

1 Deep structural brain lesions associated with consciousness

2 impairment early after haemorrhagic stroke

3 Benjamin Rohaut, MD, PhD;¹ Kevin W. Doyle, MA;¹ Alexandra S. Reynolds, MD;¹ Kay
4 Igwe, BA;² Caroline Couch, BA;¹ Adu Matory, BA;¹ Batool Rizvi, BA;² David Roh, MD;¹
5 Angela Velasquez, MD;¹ Murad Megjhani, PhD;¹ Soojin Park, MD;¹ Sachin Agarwal,
6 MD;¹ Christine M. Mauro, PhD;³ Gen Li, PhD;³ Andrey Eliseyev, PhD;¹ Vincent Perlberg,
7 PhD;⁴ E. Sander Connolly, MD;⁵ Adam M. Brickman, PhD;² Jan Claassen, MD, PhD¹.

8

9 **Author Affiliations:**

10 ¹Department of Neurology, Critical Care Neurology, Columbia University, New York, NY, USA

11 ²Department of Neurology, The Taub Institute, Gertrude H. Sergievsky Center, Columbia
12 University, New York, NY, USA

13 ³Mailman School of Public Health, Department of Biostatistics, Columbia University, New York,
14 NY, USA

15 ⁴Bioinformatics and Biostatistics Core Facility, iCONICS, IHU-A-ICM, Institut du Cerveau et de
16 la Moelle épinière, Paris, France

17 ⁵Department of Neurosurgery, Columbia University, New York, NY, USA

18

19 **Metadata:** title=102 characters, abstract=250 words, body of the manuscript=3395
20 words; number of figures=4, number of colour figures=3, tables=2, number of
21 supplementary figures=4, number of supplementary tables=3.

22

23 **Key words:** MRI, intracerebral haemorrhage, disorders of consciousness, coma,
24 prognosis.

25

26 **Address for Correspondence and Reprints**

27 Jan Claassen, MD, PhD

28 Neurological Institute, Columbia University

29 177 Fort Washington Avenue, MHB 8 Center, Room 300

30 New York, NY 10032

31 Phone: 212-305-7236; Fax: 212-305-2792; Email: jc1439@columbia.edu

1 **Financial Disclosure Statement:**

2 All authors declare no financial relationships with any organisations that might have an
3 interest in the submitted work and, no other relationships or activities that could appear
4 to have influenced the submitted work.

5

6 The Corresponding Author affirms that the manuscript is an honest, accurate, and
7 transparent account of the study being reported; that no important aspects of the study
8 have been omitted; and that any discrepancies from the study as planned have been
9 explained.

10

11 **Authors Contributions**

12 Study concept and design: BR, KD, ASR and JC. Data collection: ASR, KI, CC, AM and
13 DR. Analysis and interpretation of data: BR, KD, ASR, BR, MM, CMM, GL, AE, VP and
14 JC. Drafting of the manuscript: BR and LN. Critical revision of the manuscript for
15 important intellectual content: BR, MM, SP, SA, CMM, GL, AE, VP, SC, AMB and JC.
16 Statistical analysis: BR, KD, CMM, GL and JC. Study supervision: CC, AM and AV. BR,
17 KD and JC had full access to all the data in the study and take responsibility for the
18 integrity of the data and the accuracy of the data analysis.

1 Abstract

2 **Background:** The significance of deep structural lesions on level of consciousness
3 early after intracerebral haemorrhage (ICH) is largely unknown.

4 **Methods:** We studied a consecutive series of patients with spontaneous ICH that
5 underwent MRI within 7 days of the bleed. We assessed consciousness by testing for
6 command following from time of MRI to hospital discharge, and determined 3-months
7 functional outcomes using the Glasgow Outcome Scale-Extended (GOS-E). ICH and
8 oedema volumes, intraventricular haemorrhage (IVH), and midline shift (MLS) were
9 quantified. Presence of blood and oedema in deep brain regions previously implicated
10 in consciousness were assessed. A machine learning approach using logistic
11 regression with elastic net regularization was applied to identify parameters that best
12 predicted consciousness at discharge controlling for confounders.

13 **Results:** From 158 ICH patients that underwent MRI, 66% (N=105) were conscious and
14 34% (N=53) unconscious at the time of MRI. Almost half of unconscious patients (49%,
15 N= 26) recovered consciousness by ICU discharge. Focal lesions within subcortical
16 structures predicted persistent impairment of consciousness at discharge together with
17 MLS, IVH, and ICH and oedema volumes (AUC 0.74; 95%-CI 0.73-0.75). Caudate
18 nucleus, midbrain peduncle, and pontine tegmentum were implicated as critical
19 structures. Unconscious patients predicted to recover consciousness had better 3-
20 month functional outcomes than those predicted to remain unconscious (35% vs 0%
21 GOS-E ≥4; p-value=0.02).

22 **Conclusion:** MRI lesions within key subcortical structures together with measures
23 reflecting the mass effect of the haemorrhage (lesion volumes, IVH, MLS) obtained

- 1 within one week of ICH can help predict early recovery of consciousness and 3-month
- 2 functional outcome.

1 **Introduction**

2 Insights into mechanisms underlying early and delayed recovery of consciousness
3 following brain injury are limited. Investigators have implicated several subcortical
4 structures to be crucial for maintenance of arousal such as pontine tegmentum,
5 midbrain, basal forebrain, hypothalamus and central thalamus [1–3]. Structures
6 important for conscious processing or awareness include sub-cortical regions (i.e.,
7 thalamus, putamen, caudate and pallidum) as well as associative cortical regions (i.e.,
8 prefrontal, temporal and parietal cortices) and their connecting neuronal pathways [4–9].
9 Based on neuropathological, imaging and electrophysiological studies, circuit models
10 have been developed that help conceptualize impairment and recovery of
11 consciousness (e.g., modern concepts of the ascending reticular activating pathway
12 [ARAS],[3,10,11] mesocircuit model,[6,12] and global neuronal workspace[5]). Structural
13 damage to regions within this circuitry (e.g., large intracerebral haemorrhage [ICH] in
14 the thalamus) as well as lesions that functionally affect circuit connectivity (e.g.,
15 stretching thalamo-cortical projections from mass effect), especially when they are
16 bilateral, may result in clinically indistinguishable unconscious patients. However,
17 depending on the anatomical location and the pathophysiological mechanism of lesions,
18 prognosis for recovery of consciousness can dramatically differ [13].

19 Here we studied patients with ICH, a condition that may cause both focal injury to
20 specific subcortical brain regions that are integral parts of the ARAS and/or the
21 mesocircuit model as well as more diffuse injury that can impair network connectivity
22 (e.g., from midline shift and/or oedema) [14]. Specifically, we explored how the level of
23 impairment and recovery of consciousness relate to the locations and the extent of

1 subcortical injury quantified by early MRI. We tested the hypothesis that focal lesions
2 within subcortical regions included in the previously mentioned models of
3 consciousness, in addition to established characteristics of the haemorrhage (i.e.,
4 volume of ICH and oedema, and midline shift [MLS]), contribute to consciousness level
5 during the acute phase of ICH.

6 Methods

7 Subjects

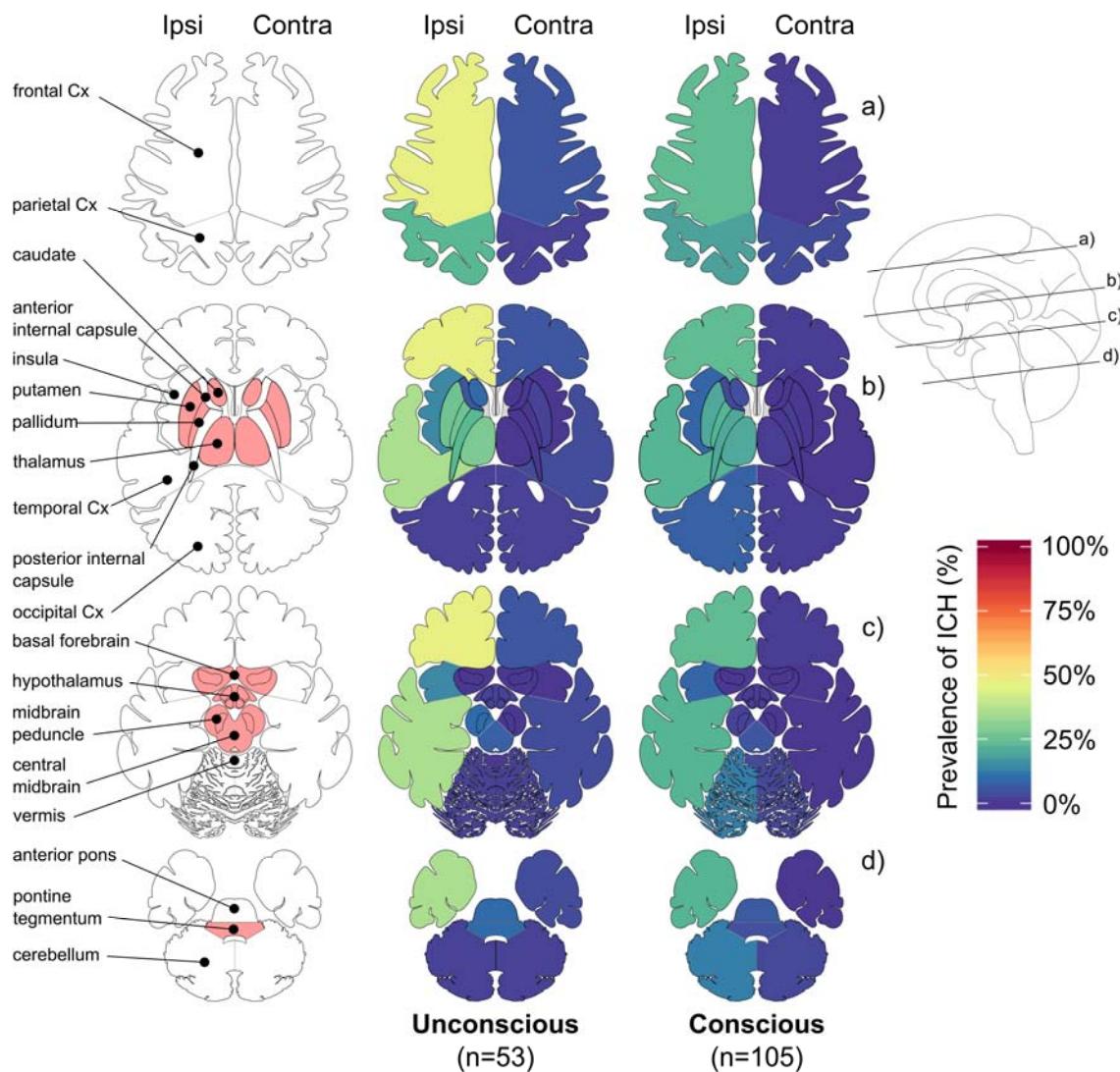
8 We studied a consecutive series of patients with ICH that underwent MRI including fluid
9 attenuated inversion recovery (FLAIR) and diffusion weighted imaging (DWI) within one
10 week of the ICH between March 2009 and November 2015. Inclusion criteria were: (1)
11 spontaneous ICH, and (2) MRI obtained within 7 days of the haemorrhage. Exclusion
12 criteria were: (1) age <18 years, (2) pregnancy, (3) ICH due to tumour, trauma, or
13 haemorrhagic conversion of an ischemic stroke, and (4) patients or families who
14 declined to participate in the study. Patient management was in accordance with current
15 guidelines (Supplementary Material). Data were collected as part of a prospective
16 observational cohort study approved by the local institutional review board. Written
17 informed consent was obtained from patients and/or legal surrogates.

18

19 Clinical variables

20 We collected baseline demographic and medical history (e.g., age, gender, race), and
21 admission characteristics of the ICH (e.g., ICH volume and location, presumed
22 aetiology, intraventricular haemorrhage, primary ICH-score)⁸. We calculated the
23 admission Functional Outcome in Patients With Primary Intracerebral Hemorrhage

1 (FUNC) score by quantifying ICH volume and location, age, Glasgow Coma Scale, and
2 pre-ICH cognitive impairment.[16] Daily assessments included documentation of
3 seizures (as per hospital protocol all unconscious patients undergo continuous EEG
4 monitoring for at least 24 hours), metabolic abnormalities (e.g., renal function and liver
5 failure), and fever. Doses of all sedatives and laboratory values were recorded at the
6 time of all behavioural assessments.


7

8 **Behavioural assessment**

9 We assessed level of consciousness daily from ICU admission to 30 days post-injury or
10 hospital discharge, whichever was sooner. As described previously [17], behavioural
11 assessments of consciousness were performed during morning rounds. These
12 consisted of protocolized, hierarchical assessments categorizing consciousness into
13 three levels of behavioural states: (1) “comatose” (no response to stimulation), (2)
14 “arousable” (opening eyes and/or attending to stimulation), or (3) “conscious” (following
15 simple commands; e.g., “show me two fingers”). To overcome language impairment or
16 aphasia while testing for consciousness, we used in addition to verbal commands, non-
17 verbal cues to induce mimicking (e.g., holding up two fingers and then gesturing to
18 subject’s supported hand). For the classification approach described below, we
19 dichotomized patients into “conscious” (category 3, following verbal and/or non-verbal
20 commands) and “unconscious” (categories 1 and 2; see details in supplementary
21 Material). According to our ICU protocol daily assessments were performed during
22 interruption of sedation.

1
2 **MR acquisition**
3 As part of our clinical protocol we acquired MR images within 7 days of haemorrhage
4 whenever deemed safe by the attending neurointensivist using a 3T scanner (GE Signa
5 HDx MRI scanner; HD23 software). Total acquisition time did not exceed 45 minutes.
6 We obtained FLAIR, T1-weighted, and DWI sequences (for details please refer to the
7 supplementary material section).

8
9 **Categorization of lesions**
10 Anatomical regions of interest (ROIs) were predefined based on established
11 neuroanatomical atlases [18] with a focus on subcortical brain regions (henceforth
12 referred to as “subcortical ROIs”) previously implicated in consciousness [1–7,12]. A
13 board-certified neurologist (AR) categorized the presence of blood and perihematomal
14 FLAIR hyperintensity (henceforth referred to as “oedema”) for each ROI based on a 3D
15 visualization of FLAIR, T1 and DWI sequences. The following ROIs were included in the
16 models: pontine tegmentum, midbrain (central and peduncles), hypothalamus, basal
17 forebrain, thalamus, pallidum, putamen, and caudate nuclei (see Figure 1, 1st row in
18 pink colour). For purposes of analysis, lesion laterality was reclassified from right/left
19 into ipsi/contralateral using the following approach. The side of the brain with the larger
20 amount of blood was labelled as ipsilateral. The side with the smaller amount was
21 labelled as contralateral. Intraventricular haemorrhage (IVH) was assessed in the 3rd,
22 4th, and each lateral ventricle and classified as present or absent. Any challenging
23 cases with bilateral haemorrhage were classified by consensus between three board
24 certified neurologists (AR, JC, BR). A board-certified neurologist (DR) coded the same

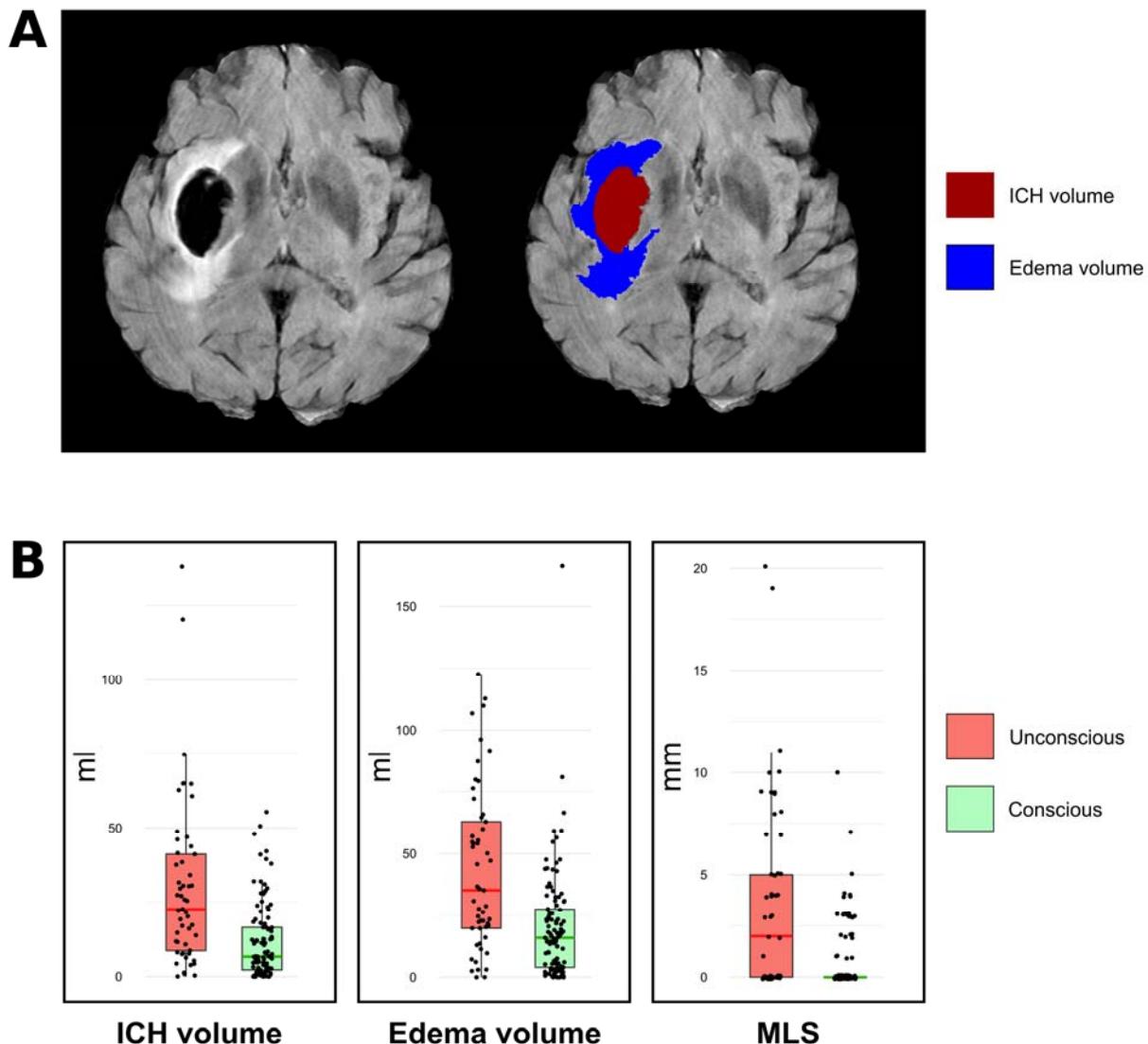
1
2 **Figure 1. Anatomical segmentation, subcortical ROIs and location of**
3 **haemorrhages according to consciousness level.** Anatomical segmentation is
4 represented on the left pane with the explored subcortical regions of interest (ROIs) in
5 pink. Prevalence of ICH observed on MRI are showed by level of consciousness at the
6 time of the MRI ("unconscious": patients did not follow or mimic even simple commands;
7 "conscious": patients followed or mimicked simple commands. "ipsi" and "contra" stand
8 for ipsilateral and contralateral with respect to the primary side of the haemorrhage; Cx:
9 cortex.

10

11 imaging parameters on a random 20% sample of MRIs blinded to the first coder's
12 results. Interrater agreement was assessed using kappa statistics.

1 **Volumetric measurements and midline shift**
2 Haemorrhage, perilesional oedema, and brain volumes were quantified based on FLAIR
3 sequences using a semi-automatized method. Briefly, a gross region-of-interest was
4 identified that encapsulated the affected region (ICH or oedema) to automatically
5 compute a 3D image that were visually inspected and manually corrected if necessary
6 (KI, see Supplementary Material and Figure 2 panel A). Midline shift (MLS) was
7 measured both at the level of the septum pellucidum as well as at the pineal gland, and
8 the larger number was recorded [19].

9


10 **Main outcome**

11 Main outcomes were the level of consciousness observed at time of ICU discharge and
12 the Glasgow Outcome Scale-Extended (GOS-E) obtained 3 months following the
13 haemorrhage via phone interviews [20]. As an additional outcome measure, we
14 recorded the best level of consciousness observed at any time during hospitalization
15 following MRI acquisition.

16

17 **Confounders**

18 All patients were clinically evaluated for the presence of seizures, hypo- or
19 hyperglycaemia (70 and 200 mg/dL, respectively), hypo- and hypernatremia (133 and
20 150 mmol/L, respectively), and renal and fulminant liver failure at the time of
21 behavioural assessments. All analyses were directly controlled for potential metabolic

1
2 **Figure 2. Haemorrhage and oedema volumes and midline shift. Panel A.** Illustrates
3 the volume on MRIs of one exemplary case. **Panel B.** Measurements according to
4 consciousness level at time of MRI (normalized values; for details please refer to
5 methods). ICH: Intracerebral Hemorrhage; MLS: midline shift.

6
7 confounders (including blood urea nitrogen, creatinine, serum glucose level). In addition
8 to the above outlined protocol of stopping sedation for all behavioural assessments we
9 collected the cumulative doses of all sedative medications administered within the two
10 elimination half-lives preceding clinical assessments.[17].

1 **Statistical analysis**

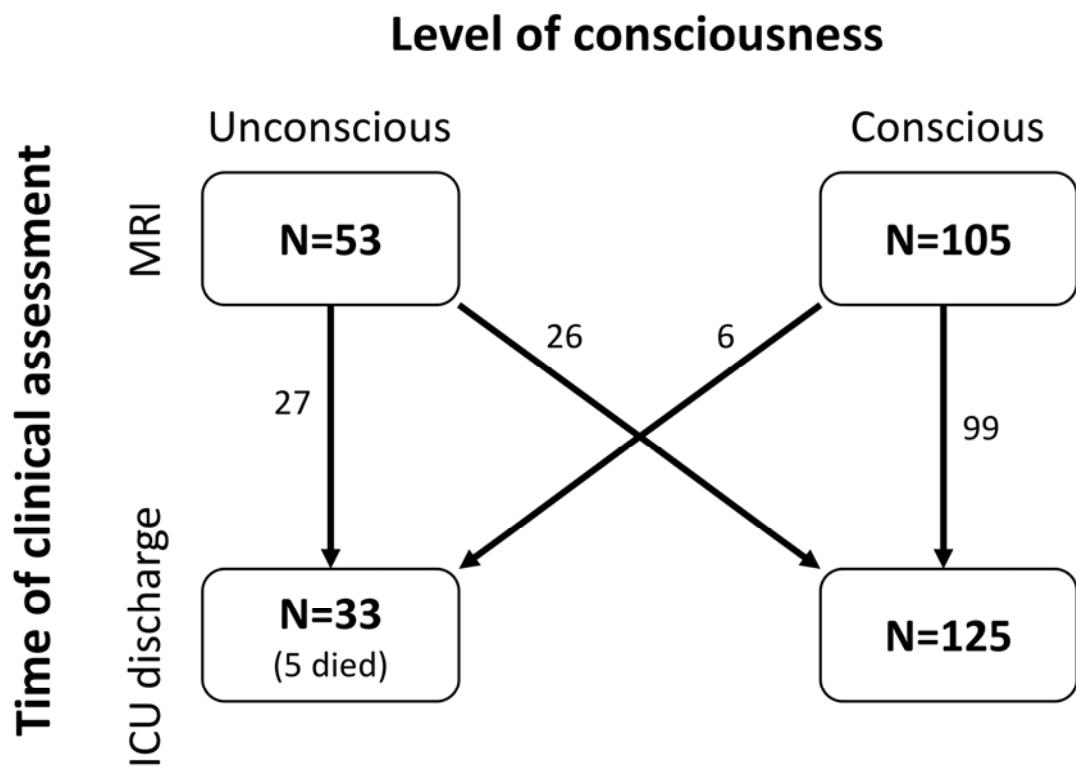
2 A machine learning approach using logistic regressions with elastic net regularization
3 was applied to identify the parameters that best predicted consciousness at time of MRI
4 and at time of ICU discharge [21]. This method allows a robust data-driven analysis
5 when there are a large number of features compared to the number of observed events
6 and/or when features are highly correlated. Models were trained on the clinical labels
7 (conscious vs unconscious) obtained either at the time of MRI or at the time of ICU
8 discharge. In order asses robustness of the model, we performed 5-fold cross
9 validations repeated 500 times [22]. Model performance was evaluated using the area
10 under the receiver operating characteristic curve (AUC) with 95% confidence intervals
11 (95% CI). Logistic regression using elastic net regularization were computed with the
12 Glmnet R package (for details please refer to the Supplementary Material).

13 Differences in baseline features between the patients that fulfilled inclusion
14 criteria and those that did not were explored using Fisher's exact test for categorical and
15 Wilcoxon–Mann–Whitney test for quantitative variables as appropriate. All statistical
16 tests were two-sided. Categorical variables are reported as percentage (number) and
17 quantitative variables as median (interquartile range). Significance was set at $P<0.05$.
18 All analyses were performed using the R statistical software version 3.4.1 [23].

19

20 **Results**

21 **Enrolment bias analysis**


22 From a total of 690 patients admitted during the study period, 23% (N=158) had an MRI
23 within the 7 days of the haemorrhage and fulfilled the inclusion criteria. Patients

1 included in the study more frequently had presumed amyloid as the underlying
2 aetiology, lobar location, better admission GCS, primary ICH and FUNC scores, smaller
3 ICH volumes on the admission CT scan, and better outcomes as reflected in the 3-
4 months GOS-E, when compared to patients that were not included (Table 1). MRI scans
5 were obtained within a median of 2 (IQR 1, 3) days from ICH. Main ICH aetiologies
6 were hypertension (49%; N=78) and amyloid (37%; N=59).

7

8 **Patient cohort**

9 From a total of 158 ICH patients, 66% (N=105) were conscious, and 34% (N=53) were
10 unconscious at the time of MRI (Figure 3). At ICU discharge (occurring on median day 4
11 [2, 8]), 79% (N=125) were conscious, 18% (N=28) remained unconscious, and 3% were
12 dead (N=5). 49% (N=26) of initially unconscious patients recovered consciousness at
13 ICU discharge. 6% (N=6) of the initially conscious patients became unconscious during
14 the ICU stay. Reasons for secondary unconsciousness included worsening oedema
15 (N=3), hydrocephalus (N=1), ventriculitis (N=1), and seizures (N=1). At the time of MRI
16 acquisition and ICU discharge, hypo- or hyperglycaemia, hypo- or hypernatremia, renal
17 or fulminant liver failure were not present to explain unconsciousness. One patient with
18 secondary loss of consciousness was seizing prior to death (for the purposes of the
19 study this was considered the ICU discharge time).

1

2 **Figure 3. Flow chart.** Level of consciousness assessed at MRI and ICU discharge.

3 Note that for the 5 patients who died in the ICU, we considered the last neurological

4 exam as the assessment at ICU discharge (of those that died, 3 patients were

5 unconscious and 2 conscious at time of MRI, all of them were unconscious prior to

6 death).

7

8 At time of MRI scan only 15% (N=24) of patients received any sedative

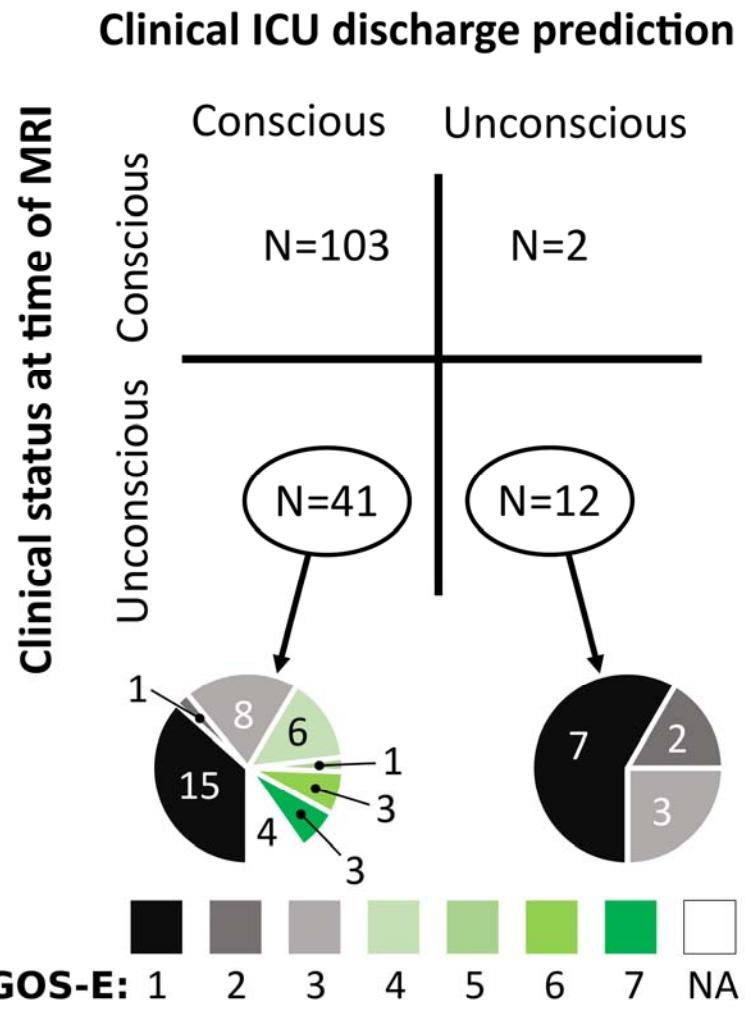
9 medication (see table S1) and none of the patients received sedatives at ICU discharge.

10 In patients that were unconscious at the time of MRI, propofol had been administered

11 more frequently (19% vs 6%) but at lower cumulative doses (131+/-69 vs 361+/- 202 mg

12 over the 2 preceding half-lives) than those that were conscious.

1 **MRI findings**


2 73% (N=116) of patients had an isolated unilateral supratentorial ICH whereas 11%
3 (N=17) had an isolated infratentorial ICH and 7% (N=11) had both (supratentorial and
4 infratentorial ICH). ICH was most frequently observed in frontal (37%) and temporal
5 cortices (27%), globus pallidus (23%), thalamus (23%), putamen (22%), posterior limb
6 of internal capsule (21%), and the parietal cortex (22%, Figure 4). Interrater agreements
7 for both ICH and oedema measures in all ROIs reached a median kappa of 0.82 (0.66,
8 0.88).

9 Patients that were unconscious at the time of MRI more frequently had ICH
10 affecting frontal and temporal lobes as well as the brainstem. Amongst unconscious
11 patients, ICH was least frequently located in the cerebellum and occipital cortex. Brain
12 volumes ranged from 1101 to 1887ml (group mean 1451ml). After normalization, ICH
13 volumes were 11 ml (4, 26), oedema volumes 21 ml (8, 39), and MLS was 0 (0, 3) mm.
14 ICH volume, oedema volume, and MLS were greater for patients that were unconscious
15 at time of MRI and at time of ICU discharge when compared to those that were
16 conscious (Figure 2; Table S2). IVH was more common amongst unconscious patients
17 at ICU discharge (Table S2).

18

19 **Prediction of consciousness at time of MRI and ICU discharge**

20 The algorithms trained on subcortical ROIs together with ICH and oedema volumes,
21 MLS and IVH accurately predicted level of consciousness both at the time of MRI and at
22 ICU discharge (AUC = 0.74 [95%CI: 0.72, 0.75] and 0.74 [95%CI: 0.73, 0.75],
23 respectively). ICH volume and MLS were the most important predictors (Table 2).
24 Lesions in pontine tegmentum (oedema), in the ipsilateral caudate nuclei (ICH and

1
2 **Figure 4. Predicted level of consciousness at ICU discharge based on imaging**
3 **measures.** Unconscious patients at time of MRI that were predicted to be conscious at
4 ICU discharge (n=41) based on imaging findings were more likely to be conscious at
5 ICU discharge and had a greater chance to reach a GOS-E ≥ 4 at 3 months (illustrated
6 in shades of green; p-value = 0.02). GOS-E: Glasgow Outcome Scale – revised; NA:
7 not available (lost follow-up).

8
9 oedema), as well as in the contralateral midbrain peduncle, putamen and pallidum
10 (oedema), were identified as predictors of being unconscious at time of MRI (Table 2;
11 Figure S1). Lesions in pontine tegmentum (oedema), ipsilateral midbrain peduncle

1 (ICH) and ipsilateral caudate nuclei (ICH and oedema; please refer to the
2 Supplementary Material for details on these patients) were identified as predictors of
3 being unconscious at ICU discharge (Table 2; Figure S2). In addition, over both models,
4 a few ROIs were found to be associated with being conscious (e.g., pallidum, central
5 midbrain, basal forebrain; see Table 2, Figure S1 and S2 and discussion).

6 Patients unconscious at time of MRI that were predicted to be conscious at ICU
7 discharge more frequently were arousable than those that were predicted to remain
8 unconscious, although this difference did not reach statistical difference (61% [N=25/41]
9 vs 33% [N=4/12]; p-value = 0.1). In univariate analysis, GCS and FUNC scores were
10 associated with level of consciousness at time of MRI and ICU discharge but primary
11 ICH score was only associated with level of consciousness at ICU discharge (Table S2).

12 **Confounders**

13 The model trained to predict consciousness at the time of MRI retained cumulative
14 doses of midazolam and fentanyl together with the imaging parameters (Supplementary
15 Material). However, performance of the models was not improved by including sedative
16 doses (cumulative or current), cortical and cerebellar ROIs, or measures of metabolic
17 disarray (i.e., renal insufficiency, glucose level).

18

19 **Functional outcome at 3 months**

20 Three-month GOS-E were obtained for 92% (N=145/158) of the patients. Mean GOS-E
21 was 4 (IQR 1, 6; Table 1), with 53% (N=77/145) of patients having a favourable
22 outcome (GOS-E \geq 4: 4% GOS-E 8, 19% GOS-E 7, 14% GOS-E 6, 1% GOS-E 5, 14%
23 GOS-E 4), 19% (N=27/145) in a vegetative or totally dependent state (3% GOS-E 2,
24 15% GOS-E 3), and 28% of patients being dead (N=41/145; GOS-E 1). FUNC score

1 reliably predicted functional independence (GOS-E ≥ 4) at month 3 (32% (N=6/19) with
2 a FUNC score ≥ 9 vs 3% (N=1/30) for those with a FUNC score of < 9 ; p-value = 0.01).
3 Patients that were unconscious at the time of MRI but predicted to be conscious at ICU
4 discharge based on our model, more frequently were observed conscious at any time in
5 the 30 days following the MRI (54% [N=22/41] vs 33% [N=4/12]; p-value = 0.3) and had
6 better 3-month functional outcomes than those that were predicted to still be
7 unconscious at discharge (GOS-E ≥ 4 : 35% (N=13/37) vs 0% (N=0/12) vs; p-value
8 =0.02; Figure 4).

9 Discussion

10 More than half of ICH patients that are unconscious on admission are dead at one year
11 after the bleed, and even though our ability to accurately prognosticate recovery is
12 dismal, the primary mode of death is withdrawal of life sustaining therapies [24].
13 Accurate prediction of functional outcomes is challenging in the acute setting and
14 confounded by biases contributing to the self-fulfilling prophecy of poor outcomes
15 [25,26]. In this study we show that lesions identified on MRIs obtained within one week
16 of ICH not only correlate with level of consciousness at the time of MRI but, more
17 importantly, are able to identify patients that will recover consciousness prior to ICU
18 discharge and have better 3-month functional outcomes. The identified predictors
19 confirm previous findings (ICH volume, MLS and IVH) but also provide new insight on
20 subcortical structures implicated in the physiology of consciousness [1–7,12].

21 We confirm that measures reflecting the impact on both hemispheres (i.e., ICH
22 and oedema volumes, MLS and IVH) are major determinants of impairment and
23 recovery of consciousness, survival and functional outcomes. ICH volume is a well-

1 known prognostic factor for both 30-day mortality and 90-day disability [15,16]. MLS is
2 linked to high ICH and oedema volume and is clinically associated with herniation. Both
3 large ICH volumes and MLS are seen in patients with increased intracranial pressure.
4 All of these variables may cause bilateral impairment of widespread brain regions,
5 which frequently is associated with unconsciousness [2].

6 Additionally, we identified three main subcortical structures implicated with
7 consciousness impairment. These findings further support the role of the pontine
8 tegmentum and midbrain peduncles, which have been implicated reliably in several
9 clinical studies [1–3,7]. Interestingly, the caudate nucleus, which has been implicated in
10 wakefulness in the rat [27], is also included in many models of human consciousness as
11 part of the frontal cortical–striatopallidal–thalamocortial loop systems [2,4,6]. According
12 to the mesocircuit theory, a decrease in the indirect excitatory activity of the Medium
13 Spiny Neurons of the caudate and the putamen nuclei (special type of GABAergic
14 inhibitory neurons) on the thalamus could explain an alteration of consciousness [6].
15 Hypometabolism of the caudate has been reported in unconscious patients [28] and, the
16 caudate nucleus atrophies in chronic disorders of consciousness [8,29,30]. Reports of
17 isolated bilateral caudate lesions are very rare but have been seen in patients with
18 impairment of consciousness ranging from disorientation and confabulations to
19 somnolence [31,32]. Caudate ICH has been previously associated with impairment of
20 consciousness, however, since the caudate nucleus forms the wall of the lateral
21 ventricle, it frequently is associated with IVH, hampered causal inference [33]. In our
22 study, the majority of the patients with caudate lesions also had IVH. However, these
23 patients were less likely to be conscious, both at time of MRI and ICU discharge, than

1 patients with IVH in the absence of a caudate lesion (see supplementary material). At a
2 minimum, caudate lesions appear to play a mediating effect on the relationship between
3 IVH and impairment of consciousness. Finally, it is worth noting that the weights
4 attributed to caudate lesions were systematically greater than for IVH. In light of these
5 findings, the present study provides further support implicating lesions of the caudate
6 nucleus in impairment and early recovery of consciousness, independently from the
7 frequently associated IVH.

8 The patient cohort studied here is not necessarily representative for all ICH
9 patients as our enrolment bias analysis illustrates. Patients that were included tended to
10 have slightly less neurological impairment, smaller haemorrhages, amyloid aetiology,
11 and better outcomes. This is likely a reflection of provider safety concerns for MRI
12 scanning and family preferences.

13 This study has several limitations. First, assessment of consciousness relied on a
14 previously described, standardized neurological assessment [17] instead of a scale
15 specifically developed for the assessment of consciousness such as the Coma
16 Recovery Scale Revised (CRS-R) [34]. However, the CRS-R has some limitations in the
17 ICU setting as it was primarily developed for patients in the subacute and chronic
18 rehabilitation setting. Assessments with the CRS-R are time consuming posing a
19 challenge in a hectic ICU environment during which patients consciousness level often
20 fluctuates. We acknowledge that this assessment of consciousness will likely
21 underestimate the presence of conscious and does not capture patients with cognitive
22 motor dissociation [35,36]. Second, assessments of consciousness in patients with
23 aphasia and delirium may be challenging. To capture nonverbal command following in

1 aphasic patients we assessed, both verbal and non-verbal (i.e. mimicking) commands.
2 Delirium in general and hypoactive delirium in particular are common in acutely brain
3 injured patients and can interact with consciousness assessments. This confounder will
4 affect any behavioural assessment in brain injured patients including the CRS-R [37].
5 However, the vast majority of patients with hyperactive delirium would be expected to
6 demonstrate at least intermittent command following. Third, sedation is frequently used
7 in the critical care setting and can confound assessments of consciousness. We
8 minimized doses of sedation as recommended in guidelines [38] and systematically
9 accounted for sedation given at the time of and preceding the assessment at time of
10 MRI. Note that this limitation only applies the model trained at time of MRI since none of
11 the patients received sedation at time of ICU discharge. Fourth, MRI based
12 assessments of haemorrhage can be challenging as MRI signal changes are observed
13 over time [39]. Subacute haemorrhages typically appear as hypointense signal in FLAIR
14 sequences between 2-7 days, which was within the inclusion criterion in this study.
15 Finally, confirmatory investigations to validate our findings on an independent dataset
16 will be necessary in future studies.

17 Taken together, our results suggest that measures of injury obtained from routine
18 clinical MRI sequences may allow to predict failure to recover consciousness by ICU
19 discharge and functional outcomes in patients with acute brain injury more accurately.
20 Focal lesions in key structures within previously described models of consciousness
21 together with measures related to mass effect of the haemorrhage predict early
22 recovery of consciousness. Both, adding a comprehensive assessment of structural
23 connectivity between these key structures (i.e., using diffusion tensor imaging analysis)

- 1 [40] as well as quantifying functional connectivity (using functional imaging or EEG
- 2 markers) may further strengthen the accuracy of this model.

1 References:

2 1 Parvizi J, Damasio AR. Neuroanatomical correlates of brainstem coma. *Brain J Neurol*
3 2003;126:1524–36. doi:10.1093/brain/awg166

4 2 Posner JB, Plum F, Saper CB. *Plum and Posner's diagnosis of stupor and coma*. Oxford
5 University Press, USA 2007.

6 3 Fischer DB, Boes AD, Demertzi A, *et al*. A human brain network derived from coma-
7 causing brainstem lesions. *Neurology* 2016;87:2427–34.
8 doi:10.1212/WNL.0000000000003404

9 4 Adams JH, Graham DI, Jennett B. The neuropathology of the vegetative state after an acute
10 brain insult. *Brain J Neurol* 2000;123 (Pt 7):1327–38.

11 5 Dehaene S, Naccache L. Towards a cognitive neuroscience of consciousness: basic evidence
12 and a workspace framework. *Cognition* 2001;79:1–37.

13 6 Schiff ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. *Trends
14 Neurosci* 2010;33:1–9. doi:10.1016/j.tins.2009.11.002

15 7 Giacino JT, Fins JJ, Laureys S, *et al*. Disorders of consciousness after acquired brain injury:
16 the state of the science. *Nat Rev Neurol* 2014;10:99–114. doi:10.1038/nrneurol.2013.279

17 8 Lutkenhoff ES, Chiang J, Tshibanda L, *et al*. Thalamic and extrathalamic mechanisms of
18 consciousness after severe brain injury. *Ann Neurol* 2015;78:68–76. doi:10.1002/ana.24423

19 9 Mikell CB, Banks GP, Frey H-P, *et al*. Frontal networks associated with command following
20 after hemorrhagic stroke. *Stroke J Cereb Circ* 2015;46:49–57.
21 doi:10.1161/STROKEAHA.114.007645

22 10 Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms.
23 *Nature* 2005;437:1257–63. doi:10.1038/nature04284

24 11 Saper CB. Diffuse cortical projection systems: anatomical organization and role in cortical
25 function. *Compr Physiol* 2011.

26 12 Forgacs PB, Frey H-P, Velazquez A, *et al*. Dynamic regimes of neocortical activity linked to
27 corticothalamic integrity correlate with outcomes in acute anoxic brain injury after cardiac
28 arrest. *Ann Clin Transl Neurol* 2017;4:119–29. doi:10.1002/acn3.385

29 13 Clarençon F, Bardinet É, Martinerie J, *et al*. Lesions in deep gray nuclei after severe
30 traumatic brain injury predict neurologic outcome. *PLOS ONE* 2017;12:e0186641.
31 doi:10.1371/journal.pone.0186641

32 14 Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. *Lancet Lond Engl*
33 2009;373:1632–44. doi:10.1016/S0140-6736(09)60371-8

1 15 Hemphill JC, Bonovich DC, Besmertis L, *et al.* The ICH score: a simple, reliable grading
2 scale for intracerebral hemorrhage. *Stroke* 2001;32:891–7.

3 16 Rost NS, Smith EE, Chang Y, *et al.* Prediction of functional outcome in patients with
4 primary intracerebral hemorrhage: the FUNC score. *Stroke* 2008;39:2304–9.
5 doi:10.1161/STROKEAHA.107.512202

6 17 Claassen J, Velazquez A, Meyers E, *et al.* Bedside quantitative electroencephalography
7 improves assessment of consciousness in comatose subarachnoid hemorrhage patients. *Ann*
8 *Neurol* 2016;80:541–53. doi:10.1002/ana.24752

9 18 Nieuwenhuys R, Voogd J, Van Huijzen C. *The human central nervous system: a synopsis*
10 *and atlas*. 4th ed. Springer Science & Business Media 2007.

11 19 Yang W-S, Li Q, Li R, *et al.* Defining the Optimal Midline Shift Threshold to Predict Poor
12 Outcome in Patients with Supratentorial Spontaneous Intracerebral Hemorrhage. *Neurocrit*
13 *Care* Published Online First: 14 November 2017. doi:10.1007/s12028-017-0483-7

14 20 Wilson J t. L, Pettigrew LE l., Teasdale GM. Structured Interviews for the Glasgow Outcome
15 Scale and the Extended Glasgow Outcome Scale: Guidelines for Their Use. *J Neurotrauma*
16 1998;15:573–85. doi:10.1089/neu.1998.15.573

17 21 Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via
18 Coordinate Descent. *J Stat Softw* 2010;33:1–22.

19 22 Kriegeskorte N, Simmons WK, Bellgowan PSF, *et al.* Circular analysis in systems
20 neuroscience: the dangers of double dipping. *Nat Neurosci* 2009;12:535–40.
21 doi:10.1038/nn.2303

22 23 R Development Core Team. R: A language and environment for statistical computing. R
23 Found. Stat. Comput. 2017. <http://www.R-project.org/>

24 24 de Oliveira Manoel AL, Goffi A, Zampieri FG, *et al.* The critical care management of
25 spontaneous intracranial hemorrhage: a contemporary review. *Crit Care Lond Engl*
26 2016;20:272. doi:10.1186/s13054-016-1432-0

27 25 Jacobs BS, Poggesi A, Terry JB. Max-ICH score: Can it prevent self-fulfilling prophecy in
28 ICH? *Neurology* 2017;89:417–8. doi:10.1212/WNL.000000000004195

29 26 Rohaut B, Claassen J. Decision making in perceived devastating brain injury: a call to
30 explore the impact of cognitive biases. *Br J Anaesth* 2018;120:5–9.
31 doi:10.1016/j.bja.2017.11.007

32 27 Qiu M-H, Vettrivelan R, Fuller PM, *et al.* Basal ganglia control of sleep-wake behavior and
33 cortical activation. *Eur J Neurosci* 2010;31:499–507. doi:10.1111/j.1460-9568.2009.07062.x

1 28 Bruno M-A, Majerus S, Boly M, *et al.* Functional neuroanatomy underlying the clinical
2 subcategorization of minimally conscious state patients. *J Neurol* 2012;**259**:1087–98.
3 doi:10.1007/s00415-011-6303-7

4 29 Schnakers C, Lutkenhoff ES, Bio BJ, *et al.* Acute EEG spectra characteristics predict
5 thalamic atrophy after severe TBI. *J Neurol Neurosurg Psychiatry* 2018;:jnnp-2017-317829.
6 doi:10.1136/jnnp-2017-317829

7 30 Annen J, Frasso G, Crone JS, *et al.* Regional brain volumetry and brain function in severely
8 brain-injured patients. *Ann Neurol* 2018;**83**:842–53. doi:10.1002/ana.25214

9 31 den Heijer T, Ruitenberg A, Bakker J, *et al.* Neurological picture. Bilateral caudate nucleus
10 infarction associated with variant in circle of Willis. *J Neurol Neurosurg Psychiatry*
11 2007;**78**:1175. doi:10.1136/jnnp.2006.112656

12 32 Fukuoka T, Osawa A, Ohe Y, *et al.* Bilateral caudate nucleus infarction associated with a
13 missing A1 segment. *J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc* 2012;**21**:908.e11-12.
14 doi:10.1016/j.jstrokecerebrovasdis.2011.09.022

15 33 Chung CS, Caplan LR, Yamamoto Y, *et al.* Striatocapsular haemorrhage. *Brain J Neurol*
16 2000;**123** (Pt 9):1850–62.

17 34 Giacino JT, Ashwal S, Childs N, *et al.* The minimally conscious state: definition and
18 diagnostic criteria. *Neurology* 2002;**58**:349–53. doi:<https://doi.org/10.1212/WNL.58.3.349>

19 35 Schiff ND. Uncovering hidden integrative cerebral function in the intensive care unit. *Brain*
20 2017;**140**:2259–62. doi:10.1093/brain/awx209

21 36 Rohaut B, Eliseyev A, Claassen J. Uncovering consciousness in unresponsive ICU patients:
22 technical, medical and ethical consideration. *Crit Care* 2019 (in press)

23 37 Hosker C, Ward D. Hypoactive delirium. *BMJ* 2017;**357**:j2047. doi:10.1136/bmj.j2047

24 38 Barr J, Fraser GL, Puntillo K, *et al.* Clinical Practice Guidelines for the Management of Pain,
25 Agitation, and Delirium in Adult Patients in the Intensive Care Unit. *Crit Care Med*
26 2013;**41**:278–80. doi:10.1097/CCM.0b013e3182783b72

27 39 Kidwell CS, Wintermark M. Imaging of intracranial haemorrhage. *Lancet Neurol*
28 2008;**7**:256–67. doi:10.1016/S1474-4422(08)70041-3

29 40 Velly L, Perlberg V, Boulier T, *et al.* Use of brain diffusion tensor imaging for the prediction
30 of long-term neurological outcomes in patients after cardiac arrest: a multicentre,
31 international, prospective, observational, cohort study. *Lancet Neurol* 2018;**17**:317–26.
32 doi:10.1016/S1474-4422(18)30027-9

33

34

1 Acknowledgement

2 We thank the nurses, attendings, fellows, and neurology and neurosurgery residents of
3 the Neuroscience ICU for their overall support of this project. This publication was
4 supported by the DANA foundation (JC) and the James S. McDonnell Foundation. BR
5 received postdoctoral grants from “Amicale des Anciens Internes des Hôpitaux de Paris
6 & Syndicat des Chefs de Cliniques et Assistants des Hôpitaux de Paris” (AAIHP -
7 SCCAHP), “Assistance Publique – Hôpitaux de Paris” (AP-HP), and the Philippe
8 Foundation. We are grateful to Dr Caroline Der Nigoghossian for her help with sedation
9 data.

1 Tables

2 **Table 1.** Baseline characteristics of the reported cohort and enrolment bias.

	MRI (N=158)	No MRI (N=532)	p-value
Age, years	68 [54, 77]	63 [50, 76]	0.05
Female	71 (45)	244 (47)	0.6
White	51 (32)	148 (29)	0.4
Presumed aetiology			< 0.01
Hypertensive	78 (49)	241 (48)	
Amyloid	59 (37)	62 (12)	
Coagulopathy*	16 (10)	86 (17)	
Other	5 (3)	121 (24)	
GCS at admission	14 [9,15]	10 [5, 15]	< 0.01
ICH characteristics on admission CT			
Lobar	56 (35)	110 (21)	< 0.01
Deep	62 (39)	240 (47)	0.1
Infratentorial	28 (18)	-	-
ICH vol			< 0.01
<30	121 (78)	306 (66)	
30-60	27 (17)	89 (19)	
>60	7 (5)	69 (15)	
IVH	72 (47)	281 (59)**	< 0.01
ICH prognostic scores			
ICH score	1[1, 2]	2 [1, 3]	< 0.01
FUNC score	9[7, 10]	8 [6, 9]	< 0.01
Hospital course			
EVD	31 (20)	142 (27)	0.05
Clot evacuation	16 (10)	69 (13)	0.3
ICU stay, days	4 [2, 8]	-	
Hospital stay, days	10 [6, 20]	-	
Outcome 3 months			
GOS	3 [2, 4]	3 [2, 5]	< 0.01
GOS-E	4 [1, 6]	-	
Dead	24 (22)	158 (42)**	< 0.01

3
4 Data reported as n (%) or median [25%-IQR, 75%-IQR] as appropriate.
5 MRI: Magnetic Resonance Imaging; GCS: Glasgow Coma Scale; ICH: Intracerebral
6 Haemorrhage; CT: Computed Tomography; IVH: Intraventricular Haemorrhage; EVD:
7 External Ventricular Drain; ICU: Intensive Care Unit; GOS: Glasgow Outcome Scale;
8 GOS-E: Glasgow Outcome Scale – Extended. * Coagulopathy, primary haematological
9 disorder and medication induced combined; ** more than 5% missing data.

1 **Table 2.** Weights of models predicting consciousness at time of MRI and at time of ICU
2 discharge.

Subcortical ROIs	Conscious at time of MRI		Conscious at time of ICU discharge	
	ICH	Oedema	ICH	Oedema
Caudate ipsi	-0.12[-0.7, 0]	-0.32[-0.65, 0]	-0.78[-1.14, -0.25]	-0.72[-0.99, -0.48]
Caudate contra	0[0, 0]	0[0, 0]	0[0, 0]	0[0, 0]
Putamen ipsi	0[0, 0]	0[0, 0]	0[0, 0]	0[0, 0]
Putamen contra	0[-0.03, 0]	0[-0.32, 0]	0[0, 0]	0[0, 0]
Pallidum ipsi	0[0, 0]	0.31[0, 0.72]	0[0, 0]	0[0, 0]
Pallidum contra	0[0, 0.67]	0[-0.82, 0]	0[0, 0]	0[0, 0]
Thalamus ipsi	0[-0.06, 0]	0[0, 0]	0[0, 0]	0[0, 0]
Thalamus contra	0[0, 0]	0[0, 0]	0[0, 0]	0[0, 0]
Basal forebrain	0[0, 0]	0[0, 0]	0[0, 0]	0[0, 0.42]
Hypothalamus	0[0, 0]	0[-0.06, 0]	0[0, 0]	0[0, 0]
Midbrain peduncule ipsi	0[0, 0]	0[0, 0]	0[-0.12, 0]	0[0, 0]
Midbrain peduncule contra	0[0, 0]	-1.05[-1.75, 0]	0[0, 0]	0[0, 0.73]
Central midbrain	0.6[0, 1.97]	0[0, 0]	0[0, 0]	0[0, 0]
Pontine tegmentum	0[0, 0]	-0.05[-1.2, 4 0]	0[0, 0]	-0.86[-1.59 -0.21]
Diffuse injuries*				
Volume	-3.57[-4.9, -1.92]	-0.94[-1.74, -0.01]	-3.5[-4.53 -2.7]	-0.87[-1.54, -0.34]
MLS	-2.94[-4.41, -1.64]		-1.12[-1.75, 0.51]	
IVH	0[0, 0]		-0.58[-0.79, -0.41]	

3
4 Data given as median [25%-IQR, 75%-IQR] of the weights obtained over the 500 cross
5 validation iterations. Negative values indicate prediction of being unconscious, positive
6 values of being conscious.

7 ROI: Region of Interest; ipsi: ipsilateral; contra: contralateral; MLS: Midline shift; ICH:
8 Intracerebral Haemorrhage; IVH: Intraventricular Haemorrhage. *: Volume weights
9 correspond to 10ml units, MLS weights correspond to 1mm changes and IVH was
10 dichotomized as present or absent.