the colour of the bar, and the cell type on which the model
1004 is being applied is shown on the x-axis. In all cases, the random forest model
1005 greatly improves the predictions from a naïve inference, with a 1.3-1.8 fold
1006 improvement in correlation.

1007

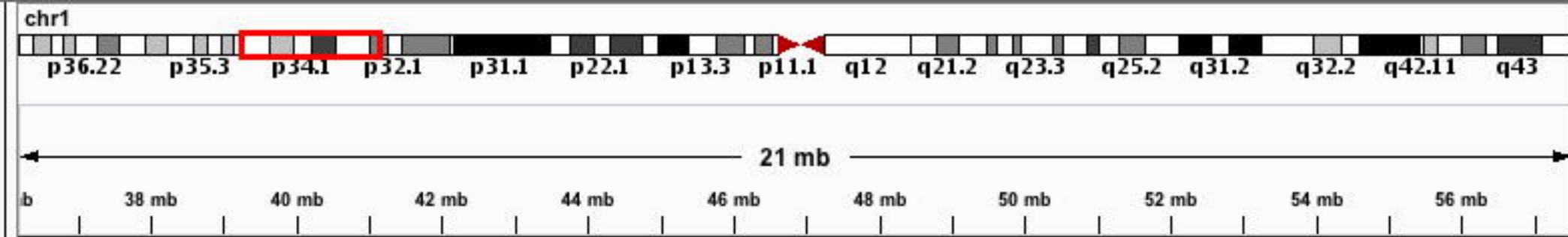
1008 **Figure 5:** Regions enriched for cancer SV breakpoints (ESBs) display a
1009 significant increase in DSB frequency across cancer types. A-C) The regions with
1010 ICGC SV breakpoint frequencies in the top 5% are shown with their predicted
1011 DSB values as violin plots for each of the three cell type models: NHEK, K562, and
1012 MCF7. ICGC cohorts are shown all together (pancancer), and split into three
1013 cancer categories: carcinoma, blood, and breast cancers (see methods). D-F)
1014 ICGC SV breakpoint counts separated by SV type, and the top 5% of ESBs are
1015 shown with their predicted DSB values as violin plots. The numbers following
1016 the x-axis labels are SV breakpoint count cut-offs for the top 5% ESBs, and the
1017 numbers in parenthesis are the number of 50kb regions that meet the cut-off.
1018 For example, there are 225 50kb regions with more than two SV breakpoints in

1019 blood cancers. Stars indicate significantly higher values in DSB predictions for
1020 the ESBs relative to non-ESBs for each category, as determined by a Wilcox
1021 ranked sum test (* for $p \leq 0.05$, ** for $p \leq 0.01$, *** for $p \leq 1e-3$, and **** for
1022 $p \leq 1e-4$).

1023

1024 **Figure 6:** Inference of positively and negatively selected SV regions. A) The
1025 predicted DSB frequencies for regions overlapping RefSeq genes, two sets of
1026 cancer consensus genes, and common fragile sites (CFS) are shown as violin
1027 plots. The stars represent significantly higher values in the region subsets,
1028 compared to genomic regions that do not overlap the given annotation set, using
1029 a Wilcox ranked sum test. B) The same regions as in a), but with d-score values, a
1030 measure of the deviation of the observed breakpoint frequencies from the
1031 predicted or expected DSB frequencies. C) Observed SV breakpoint frequencies
1032 for ICGC carcinomas (excluding breast cancer) with predicted DSB frequencies
1033 from the NHEK DSBCapture model. Each point represents a 50kb region and is
1034 coloured by its d-score. Regions were split into high (cancHpredL) and low
1035 (cancLpredH) d-score categories (d-score p-value < 0.01), a cancHpredH
1036 category, representing regions with d-scores near zero, and a cancHpredL2
1037 category, representing low mappability regions (see methods). D) Each category
1038 was tested for enrichment of various annotations using circular permutation
1039 (see methods). The yellow dotted line marks $p < 0.01$ significance, and the
1040 numbers in parenthesis indicate the number of 50kb regions in each category,
1041 out of 61,903 in total.

1042



NHEK DSBCapture 1

NHEK BLESS 1
(0.831)

K562 BLISS
(0.702)

MCF7 BLISS
(0.711)

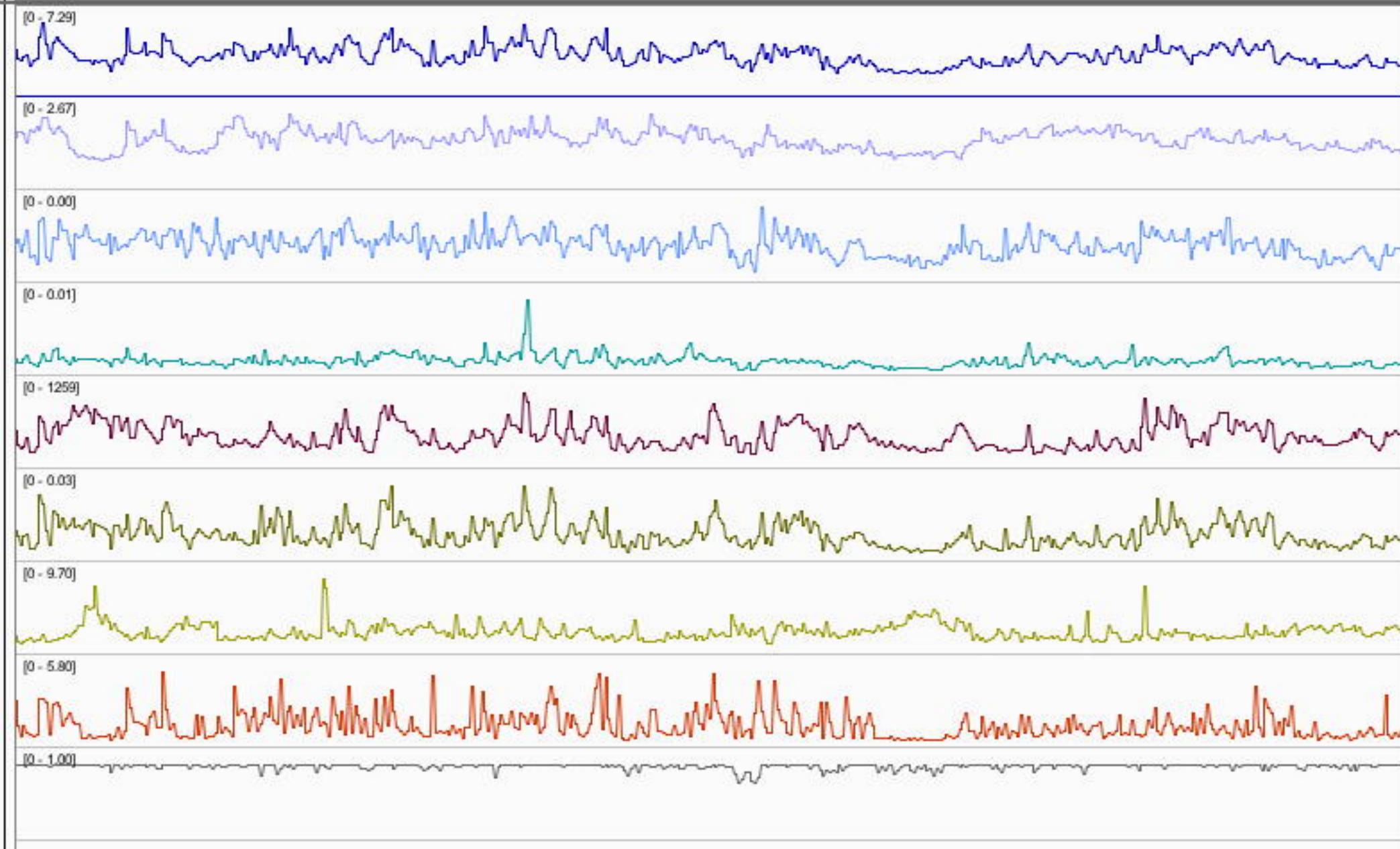
Repli-Seq NHEK
(0.708)

DNase NHEK
(0.863)

H3k9me3 NHEK
(-0.104)

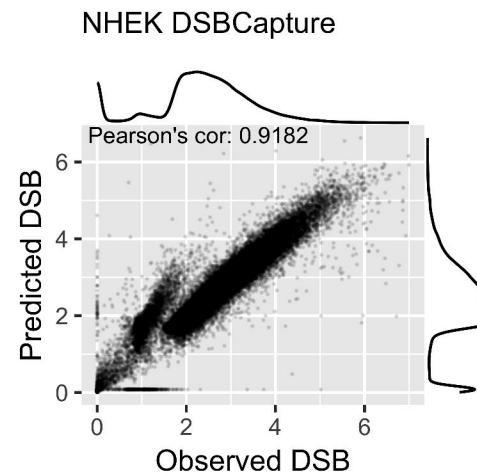
CTCF NHEK
(0.778)

Mapability

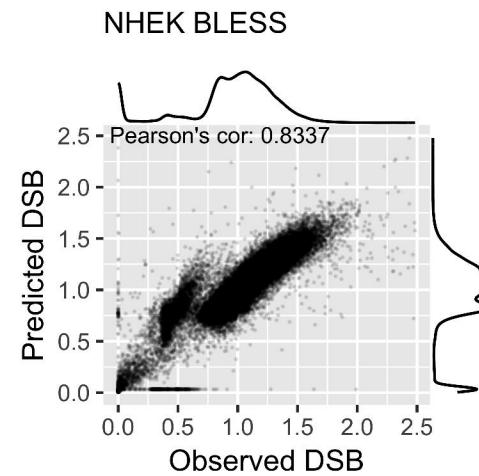


RefSeq Genes

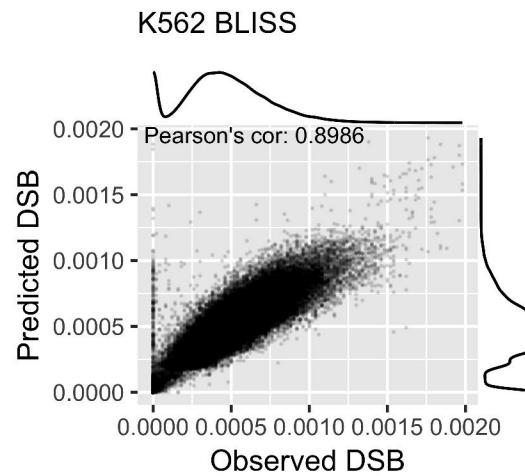
A



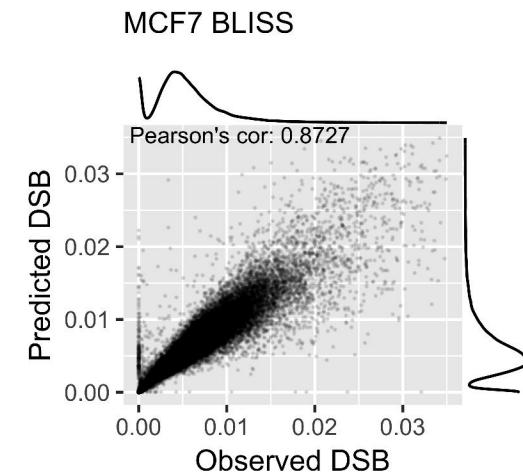
B



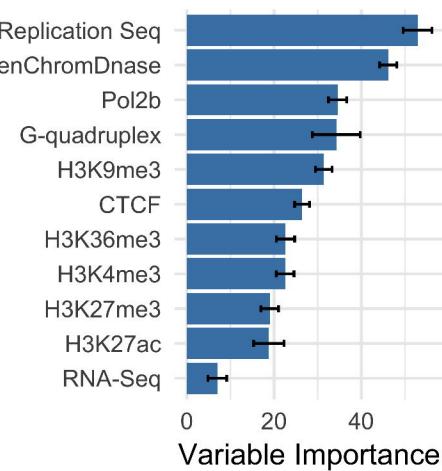
C



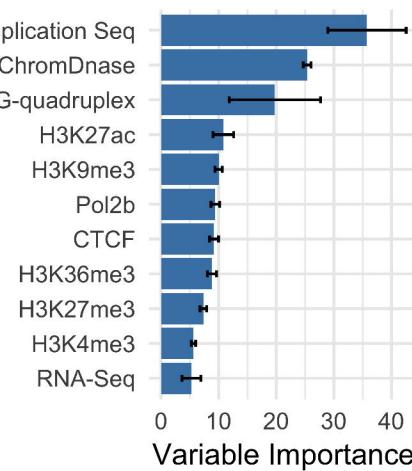
D



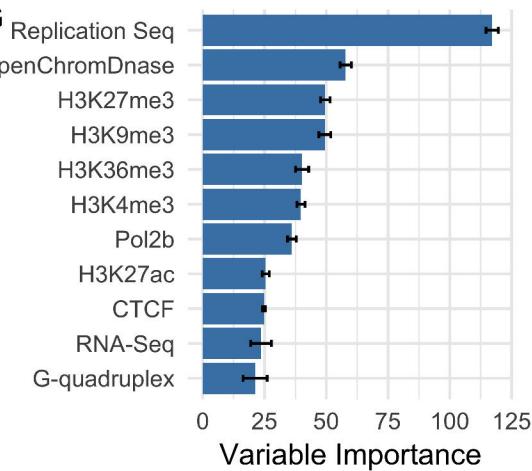
E



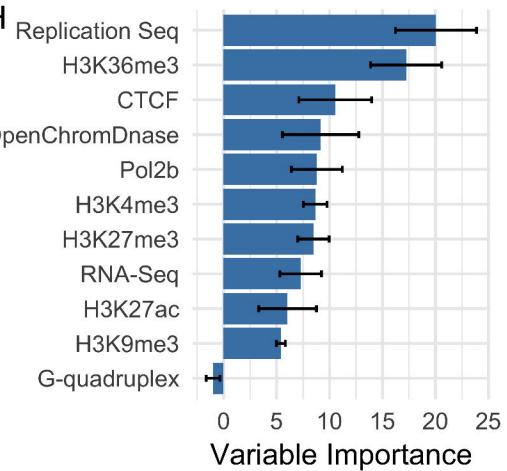
F



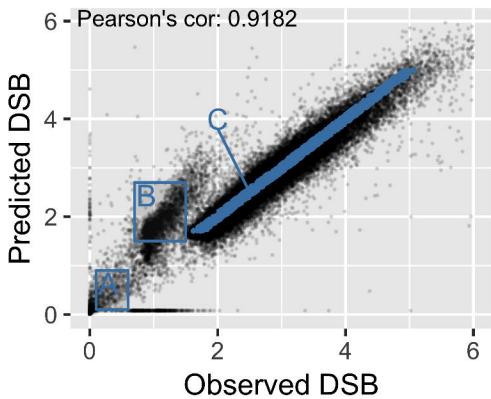
G



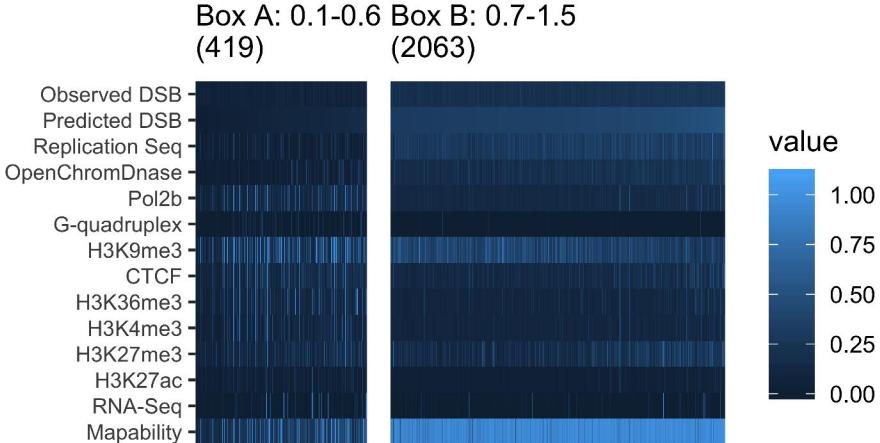
H



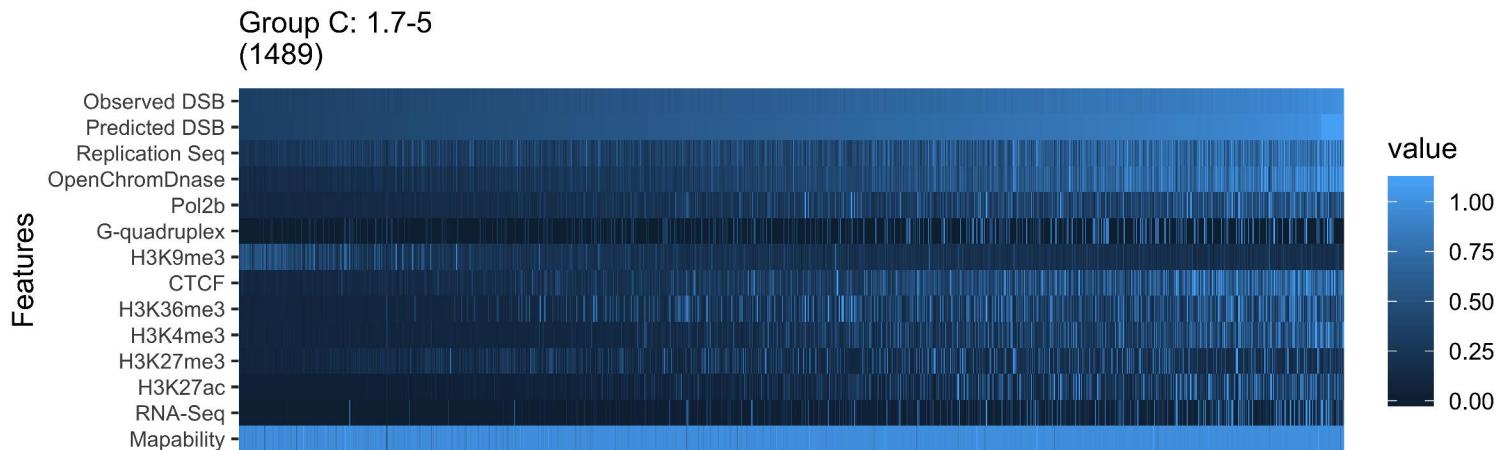
A

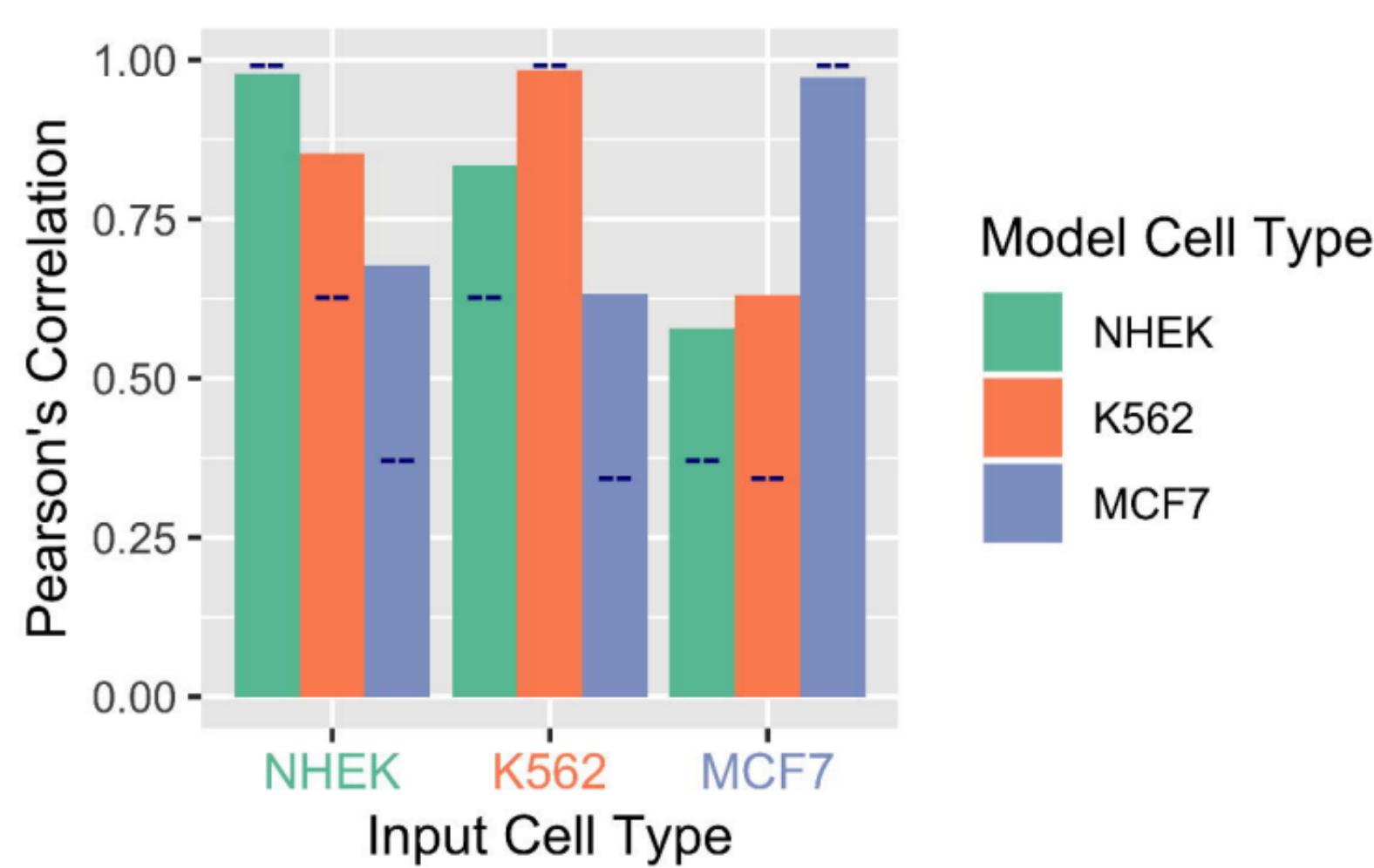


B



C





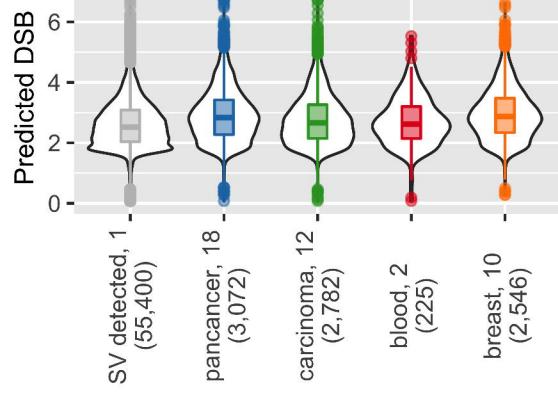
A

ICGC enriched SV breakpoint regions (ESBs), top 5%

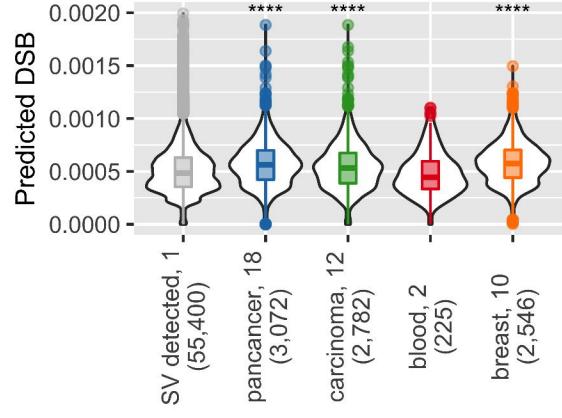
B

C

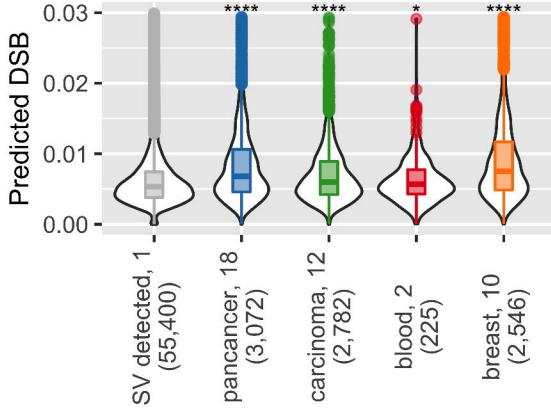
NHEK



K562

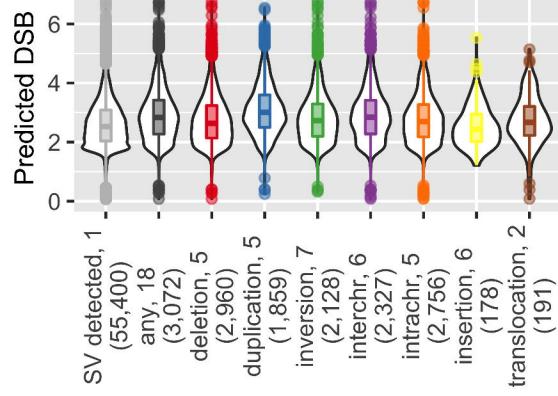


MCF7



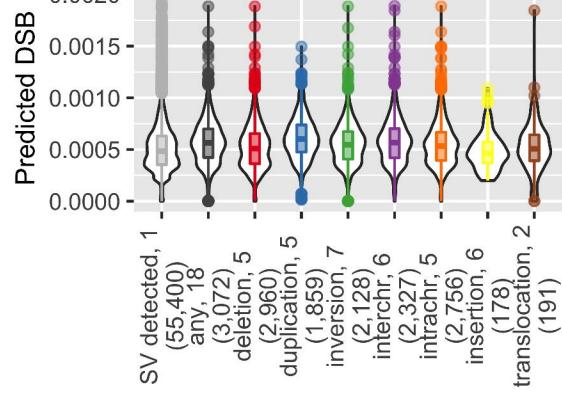
D

NHEK



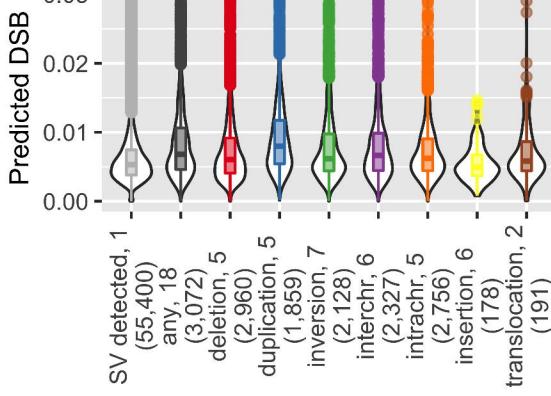
E

K562



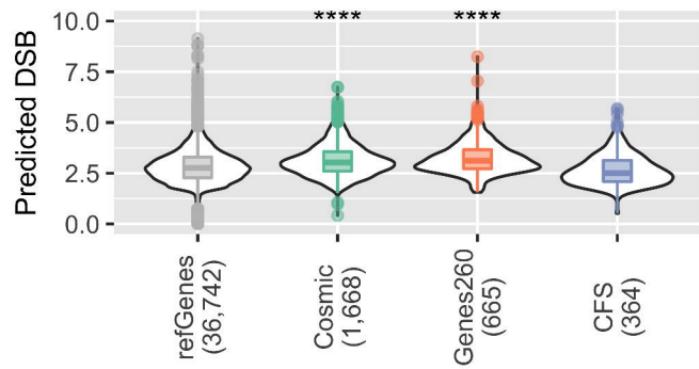
F

MCF7

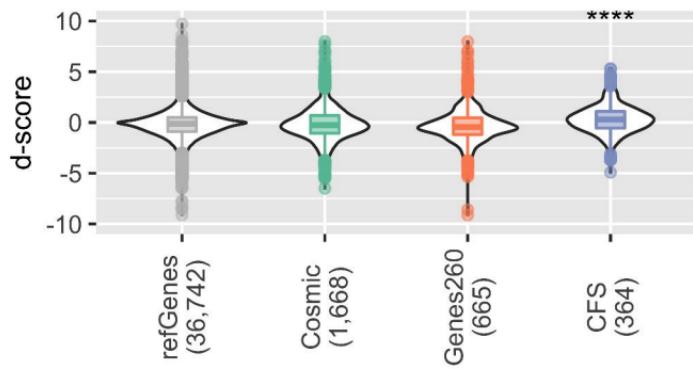


NHEK model with ICGC carcinomas

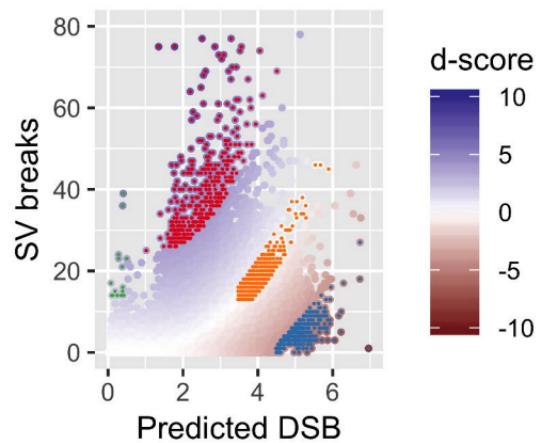
A



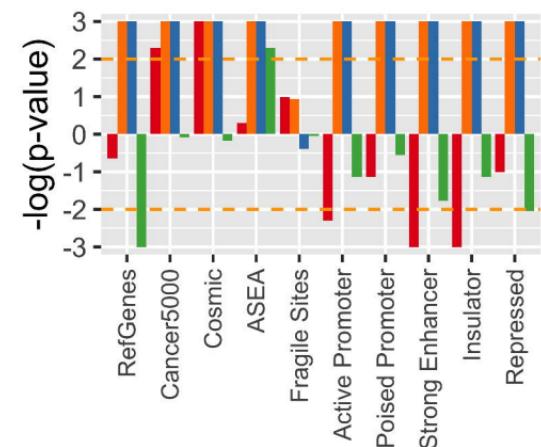
B



C



D



Annotation Set

- cancHpredL (440)
- cancHpredH (657)
- cancLpredH (411)
- cancHpredL2 (16)