bioRxiv preprint doi: https://doi.org/10.1101/441832; this version posted October 13, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

10

11

12

13

14

15

16

17

18

19

available under aCC-BY 4.0 International license.

Modelling double strand break susceptibility to interrogate structural

variation in cancer

Authors: Tracy ]. Ballinger!, Britta Bouwman? Reza Mirzazadeh?, Silvano

Garnerone?, Nicola Crosetto?*, Colin A. Semplel*

Affiliations:

1. MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine,

University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK

2. Science for Life Laboratory, Department of Medical Biochemistry and

Biophysics, Karolinska Institutet, Stockholm, Sweden

*These authors contributed equally to this work

Corresponding Author:

Dr Tracy Ballinger, MRC Human Genetics Unit, Institute of Genetics and
Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU,

UK; Tracy.Ballinger@igmm.ed.ac.uk

Author Emails:

Tracy Ballinger: tracy.ballinger@igmm.ed.ac.uk

Britta Bouwman: britta.bouwman@scilifelab.se

Reza Mirzazadeh: reza.mirzazadeh@scilifelab.se



https://doi.org/10.1101/441832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/441832; this version posted October 13, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

20 Silvano Garnerone: silvano.garnerone@scilifelab.se

21 Nicola Crosetto: nicola.crosetto@scilifelab.se

22 Colin Semple: colin.semple@igmm.ed.ac.uk

23  Running head:

24  Modelling DNA double strand breaks

25

26  Abstract

27  Background: Structural variants (SVs) are known to play important roles in a
28  variety of cancers, but their origins and functional consequences are still poorly
29  understood. Many SVs are thought to emerge via errors in the repair processes
30 following DNA double strand breaks (DSBs) and previous studies have
31 experimentally measured DSB frequencies across the genome in cell lines.

32 Results: Using these data we derive the first quantitative genome-wide models
33  of DSB susceptibility, based upon underlying chromatin and sequence features.
34 These models are accurate and provide novel insights into the mutational
35 mechanisms generating DSBs. Models trained in one cell type can be successfully
36 applied to others, but a substantial proportion of DSBs appear to reflect cell type
37  specific processes. Using model predictions as a proxy for susceptibility to DSBs
38 in tumours, many SV enriched regions appear to be poorly explained by
39  selectively neutral mutational bias alone. A substantial number of these regions
40 show unexpectedly high SV breakpoint frequencies given their predicted
41  susceptibility to mutation, and are therefore credible targets of positive selection

42  in tumours. These putatively positively selected SV hotspots are enriched for
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43  genes previously shown to be oncogenic. In contrast, several hundred regions
44  across the genome show unexpectedly low levels of SVs, given their relatively
45  high susceptibility to mutation. These novel ‘coldspot’ regions appear to be
46  subject to purifying selection in tumours and are enriched for active promoters
47  and enhancers.

48  Conclusions: We conclude that models of DSB susceptibility offer a rigorous

49  approach to the inference of SVs putatively subject to selection in tumours.

50

51 Keywords: Double strand break, cancer, structural variaton, chromatin,
52  modelling

53

54  Background

55

56  Structural variation (SV) in tumour genomes is known to play important roles in
57 disease progression and may be critical in driving the development of certain
58 cancer types (1-3). However, challenges remain not only in ascertaining accurate
59 SV calls, as evidenced by the compendium of SV calling algorithms used in many
60 projects (4-6), but also in predicting their functional impact. Some SVs have
61 apparently direct consequences; for example, amplification of oncogenes leading
62  to overexpression, deletion of tumor suppressors leading to dysfunction, and
63 translocations generating oncogenic fusion proteins (4). Reportedly indirect
64 consequences of SVs include changes in enhancer targeting, affecting the

65 expression of nearby genes, or “enhancer hijacking” (7). However, it remains
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66 challenging to distinguish the influences of evolutionary selection versus
67  primary mutation rate in generating the SVs concerned.

68

69 A recent study of whole genome sequencing (WGS) data from breast tumours
70  identified SV hotspots and putative driver SVs, but could not discern the relative
71  contributions of mutational bias and selection underlying these hotspots (8).
72 Resolving the influences of mutational bias versus selective forces has become
73  critical given that both single nucleotide variant (SNV) and SV mutation rates
74  vary widely across the genome, in parallel with replication timing and chromatin
75  structure (9,10). In analyses of tumour SNVs, variants are routinely prioritized
76  based on algorithms including corrections for estimates of SNV mutation rate
77  variation (11), but analogous methods are not yet applied to SVs.

78

79  Variable rates of SVs observed across the genome are likely to be affected by
80 differences in the efficiency of repair of DNA double strand breaks (DSBs). DSBs
81 can be repaired by homologous recombination (HR) at the G2 and S stages of the
82  cell cycle and, more commonly, by canonical non-homologous end joining (c-
83  NHE]) which operates throughout the cell cycle (12). The c-NHE] process is error
84  prone and has been shown to create structural variants initiating carcinogenesis
85  (13). A third repair process, alternative NHE] (alt-NHE]) uses microhomology to
86  mediate repairs when the c-NHE] pathway is unavailable, and repair by alt-NHE]
87  appears to increase the rate of deletions, insertions, and translocations further
88 (14). The efficiency of these repair processes is often dependent upon the
89  chromatin features and nuclear organization present where the damage occurs.

90 For example, the histone modification H3K36me3, associated with active


https://doi.org/10.1101/441832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/441832; this version posted October 13, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

91 transcription, recruits the HR pathway, while H4K20mel, a mark of highly
92  transcribed genes, recruits components of the NHE] pathway (15). The
93  associations between DSB repair and the underlying chromatin landscape may
94  therefore explain the observed correlations between tumour SV rates and
95  chromatin structure (9).

96

97  Previous studies have also shown DSB formation to be influenced by underlying
98 chromatin structures and genomic sequences. It has long been known that
99  certain cytogenetically mapped loci, termed “fragile sites” undergo recurrent
100 DSBs in cells under replicative stress and in cancer (16). More recent high
101  throughput sequencing (HTS) based approaches have been developed to profile
102  DSB rates more precisely within in vitro populations of cells (17-25). Three of
103  these methods, BLESS (18), DSBCapture (22), and BLISS (25) are closely related
104 and have been used to generate high-resolution maps of endogenous DSBs
105 occurring in human cell lines, resulting in continuous data reflecting the
106  propensities for DSBs across all chromosomes. These studies have suggested that
107 DSBs may preferentially occur within nucleosome-depleted regions, are
108  correlated with active promoter and enhancer histone modifications, and may
109  associate with G-quadruplex sites (22,26). Certain studies have also suggested
110 DSBs to be depleted in some transposon classes and enriched in some simple
111 repeat classes, and to be unusually frequent in long, late-replicating genes
112 (18,24). Overall, previous studies have found correlations and enrichments
113  between DSBs and various inter-correlated chromatin and genomic features,
114  making it difficult to accurately assess the contribution of any particular feature

115 to DSB susceptibility. Understanding such contributions can be valuable for
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116  understanding the underlying mutational and repair mechanisms. In addition, a
117  fuller understanding of the relative contributions of many features to DSB
118 formation can allow reliable predictions of the expected DSB frequency in a given
119  genomicregion.

120

121 Random forests have been used to model a variety of biological phenomena
122 because they perform well in the presence of inter-correlated input variables
123  showing non-linear relationships. For example, they have been used to predict
124  nuclear compartments (27), cancer SNV mutational landscapes (28), and
125  enhancer-promoter interactions (29). In this study we construct random forest
126  regression models to generate quantitative measures of the relative importance
127  of a variety of matched chromatin and other features to DSB susceptibility. We
128 use multiple, high-resolution DSB profiling datasets to compare modeling
129  accuracy across several platforms and cell types. The cell types selected have
130 also been extensively profiled for a variety of chromatin features by the ENCODE
131  Project (30) and others, allowing well-matched models to be constructed for all
132  datasets. We demonstrate that these models provide accurate estimates for the
133  expected rate of DSBs in a given region and can be cross applied between DSB
134  datasets. In addition the models can be used to explore tumour SV breakpoint
135 data, to nominate novel regions putatively subject to selection in cancer.

136

137  Results

138

139 We uniformly processed four DSB datasets from three related platforms

140 (DSBCapture and BLISS are both based upon modifications to the BLESS


https://doi.org/10.1101/441832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/441832; this version posted October 13, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

141  protocol) and covering three different cell types, collating matched chromatin
142  data for each. These datasets include two novel DSB mapping datasets derived
143  from the K562 erythroleukemia and MCF7 breast cancer cell lines using the
144  recently developed BLISS method (25) (see Methods) and two previously
145  published DSB mapping datasets derived from the NHEK keratinocyte cell line
146  using BLESS and DSBCapture (22) protocols. DSB frequency is defined in each
147  dataset as the number of unique reads mapping to a given 50kb region, since
148 each read in a DSBCapture, BLESS, or BLISS experiment represents an exposed
149 DNA DSB end. Replicate experiments within each dataset were strongly and
150  significantly correlated (Pearson’s r = 0.905 to 0.992, p<2.2e-16) and were
151 combined to reduce noise, although random forest models generated from any
152  single one of the replicates yielded very similar results (see Methods).
153  Comparisons among DSB profiling datasets showed moderate correlations in
154  genome-wide DSB frequency between the three cell types as expected (r = 0.351
155  to 0.635, p<2.2e-16), shown in Supp Figure 1. All three cell types correspond to
156  well-characterized ENCODE cell lines, providing numerous matched chromatin
157  and genomic features exhibiting a range of correlations to DSB (Figure 1), and
158 are also inter-correlated themselves (Supp Figure 2).

159

160 Accurate models of genome-wide DSB frequency across cell types

161

162 We modeled DSB frequency at 50kb resolution, using the same ten matched
163  genomic features from each cell type to construct random forest models (see
164  Methods): open chromatin assayed by DNase-seq, POL2B binding, CTCF binding

165 and five histone modifications assayed by ChIP-seq, replication timing assayed
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166 by Repli-seq, and RNA-seq. We also included G-quadruplex forming regions as an
167  additional feature, since these DNA secondary structures are associated with
168 genomic instability (31). We found strong and significant correlations between
169  predicted and observed DSB frequency for all four datasets, with Pearson’s
170  coefficients ranging from 0.83 to 0.92 (Figure 2). We also generated a model for
171 the NHEK DSBCapture dataset using an extended set of 21 features, including
172 additional histone modifications, histone variants, and nuclear
173  compartmentalization from Hi-C data (32). This extended model resulted in
174  better predictive results for a small fraction of the genome (Supp Figure 4, Box
175 B), and a modestly increased genome-wide Pearson’s coefficient between
176  predicted and observed values (11 feature model r = 0.918; 21 feature model r =
177  0.922). We conclude that models constructed using the 11 selected genomic
178  features (Figure 2) provide high predictive accuracy across cell types, with
179  additional features likely to provide only marginal gains.

180

181  Variable importance metrics for these models reveal consistent trends in the
182  most influential features in DSB frequency prediction (Figure 2,E-H). Replication
183 timing is the most important feature across all three models with early
184  replication associated with high DSB regions and late replication with low DSB
185  (Figure 3C), in agreement with previous studies (33). In addition, the histone
186  modifications H3K36me3 and H3K9me3 (demarcating active genes and gene-
187 poor heterochromatin respectively) emerge as informative features, with
188 H3K36m3 enriched in high DSB regions and H3K9me3 in low DSB regions
189  (Figure 3C). This is consistent with observations that structural variants

190 disproportionately accumulate within the early replicating, relatively gene rich
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191 regions of the genome in cancer, and are relatively depleted in late replicating
192  heterochromatin (9,10). DNase-seq open chromatin ranks second in three
193  datasets and fourth in the MCF7 model and is also the most important feature for
194  predicting DSB peaks in the study of Mourad et al. (34) in which they do not
195 include replication timing. The influence of G-quadruplex forming regions is
196 notably variable, ranking as a relatively important feature in the NHEK datasets,
197  but having little and no predictive value in the K562 and MCF7 datasets. RNA-seq
198 is not a strong predictor of DSB susceptibility although DNase-seq peaks are
199  often found at the promoter regions of active genes. This suggests that open
200 chromatin at transcriptionally active genes and associated regulatory elements
201  (reflected in DNase-seq, H3K4me3 and POL2B binding), rather than
202  transcription per se, is the dominant influence on DSB frequency. CTCF binding
203  also appears to be an informative variable, genome-wide in all models, though it
204 Dbinds at sites constituting a very small fraction of the genome. Given the critical
205 roles of CTCF in chromatin architecture and regulation (32), there has been
206 intense interest in the causes and effects of structural variants disrupting CTCF
207  binding sites (35,36).

208

209 Influential features underlying DSB frequency differ between genomic loci
210 and cell types

211

212 Beyond the general, genome-wide trends described above, we see differences in
213  the behavior of certain classes of loci. These are evident as regions departing
214  from the linear relationship between observed and predicted DSB frequency

215  seen for the majority of the genome (Figure 3A; Supp Fig 4). Deeper exploration
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216  of the relationships between underlying genomic features and DSB frequency
217  reveals diagnostic features for these discrepant classes. One class of loci (Figure
218 3, Box A) shows unusually low values for both predicted and observed DSB
219  frequencies, and is enriched for H3K9me3 marked heterochromatin and low
220  sequence mappability (Figure 3B). These regions are likely to correspond to
221  repeat-rich regions near centromeres and on the short arms of acrocentric
222 chromosomes, which are problematic for read mapping algorithms (37). Another
223  class of H3K9me3 heterochromatin enriched loci shows higher DSB predictions
224  than observed, in spite of high mappability values (Figure 3, Box B). This class of
225 regions is absent in DSB datasets generated by the BLISS protocol (Figure 2), so
226  these aberrant predictions may reflect technical and methodological differences
227  between datasets. In any case, it is clear that model predictions may reasonably
228  be expected to be less accurate in heterochromatic regions.

229

230 The similarities in relative variable importance across datasets (Figure 2)
231  suggest that many features have a similar influence on DSB frequency in each of
232 the three cell types. Thus, a model trained in one cell type might generalize well
233  to another cell type and allow us to generate predictive DSB frequency profiles
234  for model cell lines currently lacking high resolution DSB data. We cross-applied
235 models and found models trained in one cell type often performed well in
236  another (Figure 4). For example, a model trained in NHEK cells could be used to
237  predict DSB frequencies in K562 cells (inputting K562 genomic features) with
238  high accuracy (Pearson’s r = 0.85 correlation; Figure 4). This offers a substantial
239 improvement over the base correlation (r = 0.63) between NHEK and K562

240  observed DSB profiles. We measured the correlation of observed and predicted

10
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241 DSB frequencies across all nine model and feature combinations and always
242  found correlations (r = 0.58 to 0.85) that improved on the base correlations (r =
243 0.38 to 0.63) seen between the observed DSB datasets (Figure 4). These
244 improvements echo the similarities in variable importance between cell types
245  (Figure 2). The moderate correlations between DSB across cell types
246  demonstrate that a substantial proportion of DSB susceptibility across the
247  genome is cell type specific, which is consistent with the established cell type
248  specific properties of many SV breakpoint regions in tumours, such as common
249  fragile sites (38). Furthermore the larger performance gap in models for cell
250 lines with altered variable rankings indicates that DSB mechanisms may differ
251  across cell types and may not be completely captured via epigenomic features.
252

253 Tumour SV breakpoints possess variable susceptibility to DSBs

254

255  Keratinocytes are considered to be the cell type of origin for mucosal and
256  cutaneous carcinomas, particularly squamous cell carcinomas (39), and NHEK
257  cells are often used in the literature as a model for these cancers. Similarly, MCF7
258  cells and K562 cells have been used extensively as models for breast and blood
259  cancers respectively. This motivated us to ask how the DSB models for these
260  three cell types relate to the patterns of SV breakpoints observed in squamous
261  cell carcinomas, blood cancers, and breast tumours.

262

263 A number of large structural variant (SV) collections have been established for a
264  variety of tumour types, and each possesses advantages and shortcomings. The

265 International Cancer Genome Consortium (ICGC) provides high resolution SV

11
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266  calls based upon whole genome sequencing (WGS) for 2,146 patients across 17
267  cohorts (40), but sample cellularities, sequencing depths and SV calling methods
268  vary across cancer cohorts, and are expected to affect results (Supp Figure 6).
269  The Cancer Genome Atlas (TCGA) produced consistently processed copy number
270  variant (CNV) calls from SNP chip data for 23,084 patients across 33 cohorts
271  (Supp Figure 7). However, breakpoint resolution is much lower than calls based
272  upon WGS, and copy neutral SVs such as inversions and translocations are
273  absent. We analyzed ICGC and TCGA data as pancancer datasets, combining all
274  cancer types together, but also as three cancer type subgroups. TCGA subgroups
275 comprised a squamous cell carcinoma subgroup, a blood cancers subgroup
276  including two blood cancers, and breast cancer as a separate group (see
277  Methods). Similar ICGC subgroups were formed (from cohorts independent of
278 TCGA), but with the squamous cell carcinoma subgroup replaced with a
279  carcinoma subgroup, which includes seven carcinoma cancer studies excluding
280  breast cancer (see Methods).

281

282  Analogously to the DSB datasets, we determined the number of tumour SV
283  breakpoints per 50kb region for each of the ICGC and TCGA SV datasets (see
284 methods) and compared these to the DSB predictions from our models. In ICGC
285 data overall we saw low correlations between the number of SV breakpoints and
286  DSB predictions (Supp Figure 8 and Supp Figure 9). Restricting our analysis to
287  ICGC enriched SV breakpoint regions, or ESBs for the purpose of this manuscript
288  (50kb regions with SV breakpoint counts in the top 5% genome-wide, see
289 Methods), increased the agreement with DSB model predictions. Significant

290 increases in NHEK and MCF7 model predictions were seen for pancancer,

12
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291  carcinoma, blood, and breast tumour ESBs and in K562 model predictions for all
292  cancer subsets except blood ESBs (Figure 5). The significant increase in DSB
293  model predictions seen for carcinoma ESBs indicates that DSB susceptibility
294  (captured in the models) may shape the SV landscape of these cancer types. We
295 also see a significant increase in DSB predictions for TCGA blood cancer ESBs,
296  but not for any other subgroups in TCGA data (Supp Figure 10). However, as
297 mentioned, TCGA data is of low resolution and not suitable for accurate
298  breakpoint detection.

299

300 Certain classes of relatively simple SVs (deletions, duplications, inversions,
301 translocations) are often the product of one or two DSBs, while more complex
302 intrachromosomal rearrangements can be difficult to classify accurately, and
303 may have origins in poorly understood phenomena such as chromothripsis (41).
304 Indeed, even for simple SVs there may be some ambiguity, with an unknown
305 fraction arising by mechanisms that may not involve a DSB. For example,
306 insertions can arise from transposon activity, and duplications from replication
307 slippage (42). However, even if many SV breakpoints do not arise from DSBs, we
308 might reasonably expect to see shifts to higher median DSB model prediction
309 values for many simple SV classes. We determined ESBs as above for ICGC-
310 annotated SV classes across all ICGC tumour types to examine their DSB
311 frequency predictions, compared to non-ESBs, 50kb regions that do not attain SV
312  breakpoint counts in the top 5% with at least one tumour SV breakpoint
313  detected. Overall, the models show significant elevations for ESBs covering all SV
314 classes except insertions (Figure 5). Insertions may be less influenced by DSB

315  susceptibility because they may occur via transposable element activity rather

13
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316  than through DNA damage and repair pathways. Crosetto et al. (18) find an
317  enrichment of satellite repetitive elements in regions enriched for DSB in cells
318 exposed to aphidicolin. However, regions that undergo DSB under replicative
319  stress, as induced by aphidicolin, may differ from DSB regions under normal cell
320 growth conditions.

321

322 Interrogating tumour SV data at common fragile sites with DSB models

323

324  The predicted DSB frequencies from our models and ICGC tumour SV breakpoint
325 frequencies differ in their scaling and distributions and are not directly
326  comparable. However, it is of interest to identify outlier regions, where model
327  predictions and observed tumour SV breakpoint rates diverge most, since these
328 regions may include loci under selection in tumours. We developed a novel
329  metric, the d-score, to measure this divergence between expectations given a
330 DSB model and observed SV breakpoint rates in tumours. In brief, this metric
331 relies on fitting known distributions to the observed SV breakpoint dataset and
332  to the predicted DSB dataset. Based upon the known distributions we then
333 transform the observed SV counts and predicted DSB values to p-values,
334 reflecting the probability that each value is drawn from the fitted distribution
335 (see Methods). For each 50kb region in the genome the difference between the
336 SV breakpoint log p-value and the predicted DSB log p-value is the d-score.
337 Regions with unexpectedly high d-scores contain more SV breakpoints than
338  expected, given our model, whereas regions with unusually low d-scores contain
339 fewer SV breakpoints than expected.

340

14
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341 Common fragile sites (CFSs) have long been studied for their unusual properties
342  of generating SVs, both in normal cells and in cancer (38). These regions undergo
343  frequent DSBs in tumours and have been well studied in terms of their genomic
344  context, relationship to replication timing and origins, and correlations with
345  particular chromatin states (43). They tend to occur within large genes, in G-
346 negative chromosomal bands with high DNA flexibility, are unusually late
347  replicating (44), and it is thought that their instability derives from
348 transcription-associated replication stress (38). CFSs only exist in modest
349 numbers and are defined at low resolution (by cytogenetic bands or gene loci);
350 they therefore provide an interesting, though challenging, test set of regions to
351 examine d-score performance.

352

353 We examined predicted (NHEK model) DSB frequencies at 294 50kb regions
354  coinciding with annotated CFS gene loci across the genome, in comparison to
355 regions associated with all annotated genes, and regions associated with putative
356 cancer driver genes (Figure 6C). Although significant shifts to higher frequencies
357 are seen for the driver gene sets for predicted DSB frequencies, the CFSs do not
358 show a similar increase, most likely because the model predicts DSB in early
359 replicating regions, and CFS tend to be late-replicating. Thus, the dominant
360 features influencing DSB susceptibility genome-wide do not appear to drive the
361 elevated DSB rates at CFSs, consistent with CFS instability involving replicative
362  stress (38). However, CFS d-scores show a significant shift above the distribution
363 for all genes and above the driver gene sets as well (Figure 6D). This result is
364 replicated in the MCF7 BLISS model examined inconjunction with ICGC breast

365 cancer SV breakpoints (Sup Figure 11). We conclude that the d-score, a measure

15
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366  ofrelative DSB enrichment, offers a robust metric for the classification of regions
367 showing unusual SV breakpoint rates in tumours.

368

369 Identification of hot and cold spots for structural variant breakpoints in
370  tumours

371

372  We have developed a classification of regions of interest within ICGC tumour
373  cohorts based upon the d-score metric. We call regions with significantly more
374 SV breakpoints than expected, or SV hotspots, cancHpredL (cancer high,
375 predicted low), and regions with fewer SV breakpoints than expected, or SV
376  coldspots, cancLpredH (cancer low, predicted high) (see Methods). Figure 6
377  depicts these classes of regions in d-score plots of ICGC SV breakpoint data. Many
378 previous studies have predicted oncogenic SV hotspots simply as regions
379 repeatedly rearranged in cancers. Here we refine such predictions by assessing
380 these raw SV breakpoint frequencies relative to the predicted susceptibility of
381 each region to breakage. It is not possible to predict coldspot regions without a
382  model of expected DSB frequency, and to our knowledge SV breakpoint coldspots
383  have not been studied before.

384

385 We also define a class of regions possessing both high predicted DSB values and
386 high SV breakpoint frequencies (cancHpredH), corresponding to regions
387 showing unusually high SV frequencies on the background of high susceptibility
388  to DSBs. Finally, we define a fourth class of regions that have predicted DSB rates
389 close to zero but high SV breakpoint frequencies (cancHpredL2). In principle,

390 theseregions are a class of SV hotspots but, as shown in Figure 3B, they are likely
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391 to be repetitive, heterochromatic, and enriched for artifacts (false positives and
392  negatives in SV breakpoint) due to their association with low mappability.

393

394 We examined a range of functional annotation enrichments in the four classes of
395 regions using circular permutation to assess significance (see Methods; Figure
396 6). The annotations included two putative cancer gene sets, 260 genes from the
397  Cancer5000 dataset (45) and 561 genes from the COSMIC collection (46)). We
398 also included a set of 15,415 super enhancers (47), common fragile sites, and
399  chromatin states from ENCODE chromHMM analysis (48). Notably, the majority
400 of genes in both cancer sets are predicted to be oncogenic based on unexpectedly
401 high and functionally significant SNV (rather than SV) loads and are not
402 necessarily expected to occupy regions with higher levels of SV breakpoints. In
403  fact, both gene sets demonstrate significant enrichments in the cancHpredL class
404  of hotspot regions (Figure 6D), although RefSeq genes do not, suggesting that
405 these genes may also frequently be altered in cancer through SV. The
406 cancHpredL regions are also significantly depleted in active chromatin regions,
407  such as promoters, enchancers, and insulator regions, most likely because these
408 types of regions do not have low predicted DSB. The high susceptibility
409 cancHpredH regions occupy gene-rich areas of the genome (enriched for known
410 RefSeq genes) including both cancer genes sets, and for active promoters, strong
411 enhancers, and insulators. This is consistent with reports that CTCF bound
412 insulator elements suffer recurrent mutations in tumours. Likewise, the
413  cancLpredH class of coldspot regions occupy gene rich neighbourhoods, active
414  promoters, and strong enhancers (Figure 6), suggesting some genes and distal

415 regulatory regions may have experienced purifying selection in tumours.
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416

417  Given the discrepancies mentioned above between ICGC and TCGA experimental
418 platforms, data analysis, and sample cohorts, we do not expect strong agreement
419 between ICGC and TCGA derived SV datasets. Indeed, the correlation between
420 them is low (Spearman’s rho of 0.099, p<2.2e-16), and the pancancer ESBs from
421  either set do not significantly overlap (p < 0.99, see methods). However, the
422  cancLpredH class is again enriched in active promoter and strong enhancer
423  regions, in accordance with the results based upon ICGC SV data (Sup Figure 12).
424

425  We again wanted to test the utility of DSB random forest models applied to
426  different cell types by testing the accuracy of predictions made by a model
427  trained in one cell type given features for a different cell type, as in Figure 4.
428 Instead of looking at the correlation between the observed and predicted DSB
429  scores across the genome, we examined the overlap between cancHpredL,
430 cancHpredH, and cancLpredH 50kb regions for the MCF7 model versus the
431 NHEK model, using the MCF7 model as the truth set. Subsets of 50kb regions for
432  each model were derived from MCF7 features and ICGC breast cancer SV
433  breakpoints; only the training data for the models differ. We found a significant
434  overlaps between all three categories of d-score subsets, with 595/662
435  cancHpredL, 255/785 cancHpredH, and 253/594 cancLpredH regions detected
436  via the NHEK model (p<2.2e-16), demonstrating that a given model can be used
437  to detect regions of interest in various cell types.

438

439 Functional annotation of regions of interest

440
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441 We closely examined the ten 50kb regions with the highest (cancHpredL) d-
442  scores to uncover genes that might be reclassified as oncogenic due to a higher
443  than expected SV breakpoint frequency in cancer. Likewise, we investigated the
444  ten regions with the lowest d-scores (cancLpredH), which we predict to be under
445  purifying selection, for signals of potential functionality. For this analysis we
446  used the NHEK model predictions paired with ICGC carcinoma SV breakpoints.
447

448 Nine out of ten regions with the highest d-scores overlap a gene, and four
449  overlap COSMIC genes. CHEKZ and CDKNZA are known tumor suppressors, and
450 TMPRSSZ and ERG is frequently involved in translocation events forming fusion
451 oncogenes in certain cancers. For example, it fuses with TMPRSS2 in most
452  prostate cancers, with EWS in Ewing’s sarcoma, and with FUS in AML. Two
453  adjacent 50kb regions on chr17q12 overlap GRB7 and IKZF3. GRB7 encodes a
454  protein that interacts with epidermal growth factor receptor (EGFR), a well-
455  known proto-oncogene, and [KZF3 is a zinc finger protein and transcription
456 factor involved in B lymphocyte regulation and differentiation as well as
457  chromatin remodeling. This region also corresponds to a known fragile site
458  FRA17A (49). Of the ten regions with the lowest d-scores, seven overlap a known
459  gene and two known oncogenes. The oncogene, CDC27 , or cell division cycle 27,
460 encodes a component of the APC and has been shown to interact with other
461 mitotic checkpoint proteins. It is highly conserved and may be necessary for cell
462  survival. There is also a non-coding RNA found on chr2 in the centromeric
463 region, LOC654342, which overlaps an H3K27ac peak, and may be acting as a
464 regulatory element.

465
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466  Discussion

467

468 Recent in vitro studies of DSB frequency in cell lines have suggested that a
469  variety of underlying genomic features are associated with DSB susceptibility.
470 We have shown that accurate models of genome-wide DSB frequency can be
471  built from a modest number of such features, with replication timing, open
472  chromatin, and marks of active promoter or enhancer regions associated with
473  increased DSBs. Although active regulatory regions often harbor actively
474  transcribed genes, it appears that chromatin accessibility at these sites rather
475  than transcription itself determines DSB propensity. The variable importance
476  metrics also show certain features to be more influential in particular cell types,
477  with CTCF and H3K36me3 having more predictive power in MCF7 than in NHEK
478  or K562. Not only are DSB patterns cell type specific, but the factors influencing
479  those patterns also depend on cell type, suggesting different mutational
480 mechanisms at play. As a matter of course, our models’ accuracies decline when
481 applied to cell lines other than the training set, but they still generate reasonable
482  DSB frequency predictions, with correlations between 0.57 and 0.83 to the
483  observed data, which are large improvements over a simple inference. Since
484  chromatin features influence mutation patterns and are cell type specific, it will
485 be important to use mutational propensity profiles for matched cell types in
486  future cancer studies.

487

488  Our models of genome-wide DSB susceptibility predict DSB frequencies for all
489  50kb loci, and reflect the established correlations between replication timing and

490 DSB frequency (50) as well as tumour SV rates (9,10). A recent complementary
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491  study has shown that 84,946 high confidence peaks of NHEK DSBCapture signal
492  (22), marking small (median: 391bp) sites of unusually high DSB susceptibility,
493  can be accurately classified from control sites using underlying genomic features
494  (34). Consistent with our results, this binary classifier suggested prominent roles
495  for DNase accessible regulatory sites and CTCF binding, and recapitulated many
496  of the patterns reported by Lensing et al (2016). However, the model of Mourad
497 et al (2018) omitted replication timing and does not provide quantitative
498 predictions of DSB susceptibility across the genome.

499

500 We used our genome-wide models of DSB susceptibility to interrogate the largest
501 tumour SV breakpoint collections and found surprising levels of agreement, such
502  that SV breakpoint enriched regions often show shifts to higher predicted DSB
503  susceptibility. In spite of variable sample sizes, the classes of simple SV likely to
504 arise by one or two DSBs (deletions, duplications, inversions, translocations)
505 showed significant increases in predicted DSB susceptibility. The NHEK model
506 best predicted the patterns of DSB susceptibility in tumours, showing genome-
507 wide elevations of predicted DSBs for all of these SV classes relative to control
508 regions. Thus, the chromatin-mediated DSB susceptibility captured in the model
509 may shape the landscape of SV recurrence in these classes.

510

511 There are many reasons why one might expect a much poorer agreement
512  between the predictions of in vitro DSB frequency models and the patterns of SV
513  breakpoints observed in tumour sequencing studies. The available collections of
514 SV breakpoints in tumours are far from perfect, and even the best ICGC data

515 suffer large variations in sample size, sample heterogeneity, sequencing depths
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516 and SV calling methods across tumour cohorts. In addition, fundamental aspects
517  of tumour biology (cellular heterogeneity, disrupted repair pathways, chromatin
518 alterations etc.) are expected to place distinct limits on the agreement we can see
519  with the DSB patterns seen in cell lines. Evidence is also emerging that there are
520 important properties of the mutational landscape in tumours that are unlikely to
521 be captured by in vitro model systems. For example, a recent study of intra-
522  tumour diversification in colorectal cancer suggests that most mutations occur
523  during the final clonal expansion of these tumours, resulting from mutational
524  processes that are absent from normal colorectal cells (51). Enhanced rates of
525 DSB formation have also been observed in vitro at cryptic replication origins
526  activated by oncogene-induced replication stress, though these cryptic sites
527 seem to explain only a minority of SV breakpoints (<8%) across a variety of
528 TCGA tumour types (52). Given the many known and possible differences
529  between in vitro DSB model predictions and observed tumour SV breakpoints, it
530 isremarkable that significant agreement is found on any level.

531

532  There is great interest in ‘hotspot’ genomic regions harbouring recurrent SVs in
533 tumours, on the basis that such regions may be under positive selection,
534  conferring a proliferative or survival advantage to tumour cells. However,
535 rigorous inference of selection requires a proxy for the expected rate of
536 recurrence within such regions. Using model predictions as this proxy we have
537 produced refined hotspot predictions, reflecting SV breakpoint frequencies
538 relative to the predicted susceptibility of each region. Since our predictions of
539 DSB susceptibility are genome-wide it was also possible to predict coldspot

540 regions, regions possessing unexpectedly low SV breakpoint rates given model
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541 predictions, and putatively subject to negative or purifying selection in tumours.
542  If selection in tumours is prominent in driving SV breakpoint frequencies away
543  from DSB model predictions, we might expect hotspot and coldspot regions to
544  show unusual functional enrichments. Multiple caveats apply to the annotations
545 examined but analysis using the NHEK model shows that ICGC carcinoma
546  hotspots are enriched for putative oncogenes. Coldspots occupy gene-rich
547  neighbourhoods but and are also enriched in active promoters and strong
548 enhancers, and insulators, indicating regulatory regions that may have
549  experienced purifying selection in tumours.

550

551 Conclusions

552

553  When inferring selection on single nucleotide variants it is standard practice to
554 ~make comparisons between the observed variant frequencies and the
555 frequencies expected, according to a model of single nucleotide mutation rates.
556  We have developed models of DSB mutation rates that can be used to generate
557  expected SV breakpoint frequencies and illuminate regions with significant
558 deviations from these expectations. This approach provides statistically rigorous
559 protocols to prioritize novel loci putatively under selection in tumours,
560 generating testable hypotheses for further experimental studies.

561

562

563 Methods

564

565  Derivation of DSB data in the K562 and MCF7 cell lines
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566 DSB profiles were generated with an adapted version of the Breaks labeling in
567  situ and sequencing protocol (25), in which DSB ends are labeled with a dsDNA
568  BLISS adapter in cell suspensions of 1 million cells. Afterwards the published
569 protocol is followed with only minor modifications. Labeled DSBs are selectively
570 amplified using T7-driven linear amplification, after which sequencing libraries
571 are generated and sequenced with single-end 1x75 v2 chemistry on an Illumina
572 NextSeq 500. Raw sequencing reads were demultiplexed by Illumina's
573  BaseSpace, after which FASTQ files were downloaded and processed as
574  described in Yan et al. 2017 (SRA accession SRP150602). In brief, reads with the
575  expected prefix of 8nt UMI and 8nt sample barcode sequence were filtered using
576  SAMtools and scan for matches, allowing at most one mismatch per barcode.
577  Trimmed reads were then aligned to GRCh37 using bwa mem, and reads with
578 mapping scores below 30 were discarded. Next, PCR duplicates were identified
579 Dby searching for proximal reads (within 30bp of the reference genome) with at
580 most two mismatches in the UMI sequence, which were then grouped and
581 collapsed into a single break location. Finally, we generated .bed files with DSB
582  locations and the number of unique UMIs indicating that location.

583

584  Generating random forest models

585 We downloaded ten tracks from ENCODE for multiple chromatin marks,
586 replication timing, open chromatin, several DNA binding proteins, and
587 nucleosome pull-downs from the UCSC genome browser (53). We used G-
588 quadruplex data generated by Chambers et al, (GSE63874). In their study, they
589 make separate .bedgraph files available with the G-quadruplex density for each

590 strand. We used the sum of the plus and minus strands in our analysis. The list of
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591 Dbigwig files used for each cell line along with their sources and graphical labels is
592  in Supplementary Table 1. We used the bigWigAverageOverBed tool from the
593  kentUtils tool library to produce average signal per 50kb in non-overlapping
594  windows across hg19 for each track. We combined the results to a single matrix
595 per cell line composed of 61,903 rows, one for each 50kb bin, and 11 columns,
596 one for each chromatin or genomic feature. These feature matrices are available
597 in supplementary data and scatter plots of each feature with the NHEK
598 DSBCapture data are shown in Supplementary Figure 3.

599

600 For the extended model in Supplementary Figure 4, we downloaded an
601 additional nine features from the UCSC genome browser (53), which were
602 processed in the same way as the ten ENCODE features used in the primary
603 feature matrix. We also downloaded .hic files for NHEK, K562, and HMEC cells
604 generated from Rao, et al. (GSE63525). We used their custom toolbox, Juicer, to
605 calculate eigenvectors per chromosome, and generated 50kb resolution
606 eigenvector profiles using the bedGraphToBigWig and bigWigAverageOverBed
607 tools from kentUtils. The figure labels and sources for these data are in
608 Supplementary Table2, and the extended feature matrices are in supplementary
609 data.

610

611 We generated DSB frequency scores from each of four HTS DSB profiling
612  datasets: two in NHEK cells, one for K562, unpublished, and one for MCF?7,
613  unpublished. As mentioned in the results, two replicates for each of two DSB HTS
614  profiling methods, DSBCapture and BLESS, were available from Lensing et al.

615 (22). We took the average per 50kb of the replicates to create an NHEK
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616  DSBCapture profile and an NHEK BLESS profile. We combined three replicates of
617  MCF7 BLISS data (via a sum operation) to serve as our MCF7 DSB profile. A
618  fourth MCF7 BLISS dataset is available, but we excluded it from our analysis
619  because it had a distinctly lower correlation to the other three datasets (0.90-
620  0.92 as opposed to 0.97-0.99). These scores are available as supplementary files.
621

622  We used the randomForest package in R to generate random forest models with
623 500 trees and five OOB permutations per tree (options ntree=500, nPerm=5). To
624  calculate variable importance, we used the importance command within the
625 randomForest package (https://cran.r-
626  project.org/web/packages/randomForest/index.html), which calculates the
627  average prediction error rate (MSE) for each datapoint (50kb bin) across all
628 trees in the random forest. Then, for each feature variable, the values are
629 randomly permuted and the MSE for each 50kb bin is calculated again. The final
630 variable importance score is the average difference in MSE before and after the
631 permutation, normalized by the standard deviation of these differences. Because
632 many features are inter-correlated, their importance measures were very
633  similar. Therefore, in order to determine a consistent ranking of features’
634 importance values, we generated ten random forest models per dataset and
635 calculated the average and standard deviation of importance across the ten
636 models.

637  Although random forest models are not susceptible to overfitting, to confirm that
638  our models were not overfit to the DSB data, we also generated a random forest
639  model for the NHEK DSBCapture dataset, holding out one third of the data as the

640 test set and training the model on the remaining two thirds. This model showed
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641 0.93 Pearson’s correlation between the predictions and the observed data for the
642  training set, similar to the model trained on the full dataset (Sup Figure 5).

643

644  Determining tumour ESBs and their predicted DSB scores

645 To determine SV DSB rates in from TCGA data, we downloaded CNV data from
646 TCGA (54), which came from Affymetrix SNP 6.0 arrays processed by the

647 DNAcopy R-package (https://docs.gdc.cancer.gov/Data/PDF/Data_UG.pdf).

648 DNAcopy generates a set of continuous segments, outputting regions with little
649 or no copy number change, so we filtered these, defining segments with a CN
650 ratio >1 as amplifications and ratios < -1 as deletions. The segments were lifted
651  from hg38 to hg19 using UCSC'’s liftOver tool. For each CNV, we counted a single
652  DSB to occur in a 50kb bin if either or both ends of the segment overlapped the
653  bin. The TCGA-BLOOD group includes the two blood cancer cohorts: acute
654 myeloid leukemia (LAML) and lymphoid neoplasm diffuse large B-cell lymphoma
655  (DLBC), while the TCGA-SCCA group includes three squamous cell carcinomas:
656  cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC),
657 head and neck squamous cell carcinoma (HNSC), and lung squamous cell
658 carcinoma (LUSC). The BRCA group includes only the TCGA breast cancer cohort
659 (BRCA), and the PANC group includes all 33 cancer types, shown in
660  Supplementary Figure 7. Counts for various groups and CNV types are available
661  as Supplementary Files.

662 We downloaded available WGS SV calls from the ICGC Data Portal
663  (https://dcc.icgc.org/projects). As with the TCGA CNV, a single DSB was counted
664  per 50kb bin if either one or two ends of a SV overlapped the region. The ICGC

665  pancancer group contains SVs from 17 cancer studies, shown in Supplementary

27


https://doi.org/10.1101/441832
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/441832; this version posted October 13, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

666  Figure 6. The carcinoma group contains all available carcinoma cancer studies,
667  excluding breast cancer: early onset prostate cancer (EOPC-DE), liver cancer
668  (LIRI-JP), pancreatic cancer (PACA-CA, PAEN-AU, PAEN-IT), prostate cancer
669 (PRAD-CA, PRAD-UK), and skin adenocarcinoma (SKCA-BR). The ICGC blood
670 group contains chronic lymphocytic leukemia (CLLE-ES) and malignant
671 lymphoma (MALY-DE), and the breast group contains breast cancer studies
672  (BRCA-EU and BRCA-FR). A table of DSB counts per 50kb broken up by group
673 and SV type is in supplementary data.

674

675 We determined enriched SV breakpoint regions (ESBs) per cohort or SV type
676  grouping by ranking the 50kb bins by the number of DSB, excluding regions with
677  no DSB in the group, and using the number of DSB in the top 5% as the cutoff. All
678 50kb regions with a DSB count greater than or equal to the cutoff were
679  designated ESBs. We used a Wilcoxon ranked sum test (R wilcox.test command)
680  to test for significant increase in the predicted DSB values for ESBs compared to
681 all other regions, and we excluded regions in which no DSB were found in any
682  cancer study since these are likely to be unmappable or blacklisted regions.

683

684  The correlation between TCGA and ICGC pancancer SV breakpoint counts was
685 calculated using Spearman’s rho and excluding 50kb regions with no SV
686  breakpoints in either the TCGA or ICGC datasets. The top 5% ESBs were found
687  for each dataset, with 2,839 regions found in TCGA and 3,072 in ICGC, and the
688  significance of the overlap was calculated using a hypergeometric test (R
689 command phyper with q=177, m=2,839, n=61,903-2,839, and k=3,072).

690
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691  Calculating d-scores

692  We used the R package fistdistrplus (55) to determine the distributions with the
693  Dbest fit to the DSB prediction values and the SV breakpoint frequencies. We used
694 a likelihood maximization test (method="mle”) and the BIC (Bayesian
695 Information Criterion) measure of goodness of fit to choose the best distribution.
696 We tested a lognormal, log-logistic,c gamma, normal, and an exponential
697  distribution, and fitted the distributions to the bulk of the SV breakpoint or DSB
698 prediction data. We excluded 50kb regions with breakpoint frequencies greater
699 than six times the interquartile range from the median in order to exclude
700 extreme outliers. While we aimed to emphasize the fit of the tails of our data’s
701  distributions, including these outliers resulted in poorly fitting distributions to
702  the bulk of the real data. Once we found the best of the three candidate model
703  distributions, we assigned a p-value to each 50kb bin from the fitted distribution
704  (using the plnorm, pllogis, or pgamma functions in R) which represent the
705  probability of seeing a given breakpoint frequency or DSB prediction or greater
706 in the known distribution. The actual and fitted distributions and quantile-
707  quantile plots are shown in Supplementary Figures 13 and 14.

708

709  Next, for each 50kb bin, we calculated the difference in log p-values between the
710 predicted DSB and the actual SV breakpoints, called d-scores. Using the
711  fistdistrplus R package again, we determined the best-fit distribution for the d-
712  scores, choosing between a t-distribution, a normal, and a Cauchy distribution.
713  Again, we used a maximum likelihood method and the BIC measurement and
714  excluded extreme outliers. In all cases, a t-distribution with four degrees of

715 freedom (df=4) was the best fit, so each 50kb bin was assigned a p-value from
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716  this distribution according to its d-score. The histograms and quantile-quantile
717  plots of the d-scores and fitted distributions are shown in Supplementary Figure
718 15.

719

720  Calculating gene set and chromatin domain enrichments

721  We used the d-score p-values to categorize regions into informative subsets,
722  using the R command qt(p=0.01, df=4, lower.tail=FALSE) to determine the d-
723  score cutoffs. The cancHpredL class of regions have d-scores in the upper one
724  percentile (> 3.75), and the cancLpredH have d-scores in the lower one
725  percentile (< -3.75). The cancHpredH class has d-scores in the 40t to 70t
726  percentiles and SV breakpoint frequencies or DSB predictions with p-values less
727 than 0.01, so these regions have significantly (p-value < 0.01) high SV
728  breakpoints or DSB predictions but insignificant d-scores (p-value < 0.6). The
729  cancHpredL2 class consists of regions with SV breakpoint p-values less than
730  0.01, and DSB predictions less than 0.5 for the NHEK models and less than 0.001
731  for the MCF7 model.

732  We used a binomial test to measure the significance of overlaps between sets
733  when comparing results from the MCF7 model and the NHEK model applied to
734  ICGC breast cancer data and MCF7 cell line features (R command binom.test).
735

736  We used the R package regioneR (56) to compute the overlap significance
737  between each set of regions and various genome and chromatin annotation files.
738  Alist of annotation sets and their original sources are in Supplementary Table 2.
739  We matched Cancer5000 genes and Cosmic gene lists to RefSeq gene names in

740  order to get their genome coordinates, so the cancer gene lists are RefSeq gene
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741  subsets. The super enhancer set (SEA) came from A549 cells, derived from a lung
742  carcinoma (47). Common fragile sites (CFS) were collected from NCBI's gene
743  archive by searching for “common fragile site” or “fragile site” within human
744  genes. Many fragile sites are annotated by chromosome band but do not have
745  exact coordinates; we filtered these out because they are low resolution. The
746  chromHMM (48) annotation came from the UCSC genome browser. We tested
747  enrichment of the NHEK states with the NHEK model d-score classes and the
748  HMEC track, from primary mammary epithelial cells, with the MCF7 model’s d-
749  score classes. The regioneR package performs random circular permutation of
750 regions of interest and then computes the number of overlaps between the
751 permutated set and a second set of regions. The p-value represents how often,
752 over the course of the permutations, the two sets overlap to the same extent that
753 they do without any permutation. We used 1,000 iterations to achieve a
754  maximum p-value of 0.001.
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Figure Legends

Figure 1: DSB frequency and genomic features display similar patterns. The
tracks show DSBCapture profiles in NHEK cells, BLESS profiles in NHEK cells,
BLISS in K562 cells, and BLISS in MCF7 cells. All tracks are at 50kb resolution
over a representative region of chromosome 1, with a variety of chromatin and

sequence features to illustrate the similarities between them. Numbers in
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969  parenthesis are the spearman’s rho between the associated track and the NHEK
970  DSBCapture 1 dataset.

971

972  Figure 2: Accurate models of DSB frequency built from chromatin and sequence
973  features. Panels A-D show random forest regression model predictions built
974  upon eleven genomic features at 50kb resolution compared to observed DSB
975  frequencies for four datasets: NHEK DSBCapture, NHEK BLESS, K562 BLISS, and
976  MCF7 BLISS. The y-values reflect the sequencing depth of each dataset. The
977  models’ predictions are all highly correlated with the observed data, as shown by
978  the noted Pearson’s correlations (p < 2.2e-16 for each dataset). Panels E-H show
979  the predictive features ranked by variable importance, a measure of how useful a
980  particular feature is for the model (see methods).

981

982  Figure 3: Modelling accuracy and the polarity of genomic features. A) NHEK
983  DSBCapture 50kb regions data is split into three distinct groups with differing
984 modelling accuracies. Panels B and C show the values of the model features for
985  the two boxes, A and B, and for group C, which contains randomly chosen points
986 along the spectrum of DSB frequency values for the majority of the genome. The
987  columns are ordered by observed DSB frequency, shown on the top row, and the
988 rows for features used to build the model (the third to second to last row) are
989 ordered by average variable importance. The number of 50kb regions in each
990 group is shown in parenthesis above each heatmap. Each feature was
991 normalized, setting the 1st to 99t quantiles to values between 0 and 1, with high
992  outliers (in the top percentile) set to 1.1. B) Group A has high H3K9me3 and low

993  mappability scores, indicative of heterochromatin and repetitive sequence, while
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994 B has feature patterns that closely match low DSB values in group C. C) For most

995  of the genome, high H3K9me3 corresponds to low DSB regions, and high, or

996  early, replication timing values and open chromatin values signify high DSB

997  regions.

998

999  Figure 4: DSB models improve predictions for non-model cell types. Models
1000 trained using a dataset from one cell type were used to generate predictions for a
1001 different cell type, given the matched features. The dark blue lines mark the
1002  Pearson’s correlation between the two cell types. The cell type used to train the
1003 model is indicated by the colour of the bar, and the cell type on which the model
1004 is being applied is shown on the x-axis. In all cases, the random forest model
1005 greatly improves the predictions from a naive inference, with a 1.3-1.8 fold
1006 improvement in correlation.
1007
1008 Figure 5: Regions enriched for cancer SV breakpoints (ESBs) display a
1009 significant increase in DSB frequency across cancer types. A-C) The regions with
1010 ICGC SV breakpoint frequencies in the top 5% are shown with their predicted
1011  DSB values as violin plots for each of the three cell type models: NHEK, K562, and
1012  MCF7. ICGC cohorts are shown all together (pancancer), and split into three
1013  cancer categories: carcinoma, blood, and breast cancers (see methods). D-F)
1014 ICGC SV breakpoint counts separated by SV type, and the top 5% of ESBs are
1015 shown with their predicted DSB values as violin plots. The numbers following
1016 the x-axis labels are SV breakpoint count cut-offs for the top 5% ESBs, and the
1017 numbers in parenthesis are the number of 50kb regions that meet the cut-off.

1018 For example, there are 225 50kb regions with more than two SV breakpoints in
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1019 blood cancers. Stars indicate significantly higher values in DSB predictions for
1020 the ESBs relative to non-ESBs for each category, as determined by a Wilcox
1021 ranked sum test (* for p<= 0.05, ** for p<= 0.01, *** for p<=1e-3, and **** for
1022  p<=le-4).

1023

1024 Figure 6: Inference of positively and negatively selected SV regions. A) The
1025 predicted DSB frequencies for regions overlapping RefSeq genes, two sets of
1026  cancer consensus genes, and common fragile sites (CFS) are shown as violin
1027  plots. The stars represent significantly higher values in the region subsets,
1028 compared to genomic regions that do not overlap the given annotation set, using
1029  a Wilcox ranked sum text. B) The same regions as in a), but with d-score values, a
1030 measure of the deviation of the observed breakpoint frequencies from the
1031 predicted or expected DSB frequencies. C) Observed SV breakpoint frequencies
1032  for ICGC carcinomas (excluding breast cancer) with predicted DSB frequencies
1033  from the NHEK DSBCapture model. Each point represents a 50kb region and is
1034  coloured by its d-score. Regions were split into high (cancHpredL) and low
1035 (cancLpredH) d-score categories (d-score p-value < 0.01), a cancHpredH
1036  category, representing regions with d-scores near zero, and a cancHpredL2
1037  category, representing low mappability regions (see methods). D) Each category
1038 was tested for enrichment of various annotations using circular permutation
1039 (see methods). The yellow dotted line marks p<0.01 significance, and the
1040 numbers in parenthesis indicate the number of 50kb regions in each category,
1041 outof 61,903 in total.

1042
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ICGC enriched SV breakpoint regions (ESBs), top 5%
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NHEK model with ICGC carcinomas
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