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Modelling	DNA	double	strand	breaks	24	

	25	

Abstract	26	

Background:	 Structural	 variants	 (SVs)	 are	known	 to	play	 important	 roles	 in	 a	27	

variety	of	cancers,	but	their	origins	and	functional	consequences	are	still	poorly	28	

understood.	Many	SVs	are	thought	to	emerge	via	errors	in	the	repair	processes	29	

following	 DNA	 double	 strand	 breaks	 (DSBs)	 and	 previous	 studies	 have	30	

experimentally	measured	DSB	frequencies	across	the	genome	in	cell	lines.		31	

Results:	Using	these	data	we	derive	the	first	quantitative	genome-wide	models	32	

of	DSB	susceptibility,	based	upon	underlying	chromatin	and	sequence	 features.	33	

These	 models	 are	 accurate	 and	 provide	 novel	 insights	 into	 the	 mutational	34	

mechanisms	generating	DSBs.	Models	trained	in	one	cell	type	can	be	successfully	35	

applied	to	others,	but	a	substantial	proportion	of	DSBs	appear	to	reflect	cell	type	36	

specific	processes.	Using	model	predictions	as	a	proxy	for	susceptibility	to	DSBs	37	

in	 tumours,	 many	 SV	 enriched	 regions	 appear	 to	 be	 poorly	 explained	 by	38	

selectively	neutral	mutational	bias	alone.	A	substantial	number	of	these	regions	39	

show	 unexpectedly	 high	 SV	 breakpoint	 frequencies	 given	 their	 predicted	40	

susceptibility	to	mutation,	and	are	therefore	credible	targets	of	positive	selection	41	

in	 tumours.	 These	 putatively	 positively	 selected	 SV	 hotspots	 are	 enriched	 for	42	
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genes	 previously	 shown	 to	 be	 oncogenic.	 In	 contrast,	 several	 hundred	 regions	43	

across	 the	 genome	 show	 unexpectedly	 low	 levels	 of	 SVs,	 given	 their	 relatively	44	

high	 susceptibility	 to	 mutation.	 These	 novel	 ‘coldspot’	 regions	 appear	 to	 be	45	

subject	to	purifying	selection	in	tumours	and	are	enriched	for	active	promoters	46	

and	enhancers.		47	

Conclusions:	 We	 conclude	 that	 models	 of	 DSB	 susceptibility	 offer	 a	 rigorous	48	

approach	to	the	inference	of	SVs	putatively	subject	to	selection	in	tumours.	49	

	50	

Keywords:	 Double	 strand	 break,	 cancer,	 structural	 variaton,	 chromatin,	51	

modelling	52	

	53	

Background	54	

	55	

Structural	variation	(SV)	in	tumour	genomes	is	known	to	play	important	roles	in	56	

disease	 progression	 and	may	 be	 critical	 in	 driving	 the	 development	 of	 certain	57	

cancer	types	(1–3).	However,	challenges	remain	not	only	in	ascertaining	accurate	58	

SV	calls,	as	evidenced	by	the	compendium	of	SV	calling	algorithms	used	in	many	59	

projects	 (4–6),	 but	 also	 in	 predicting	 their	 functional	 impact.	 Some	 SVs	 have	60	

apparently	direct	consequences;	for	example,	amplification	of	oncogenes	leading	61	

to	 overexpression,	 deletion	 of	 tumor	 suppressors	 leading	 to	 dysfunction,	 and	62	

translocations	 generating	 oncogenic	 fusion	 proteins	 (4).	 Reportedly	 indirect	63	

consequences	 of	 SVs	 include	 changes	 in	 enhancer	 targeting,	 affecting	 the	64	

expression	 of	 nearby	 genes,	 or	 “enhancer	 hijacking”	 (7).	 However,	 it	 remains	65	
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challenging	 to	 distinguish	 the	 influences	 of	 evolutionary	 selection	 versus	66	

primary	mutation	rate	in	generating	the	SVs	concerned.	67	

	68	

A	 recent	 study	 of	whole	 genome	 sequencing	 (WGS)	 data	 from	 breast	 tumours	69	

identified	SV	hotspots	and	putative	driver	SVs,	but	could	not	discern	the	relative	70	

contributions	 of	 mutational	 bias	 and	 selection	 underlying	 these	 hotspots	 (8).	71	

Resolving	 the	 influences	of	mutational	 bias	 versus	 selective	 forces	has	become	72	

critical	 given	 that	 both	 single	 nucleotide	 variant	 (SNV)	 and	 SV	mutation	 rates	73	

vary	widely	across	the	genome,	in	parallel	with	replication	timing	and	chromatin	74	

structure	 (9,10).	 In	analyses	of	 tumour	SNVs,	 variants	are	 routinely	prioritized	75	

based	 on	 algorithms	 including	 corrections	 for	 estimates	 of	 SNV	mutation	 rate	76	

variation	(11),	but	analogous	methods	are	not	yet	applied	to	SVs.	77	

	78	

Variable	 rates	 of	 SVs	 observed	 across	 the	 genome	 are	 likely	 to	 be	 affected	 by	79	

differences	in	the	efficiency	of	repair	of	DNA	double	strand	breaks	(DSBs).	DSBs	80	

can	be	repaired	by	homologous	recombination	(HR)	at	the	G2	and	S	stages	of	the	81	

cell	 cycle	 and,	 more	 commonly,	 by	 canonical	 non-homologous	 end	 joining	 (c-82	

NHEJ)	which	operates	throughout	the	cell	cycle	(12).	The	c-NHEJ	process	is	error	83	

prone	and	has	been	shown	to	create	structural	variants	initiating	carcinogenesis	84	

(13).	A	third	repair	process,	alternative	NHEJ	(alt-NHEJ)	uses	microhomology	to	85	

mediate	repairs	when	the	c-NHEJ	pathway	is	unavailable,	and	repair	by	alt-NHEJ	86	

appears	 to	 increase	 the	 rate	of	deletions,	 insertions,	 and	 translocations	 further	87	

(14).	 The	 efficiency	 of	 these	 repair	 processes	 is	 often	 dependent	 upon	 the	88	

chromatin	features	and	nuclear	organization	present	where	the	damage	occurs.	89	

For	 example,	 the	 histone	 modification	 H3K36me3,	 associated	 with	 active	90	
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transcription,	 recruits	 the	 HR	 pathway,	 while	 H4K20me1,	 a	 mark	 of	 highly	91	

transcribed	 genes,	 recruits	 components	 of	 the	 NHEJ	 pathway	 (15).	 The	92	

associations	between	DSB	 repair	 and	 the	underlying	 chromatin	 landscape	may	93	

therefore	 explain	 the	 observed	 correlations	 between	 tumour	 SV	 rates	 and	94	

chromatin	structure	(9).	95	

	96	

Previous	studies	have	also	shown	DSB	formation	to	be	influenced	by	underlying	97	

chromatin	 structures	 and	 genomic	 sequences.	 It	 has	 long	 been	 known	 that	98	

certain	 cytogenetically	 mapped	 loci,	 termed	 “fragile	 sites”	 undergo	 recurrent	99	

DSBs	 in	 cells	 under	 replicative	 stress	 and	 in	 cancer	 (16).	 More	 recent	 high	100	

throughput	sequencing	(HTS)	based	approaches	have	been	developed	to	profile	101	

DSB	 rates	more	precisely	within	 in	vitro	 populations	of	 cells	 (17–25).	Three	of	102	

these	methods,	BLESS	(18),	DSBCapture	(22),	and	BLISS	(25)	are	closely	related	103	

and	 have	 been	 used	 to	 generate	 high-resolution	 maps	 of	 endogenous	 DSBs	104	

occurring	 in	 human	 cell	 lines,	 resulting	 in	 continuous	 data	 reflecting	 the	105	

propensities	for	DSBs	across	all	chromosomes.	These	studies	have	suggested	that	106	

DSBs	 may	 preferentially	 occur	 within	 nucleosome-depleted	 regions,	 are	107	

correlated	with	 active	 promoter	 and	 enhancer	 histone	modifications,	 and	may	108	

associate	with	 G-quadruplex	 sites	 (22,26).	 Certain	 studies	 have	 also	 suggested	109	

DSBs	 to	 be	 depleted	 in	 some	 transposon	 classes	 and	 enriched	 in	 some	 simple	110	

repeat	 classes,	 and	 to	 be	 unusually	 frequent	 in	 long,	 late-replicating	 genes	111	

(18,24).	 Overall,	 previous	 studies	 have	 found	 correlations	 and	 enrichments	112	

between	 DSBs	 and	 various	 inter-correlated	 chromatin	 and	 genomic	 features,	113	

making	it	difficult	to	accurately	assess	the	contribution	of	any	particular	feature	114	

to	 DSB	 susceptibility.	 Understanding	 such	 contributions	 can	 be	 valuable	 for	115	
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understanding	the	underlying	mutational	and	repair	mechanisms.	In	addition,	a	116	

fuller	 understanding	 of	 the	 relative	 contributions	 of	 many	 features	 to	 DSB	117	

formation	can	allow	reliable	predictions	of	the	expected	DSB	frequency	in	a	given	118	

genomic	region.	119	

	120	

Random	 forests	 have	 been	 used	 to	 model	 a	 variety	 of	 biological	 phenomena	121	

because	 they	 perform	 well	 in	 the	 presence	 of	 inter-correlated	 input	 variables	122	

showing	non-linear	 relationships.	 For	 example,	 they	have	been	used	 to	predict	123	

nuclear	 compartments	 (27),	 cancer	 SNV	 mutational	 landscapes	 (28),	 and	124	

enhancer-promoter	 interactions	(29).	 In	 this	study	we	construct	random	forest	125	

regression	models	to	generate	quantitative	measures	of	the	relative	importance	126	

of	a	variety	of	matched	chromatin	and	other	 features	 to	DSB	susceptibility.	We	127	

use	 multiple,	 high-resolution	 DSB	 profiling	 datasets	 to	 compare	 modeling	128	

accuracy	 across	 several	 platforms	 and	 cell	 types.	 The	 cell	 types	 selected	 have	129	

also	been	extensively	profiled	for	a	variety	of	chromatin	features	by	the	ENCODE	130	

Project	(30)	and	others,	allowing	well-matched	models	to	be	constructed	for	all	131	

datasets.	We	demonstrate	that	these	models	provide	accurate	estimates	 for	the	132	

expected	rate	of	DSBs	 in	a	given	region	and	can	be	cross	applied	between	DSB	133	

datasets.	 In	 addition	 the	models	 can	be	used	 to	 explore	 tumour	 SV	breakpoint	134	

data,	to	nominate	novel	regions	putatively	subject	to	selection	in	cancer.	135	

	136	

Results	137	

	138	

We	 uniformly	 processed	 four	 DSB	 datasets	 from	 three	 related	 platforms	139	

(DSBCapture	 and	 BLISS	 are	 both	 based	 upon	 modifications	 to	 the	 BLESS	140	
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protocol)	 and	 covering	 three	 different	 cell	 types,	 collating	matched	 chromatin	141	

data	 for	each.	These	datasets	 include	 two	novel	DSB	mapping	datasets	derived	142	

from	 the	 K562	 erythroleukemia	 and	 MCF7	 breast	 cancer	 cell	 lines	 using	 the	143	

recently	 developed	 BLISS	 method	 (25)	 (see	 Methods)	 and	 two	 previously	144	

published	DSB	mapping	datasets	 derived	 from	 the	NHEK	keratinocyte	 cell	 line	145	

using	BLESS	 and	DSBCapture	 (22)	 protocols.	DSB	 frequency	 is	 defined	 in	 each	146	

dataset	 as	 the	 number	 of	 unique	 reads	mapping	 to	 a	 given	 50kb	 region,	 since	147	

each	read	 in	a	DSBCapture,	BLESS,	or	BLISS	experiment	represents	an	exposed	148	

DNA	 DSB	 end.	 Replicate	 experiments	 within	 each	 dataset	 were	 strongly	 and	149	

significantly	 correlated	 (Pearson’s	 r	 =	 0.905	 to	 0.992,	 p<2.2e-16)	 and	 were	150	

combined	 to	 reduce	noise,	 although	random	 forest	models	generated	 from	any	151	

single	 one	 of	 the	 replicates	 yielded	 very	 similar	 results	 (see	 Methods).	152	

Comparisons	 among	 DSB	 profiling	 datasets	 showed	 moderate	 correlations	 in	153	

genome-wide	DSB	frequency	between	the	three	cell	types	as	expected	(r	=	0.351	154	

to	0.635,	p<2.2e-16),	shown	in	Supp	Figure	1.	All	three	cell	types	correspond	to	155	

well-characterized	 ENCODE	 cell	 lines,	 providing	 numerous	matched	 chromatin	156	

and	genomic	 features	 exhibiting	a	 range	of	 correlations	 to	DSB	 (Figure	1),	 and	157	

are	also	inter-correlated	themselves	(Supp	Figure	2).	158	

	159	

Accurate	models	of	genome-wide	DSB	frequency	across	cell	types		160	

	161	

We	 modeled	 DSB	 frequency	 at	 50kb	 resolution,	 using	 the	 same	 ten	 matched	162	

genomic	 features	 from	 each	 cell	 type	 to	 construct	 random	 forest	 models	 (see	163	

Methods):	open	chromatin	assayed	by	DNase-seq,	POL2B	binding,	CTCF	binding	164	

and	 five	 histone	modifications	 assayed	by	ChIP-seq,	 replication	 timing	 assayed	165	
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by	Repli-seq,	and	RNA-seq.	We	also	included	G-quadruplex	forming	regions	as	an	166	

additional	 feature,	 since	 these	 DNA	 secondary	 structures	 are	 associated	 with	167	

genomic	 instability	 (31).	We	 found	strong	and	significant	 correlations	between	168	

predicted	 and	 observed	 DSB	 frequency	 for	 all	 four	 datasets,	 with	 Pearson’s	169	

coefficients	ranging	from	0.83	to	0.92	(Figure	2).	We	also	generated	a	model	for	170	

the	 NHEK	DSBCapture	 dataset	 using	 an	 extended	 set	 of	 21	 features,	 including	171	

additional	 histone	 modifications,	 histone	 variants,	 and	 nuclear	172	

compartmentalization	 from	 Hi-C	 data	 (32).	 This	 extended	 model	 resulted	 in	173	

better	predictive	results	 for	a	small	 fraction	of	the	genome	(Supp	Figure	4,	Box	174	

B),	 and	 a	 modestly	 increased	 genome-wide	 Pearson’s	 coefficient	 between	175	

predicted	and	observed	values	(11	feature	model	r	=	0.918;	21	feature	model	r	=	176	

0.922).	 We	 conclude	 that	 models	 constructed	 using	 the	 11	 selected	 genomic	177	

features	 (Figure	 2)	 provide	 high	 predictive	 accuracy	 across	 cell	 types,	 with	178	

additional	features	likely	to	provide	only	marginal	gains.	179	

	180	

Variable	 importance	 metrics	 for	 these	 models	 reveal	 consistent	 trends	 in	 the	181	

most	influential	features	in	DSB	frequency	prediction	(Figure	2,E-H).	Replication	182	

timing	 is	 the	 most	 important	 feature	 across	 all	 three	 models	 with	 early	183	

replication	associated	with	high	DSB	regions	and	 late	replication	with	 low	DSB	184	

(Figure	 3C),	 in	 agreement	 with	 previous	 studies	 (33).	 In	 addition,	 the	 histone	185	

modifications	 H3K36me3	 and	 H3K9me3	 (demarcating	 active	 genes	 and	 gene-186	

poor	 heterochromatin	 respectively)	 emerge	 as	 informative	 features,	 with	187	

H3K36m3	 enriched	 in	 high	 DSB	 regions	 and	 H3K9me3	 in	 low	 DSB	 regions	188	

(Figure	 3C).	 This	 is	 consistent	 with	 observations	 that	 structural	 variants	189	

disproportionately	 accumulate	within	 the	 early	 replicating,	 relatively	 gene	 rich	190	
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regions	of	 the	 genome	 in	 cancer,	 and	are	 relatively	depleted	 in	 late	 replicating	191	

heterochromatin	 (9,10).	 DNase-seq	 open	 chromatin	 ranks	 second	 in	 three	192	

datasets	and	fourth	in	the	MCF7	model	and	is	also	the	most	important	feature	for	193	

predicting	 DSB	 peaks	 in	 the	 study	 of	Mourad	 et	 al.	 (34)	 in	which	 they	 do	 not	194	

include	 replication	 timing.	 The	 influence	 of	 G-quadruplex	 forming	 regions	 is	195	

notably	variable,	ranking	as	a	relatively	important	feature	in	the	NHEK	datasets,	196	

but	having	little	and	no	predictive	value	in	the	K562	and	MCF7	datasets.	RNA-seq	197	

is	 not	 a	 strong	 predictor	 of	 DSB	 susceptibility	 although	 DNase-seq	 peaks	 are	198	

often	 found	 at	 the	 promoter	 regions	 of	 active	 genes.	 This	 suggests	 that	 open	199	

chromatin	at	 transcriptionally	 active	genes	and	associated	 regulatory	elements	200	

(reflected	 in	 DNase-seq,	 H3K4me3	 and	 POL2B	 binding),	 rather	 than	201	

transcription	per	se,	 is	the	dominant	influence	on	DSB	frequency.	CTCF	binding	202	

also	appears	to	be	an	informative	variable,	genome-wide	in	all	models,	though	it	203	

binds	at	sites	constituting	a	very	small	fraction	of	the	genome.	Given	the	critical	204	

roles	 of	 CTCF	 in	 chromatin	 architecture	 and	 regulation	 (32),	 there	 has	 been	205	

intense	interest	 in	the	causes	and	effects	of	structural	variants	disrupting	CTCF	206	

binding	sites	(35,36).	207	

	208	

Influential	features	underlying	DSB	frequency	differ	between	genomic	loci	209	

and	cell	types	210	

	211	

Beyond	the	general,	genome-wide	trends	described	above,	we	see	differences	in	212	

the	 behavior	 of	 certain	 classes	 of	 loci.	 These	 are	 evident	 as	 regions	 departing	213	

from	 the	 linear	 relationship	 between	 observed	 and	 predicted	 DSB	 frequency	214	

seen	for	the	majority	of	the	genome	(Figure	3A;	Supp	Fig	4).	Deeper	exploration	215	
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of	 the	 relationships	 between	 underlying	 genomic	 features	 and	 DSB	 frequency	216	

reveals	diagnostic	features	for	these	discrepant	classes.	One	class	of	loci	(Figure	217	

3,	 Box	 A)	 shows	 unusually	 low	 values	 for	 both	 predicted	 and	 observed	 DSB	218	

frequencies,	 and	 is	 enriched	 for	 H3K9me3	 marked	 heterochromatin	 and	 low	219	

sequence	 mappability	 (Figure	 3B).	 These	 regions	 are	 likely	 to	 correspond	 to	220	

repeat-rich	 regions	 near	 centromeres	 and	 on	 the	 short	 arms	 of	 acrocentric	221	

chromosomes,	which	are	problematic	for	read	mapping	algorithms	(37).	Another	222	

class	of	H3K9me3	heterochromatin	enriched	loci	shows	higher	DSB	predictions	223	

than	observed,	in	spite	of	high	mappability	values	(Figure	3,	Box	B).	This	class	of	224	

regions	is	absent	in	DSB	datasets	generated	by	the	BLISS	protocol	(Figure	2),	so	225	

these	aberrant	predictions	may	reflect	technical	and	methodological	differences	226	

between	datasets.	In	any	case,	it	is	clear	that	model	predictions	may	reasonably	227	

be	expected	to	be	less	accurate	in	heterochromatic	regions.	228	

	229	

The	 similarities	 in	 relative	 variable	 importance	 across	 datasets	 (Figure	 2)	230	

suggest	that	many	features	have	a	similar	influence	on	DSB	frequency	in	each	of	231	

the	three	cell	types.	Thus,	a	model	trained	in	one	cell	type	might	generalize	well	232	

to	another	cell	 type	and	allow	us	to	generate	predictive	DSB	frequency	profiles	233	

for	model	cell	lines	currently	lacking	high	resolution	DSB	data.	We	cross-applied	234	

models	 and	 found	 models	 trained	 in	 one	 cell	 type	 often	 performed	 well	 in	235	

another	(Figure	4).	For	example,	a	model	trained	in	NHEK	cells	could	be	used	to	236	

predict	 DSB	 frequencies	 in	 K562	 cells	 (inputting	 K562	 genomic	 features)	with	237	

high	accuracy	(Pearson’s	r	=	0.85	correlation;	Figure	4).	This	offers	a	substantial	238	

improvement	 over	 the	 base	 correlation	 (r	 =	 0.63)	 between	 NHEK	 and	 K562	239	

observed	DSB	profiles.	We	measured	the	correlation	of	observed	and	predicted	240	
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DSB	 frequencies	 across	 all	 nine	 model	 and	 feature	 combinations	 and	 always	241	

found	correlations	(r	=	0.58	to	0.85)	that	improved	on	the	base	correlations	(r	=	242	

0.38	 to	 0.63)	 seen	 between	 the	 observed	 DSB	 datasets	 (Figure	 4).	 These	243	

improvements	 echo	 the	 similarities	 in	 variable	 importance	 between	 cell	 types	244	

(Figure	 2).	 The	 moderate	 correlations	 between	 DSB	 across	 cell	 types	245	

demonstrate	 that	 a	 substantial	 proportion	 of	 DSB	 susceptibility	 across	 the	246	

genome	 is	 cell	 type	 specific,	 which	 is	 consistent	with	 the	 established	 cell	 type	247	

specific	properties	of	many	SV	breakpoint	regions	in	tumours,	such	as	common	248	

fragile	 sites	 (38).	 Furthermore	 the	 larger	 performance	 gap	 in	 models	 for	 cell	249	

lines	with	 altered	 variable	 rankings	 indicates	 that	DSB	mechanisms	may	differ	250	

across	cell	types	and	may	not	be	completely	captured	via	epigenomic	features.	251	

	252	

Tumour	SV	breakpoints	possess	variable	susceptibility	to	DSBs	253	

	254	

Keratinocytes	 are	 considered	 to	 be	 the	 cell	 type	 of	 origin	 for	 mucosal	 and	255	

cutaneous	 carcinomas,	 particularly	 squamous	 cell	 carcinomas	 (39),	 and	 NHEK	256	

cells	are	often	used	in	the	literature	as	a	model	for	these	cancers.	Similarly,	MCF7	257	

cells	and	K562	cells	have	been	used	extensively	as	models	for	breast	and	blood	258	

cancers	 respectively.	 This	 motivated	 us	 to	 ask	 how	 the	 DSB	models	 for	 these	259	

three	cell	 types	relate	 to	 the	patterns	of	SV	breakpoints	observed	 in	squamous	260	

cell	carcinomas,	blood	cancers,	and	breast	tumours.	261	

	262	

A	number	of	large	structural	variant	(SV)	collections	have	been	established	for	a	263	

variety	of	tumour	types,	and	each	possesses	advantages	and	shortcomings.	The	264	

International	 Cancer	 Genome	 Consortium	 (ICGC)	 provides	 high	 resolution	 SV	265	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 13, 2018. ; https://doi.org/10.1101/441832doi: bioRxiv preprint 

https://doi.org/10.1101/441832
http://creativecommons.org/licenses/by/4.0/


	 12	

calls	based	upon	whole	genome	sequencing	(WGS)	for	2,146	patients	across	17	266	

cohorts	(40),	but	sample	cellularities,	sequencing	depths	and	SV	calling	methods	267	

vary	 across	 cancer	 cohorts,	 and	 are	 expected	 to	 affect	 results	 (Supp	Figure	 6).	268	

The	Cancer	Genome	Atlas	(TCGA)	produced	consistently	processed	copy	number	269	

variant	 (CNV)	 calls	 from	 SNP	 chip	 data	 for	 23,084	 patients	 across	 33	 cohorts	270	

(Supp	Figure	7).	However,	breakpoint	resolution	is	much	lower	than	calls	based	271	

upon	 WGS,	 and	 copy	 neutral	 SVs	 such	 as	 inversions	 and	 translocations	 are	272	

absent.	We	analyzed	 ICGC	and	TCGA	data	as	pancancer	datasets,	 combining	all	273	

cancer	types	together,	but	also	as	three	cancer	type	subgroups.	TCGA	subgroups	274	

comprised	 a	 squamous	 cell	 carcinoma	 subgroup,	 a	 blood	 cancers	 subgroup	275	

including	 two	 blood	 cancers,	 and	 breast	 cancer	 as	 a	 separate	 group	 (see	276	

Methods).	 Similar	 ICGC	 subgroups	were	 formed	 (from	 cohorts	 independent	 of	277	

TCGA),	 but	 with	 the	 squamous	 cell	 carcinoma	 subgroup	 replaced	 with	 a	278	

carcinoma	subgroup,	which	 includes	 seven	 carcinoma	cancer	 studies	excluding	279	

breast	cancer	(see	Methods).	280	

	281	

Analogously	 to	 the	 DSB	 datasets,	 we	 determined	 the	 number	 of	 tumour	 SV	282	

breakpoints	 per	 50kb	 region	 for	 each	 of	 the	 ICGC	 and	 TCGA	 SV	 datasets	 (see	283	

methods)	and	compared	these	to	the	DSB	predictions	from	our	models.	In	ICGC	284	

data	overall	we	saw	low	correlations	between	the	number	of	SV	breakpoints	and	285	

DSB	predictions	 (Supp	Figure	8	and	Supp	Figure	9).	Restricting	our	analysis	 to	286	

ICGC	enriched	SV	breakpoint	regions,	or	ESBs	for	the	purpose	of	this	manuscript	287	

(50kb	 regions	 with	 SV	 breakpoint	 counts	 in	 the	 top	 5%	 genome-wide,	 see	288	

Methods),	 increased	 the	 agreement	 with	 DSB	 model	 predictions.	 Significant	289	

increases	 in	 NHEK	 and	 MCF7	 model	 predictions	 were	 seen	 for	 pancancer,	290	
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carcinoma,	blood,	and	breast	tumour	ESBs	and	in	K562	model	predictions	for	all	291	

cancer	 subsets	 except	 blood	 ESBs	 (Figure	 5).	 The	 significant	 increase	 in	 DSB	292	

model	 predictions	 seen	 for	 carcinoma	 ESBs	 indicates	 that	 DSB	 susceptibility	293	

(captured	in	the	models)	may	shape	the	SV	landscape	of	these	cancer	types.	We	294	

also	 see	 a	 significant	 increase	 in	DSB	predictions	 for	 TCGA	blood	 cancer	 ESBs,	295	

but	 not	 for	 any	 other	 subgroups	 in	 TCGA	 data	 (Supp	 Figure	 10).	 However,	 as	296	

mentioned,	 TCGA	 data	 is	 of	 low	 resolution	 and	 not	 suitable	 for	 accurate	297	

breakpoint	detection.	298	

	299	

Certain	 classes	 of	 relatively	 simple	 SVs	 (deletions,	 duplications,	 inversions,	300	

translocations)	 are	often	 the	product	of	 one	or	 two	DSBs,	while	more	 complex	301	

intrachromosomal	 rearrangements	 can	 be	 difficult	 to	 classify	 accurately,	 and	302	

may	have	origins	in	poorly	understood	phenomena	such	as	chromothripsis	(41).	303	

Indeed,	 even	 for	 simple	 SVs	 there	 may	 be	 some	 ambiguity,	 with	 an	 unknown	304	

fraction	 arising	 by	 mechanisms	 that	 may	 not	 involve	 a	 DSB.	 For	 example,	305	

insertions	can	arise	 from	transposon	activity,	and	duplications	from	replication	306	

slippage	(42).	However,	even	if	many	SV	breakpoints	do	not	arise	from	DSBs,	we	307	

might	 reasonably	 expect	 to	 see	 shifts	 to	 higher	median	 DSB	model	 prediction	308	

values	 for	 many	 simple	 SV	 classes.	 We	 determined	 ESBs	 as	 above	 for	 ICGC-309	

annotated	 SV	 classes	 across	 all	 ICGC	 tumour	 types	 to	 examine	 their	 DSB	310	

frequency	predictions,	compared	to	non-ESBs,	50kb	regions	that	do	not	attain	SV	311	

breakpoint	 counts	 in	 the	 top	 5%	 with	 at	 least	 one	 tumour	 SV	 breakpoint	312	

detected.	Overall,	the	models	show	significant	elevations	for	ESBs	covering	all	SV	313	

classes	 except	 insertions	 (Figure	 5).	 Insertions	may	 be	 less	 influenced	 by	 DSB	314	

susceptibility	 because	 they	may	 occur	 via	 transposable	 element	 activity	 rather	315	
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than	 through	 DNA	 damage	 and	 repair	 pathways.	 	 Crosetto	 et	 al.	 (18)	 find	 an	316	

enrichment	of	 satellite	 repetitive	 elements	 in	 regions	 enriched	 for	DSB	 in	 cells	317	

exposed	 to	 aphidicolin.	 However,	 regions	 that	 undergo	 DSB	 under	 replicative	318	

stress,	as	induced	by	aphidicolin,	may	differ	from	DSB	regions	under	normal	cell	319	

growth	conditions.				320	

	321	

Interrogating	tumour	SV	data	at	common	fragile	sites	with	DSB	models	322	

	323	

The	predicted	DSB	frequencies	from	our	models	and	ICGC	tumour	SV	breakpoint	324	

frequencies	 differ	 in	 their	 scaling	 and	 distributions	 and	 are	 not	 directly	325	

comparable.	However,	 it	 is	 of	 interest	 to	 identify	 outlier	 regions,	where	model	326	

predictions	and	observed	tumour	SV	breakpoint	rates	diverge	most,	since	these	327	

regions	 may	 include	 loci	 under	 selection	 in	 tumours.	 We	 developed	 a	 novel	328	

metric,	 the	 d-score,	 to	 measure	 this	 divergence	 between	 expectations	 given	 a	329	

DSB	model	 and	 observed	 SV	 breakpoint	 rates	 in	 tumours.	 In	 brief,	 this	metric	330	

relies	on	fitting	known	distributions	to	the	observed	SV	breakpoint	dataset	and	331	

to	 the	 predicted	 DSB	 dataset.	 Based	 upon	 the	 known	 distributions	 we	 then	332	

transform	 the	 observed	 SV	 counts	 and	 predicted	 DSB	 values	 to	 p-values,	333	

reflecting	 the	 probability	 that	 each	 value	 is	 drawn	 from	 the	 fitted	 distribution	334	

(see	Methods).	For	each	50kb	region	in	the	genome	the	difference	between	the	335	

SV	 breakpoint	 log	 p-value	 and	 the	 predicted	 DSB	 log	 p-value	 is	 the	 d-score.	336	

Regions	 with	 unexpectedly	 high	 d-scores	 contain	 more	 SV	 breakpoints	 than	337	

expected,	given	our	model,	whereas	regions	with	unusually	low	d-scores	contain	338	

fewer	SV	breakpoints	than	expected.	339	

	340	
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Common	fragile	sites	(CFSs)	have	long	been	studied	for	their	unusual	properties	341	

of	generating	SVs,	both	in	normal	cells	and	in	cancer	(38).	These	regions	undergo	342	

frequent	DSBs	in	tumours	and	have	been	well	studied	in	terms	of	their	genomic	343	

context,	 relationship	 to	 replication	 timing	 and	 origins,	 and	 correlations	 with	344	

particular	 chromatin	 states	 (43).	 They	 tend	 to	 occur	 within	 large	 genes,	 in	 G-345	

negative	 chromosomal	 bands	 with	 high	 DNA	 flexibility,	 are	 unusually	 late	346	

replicating	 (44),	 and	 it	 is	 thought	 that	 their	 instability	 derives	 from	347	

transcription-associated	 replication	 stress	 (38).	 CFSs	 only	 exist	 in	 modest	348	

numbers	and	are	defined	at	 low	resolution	(by	cytogenetic	bands	or	gene	loci);	349	

they	 therefore	provide	an	 interesting,	 though	challenging,	 test	 set	of	 regions	 to	350	

examine	d-score	performance.	351	

	352	

We	 examined	 predicted	 (NHEK	 model)	 DSB	 frequencies	 at	 294	 50kb	 regions	353	

coinciding	 with	 annotated	 CFS	 gene	 loci	 across	 the	 genome,	 in	 comparison	 to	354	

regions	associated	with	all	annotated	genes,	and	regions	associated	with	putative	355	

cancer	driver	genes	(Figure	6C).	Although	significant	shifts	to	higher	frequencies	356	

are	seen	for	the	driver	gene	sets	for	predicted	DSB	frequencies,	the	CFSs	do	not	357	

show	 a	 similar	 increase,	 most	 likely	 because	 the	 model	 predicts	 DSB	 in	 early	358	

replicating	 regions,	 and	 CFS	 tend	 to	 be	 late-replicating.	 Thus,	 the	 dominant	359	

features	influencing	DSB	susceptibility	genome-wide	do	not	appear	to	drive	the	360	

elevated	DSB	rates	at	CFSs,	consistent	with	CFS	 instability	 involving	replicative	361	

stress	(38).	However,	CFS	d-scores	show	a	significant	shift	above	the	distribution	362	

for	all	genes	and	above	 the	driver	gene	sets	as	well	 (Figure	6D).	 	This	result	 is	363	

replicated	 in	 the	MCF7	 BLISS	model	 examined	 inconjunction	with	 ICGC	 breast	364	

cancer	SV	breakpoints	(Sup	Figure	11).		We	conclude	that	the	d-score,	a	measure	365	
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of	relative	DSB	enrichment,	offers	a	robust	metric	for	the	classification	of	regions	366	

showing	unusual	SV	breakpoint	rates	in	tumours.	367	

	368	

Identification	 of	 hot	 and	 cold	 spots	 for	 structural	 variant	 breakpoints	 in	369	

tumours	370	

	371	

We	 have	 developed	 a	 classification	 of	 regions	 of	 interest	 within	 ICGC	 tumour	372	

cohorts	based	upon	 the	d-score	metric.	We	call	 regions	with	significantly	more	373	

SV	 breakpoints	 than	 expected,	 or	 SV	 hotspots,	 cancHpredL	 (cancer	 high,	374	

predicted	 low),	 and	 regions	 with	 fewer	 SV	 breakpoints	 than	 expected,	 or	 SV	375	

coldspots,	 cancLpredH	 (cancer	 low,	 predicted	 high)	 (see	 Methods).	 Figure	 6	376	

depicts	these	classes	of	regions	in	d-score	plots	of	ICGC	SV	breakpoint	data.	Many	377	

previous	 studies	 have	 predicted	 oncogenic	 SV	 hotspots	 simply	 as	 regions	378	

repeatedly	rearranged	in	cancers.	Here	we	refine	such	predictions	by	assessing	379	

these	 raw	 SV	 breakpoint	 frequencies	 relative	 to	 the	 predicted	 susceptibility	 of	380	

each	region	to	breakage.	It	is	not	possible	to	predict	coldspot	regions	without	a	381	

model	of	expected	DSB	frequency,	and	to	our	knowledge	SV	breakpoint	coldspots	382	

have	not	been	studied	before.	383	

	384	

We	also	define	a	class	of	regions	possessing	both	high	predicted	DSB	values	and	385	

high	 SV	 breakpoint	 frequencies	 (cancHpredH),	 corresponding	 to	 regions	386	

showing	unusually	high	SV	frequencies	on	the	background	of	high	susceptibility	387	

to	DSBs.	Finally,	we	define	a	fourth	class	of	regions	that	have	predicted	DSB	rates	388	

close	 to	 zero	 but	 high	 SV	 breakpoint	 frequencies	 (cancHpredL2).	 In	 principle,	389	

these	regions	are	a	class	of	SV	hotspots	but,	as	shown	in	Figure	3B,	they	are	likely	390	
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to	be	repetitive,	heterochromatic,	and	enriched	for	artifacts	(false	positives	and	391	

negatives	in	SV	breakpoint)	due	to	their	association	with	low	mappability.	392	

	393	

We	examined	a	range	of	functional	annotation	enrichments	in	the	four	classes	of	394	

regions	 using	 circular	 permutation	 to	 assess	 significance	 (see	Methods;	 Figure	395	

6).	The	annotations	included	two	putative	cancer	gene	sets,	260	genes	from	the	396	

Cancer5000	dataset	 (45)	 and	561	genes	 from	 the	COSMIC	 collection	 (46)).	We	397	

also	 included	 a	 set	 of	 15,415	 super	 enhancers	 (47),	 common	 fragile	 sites,	 and	398	

chromatin	states	from	ENCODE	chromHMM	analysis	(48).	Notably,	the	majority	399	

of	genes	in	both	cancer	sets	are	predicted	to	be	oncogenic	based	on	unexpectedly	400	

high	 and	 functionally	 significant	 SNV	 (rather	 than	 SV)	 loads	 and	 are	 not	401	

necessarily	expected	to	occupy	regions	with	higher	 levels	of	SV	breakpoints.	 In	402	

fact,	both	gene	sets	demonstrate	significant	enrichments	in	the	cancHpredL	class	403	

of	 hotspot	 regions	 (Figure	 6D),	 although	 RefSeq	 genes	 do	 not,	 suggesting	 that	404	

these	 genes	 may	 also	 frequently	 be	 altered	 in	 cancer	 through	 SV.	 The	405	

cancHpredL	regions	are	also	significantly	depleted	 in	active	chromatin	regions,	406	

such	as	promoters,	enchancers,	and	insulator	regions,	most	likely	because	these	407	

types	 of	 regions	 do	 not	 have	 low	 predicted	 DSB.	 The	 high	 susceptibility	408	

cancHpredH	regions	occupy	gene-rich	areas	of	the	genome	(enriched	for	known	409	

RefSeq	genes)	including	both	cancer	genes	sets,	and	for	active	promoters,	strong	410	

enhancers,	 and	 insulators.	 This	 is	 consistent	 with	 reports	 that	 CTCF	 bound	411	

insulator	 elements	 suffer	 recurrent	 mutations	 in	 tumours.	 Likewise,	 the	412	

cancLpredH	 class	 of	 coldspot	 regions	 occupy	 gene	 rich	 neighbourhoods,	 active	413	

promoters,	 and	 strong	 enhancers	 (Figure	 6),	 suggesting	 some	 genes	 and	distal	414	

regulatory	regions	may	have	experienced	purifying	selection	in	tumours.	415	
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	416	

Given	the	discrepancies	mentioned	above	between	ICGC	and	TCGA	experimental	417	

platforms,	data	analysis,	and	sample	cohorts,	we	do	not	expect	strong	agreement	418	

between	 ICGC	 and	 TCGA	 derived	 SV	 datasets.	 Indeed,	 the	 correlation	 between	419	

them	is	low	(Spearman’s	rho	of	0.099,	p<2.2e-16),	and	the	pancancer	ESBs	from	420	

either	 set	 do	 not	 significantly	 overlap	 (p	 <	 0.99,	 see	methods).	 	 However,	 the	421	

cancLpredH	 class	 is	 again	 enriched	 in	 active	 promoter	 and	 strong	 enhancer	422	

regions,	in	accordance	with	the	results	based	upon	ICGC	SV	data	(Sup	Figure	12).	423	

	424	

We	 again	 wanted	 to	 test	 the	 utility	 of	 DSB	 random	 forest	 models	 applied	 to	425	

different	 cell	 types	 by	 testing	 the	 accuracy	 of	 predictions	 made	 by	 a	 model	426	

trained	 in	 one	 cell	 type	 given	 features	 for	 a	 different	 cell	 type,	 as	 in	 Figure	 4.		427	

Instead	 of	 looking	 at	 the	 correlation	 between	 the	 observed	 and	 predicted	DSB	428	

scores	 across	 the	 genome,	 we	 examined	 the	 overlap	 between	 cancHpredL,	429	

cancHpredH,	 and	 cancLpredH	 50kb	 regions	 for	 the	 MCF7	 model	 versus	 the	430	

NHEK	model,	using	the	MCF7	model	as	the	truth	set.	Subsets	of	50kb	regions	for	431	

each	 model	 were	 derived	 from	 MCF7	 features	 and	 ICGC	 breast	 cancer	 SV	432	

breakpoints;	only	the	training	data	for	the	models	differ.	We	found	a	significant	433	

overlaps	 between	 all	 three	 categories	 of	 d-score	 subsets,	 with	 595/662	434	

cancHpredL,	 255/785	 cancHpredH,	 and	253/594	 cancLpredH	 regions	detected	435	

via	the	NHEK	model	(p<2.2e-16),	demonstrating	that	a	given	model	can	be	used	436	

to	detect	regions	of	interest	in	various	cell	types.	437	

	438	

Functional	annotation	of	regions	of	interest	439	

	440	
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We	 closely	 examined	 the	 ten	 50kb	 regions	 with	 the	 highest	 (cancHpredL)	 d-441	

scores	to	uncover	genes	that	might	be	reclassified	as	oncogenic	due	to	a	higher	442	

than	expected	SV	breakpoint	frequency	in	cancer.	Likewise,	we	investigated	the	443	

ten	regions	with	the	lowest	d-scores	(cancLpredH),	which	we	predict	to	be	under	444	

purifying	 selection,	 for	 signals	 of	 potential	 functionality.	 For	 this	 analysis	 we	445	

used	the	NHEK	model	predictions	paired	with	ICGC	carcinoma	SV	breakpoints.	446	

	447	

Nine	 out	 of	 ten	 regions	 with	 the	 highest	 d-scores	 overlap	 a	 gene,	 and	 four	448	

overlap	COSMIC	genes.	CHEK2	and	CDKN2A	are	known	tumor	suppressors,	and	449	

TMPRSS2	and	ERG	 is	frequently	involved	in	translocation	events	forming	fusion	450	

oncogenes	 in	 certain	 cancers.	 For	 example,	 it	 fuses	 with	 TMPRSS2	 in	 most	451	

prostate	 cancers,	 with	 EWS	 in	 Ewing’s	 sarcoma,	 and	 with	 FUS	 in	 AML.	 	 Two	452	

adjacent	 50kb	 regions	 on	 chr17q12	 overlap	 GRB7	 and	 IKZF3.	 GRB7	 encodes	 a	453	

protein	 that	 interacts	 with	 epidermal	 growth	 factor	 receptor	 (EGFR),	 a	 well-454	

known	 proto-oncogene,	 and	 IKZF3	 is	 a	 zinc	 finger	 protein	 and	 transcription	455	

factor	 involved	 in	 B	 lymphocyte	 regulation	 and	 differentiation	 as	 well	 as	456	

chromatin	 remodeling.	 This	 region	 also	 corresponds	 to	 a	 known	 fragile	 site	457	

FRA17A	(49).	Of	the	ten	regions	with	the	lowest	d-scores,	seven	overlap	a	known	458	

gene	and	two	known	oncogenes.	The	oncogene,	CDC27	,	or	cell	division	cycle	27,	459	

encodes	 a	 component	 of	 the	 APC	 and	 has	 been	 shown	 to	 interact	 with	 other	460	

mitotic	checkpoint	proteins.		It	is	highly	conserved	and	may	be	necessary	for	cell	461	

survival.	 	 There	 is	 also	 a	 non-coding	 RNA	 found	 on	 chr2	 in	 the	 centromeric	462	

region,	 LOC654342,	 which	 overlaps	 an	 H3K27ac	 peak,	 and	may	 be	 acting	 as	 a	463	

regulatory	element.	464	

	465	
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Discussion	466	

	467	

Recent	 in	 vitro	 studies	 of	 DSB	 frequency	 in	 cell	 lines	 have	 suggested	 that	 a	468	

variety	 of	 underlying	 genomic	 features	 are	 associated	with	 DSB	 susceptibility.	469	

We	 have	 shown	 that	 accurate	 models	 of	 genome-wide	 DSB	 frequency	 can	 be	470	

built	 from	 a	 modest	 number	 of	 such	 features,	 with	 replication	 timing,	 open	471	

chromatin,	 and	marks	 of	 active	 promoter	 or	 enhancer	 regions	 associated	with	472	

increased	 DSBs.	 Although	 active	 regulatory	 regions	 often	 harbor	 actively	473	

transcribed	 genes,	 it	 appears	 that	 chromatin	 accessibility	 at	 these	 sites	 rather	474	

than	 transcription	 itself	 determines	 DSB	 propensity.	 The	 variable	 importance	475	

metrics	also	show	certain	features	to	be	more	influential	in	particular	cell	types,	476	

with	CTCF	and	H3K36me3	having	more	predictive	power	in	MCF7	than	in	NHEK	477	

or	K562.	Not	only	are	DSB	patterns	cell	type	specific,	but	the	factors	influencing	478	

those	 patterns	 also	 depend	 on	 cell	 type,	 suggesting	 different	 mutational	479	

mechanisms	at	play.	As	a	matter	of	course,	our	models’	accuracies	decline	when	480	

applied	to	cell	lines	other	than	the	training	set,	but	they	still	generate	reasonable	481	

DSB	 frequency	 predictions,	 with	 correlations	 between	 0.57	 and	 0.83	 to	 the	482	

observed	 data,	 which	 are	 large	 improvements	 over	 a	 simple	 inference.	 Since	483	

chromatin	features	influence	mutation	patterns	and	are	cell	type	specific,	it	will	484	

be	 important	 to	 use	 mutational	 propensity	 profiles	 for	 matched	 cell	 types	 in	485	

future	cancer	studies.	486	

	487	

Our	models	 of	 genome-wide	DSB	 susceptibility	 predict	DSB	 frequencies	 for	 all	488	

50kb	loci,	and	reflect	the	established	correlations	between	replication	timing	and	489	

DSB	frequency	(50)	as	well	as	tumour	SV	rates	(9,10).	A	recent	complementary	490	
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study	has	shown	that	84,946	high	confidence	peaks	of	NHEK	DSBCapture	signal	491	

(22),	marking	small	(median:	391bp)	sites	of	unusually	high	DSB	susceptibility,	492	

can	be	accurately	classified	from	control	sites	using	underlying	genomic	features	493	

(34).	Consistent	with	our	results,	this	binary	classifier	suggested	prominent	roles	494	

for	DNase	accessible	regulatory	sites	and	CTCF	binding,	and	recapitulated	many	495	

of	the	patterns	reported	by	Lensing	et	al	(2016).	However,	the	model	of	Mourad	496	

et	 al	 (2018)	 omitted	 replication	 timing	 and	 does	 not	 provide	 quantitative	497	

predictions	of	DSB	susceptibility	across	the	genome.	498	

	499	

We	used	our	genome-wide	models	of	DSB	susceptibility	to	interrogate	the	largest	500	

tumour	SV	breakpoint	collections	and	found	surprising	levels	of	agreement,	such	501	

that	SV	breakpoint	enriched	 regions	often	 show	shifts	 to	higher	predicted	DSB	502	

susceptibility.	In	spite	of	variable	sample	sizes,	the	classes	of	simple	SV	likely	to	503	

arise	 by	 one	 or	 two	 DSBs	 (deletions,	 duplications,	 inversions,	 translocations)	504	

showed	 significant	 increases	 in	 predicted	DSB	 susceptibility.	 The	NHEK	model	505	

best	predicted	 the	patterns	of	DSB	susceptibility	 in	 tumours,	 showing	genome-506	

wide	elevations	of	predicted	DSBs	 for	all	of	 these	SV	classes	relative	 to	control	507	

regions.	Thus,	the	chromatin-mediated	DSB	susceptibility	captured	in	the	model	508	

may	shape	the	landscape	of	SV	recurrence	in	these	classes.	509	

	510	

There	 are	 many	 reasons	 why	 one	 might	 expect	 a	 much	 poorer	 agreement	511	

between	the	predictions	of	in	vitro	DSB	frequency	models	and	the	patterns	of	SV	512	

breakpoints	observed	in	tumour	sequencing	studies.	The	available	collections	of	513	

SV	 breakpoints	 in	 tumours	 are	 far	 from	 perfect,	 and	 even	 the	 best	 ICGC	 data	514	

suffer	 large	variations	 in	sample	size,	sample	heterogeneity,	 sequencing	depths	515	
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and	SV	calling	methods	across	tumour	cohorts.	In	addition,	fundamental	aspects	516	

of	tumour	biology	(cellular	heterogeneity,	disrupted	repair	pathways,	chromatin	517	

alterations	etc.)	are	expected	to	place	distinct	limits	on	the	agreement	we	can	see	518	

with	the	DSB	patterns	seen	in	cell	lines.	Evidence	is	also	emerging	that	there	are	519	

important	properties	of	the	mutational	landscape	in	tumours	that	are	unlikely	to	520	

be	 captured	 by	 in	 vitro	 model	 systems.	 For	 example,	 a	 recent	 study	 of	 intra-521	

tumour	diversification	 in	 colorectal	 cancer	 suggests	 that	most	mutations	occur	522	

during	 the	 final	 clonal	 expansion	 of	 these	 tumours,	 resulting	 from	mutational	523	

processes	 that	 are	 absent	 from	normal	 colorectal	 cells	 (51).	 Enhanced	 rates	 of	524	

DSB	 formation	 have	 also	 been	 observed	 in	 vitro	 at	 cryptic	 replication	 origins	525	

activated	 by	 oncogene-induced	 replication	 stress,	 though	 these	 cryptic	 sites	526	

seem	 to	 explain	 only	 a	 minority	 of	 SV	 breakpoints	 (<8%)	 across	 a	 variety	 of	527	

TCGA	 tumour	 types	 (52).	 Given	 the	 many	 known	 and	 possible	 differences	528	

between	in	vitro	DSB	model	predictions	and	observed	tumour	SV	breakpoints,	it	529	

is	remarkable	that	significant	agreement	is	found	on	any	level.	530	

	531	

There	is	great	interest	in	‘hotspot’	genomic	regions	harbouring	recurrent	SVs	in	532	

tumours,	 on	 the	 basis	 that	 such	 regions	 may	 be	 under	 positive	 selection,	533	

conferring	 a	 proliferative	 or	 survival	 advantage	 to	 tumour	 cells.	 However,	534	

rigorous	 inference	 of	 selection	 requires	 a	 proxy	 for	 the	 expected	 rate	 of	535	

recurrence	within	such	regions.	Using	model	predictions	as	 this	proxy	we	have	536	

produced	 refined	 hotspot	 predictions,	 reflecting	 SV	 breakpoint	 frequencies	537	

relative	 to	 the	 predicted	 susceptibility	 of	 each	 region.	 Since	 our	 predictions	 of	538	

DSB	 susceptibility	 are	 genome-wide	 it	 was	 also	 possible	 to	 predict	 coldspot	539	

regions,	 regions	possessing	unexpectedly	 low	SV	breakpoint	 rates	 given	model	540	
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predictions,	and	putatively	subject	to	negative	or	purifying	selection	in	tumours.	541	

If	selection	in	tumours	 is	prominent	 in	driving	SV	breakpoint	 frequencies	away	542	

from	DSB	model	 predictions,	we	might	 expect	 hotspot	 and	 coldspot	 regions	 to	543	

show	unusual	functional	enrichments.	Multiple	caveats	apply	to	the	annotations	544	

examined	 but	 analysis	 using	 the	 NHEK	 model	 shows	 that	 ICGC	 carcinoma	545	

hotspots	 are	 enriched	 for	 putative	 oncogenes.	 Coldspots	 occupy	 gene-rich	546	

neighbourhoods	 but	 and	 are	 also	 enriched	 in	 active	 promoters	 and	 strong	547	

enhancers,	 and	 insulators,	 indicating	 regulatory	 regions	 that	 may	 have	548	

experienced	purifying	selection	in	tumours.			549	

	550	

Conclusions	551	

	552	

When	inferring	selection	on	single	nucleotide	variants	 it	 is	standard	practice	to	553	

make	 comparisons	 between	 the	 observed	 variant	 frequencies	 and	 the	554	

frequencies	expected,	according	to	a	model	of	single	nucleotide	mutation	rates.	555	

We	have	developed	models	of	DSB	mutation	rates	that	can	be	used	to	generate	556	

expected	 SV	 breakpoint	 frequencies	 and	 illuminate	 regions	 with	 significant	557	

deviations	from	these	expectations.	This	approach	provides	statistically	rigorous	558	

protocols	 to	 prioritize	 novel	 loci	 putatively	 under	 selection	 in	 tumours,	559	

generating	testable	hypotheses	for	further	experimental	studies.	560	

	561	

	562	

Methods	563	

	564	

Derivation	of	DSB	data	in	the	K562	and	MCF7	cell	lines	565	
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DSB	profiles	were	generated	with	an	adapted	version	of	 the	Breaks	 labeling	 in	566	

situ	and	sequencing	protocol	(25),	in	which	DSB	ends	are	labeled	with	a	dsDNA	567	

BLISS	 adapter	 in	 cell	 suspensions	 of	 1	 million	 cells.	 Afterwards	 the	 published	568	

protocol	is	followed	with	only	minor	modifications.	Labeled	DSBs	are	selectively	569	

amplified	using	T7-driven	 linear	amplification,	after	which	sequencing	 libraries	570	

are	generated	and	sequenced	with	single-end	1x75	v2	chemistry	on	an	Illumina	571	

NextSeq	 500.	 Raw	 sequencing	 reads	 were	 demultiplexed	 by	 Illumina's	572	

BaseSpace,	 after	 which	 FASTQ	 files	 were	 downloaded	 and	 processed	 as	573	

described	in	Yan	et	al.	2017	(SRA	accession	SRP150602).	In	brief,	reads	with	the	574	

expected	prefix	of	8nt	UMI	and	8nt	sample	barcode	sequence	were	filtered	using	575	

SAMtools	 and	 scan	 for	 matches,	 allowing	 at	 most	 one	 mismatch	 per	 barcode.	576	

Trimmed	 reads	were	 then	 aligned	 to	GRCh37	using	 bwa	mem,	 and	 reads	with	577	

mapping	scores	below	30	were	discarded.	Next,	PCR	duplicates	were	 identified	578	

by	searching	for	proximal	reads	(within	30bp	of	the	reference	genome)	with	at	579	

most	 two	 mismatches	 in	 the	 UMI	 sequence,	 which	 were	 then	 grouped	 and	580	

collapsed	 into	a	single	break	 location.	Finally,	we	generated	 .bed	files	with	DSB	581	

locations	and	the	number	of	unique	UMIs	indicating	that	location.										582	

	583	

Generating	random	forest	models	584	

We	 downloaded	 ten	 tracks	 from	 ENCODE	 for	 multiple	 chromatin	 marks,	585	

replication	 timing,	 open	 chromatin,	 several	 DNA	 binding	 proteins,	 and	586	

nucleosome	 pull-downs	 from	 the	 UCSC	 genome	 browser	 (53).	 We	 used	 G-587	

quadruplex	data	generated	by	Chambers	et	al,	 (GSE63874).	 In	 their	study,	 they	588	

make	separate	 .bedgraph	files	available	with	the	G-quadruplex	density	 for	each	589	

strand.	We	used	the	sum	of	the	plus	and	minus	strands	in	our	analysis.	The	list	of	590	
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bigwig	files	used	for	each	cell	line	along	with	their	sources	and	graphical	labels	is	591	

in	 Supplementary	 Table	 1.	We	 used	 the	 bigWigAverageOverBed	 tool	 from	 the	592	

kentUtils	 tool	 library	 to	 produce	 average	 signal	 per	 50kb	 in	 non-overlapping	593	

windows	across	hg19	for	each	track.	We	combined	the	results	to	a	single	matrix	594	

per	cell	 line	composed	of	61,903	rows,	one	 for	each	50kb	bin,	and	11	columns,	595	

one	for	each	chromatin	or	genomic	feature.	These	feature	matrices	are	available	596	

in	 supplementary	 data	 and	 scatter	 plots	 of	 each	 feature	 with	 the	 NHEK	597	

DSBCapture	data	are	shown	in	Supplementary	Figure	3.			598	

	599	

For	 the	 extended	 model	 in	 Supplementary	 Figure	 4,	 we	 downloaded	 an	600	

additional	 nine	 features	 from	 the	 UCSC	 genome	 browser	 (53),	 which	 were	601	

processed	 in	 the	 same	 way	 as	 the	 ten	 ENCODE	 features	 used	 in	 the	 primary	602	

feature	matrix.	We	also	downloaded	 .hic	 files	 for	NHEK,	K562,	 and	HMEC	cells	603	

generated	from	Rao,	et	al.	(GSE63525).	We	used	their	custom	toolbox,	Juicer,	to	604	

calculate	 eigenvectors	 per	 chromosome,	 and	 generated	 50kb	 resolution	605	

eigenvector	 profiles	 using	 the	 bedGraphToBigWig	 and	 bigWigAverageOverBed	606	

tools	 from	 kentUtils.	 The	 figure	 labels	 and	 sources	 for	 these	 data	 are	 in	607	

Supplementary	Table2,	and	the	extended	feature	matrices	are	in	supplementary	608	

data.			609	

	610	

We	 generated	 DSB	 frequency	 scores	 from	 each	 of	 four	 HTS	 DSB	 profiling	611	

datasets:	 two	 in	 NHEK	 cells,	 one	 for	 K562,	 unpublished,	 and	 one	 for	 MCF7,	612	

unpublished.	As	mentioned	in	the	results,	two	replicates	for	each	of	two	DSB	HTS	613	

profiling	 methods,	 DSBCapture	 and	 BLESS,	 were	 available	 from	 Lensing	 et	 al.		614	

(22).	 We	 took	 the	 average	 per	 50kb	 of	 the	 replicates	 to	 create	 an	 NHEK	615	
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DSBCapture	profile	and	an	NHEK	BLESS	profile.	We	combined	three	replicates	of	616	

MCF7	 BLISS	 data	 (via	 a	 sum	 operation)	 to	 serve	 as	 our	 MCF7	 DSB	 profile.	 A	617	

fourth	 MCF7	 BLISS	 dataset	 is	 available,	 but	 we	 excluded	 it	 from	 our	 analysis	618	

because	 it	 had	 a	 distinctly	 lower	 correlation	 to	 the	 other	 three	 datasets	 (0.90-619	

0.92	as	opposed	to	0.97-0.99).	These	scores	are	available	as	supplementary	files.			620	

	621	

We	used	the	randomForest	package	in	R	to	generate	random	forest	models	with	622	

500	trees	and	five	OOB	permutations	per	tree	(options	ntree=500,	nPerm=5).	To	623	

calculate	 variable	 importance,	 we	 used	 the	 importance	 command	 within	 the	624	

randomForest	 package	 (https://cran.r-625	

project.org/web/packages/randomForest/index.html),	 which	 calculates	 the	626	

average	 prediction	 error	 rate	 (MSE)	 for	 each	 datapoint	 (50kb	 bin)	 across	 all	627	

trees	 in	 the	 random	 forest.	 Then,	 for	 each	 feature	 variable,	 the	 values	 are	628	

randomly	permuted	and	the	MSE	for	each	50kb	bin	is	calculated	again.	The	final	629	

variable	importance	score	is	the	average	difference	in	MSE	before	and	after	the	630	

permutation,	normalized	by	the	standard	deviation	of	these	differences.	Because	631	

many	 features	 are	 inter-correlated,	 their	 importance	 measures	 were	 very	632	

similar.	 Therefore,	 in	 order	 to	 determine	 a	 consistent	 ranking	 of	 features’	633	

importance	 values,	 we	 generated	 ten	 random	 forest	 models	 per	 dataset	 and	634	

calculated	 the	 average	 and	 standard	 deviation	 of	 importance	 across	 the	 ten	635	

models.			636	

Although	random	forest	models	are	not	susceptible	to	overfitting,	to	confirm	that	637	

our	models	were	not	overfit	to	the	DSB	data,	we	also	generated	a	random	forest	638	

model	for	the	NHEK	DSBCapture	dataset,	holding	out	one	third	of	the	data	as	the	639	

test	set	and	training	the	model	on	the	remaining	two	thirds.		This	model	showed	640	
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0.93	Pearson’s	correlation	between	the	predictions	and	the	observed	data	for	the	641	

training	set,	similar	to	the	model	trained	on	the	full	dataset	(Sup	Figure	5).		642	

	643	

Determining	tumour	ESBs	and	their	predicted	DSB	scores	644	

To	determine	SV	DSB	rates	 in	 from	TCGA	data,	we	downloaded	CNV	data	 from	645	

TCGA	 (54),	 which	 came	 from	 Affymetrix	 SNP	 6.0	 arrays	 processed	 by	 the	646	

DNAcopy	 R-package	 (https://docs.gdc.cancer.gov/Data/PDF/Data_UG.pdf).	647	

DNAcopy	generates	a	set	of	continuous	segments,	outputting	regions	with	 little	648	

or	 no	 copy	 number	 change,	 so	we	 filtered	 these,	 defining	 segments	with	 a	 CN	649	

ratio	>1	as	amplifications	and	ratios	<	-1	as	deletions.	The	segments	were	lifted	650	

from	hg38	to	hg19	using	UCSC’s	liftOver	tool.	For	each	CNV,	we	counted	a	single	651	

DSB	to	occur	in	a	50kb	bin	if	either	or	both	ends	of	the	segment	overlapped	the	652	

bin.	 The	 TCGA-BLOOD	 group	 includes	 the	 two	 blood	 cancer	 cohorts:	 acute	653	

myeloid	leukemia	(LAML)	and	lymphoid	neoplasm	diffuse	large	B-cell	lymphoma	654	

(DLBC),	while	 the	TCGA-SCCA	group	 includes	 three	 squamous	 cell	 carcinomas:	655	

cervical	 squamous	 cell	 carcinoma	 and	 endocervical	 adenocarcinoma	 (CESC),	656	

head	 and	 neck	 squamous	 cell	 carcinoma	 (HNSC),	 and	 lung	 squamous	 cell	657	

carcinoma	(LUSC).	The	BRCA	group	includes	only	the	TCGA	breast	cancer	cohort	658	

(BRCA),	 and	 the	 PANC	 group	 includes	 all	 33	 cancer	 types,	 shown	 in	659	

Supplementary	Figure	7.	Counts	for	various	groups	and	CNV	types	are	available	660	

as	Supplementary	Files.		661	

We	 downloaded	 available	 WGS	 SV	 calls	 from	 the	 ICGC	 Data	 Portal	662	

(https://dcc.icgc.org/projects).	As	with	the	TCGA	CNV,	a	single	DSB	was	counted	663	

per	50kb	bin	if	either	one	or	two	ends	of	a	SV	overlapped	the	region.	The	ICGC	664	

pancancer	group	contains	SVs	from	17	cancer	studies,	shown	in	Supplementary	665	
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Figure	6.	The	carcinoma	group	contains	all	 available	 carcinoma	cancer	 studies,	666	

excluding	 breast	 cancer:	 early	 onset	 prostate	 cancer	 (EOPC-DE),	 liver	 cancer	667	

(LIRI-JP),	 pancreatic	 cancer	 (PACA-CA,	 PAEN-AU,	 PAEN-IT),	 prostate	 cancer	668	

(PRAD-CA,	 PRAD-UK),	 and	 skin	 adenocarcinoma	 (SKCA-BR).	 The	 ICGC	 blood	669	

group	 contains	 chronic	 lymphocytic	 leukemia	 (CLLE-ES)	 and	 malignant	670	

lymphoma	 (MALY-DE),	 and	 the	 breast	 group	 contains	 breast	 cancer	 studies	671	

(BRCA-EU	and	BRCA-FR).	A	 table	 of	DSB	 counts	per	50kb	broken	up	by	 group	672	

and	SV	type	is	in	supplementary	data.			673	

	674	

We	 determined	 enriched	 SV	 breakpoint	 regions	 (ESBs)	 per	 cohort	 or	 SV	 type	675	

grouping	by	ranking	the	50kb	bins	by	the	number	of	DSB,	excluding	regions	with	676	

no	DSB	in	the	group,	and	using	the	number	of	DSB	in	the	top	5%	as	the	cutoff.	All	677	

50kb	 regions	 with	 a	 DSB	 count	 greater	 than	 or	 equal	 to	 the	 cutoff	 were	678	

designated	ESBs.	We	used	a	Wilcoxon	ranked	sum	test	(R	wilcox.test	command)	679	

to	test	for	significant	increase	in	the	predicted	DSB	values	for	ESBs	compared	to	680	

all	other	regions,	and	we	excluded	regions	 in	which	no	DSB	were	 found	 in	any	681	

cancer	study	since	these	are	likely	to	be	unmappable	or	blacklisted	regions.	682	

	683	

The	 correlation	 between	 TCGA	 and	 ICGC	 pancancer	 SV	 breakpoint	 counts	was	684	

calculated	 using	 Spearman’s	 rho	 and	 excluding	 50kb	 regions	 with	 no	 SV	685	

breakpoints	in	either	the	TCGA	or	ICGC	datasets.	 	The	top	5%	ESBs	were	found	686	

for	each	dataset,	with	2,839	regions	 found	 in	TCGA	and	3,072	 in	 ICGC,	and	 the	687	

significance	 of	 the	 overlap	 was	 calculated	 using	 a	 hypergeometric	 test	 (R	688	

command	phyper	with	q=177,	m=2,839,	n=61,903-2,839,	and	k=3,072).	689	

	690	
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Calculating	d-scores		691	

We	used	the	R	package	fistdistrplus	(55)	to	determine	the	distributions	with	the	692	

best	fit	to	the	DSB	prediction	values	and	the	SV	breakpoint	frequencies.	We	used	693	

a	 likelihood	 maximization	 test	 (method=”mle”)	 and	 the	 BIC	 (Bayesian	694	

Information	Criterion)	measure	of	goodness	of	fit	to	choose	the	best	distribution.	695	

We	 tested	 a	 lognormal,	 log-logistic,	 gamma,	 normal,	 and	 an	 exponential	696	

distribution,	and	fitted	the	distributions	to	the	bulk	of	the	SV	breakpoint	or	DSB	697	

prediction	data.	We	excluded	50kb	regions	with	breakpoint	frequencies	greater	698	

than	 six	 times	 the	 interquartile	 range	 from	 the	 median	 in	 order	 to	 exclude	699	

extreme	outliers.	While	we	aimed	to	emphasize	 the	 fit	of	 the	 tails	of	our	data’s	700	

distributions,	 including	 these	outliers	 resulted	 in	poorly	 fitting	distributions	 to	701	

the	bulk	of	 the	real	data.	Once	we	 found	 the	best	of	 the	 three	candidate	model	702	

distributions,	we	assigned	a	p-value	to	each	50kb	bin	from	the	fitted	distribution	703	

(using	 the	 plnorm,	 pllogis,	 or	 pgamma	 functions	 in	 R)	 which	 represent	 the	704	

probability	of	seeing	a	given	breakpoint	frequency	or	DSB	prediction	or	greater	705	

in	 the	 known	 distribution.	 The	 actual	 and	 fitted	 distributions	 and	 quantile-706	

quantile	plots	are	shown	in	Supplementary	Figures	13	and	14.		707	

	708	

Next,	for	each	50kb	bin,	we	calculated	the	difference	in	log	p-values	between	the	709	

predicted	 DSB	 and	 the	 actual	 SV	 breakpoints,	 called	 d-scores.	 Using	 the	710	

fistdistrplus	R	package	again,	we	determined	the	best-fit	distribution	 for	 the	d-711	

scores,	 choosing	between	a	 t-distribution,	 a	normal,	 and	a	Cauchy	distribution.	712	

Again,	 we	 used	 a	 maximum	 likelihood	method	 and	 the	 BIC	measurement	 and	713	

excluded	 extreme	 outliers.	 In	 all	 cases,	 a	 t-distribution	 with	 four	 degrees	 of	714	

freedom	(df=4)	was	 the	best	 fit,	 so	each	50kb	bin	was	assigned	a	p-value	 from	715	
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this	distribution	according	 to	 its	d-score.	The	histograms	and	quantile-quantile	716	

plots	of	the	d-scores	and	fitted	distributions	are	shown	in	Supplementary	Figure	717	

15.		718	

	719	

Calculating	gene	set	and	chromatin	domain	enrichments	720	

We	 used	 the	 d-score	 p-values	 to	 categorize	 regions	 into	 informative	 subsets,	721	

using	 the	 R	 command	 qt(p=0.01,	 df=4,	 lower.tail=FALSE)	 to	 determine	 the	 d-722	

score	 cutoffs.	 The	 cancHpredL	 class	 of	 regions	 have	 d-scores	 in	 the	 upper	 one	723	

percentile	 (>	 3.75),	 and	 the	 cancLpredH	 have	 d-scores	 in	 the	 lower	 one	724	

percentile	 (<	 -3.75).	 The	 cancHpredH	 class	 has	 d-scores	 in	 the	 40th	 to	 70th	725	

percentiles	and	SV	breakpoint	frequencies	or	DSB	predictions	with	p-values	less	726	

than	 0.01,	 so	 these	 regions	 have	 significantly	 (p-value	 <	 0.01)	 high	 SV	727	

breakpoints	 or	 DSB	 predictions	 but	 insignificant	 d-scores	 (p-value	 <	 0.6).	 The	728	

cancHpredL2	 class	 consists	 of	 regions	 with	 SV	 breakpoint	 p-values	 less	 than	729	

0.01,	and	DSB	predictions	less	than	0.5	for	the	NHEK	models	and	less	than	0.001	730	

for	the	MCF7	model.				731	

We	 used	 a	 binomial	 test	 to	measure	 the	 significance	 of	 overlaps	 between	 sets	732	

when	comparing	results	 from	the	MCF7	model	and	the	NHEK	model	applied	to	733	

ICGC	breast	cancer	data	and	MCF7	cell	line	features	(R	command	binom.test).				734	

	735	

We	 used	 the	 R	 package	 regioneR	 (56)	 to	 compute	 the	 overlap	 significance	736	

between	each	set	of	regions	and	various	genome	and	chromatin	annotation	files.	737	

A	list	of	annotation	sets	and	their	original	sources	are	in	Supplementary	Table	2.	738	

We	matched	Cancer5000	genes	and	Cosmic	gene	 lists	 to	RefSeq	gene	names	 in	739	

order	to	get	their	genome	coordinates,	so	the	cancer	gene	lists	are	RefSeq	gene	740	
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subsets.	The	super	enhancer	set	(SEA)	came	from	A549	cells,	derived	from	a	lung	741	

carcinoma	 (47).	 Common	 fragile	 sites	 (CFS)	 were	 collected	 from	 NCBI’s	 gene	742	

archive	 by	 searching	 for	 “common	 fragile	 site”	 or	 “fragile	 site”	 within	 human	743	

genes.	Many	 fragile	 sites	 are	 annotated	 by	 chromosome	 band	 but	 do	 not	 have	744	

exact	 coordinates;	 we	 filtered	 these	 out	 because	 they	 are	 low	 resolution.	 The	745	

chromHMM	 (48)	 annotation	 came	 from	 the	 UCSC	 genome	 browser.	We	 tested	746	

enrichment	 of	 the	 NHEK	 states	 with	 the	 NHEK	model	 d-score	 classes	 and	 the	747	

HMEC	track,	 from	primary	mammary	epithelial	cells,	with	the	MCF7	model’s	d-748	

score	 classes.	 The	 regioneR	 package	 performs	 random	 circular	 permutation	 of	749	

regions	 of	 interest	 and	 then	 computes	 the	 number	 of	 overlaps	 between	 the	750	

permutated	set	and	a	 second	set	of	 regions.	The	p-value	 represents	how	often,	751	

over	the	course	of	the	permutations,	the	two	sets	overlap	to	the	same	extent	that	752	

they	 do	 without	 any	 permutation.	 We	 used	 1,000	 iterations	 to	 achieve	 a	753	

maximum	p-value	of	0.001.	754	

	755	

Declarations	756	

	757	

Ethics	Approval	758	

Approval	 for	 access	 and	 use	 of	 ICGC	 variant	 data	was	 obtained	 from	 the	 ICGC	759	

Data	 Access	 Compliance	 Office.	 	 Use	 of	 TCGA	 CNV	 does	 not	 require	 ethics	760	

approval.			761	

	762	

Consent	for	Publication	763	

Not	applicable	764	

	765	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 13, 2018. ; https://doi.org/10.1101/441832doi: bioRxiv preprint 

https://doi.org/10.1101/441832
http://creativecommons.org/licenses/by/4.0/


	 32	

Availability	of	data	and	materials	766	

All	 analysis	 was	 done	 using	 GRCh37	 as	 the	 reference	 genome.	 The	 raw	 BLISS	767	

sequencing	data	is	available	on	SRA	with	accession	SRP150602.	 	All	scripts	and	768	

commands	 used	 to	 do	 this	 analysis	 are	 available	 on	 github	769	

(https://github.com/TracyBallinger/dsb_model).	 In	 addition,	 we	 have	 made	770	

ipython	notebooks	for	the	figures	used	in	this	manuscript	to	ease	reproducibility	771	

and	 allow	 further	 exploration	 of	 the	 data,	 also	 available	 on	 github.	 	 All	772	

supplementary	 files	 are	 available	 for	 download	 at	773	
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	961	

Figure	Legends	962	

	963	

Figure	 1:	 	 DSB	 frequency	 and	 genomic	 features	 display	 similar	 patterns.	 The	964	

tracks	 show	 DSBCapture	 profiles	 in	 NHEK	 cells,	 BLESS	 profiles	 in	 NHEK	 cells,	965	

BLISS	 in	K562	cells,	and	BLISS	 in	MCF7	cells.	 	All	 tracks	are	at	50kb	resolution	966	

over	a	representative	region	of	chromosome	1,	with	a	variety	of	chromatin	and	967	

sequence	 features	 to	 illustrate	 the	 similarities	 between	 them.	 Numbers	 in	968	
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parenthesis	are	the	spearman’s	rho	between	the	associated	track	and	the	NHEK	969	

DSBCapture	1	dataset.			970	

	971	

Figure	2:	Accurate	models	of	DSB	frequency	built	from	chromatin	and	sequence	972	

features.	 Panels	 A-D	 show	 random	 forest	 regression	 model	 predictions	 built	973	

upon	 eleven	 genomic	 features	 at	 50kb	 resolution	 compared	 to	 observed	 DSB	974	

frequencies	for	four	datasets:	NHEK	DSBCapture,	NHEK	BLESS,	K562	BLISS,	and	975	

MCF7	 BLISS.	 The	 y-values	 reflect	 the	 sequencing	 depth	 of	 each	 dataset.	 The	976	

models’	predictions	are	all	highly	correlated	with	the	observed	data,	as	shown	by	977	

the	noted	Pearson’s	correlations	(p	<	2.2e-16	for	each	dataset).	Panels	E-H	show	978	

the	predictive	features	ranked	by	variable	importance,	a	measure	of	how	useful	a	979	

particular	feature	is	for	the	model	(see	methods).			980	

	981	

Figure	 3:	 Modelling	 accuracy	 and	 the	 polarity	 of	 genomic	 features.	 A)	 NHEK	982	

DSBCapture	50kb	 regions	data	 is	 split	 into	 three	distinct	 groups	with	differing	983	

modelling	accuracies.	Panels	B	and	C	show	the	values	of	the	model	 features	for	984	

the	two	boxes,	A	and	B,	and	for	group	C,	which	contains	randomly	chosen	points	985	

along	the	spectrum	of	DSB	frequency	values	for	the	majority	of	the	genome.	The	986	

columns	are	ordered	by	observed	DSB	frequency,	shown	on	the	top	row,	and	the	987	

rows	 for	 features	used	 to	build	 the	model	 (the	 third	 to	second	to	 last	 row)	are	988	

ordered	 by	 average	 variable	 importance.	 The	 number	 of	 50kb	 regions	 in	 each	989	

group	 is	 shown	 in	 parenthesis	 above	 each	 heatmap.	 Each	 feature	 was	990	

normalized,	setting	the	1st	to	99th	quantiles	to	values	between	0	and	1,	with	high	991	

outliers	(in	the	top	percentile)	set	to	1.1.	B)	Group	A	has	high	H3K9me3	and	low	992	

mappability	scores,	indicative	of	heterochromatin	and	repetitive	sequence,	while	993	
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B	has	feature	patterns	that	closely	match	low	DSB	values	in	group	C.	C)	For	most	994	

of	 the	 genome,	 high	 H3K9me3	 corresponds	 to	 low	 DSB	 regions,	 and	 high,	 or	995	

early,	 replication	 timing	 values	 and	 open	 chromatin	 values	 signify	 high	 DSB	996	

regions.			997	

	998	

Figure	 4:	 DSB	 models	 improve	 predictions	 for	 non-model	 cell	 types.	 Models	999	

trained	using	a	dataset	from	one	cell	type	were	used	to	generate	predictions	for	a	1000	

different	 cell	 type,	 given	 the	 matched	 features.	 The	 dark	 blue	 lines	 mark	 the	1001	

Pearson’s	correlation	between	the	two	cell	types.	The	cell	type	used	to	train	the	1002	

model	is	indicated	by	the	colour	of	the	bar,	and	the	cell	type	on	which	the	model	1003	

is	 being	 applied	 is	 shown	 on	 the	 x-axis.	 In	 all	 cases,	 the	 random	 forest	model	1004	

greatly	 improves	 the	 predictions	 from	 a	 naïve	 inference,	 with	 a	 1.3-1.8	 fold	1005	

improvement	in	correlation.			1006	

	1007	

Figure	 5:	 Regions	 enriched	 for	 cancer	 SV	 breakpoints	 (ESBs)	 display	 a	1008	

significant	increase	in	DSB	frequency	across	cancer	types.		A-C)	The	regions	with	1009	

ICGC	 SV	 breakpoint	 frequencies	 in	 the	 top	 5%	are	 shown	with	 their	 predicted	1010	

DSB	values	as	violin	plots	for	each	of	the	three	cell	type	models:	NHEK,	K562,	and	1011	

MCF7.	 	 ICGC	 cohorts	 are	 shown	 all	 together	 (pancancer),	 and	 split	 into	 three	1012	

cancer	 categories:	 carcinoma,	 blood,	 and	 breast	 cancers	 (see	 methods).	 D-F)	1013	

ICGC	 SV	 breakpoint	 counts	 separated	 by	 SV	 type,	 and	 the	 top	 5%	 of	 ESBs	 are	1014	

shown	with	 their	 predicted	DSB	 values	 as	 violin	 plots.	 The	 numbers	 following	1015	

the	x-axis	 labels	are	SV	breakpoint	count	cut-offs	 for	 the	 top	5%	ESBs,	and	 the	1016	

numbers	 in	 parenthesis	 are	 the	 number	 of	 50kb	 regions	 that	meet	 the	 cut-off.	1017	

For	example,	there	are	225	50kb	regions	with	more	than	two	SV	breakpoints	in	1018	
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blood	 cancers.	 Stars	 indicate	 significantly	 higher	 values	 in	DSB	 predictions	 for	1019	

the	 ESBs	 relative	 to	 non-ESBs	 for	 each	 category,	 as	 determined	 by	 a	 Wilcox	1020	

ranked	 sum	 test	 (*	 for	 p<=	0.05,	 **	 for	 p<=	0.01,	 ***	 for	 p<=1e-3,	 and	 ****	 for	1021	

p<=1e-4).			1022	

	1023	

Figure	 6:	 Inference	 of	 positively	 and	 negatively	 selected	 SV	 regions.	 A)	 The	1024	

predicted	 DSB	 frequencies	 for	 regions	 overlapping	 RefSeq	 genes,	 two	 sets	 of	1025	

cancer	 consensus	 genes,	 and	 common	 fragile	 sites	 (CFS)	 are	 shown	 as	 violin	1026	

plots.	 The	 stars	 represent	 significantly	 higher	 values	 in	 the	 region	 subsets,	1027	

compared	to	genomic	regions	that	do	not	overlap	the	given	annotation	set,	using	1028	

a	Wilcox	ranked	sum	text.	B)	The	same	regions	as	in	a),	but	with	d-score	values,	a	1029	

measure	 of	 the	 deviation	 of	 the	 observed	 breakpoint	 frequencies	 from	 the	1030	

predicted	or	expected	DSB	 frequencies.	C)	Observed	SV	breakpoint	 frequencies	1031	

for	 ICGC	 carcinomas	 (excluding	breast	 cancer)	with	predicted	DSB	 frequencies	1032	

from	the	NHEK	DSBCapture	model.	Each	point	represents	a	50kb	region	and	 is	1033	

coloured	 by	 its	 d-score.	 Regions	 were	 split	 into	 high	 (cancHpredL)	 and	 low	1034	

(cancLpredH)	 d-score	 categories	 (d-score	 p-value	 <	 0.01),	 a	 cancHpredH	1035	

category,	 representing	 regions	 with	 d-scores	 near	 zero,	 and	 a	 cancHpredL2	1036	

category,	representing	low	mappability	regions	(see	methods).	D)	Each	category	1037	

was	 tested	 for	 enrichment	 of	 various	 annotations	 using	 circular	 permutation	1038	

(see	 methods).	 The	 yellow	 dotted	 line	 marks	 p<0.01	 significance,	 and	 the	1039	

numbers	 in	parenthesis	 indicate	 the	number	of	 50kb	 regions	 in	 each	 category,	1040	

out	of	61,903	in	total.		1041	

	1042	
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