

1 **The mouse HP1 proteins are essential for preventing liver tumorigenesis**

2

3

4 Nehmé Saksouk^{1-4*}, Shefqet Hajdari^{1-4*}, Marine Pratlong⁵, Célia Barrachina⁵, Céline Gruber⁶,
5 Aliki Zavoriti¹⁻⁴, Amélie Sarrazin⁶, Nelly Pirot¹⁻⁴, Jean-Yohan Noël¹⁻⁴, Lakhdar Khellaf⁴, Eric
6 Fabbrizio^{1-4, 7}, Eric Julien^{1-4, 7}, Florence M. Cammas^{1-4, 7}

7

8 ¹ IRCCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.

9 ² INSERM, U1194, Montpellier, F-34298, France.

10 ³ Université de Montpellier, Montpellier, F-34090, France.

11 ⁴ Institut régional du Cancer de Montpellier, Montpellier, F-34298, France.

12 ⁵ MGX, Biocampus Montpellier, CNRS, INSERM, Univ Montpellier, Montpellier, France

13 ⁶ IGBMC, Institut de Génétique, de Biologie Moléculaire et Cellulaire, Illkirch, France

14 ⁷ MRI, BioCampus Montpellier, CNRS, INSERM, Univ Montpellier, Montpellier, France

15 ⁸ CNRS, Route de Mende, Montpellier, France

16

17 Corresponding author: Florence Cammas, Florence.cammas@inserm.fr

18

19 * Contributed equally to the work

20 **Abstract**

21 Chromatin organization is essential for appropriate interpretation of the genetic
22 information. Here, we demonstrated that the chromatin associated proteins HP1 are
23 dispensable for cell survival but are essential within hepatocytes to prevent liver tumor
24 development. Molecular characterization of pre-malignant HP1-Triple KO livers revealed that
25 HP1 are essential for the maintenance of the structural organization of heterochromatin but
26 surprisingly, not for several well known heterochromatin functions such as the maintenance
27 of the genome stability nor the regulation of major satellite repeat expression within liver. We
28 further show that some specific retrotransposons, mainly of the ERV family, get reactivated in
29 HP1-TKO livers correlating, in some cases, with the activation of the adjacent genes. We
30 present evidence that this reactivation of ERV relies on the HP1-dependent ability of the
31 corepressor TRIM28 to regulate KRAB-ZFP repressive activity. Intriguingly, we found that in
32 contrast to the observation in young animals, the HP1-dependent maintenance of ERV
33 silencing becomes independent of TRIM28 in old animals. Finally, we showed that HP1 are
34 also essential directly or indirectly for the regulation of single genes with most of them having
35 well characterized functions in liver homeostasis such as regulation of the redox and
36 endoplasmic reticulum equilibrium, lipid metabolism and steroid biosynthesis.

37 Altogether, our findings indicate that HP1 proteins, through the modulation of multiple
38 chromatin-associated events both within the heterochromatic and euchromatic
39 compartments, act as guardians of liver homeostasis to prevent tumor development.

40 **Keywords:** chromatin; HP1; cancer; liver; transcriptional silencing; endogenous retrovirus

41

42

43 **Introduction**

44 Chromatin dynamic organization is essential for the interpretation of genetic information
45 in a cell-type and tissue-specific manner ¹. Alteration of this organization can have
46 devastating consequences, as evidenced by the large number of diseases induced by
47 mutations in chromatin-associated proteins ^{2,3}, as well as by the dramatic changes in
48 chromatin organization observed in cancer cells ⁴. Although extensively studied in the past
49 three decades, it is still largely unknown how chromatin organization is regulated and
50 involved in whole organism homeostasis.

51 Chromatin can be divided according to its structural and functional features in
52 euchromatin and heterochromatin. Euchromatin displays low level of compaction, is highly
53 enriched in genes, and is transcriptionally competent. Conversely heterochromatin is highly
54 compacted, enriched in repetitive DNA sequences, and mostly silent ⁵. Heterochromatin
55 Protein 1 (HP1) proteins were first isolated as major heterochromatin components in
56 *Drosophila* ⁶. These proteins are highly conserved from yeast to mammals which express
57 three isoforms (HP1 α , HP1 β and HP1 γ) that are distributed in both eu- and heterochromatin.
58 These proteins are characterized by a N-terminal chromodomain (CD) involved in recognition
59 of the heterochromatin-associated histone marks H3 lysine-9 di- or trimethylated
60 (H3K9me2/3), and a C-terminal chromoshadow domain (CSD), which, through dimerization,
61 constitutes a platform for interaction with many protein partners. These two domains are
62 separated by the hinge domain that is crucial for HP1 association with RNA and recruitment
63 to heterochromatin ^{7,8}. Thus, HP1 proteins, through this structural organization, are at the
64 crossroads of the structural and functional organization of chromatin. Accordingly, HP1 are
65 important for heterochromatin organization and silencing, chromosome segregation,
66 regulation of gene expression, DNA repair and DNA replication ⁹⁻¹¹. Functionally, HP1
67 proteins are essential for embryonic development in several organisms, including *Drosophila*
68 ¹², *C. elegans* ¹³ and the mouse (our unpublished data). HP1 α is essential for the plasticity of
69 T helper (Th2) lymphocytes ¹⁴, HP1 β for neuro-muscular junctions ¹⁵ and HP1 γ for

70 spermatogenesis^{16,17}. Several studies also suggested a correlation between the level of HP1
71 expression and cancer development and/or metastasis; however, how HP1 are involved in
72 these processes remains largely to be clarified^{18,19}.

73 Liver chromatin organization has been well characterized in several physio-
74 pathological conditions²⁰. In addition, several known HP1 partners, including the
75 transcription cofactors TRIM24 and TRIM28, and the histone-lysine N-methyltransferase
76 SUV39H1 have been shown to play key roles in hepatocytes²¹⁻²⁵. Together, this prompted
77 us to further characterize chromatin organization and regulation in liver functions through the
78 inactivation of all HP1 encoding genes specifically in mouse hepatocytes (HP1-TKO mice).
79 We found that in mice, HP1 are critically required for preventing tumor development. We
80 further identified several altered chromatin features in HP1-TKO animals, including
81 heterochromatin organization, silencing of specific ERVs and gene expression that most
82 likely are key players in the process of tumorigenesis. These data highlighted a new function
83 of HP1 proteins as guardians of liver homeostasis through the modulation of various
84 chromatin-associated events.

85

86

87 **RESULTS**

88

89 **HP1 proteins are dispensable for hepatocyte proliferation and survival**

90 To unravel HP1 *in vivo* functions, the HP1 β and HP1 γ encoding-genes (*Cbx1* and *Cbx3*,
91 respectively) were inactivated in the liver of HP1 α KO mice ¹⁴ using the Cre recombinase
92 expressed under the control of the hepatocyte-specific albumin promoter ^{26,27} (Fig. 1A). Liver-
93 specific excision of the *Cbx1* and *Cbx3* alleles was confirmed by PCR (Fig. 1B), and the level
94 of HP1 β and HP1 γ protein expression was checked by western blotting. At 7 weeks post-
95 partum as well as at middle-aged (3-6 months), the overall level of HP1 β and HP1 γ was
96 decreased by about 60% in mutant as compared to controls livers (Fig. 1C).
97 Immunofluorescence (IF) analysis of liver cryo-sections showed that HP1 β and HP1 γ
98 expression was absent in about 60% of liver cells in mutant mice (Fig. 1D). As this
99 percentage is similar to the estimated 60-70% hepatocyte fraction within liver, these findings
100 indicated that both proteins were concomitantly depleted in most hepatocytes ²⁸. As
101 expected, HP1 α was not expressed in mutant livers (Fig. 1B-C). These animals were
102 thereafter called HP1-triple knockout (HP1-TKO). Histological analysis of liver sections from
103 7-week-old (young) and 3-6-month-old (middle-aged) control and HP1-TKO animals did not
104 reveal any significant alteration of the structural organization of hepatocytes nor of the liver
105 parenchyma (Supplementary Figure 1). In agreement with this observation, analysis of
106 proliferation (Ki67) and apoptosis (Activated caspase 3) by immuno-histochemistry (IHC) of
107 Tissue Micro Arrays (TMA) containing liver sections from young and middle-aged control and
108 HP1-TKO mice did not reveal any significant difference between mutant and control animals
109 (Fig. 1E). As HP1 have been shown to play critical roles in genome stability ^{29,30}, IHC was
110 also performed with an antibody against the phosphorylated form of H2AX (γ H2AX), a
111 marker of DNA damage ³¹. The number of γ H2AX-positive cells was slightly higher, although
112 not statistically significantly different in livers of HP1-TKO and control animals, suggesting
113 that HP1 proteins depletion did not lead to major genomic instability within hepatocytes (Fig.

114 1E).

115 To unambiguously test the viability of hepatic cells in absence of any HP1 isoform, we
116 established bipotential hepatic BMEL (Bipotential Mouse Embryonic Liver) cell lines
117 according to the protocol described by Strick-Marchand & Weiss ³² and inactivated all HP1
118 encoding genes as illustrated on figure 1F-G. These cells, thereafter called HP1-TKO, were
119 morphologically similar to control cells and had a tendency to proliferate faster than control
120 cells (Fig. 1H). Altogether, these data demonstrated that in mouse, the three HP1 proteins
121 are dispensable for hepatocyte survival both *in vivo* and *ex vivo* as well as for the appropriate
122 structural organization of the liver parenchyma throughout life.

123

124 **HP1 proteins prevent tumor development in liver**

125 Analysis of old mice (>44 weeks of age) showed that although HP1-TKO animals were
126 morphologically indistinguishable from controls, 72.7% of females (n=11) and 87.5% of
127 males (n=8) had developed liver tumors whereas none of the female (n=24) and 9.1% of
128 male (n=44) controls did so (Fig. 2A-B). Analysis of the excision of the floxed *Cbx1* and *Cbx3*
129 genes showed that tumors originated from HP1-TKO hepatocytes (Supplementary Fig. 2A).
130 Histological analysis revealed that most old male (M-TKO) and female (F-TKO) HP1-TKO
131 animals developed tumor nodules that could easily be distinguished from the rest of the liver
132 parenchyma (Fig. 2C). These nodules were characterized by the presence of well-
133 differentiated hepatocytes but without their specific trabecular organization, and thus, were
134 identified as typical hepatocellular carcinoma (HCC). Analysis of cell proliferation (Ki67),
135 apoptosis (activated caspase 3) and global response to DNA damage (γ H2AX) showed a
136 two-fold increase of cell proliferation in both the tumor (TKOT) and non-tumor (TKON) parts
137 of HP1-TKO liver samples compared with control parts whereas no change was detected in
138 the number of apoptotic-positive cells nor of positive γ H2AX cells (Supplementary Fig. 2B).
139 We then tested by RT-qPCR the expression of some genes frequently altered in human HCC
140 ³³. Although the expression of most of the tested genes was remarkably similar between

141 controls and HP1-TKO livers both in the normal (TKON) and the tumoral parts (TKOT),
142 *Arid1A*, *Trp53*, *E2f1* and *E2f7* were significantly over-expressed in HP1-TKO (Fig.2D and
143 data not shown). α -fetoprotein (*Afp*), a marker of human HCC ³⁴, was strongly over-
144 expressed exclusively in the tumor tissue of three of the five tested tumors (Fig. 2D).

145 Altogether these data clearly indicated that HP1 are essential within hepatocytes to
146 prevent tumor development. To gain more insights into the cellular and molecular properties
147 of HP1 underlying their protective functions against tumorigenesis, we initiated the
148 characterization of HP1-TKO pre-malignant livers.

149

150 **Heterochromatin organization is altered in HP1-TKO hepatocytes**

151 First, the level of different heterochromatin-associated histone marks was investigated by
152 western blotting. H3K9me3 and H4K20me3, two marks of constitutive heterochromatin, were
153 strongly decreased in the liver of 7-week-old and middle-aged HP1-TKO mice compared with
154 age-matched controls. Conversely, no change of H3K27me3, a facultative heterochromatin
155 mark, nor of H3K9me2, H4K20me2 and H4K20me1 was observed in these same samples
156 (Fig. 3A). The decrease of H3K9me3 without any significant change of H3K27me3 nor of
157 H3K4me3 was also observed in HP1-TKO BMEL cells (Fig. 3B). IF analysis in BMEL cells,
158 indicated that only H3K9me3 associated with chromocenters (i.e., DAPI-dense structures
159 that contain structural components of heterochromatin) was drastically reduced in HP1-TKO
160 cells, whereas the labeling within euchromatin was not significantly affected (Fig. 3C). The
161 level and distribution of 5-methyl cytosine (5mC) were not altered in HP1-TKO BMEL cells
162 (Fig. 3C). Although these results suggested that the absence of the three HP1 proteins
163 affected heterochromatin organization, chromocenters still clustered, but tended to be more
164 associated with the nuclear periphery in HP1-TKO hepatocytes than in control cells (Fig. 3D).
165 To more precisely quantify this observation, nuclei were divided in four co-centric areas in
166 which the intensity of DAPI staining was measured using the cell profiler software (schema in

167 Fig. 3D). In control nuclei, DAPI staining was roughly homogeneously distributed throughout
168 the four areas whereas, conversely, in HP1-TKO nuclei, DAPI intensity increased
169 progressively from the inner part to the external part (Fig. 3D). This indicated that in absence
170 of HP1, heterochromatin tended to be more associated with the nuclear periphery than in
171 control nuclei. This was not associated with any significant change of the level nor
172 distribution of laminB1 (LamB1) as assessed by IF (Fig. 3C). We then measured the
173 expression and the number of major satellite repeats that represent the main component of
174 pericentromeric heterochromatin. Surprisingly this analysis revealed no significant alteration
175 and even a tendency of these repeats to be down-regulated in absence of HP1 in both liver
176 and BMEL cells as well as an unchanged number of these repeats within the genome (Fig.
177 3E-F and data not shown). These data demonstrated that in hepatocytes, HP1 proteins are
178 essential for the maintenance of constitutive heterochromatin-associated histone marks and
179 for the sub-nuclear organization of chromocenters but not for neither the expression nor the
180 stability of major satellites.

181

182 **HP1 proteins are involved in the regulation of liver-specific gene expression
183 programs**

184 We then investigated the impact of HP1 loss on gene expression. An unbiased RNA-
185 seq transcriptomic analysis was performed on libraries prepared from 7 week-old control and
186 HP1-TKO liver RNA. This analysis showed that 1215 genes were differentially expressed
187 (730 up-regulated and 485 down-regulated) between control and HP1-TKO liver samples
188 (with a 1.5-fold threshold difference and an adjusted $P \leq 0.05$) (Fig. 4A and supplementary
189 Table 1).

190 Analysis of differentially expressed genes (HP1-dependent genes) using David Gene
191 Ontology (<https://david.ncifcrf.gov/>) and Gene Set Enrichment Analysis (GSEA;
192 <http://software.broadinstitute.org/gsea/index.jsp>) programs revealed that several biological

193 processes were significantly affected in HP1-TKO livers. The most striking feature of this
194 analysis was the very high enrichment of genes encoding for the Krüppel Associated Box
195 (KRAB) domain within up-regulated genes ($P = 5.8E-26$) (Fig. 4B & Supplementary Tables 1;
196 2 & 3). The up-regulation of several of these genes (*Rsl1*, *Zfp345*, *Zfp445* and *Zkscan3*) was
197 validated by RT-qPCR in 7-week-old HP1-TKO and control livers (Fig. 4C). Beside these
198 KRAB domain encoding genes, up-regulated genes were also enriched in genes belonging
199 to the GO terms signal peptide, immunity, guanylate-binding protein, response to virus, etc...
200 (Fig. 4B), strongly suggesting activation of an inflammatory response in HP1-TKO livers (Fig.
201 4B-C & Supplementary Table 4). Genes encoding for members of the p450 cytochrome
202 (CYP) family were also strongly enriched in HP1-dependent genes with 7 up-regulated and
203 18 down-regulated amongst the 79 CYP genes detected in the present RNAseq analysis. In
204 particular, 11 HP1-dependent genes encode for members of the CYP2 family were involved
205 in Endoplasmic Reticulum (ER) and redox functions that are known to be particularly
206 important for liver homeostasis^{35,36,37} (Table 1). Moreover, *Nox4*, the gene encoding the
207 nicotinamide adenine dinucleotide phosphate (NADPH) oxidase isoform most consistently
208 associated with ER and ROS in liver³⁸, was significantly down-regulated in HP1-TKO as
209 compared with control livers (Fig. 4C & Supplementary Table 1). It was thus not surprising
210 that oxidation-reduction, ER, steroid hormone biosynthesis, lipid metabolic process were
211 amongst the most affected functions in HP1-TKO livers (Fig. 4B & Supplementary Tables 2;
212 3; 5 and 6). The differential expression of several of these genes such as *Cyp2c29* and
213 *Cyp2b10* (ER and redox), *Ifit2* (interferon γ signature) and *Nox4* (ROS production) was
214 validated by RT-qPCR in 7 week-old HP1-TKO and control livers (Fig. 4C).

215

216

217 **HP1 loss leads to reactivation of specific endogenous retroviruses and over-
218 expression of associated genes**

219 As mentioned above, genes encoding for the KRAB domain were highly enriched in up-
220 regulated genes in HP1-TKO livers. The KRAB domain is almost exclusively present in the
221 KRAB-Zinc Finger Protein (KRAB-ZFP) family of transcriptional repressors ³⁹. The best
222 characterized genomic target of these repressors are themselves and retrotransposons of
223 the endogenous retroviruses (ERV) family ^{39,40}. We therefore investigated the expression of
224 DNA repeats in our RNA-seq dataset. To this end, the coordinates of all annotated DNA
225 repeats of the RepeatMasker database (mm10 assembly) were aligned against the RNA-seq
226 reads and only those that could be assigned unambiguously to a specific genomic locus
227 were analyzed. In total, 846 such repeats were deregulated in HP1-TKO livers compared
228 with control livers with 71.3% being up-regulated and 28.7% down-regulated (Fig. 5A &
229 Supplementary Table 7). Among up-regulated repeats, 59.4% were ERV, 19.2% long
230 interspersed nuclear elements (LINEs) and 9.3% short interspersed elements (SINEs)
231 supporting the hypothesis that HP1 were preferentially involved in ERV silencing (Fig. 5B &
232 Supplementary Table 7).

233 To determine whether the differential expression of these repeats was associated with
234 deregulation of gene expression, we first generated a map of HP1-dependent repeats
235 located in the vicinity of HP1-dependent genes. To this end, 100kb were added on both sides
236 of each HP1-dependent gene and the HP1-dependent repeats present in these regions were
237 scored. This analysis showed that a fraction of HP1-dependent genes (138 up-regulated and
238 94 down-regulated) was associated with HP1-dependent repeats. Interestingly, this physical
239 association correlated with a functional association since 84% of repeats associated with up-
240 regulated genes were also up-regulated and 75.5% of repeats associated with down-
241 regulated genes were down-regulated (Fig. 5C & Supplementary Tables 8 & 9). Furthermore,
242 up-regulated repeats tended to be located closer to up-regulated genes rather than to down-
243 regulated genes, whereas inversely down-regulated repeats tended to be located closer to

244 down- than up-regulated genes (Fig. 5D). Altogether, this analysis strongly suggested a link
245 between loss of HP1, reactivation of some ERV and up-regulation of genes in their
246 neighborhood. In agreement with this conclusion, several deregulated genes associated with
247 deregulated repeats such as *Mbd1*, *Bglap3*, *Obpa*, *Bmyc*, *Fbxw19* and *Zfp445* have already
248 been shown to be controlled by ERVs (Fig. 5E) ^{41,42}.

249

250 **HP1 is necessary for TRIM28 activity within liver**

251 KRAB-ZFP are known to require their interaction with the corepressor TRIM28 to sustain
252 their repressive activity ⁴³. RNA-seq, RT-qPCR and western blot assays showed that neither
253 TRIM28 mRNA nor protein expression were significantly altered in HP1-TKO as compared to
254 control livers (Fig. 6A-B). To investigate the relationship between HP1, KRAB-ZFPs, TRIM28
255 and ERVs in liver, we used the previously described mouse models in which either a mutated
256 TRIM28 protein that cannot interact with HP1 (T28HP1box) is expressed instead of the WT
257 TRIM28 protein or in which TRIM28 is depleted (T28KO) specifically within liver ^{21,44}. As
258 expected, western-blot analysis indicated that TRIM28 expression was strongly decreased in
259 T28KO livers, whereas it was only marginally decreased in T28HP1box livers (this mutation
260 is present only on one *Trim28* allele, and the other one is inactivated) (Fig. 6C). The level of
261 the three HP1 was not affected in these mouse strains (Fig. 6C). RT-qPCR analysis showed
262 that several HP1-dependent genes including *Nox4*, *Cyc29* and *Rsl1* were not affected in
263 T28HP1box and T28KO livers (Fig. 6D). Conversely, *Cyp2b10*, *Ifit2*, *Zfp345* and *Zfp445* that
264 were all over-expressed in HP1-TKO liver were also up-regulated in T28HP1box and T28KO
265 livers (Fig. 6D). Altogether, these data demonstrated that HP1 proteins regulate gene
266 expression through TRIM28-dependent and -independent mechanisms. To test whether the
267 HP1-dependent ERV-associated genes also required TRIM28, the expression of *Mbd1* and
268 *Bglap3* was assessed in T28KO and T28HP1box livers. Like in HP1-TKO livers, both genes
269 were over-expressed in T28KO and T28HP1box livers, although to a lesser extent as

270 compared to HP1-TKO livers suggesting that HP1 were able to partially repress the
271 expression of these two genes even in the absence of TRIM28 (Fig. 6E).

272 Similarly to HP1-TKO mice, T28KO and T28HP1box mice older than 42 weeks of age
273 developed more frequently tumors in livers than controls, although with a lower penetrancy
274 than HP1-TKO animals (38.5% and 35.7% for T28KO and T28HP1box males and 26.3% and
275 31.2% for T28KO and T28HP1box females, respectively, Fig. 6F) strengthening the
276 mechanistic link between HP1 proteins and TRIM28 for liver tumor prevention.

277 Finally, analysis of the expression of the ERV-associated genes *Mbd1* and *Bglap3* in old
278 animals (Fig. 6G-H) showed that both genes were over-expressed in both normal (TKON)
279 and tumor (TKOT) liver parts from old HP1-TKO animals. In contrast, *Mbd1* was no longer
280 over-expressed in the liver (normal and tumor parts) of old TRIM28 mutant mice. For *Bglap3*,
281 a slight over-expression was observed in T28KO but not in T28HP1box old animals, and in
282 both cases the level of expression was very low as compared to HP1-TKO mice (Fig. 6G-H).

283 Altogether, these data indicate that one important mechanism by which HP1 prevent
284 tumor development within liver is by sustaining TRIM28 repressive activity. Moreover, we
285 also highlight some TRIM28-independent HP1 functions in the maintenance of ERV silencing
286 in old animals that might explained the higher incidence of tumor development in HP1-TKO
287 animals as compared to TRIM28 mutant animals.

288 **DISCUSSION**

289 In this study, we demonstrated that the hepatocyte-specific loss of HP1 proteins lead
290 to spontaneous development of hepatocellular carcinoma (HCC). Further analysis of pre-
291 malignant livers showed that well before tumor development livers lacking HP1 were
292 characterized by heterochromatin disorganization, alteration of expression of many genes
293 involved in liver specific functions as well as reactivation of specific retrotransposons. Finally,
294 we demonstrated that this tumor suppressive function HP1 relies partially on their ability to
295 interact with the corepressor TRIM28 to regulate its repressive activity.

296 The finding that in the mouse, HP1 proteins were not essential for neither cell viability
297 nor liver function was in contrast with many studies showing the fundamental functions of
298 each HP1 isoform in various pluripotent and differentiated cellular systems^{45,46} as well as
299 during embryonic development in various species, such as *Drosophila*¹², *C. elegans*¹³ and
300 the mouse (our unpublished data). One can hypothesize that liver chromatin organization
301 and functions are highly specific and mostly independent of HP1 and/or that some
302 compensatory mechanisms through yet unknown factors, take place specifically in mouse
303 liver^{7,11,47}. In favor of the hypothesis of a specific liver chromatin organization, it is important
304 to note that liver is mostly quiescent throughout life but is able to regenerate upon stress
305 (e.g., partial hepatectomy) essentially through the re-entry of quiescent and fully
306 differentiated hepatocytes into cell cycle rather than via stem cell proliferation, as it is the
307 case in other tissues^{48,49}. This specific ability of differentiated hepatocytes to enter/exit
308 quiescence could rely on a peculiar loose chromatin organization that might be less sensitive
309 to the loss of HP1 as compared to other cell types.

310 We showed that HP1 loss was accompanied by a drastic reduction of the two
311 heterochromatin marks H3K9me3 and H4K20me3 and a partial re-localization of DAPI-dense
312 structures towards the nucleus periphery. However, in contrast to the results reported upon
313 loss of H3K9me3 induced by inactivation of the histone methyltransferases SUV39H1 and

314 SUV39H2, the loss of H3K9me3 in HP1-TKO hepatocytes did not result in neither decrease
315 of H3K9me2 nor over-expression of major satellite repeats, but rather in their slight down-
316 regulation ^{50,51}. This observation supports the conclusion that HP1 are essential to maintain
317 H3K9me3 but not H3K9me2 and that this latter histone modification is sufficient to keep
318 major satellite sequences at a low level of transcription. It has been reported that SUV39H1
319 over-expression is associated with HCC development ²² and that HCC induced by a methyl-
320 free diet is also characterized by elevated SUV39H1 expression and increased H3K9me3 but
321 with reduced H4K20me3 deposition ⁵². This suggests that decreased level of H4K20me3
322 rather than of H3K9me3 in HP1-TKO mice could be a key determinant of tumorigenesis. In
323 support of this hypothesis, H4K20me3 has been reported to be essential for genome integrity
324 and for proper timing of heterochromatin replication whose deregulation has recently been
325 proposed to be involved in cancers ^{53–55}. Our indicate that

326 HP1 ablation also led to the deregulation (both up- and down-regulation) of many genes,
327 strongly suggesting that HP1 are involved in both repression and activation of gene
328 expression, as reported by others ^{7,56–58}. Many of these genes are involved in liver specific
329 functions and it will be interesting to identify the determinant for their responsiveness to HP1
330 depletion. Of particular interest, we found that many genes encoding for the p450
331 cytochrome family (Cyp) were deregulated in HP1 mutant mice. Several of these proteins are
332 involved in the detoxification of the liver and in oxidative stress that are two key factors in
333 hepatocarcinogenesis ⁵⁹. How these genes are regulated by HP1 remains to be determined,
334 however nuclear receptors of the Peroxisome Proliferation-Activated Receptors (PPAR) have
335 been shown to be important in this process ⁶⁰. Interestingly, our RNAseq analysis indicated
336 that PPAR γ was strongly down-regulated in HP1 mutant mice and it is tempting to speculate
337 that this low expression of PPAR γ underlies the deregulation of several Cyp genes.
338 Furthermore, HP1-TKO livers were also characterized by a transcriptional signature of an
339 interferon γ response strongly suggesting liver inflammation, a factor associated with 90% of
340 hepatocarcinogenesis ⁶¹. Although the intrinsic factors involved in this inflammation remain to

341 be discovered, our results could explained why liver is particularly prone to develop tumors in
342 response chromatin alterations ⁶². Finally, one of the most striking result in the present study
343 was the enrichment in genes encoding members of the KRAB-ZFP family of transcriptional
344 co-repressors. The KRAB domain is almost exclusively present in the KRAB-Zinc Finger
345 Protein (KRAB-ZFP) family of transcriptional repressors that have the particularity to be still
346 actively evolving in mammals ³⁹. Little information is available about the functions of most of
347 these transcription factors, however it is now well recognized that transposable elements of
348 the ERV family are one of their main targets through the recruitment of the TRIM28
349 corepressor ^{39,63,64}. These mobile genetic elements constitute a threat for the genome
350 stability and/or expression because of their ability to insert at any genomic location. Thus, an
351 important challenge for the genome is to keep all these elements silent and unable to get
352 transposed. However and paradoxically, increasing evidence suggests that they have been
353 co-opted to serve as regulatory sequences in the host genome ⁶⁵. Here, we found that,
354 although HP1 proteins were shown to be dispensable for ERV silencing in ES cells ⁶⁶, they
355 are involved in silencing of specific ERVs in liver. Our data strongly suggest that the
356 reactivation of some ERVs induce the over-expression of genes in their vicinity acting either
357 as enhancer-like or as alternative promoters as proposed by others ^{42,67}. These results could
358 seem paradoxical with the increased expression of KRAB-ZFPs however, they are in
359 agreement with the proposed mechanism of auto-regulation of KRAB-ZFP-encoding genes
360 ⁴⁰. According to this model, KRAB-ZFPs can self-inhibit their expression through interaction
361 with the TRIM28 corepressor complex that needs to interact with HP1 for some, but not all of
362 its functions ^{40,44}. Therefore, it is very likely that in HP1-TKO livers, KRAB-ZFP-encoding
363 genes are over-expressed because of the loss of TRIM28 activity and that, for the same
364 reason, KRAB-ZFPs cannot repress their ERV targets. Interestingly, although our data
365 showed that silencing of ERV in young animals relies on the activity of the functionally
366 competent KRAB-ZFP/TRIM28/HP1 complex, TRIM28 but not HP1 becomes dispensable
367 for this silencing in old animals highlighting complex dynamic chromatin organization and
368 regulation throughout life.

369 Our study identified HP1 proteins as key players to prevent liver tumorigenesis. We
370 highlighted major *in vivo* functions of mammalian HP1 in heterochromatin organization,
371 regulation of gene expression and ERV silencing which most likely all contribute to the
372 tumorigenesis process observed in livers lacking HP1.

373

374 **MATERIALS AND METHODS**

375

376 **Mouse models.**

377 The Cbx5KO, T28KO (TRIM28KO) and T28HP1box (TRIM28-L2/HP1box) mouse strains
378 were described previously^{14,44,68}. Exons 2 to 4 within the *Cbx1* gene (HP1 β), and exon 3
379 within the *Cbx3* gene (HP1 γ) were surrounded by LoxP sites. Excision of the floxed exons
380 exclusively in hepatocytes by using mice that express the Cre recombinase under the control
381 of the albumin promoter (Alb-Cre mice,²⁶) led to the removal of the starting ATG codon of the
382 two genes, as well as to a frameshift within the CSD-encoding sequence of *Cbx1* and the
383 CD-encoding sequence of *Cbx3*. *Cbx5*, the gene encoding HP1 α , was inactivated in all body
384 cells by removing exon 3 using the Cre recombinase under the control of the
385 cytomegalovirus (CMV) promoter, as described previously (Cbx5KO mice)¹⁴.
386 TRIM28L2/HP1box were crossed with Alb-Cre transgenic mice to produce mice that express
387 TRIM28HP1box as the only TRIM28 protein in hepatocytes (TRIM28-liverL-/HP1box, called
388 T28HP1box mice in this article).

389 Mice were housed in a pathogen-free barrier facility, and experiments were approved by the
390 national ethics committee for animal warfare (n°CEEA-36).

391

392 **Antibodies/oligonucleotides**

393 The antibodies used in this study were: the rabbit anti-TRIM28 polyclonal antibody PF64,
394 raised against amino acids 141–155 of TRIM28⁶⁴; the anti-HP1 α , anti-HP1 β and anti-HP1 γ
395 monoclonal antibodies 2HP2G9, 1MOD1A9, and 2MOD1G6⁶⁵, respectively. Anti-Casp3A
396 (9661, Cell Signaling); anti- γ H2AX (Ab11174, Abcam), anti-Ki67 (M3064, Spring Bioscience).
397 Anti-5mC (NA81, Calbiochem). Oligonucleotides are described in Supplementary Table 10.

398

399 **Tissue processing for histology.**

400 For fresh frozen tissues, 3mm sections of the liver large lobe were embedded in the OCT
401 compound (TissueTek) following standard protocols, and 18 μ m-thick sections were cut using
402 a Leica CM1850 cryostat and stored at -80 °C.

403 For paraffin-embedded tissues, 3mm sections of the liver large lobe were fixed in 4% neutral-
404 buffered formalin (VWR Chemicals) at room temperature (RT) overnight, and stored in 70%
405 ethanol at 4°C. Fixed tissues were processed using standard protocols and embedded in
406 paraffin wax. Three- μ m-thick sections were cut using a Thermo Scientific Microm HM325
407 microtome, dried at 37 °C overnight and stored at 4 °C.

408

409 **Immunofluorescence analysis.**

410 Cryo-sections were fixed in formaldehyde (2%) at RT for 15min air dried at RT for 20min and
411 processed as described previously ⁴⁴.

412

413 **Immunohistochemistry.**

414 Paraffin-embedded liver sections were processed for routine hematoxylin, eosin and Safran
415 or reticulin staining. For immunohistochemistry, sections were processed according to
416 standard protocols. Images were acquired with a Zeiss Apotome2 microscope and
417 processed using ImageJ.

418

419 **RNA extraction and RT-qPCR assays**

420 RNA was isolated from liver samples using TRIzol, according to the manufacturer's
421 recommendations (Life technologies). Reverse transcription was performed with Superscript
422 III according to the manufacturer protocol (Invitrogen). 1/100 of this reaction was used for
423 real-time qPCR amplification using SYBR Green I (SYBR Green SuperMix, Quanta).

424

425 **RNA-seq**

426 The details are described in supplementary methods. Data are available at GEO (accession
427 number: GSE119244).

428

429 **Statistics and reproducibility.**

430 The Microsoft Excel software was used for statistical analyses; statistical tests, number of
431 independent experiments, and P-values are listed in the individual figure legends. All
432 experiments were repeated at least twice unless otherwise stated.

433 **ACKNOWLEDGMENTS:**

434

435 We thank P. Chambon, C. Sardet, T. Forné, D. Fisher and C. Grimaud for helpful discussions
436 and critical reading of the manuscript. We thank F. Bernex and L. LeCam, C. Keime and B.
437 Jost for fruitful discussions. We thank L. Papon, H. Fontaine and C. Bonhomme for technical
438 assistance and M. Oulad-Abdelghani and the IGBMC for the anti-HP1 and TRIM28
439 antibodies. We also thank the RHEM technical facility and particularly J. Simony for
440 histological analysis and the IGBMC/ICS transgenic and animal facility for the initial
441 establishment of the HP1 and TRIM28 mouse models. We thank C. Vincent and the IRCM
442 animal core facility for the day to day care of the animal models. Finally, we thank S.
443 Chamroeun for counting positive cells on TMA. We acknowledge the imaging facility MRI,
444 member of the national infrastructure France-BioImaging and supported by the French
445 National Research Agency (ANR-10-INBS-04, «Investments for the future»).

446 This work was supported by funds from the Centre National de la Recherche Scientifique
447 (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM), the
448 University of Montpellier and the Institut régional de Cancérologie de Montpellier (ICM). SH
449 was funded by an Erasmus PhD fellowship. We also thank the Ministry of Education, Science
450 and Technology of the Republic of Kosovo for a scholarships to support SH. FC was
451 supported by grants from ANR (ANR 2009 BLAN 021 91; ANR-16CE15-0018-03), INCa
452 (PLBIO13-146), ARC (PJA20131200357), and La ligue Régionale contre le Cancer (128-
453 R13021FF-RAB13006FFA). Sequencing was performed by the MGX facility. Montpellier,
454 France.

455

456

457 **AUTHORS' CONTRIBUTIONS:**

458 NS and SH performed the analysis of mice and interpreted the data. MP and CB made the
459 libraries, generated and analyzed the RNA-seq data. AZ performed most of the RT-qPCR
460 experiments. NP supervised the histological core facility and JYN performed the TMA. LK
461 performed the pathological analysis of histological sections. EF performed some of the RT-
462 qPCR analyses. EJ interpreted the data. FC designed, analyzed and interpreted the data and
463 wrote the manuscript with input from all co-authors.

464

465 **DECLARATION OF INTEREST:** No competing interests

466

467

468

469

470

471 **TABLES:**

472 **Table 1: HP1-dependent p450 genes.**

Gene name	Log2 fold-change	padj	Redox	Endoplasmic reticulum	Drug metabolism	Lipid metabolism	Steroid synthesis
Cyp2b10	4.06	1.41E-38	1	1	0	0	1
Cyp2b9	2.68	4.51E-10	1	1	0	0	1
Cyp2b13	1.80	0.000120	0	0	0	0	1
Cyp4f16	1.63	1.36E-09	0	0	0	0	0
Cyp2d12	1.38	0.000468	0	0	0	0	1
Cyp2a4	1.09	0.0342	0	0	0	0	0
Cyp2a22	1.06	0.000559	0	0	0	0	0
Cyp2f2	-0.65	0.00318	1	1	0	0	0
Cyp4f13	-0.67	0.0151	0	0	0	0	0
Cyp2r1	-0.72	0.0173	1	1	0	0	0
Cyp27a1	-0.83	1.30E-05	1	0	0	0	0
Cyp2d37-ps	-0.83	0.0319	0	0	0	0	0
Cyp3a25	-0.85	0.00222	1	1	0	0	1
Cyp39a1	-0.88	0.00164	1	1	0	1	0
Cyp2e1	-0.94	7.81E-05	1	1	1	0	1
Cyp2d26	-0.95	2.57E-05	1	1	0	0	1
Cyp2a5	-0.97	0.00129	0	0	0	0	0
Cyp2d13	-1.00	0.00445	0	0	0	0	0
Cyp1a2	-1.25	3.65E-12	1	1	1	1	1
Cyp2c53-ps	-1.31	0.01178	0	0	0	0	0
Cyp2d40	-1.42	6.83E-06	0	0	0	0	1
Cyp46a1	-1.64	0.000629	1	1	0	1	0
Cyp3a59	-2.15	3.62E-17	1	0	0	0	0
Cyp2c44	-2.20	2.18E-20	0	0	0	0	1
Cyp2c29	-2.60	7.65E-25	1	1	0	0	1

473 (1) found and (0) not found according to the David Gene Ontology software.

474

475 **SUPPLEMENTARY INFORMATIONS:**

476 **Supplementary Figure 1: HP1 are not required for liver structural organization.** The
477 absence of HP1 proteins in hepatocytes did not induce any significant histological alteration
478 in the liver of young (7-week-old) and middle-aged (3-6-month-old) HP1-TKO mice. (A-D) low
479 magnification, (E-H) high magnification.

480 **Supplementary Figure 2: HP1-TKO tumors originate from hepatocytes lacking HP1.** (A)
481 Excision of the *Cbx1* and *Cbx3* genes in the liver of old (x-week-old) HP1-TKO mice (TKON:

482 normal part of liver; TKOT: tumor part of liver) compared with age-matched controls (CTL).
483 (B) Expression of the α -fetoprotein (*Afp*) gene in the liver of old control (CTL) and HP1-TKO
484 mice. (C) Quantification of Ki67-, caspase 3A- and γ H2AX-positive cells on liver Tissue Micro
485 Areas of old HP1-TKO mice and age-matched controls.

486

487 **Supplementary table 1: analysis of RNAseq data comparing control and HP1-TKO liver**
488 **total RNA**

489 **Supplementary table 2: functional clustering of genes up-regulated upon loss of HP1**
490 **witin hepatocytes (<https://david.ncifcrf.gov/>)**

491 **Supplementary table 3: functional clustering of genes down-regulated upon loss of**
492 **HP1 witin hepatocytes (<https://david.ncifcrf.gov/>)**

493 **Supplementary table 4: HP1-dependent genes belonging to the IFNy response**
494 **pathway**

495 **Supplementary table 5: HP1-dependent genes with liver specific functions**

496 **Supplementary table 6: genes with liver-specific expression according to the Tissue**
497 **Specific Gene Expression and Regulation software (bioinfo.wilmer.jhu.edu/tiger)**

498 **Supplementary table 7: Fold change of HP1-dependent repeats**

499 **Supplementary table 8: repeats with increased expression upon loss of HP1**
500 **associated with genes up-regulated upon loss of HP1**

501 **Supplementary table 9: repeats with decreased expression upon loss of HP1**
502 **associated with genes down-regulated upon loss of HP1**

503 **Supplementary table 10: list of the oligonucleotides used in this study**

504

505

506 **REFERENCES**

- 507
- 508 1. Prakash, K. & Fournier, D. Evidence for the implication of the histone code in building the
509 genome structure. *BioSystems* **164**, 49–59 (2018).
- 510 2. Koschmann, C. *et al.* Mutated Chromatin Regulatory Factors as Tumor Drivers in
511 Cancer. *Cancer Res.* **77**, 227–233 (2017).
- 512 3. Mirabella, A. C., Foster, B. M. & Bartke, T. Chromatin deregulation in disease.
513 *Chromosoma* **125**, 75–93 (2016).
- 514 4. Mai, S. The 3D Cancer Nucleus. *Genes Chromosomes Cancer* (2018).
515 doi:10.1002/gcc.22720
- 516 5. Janssen, A., Colmenares, S. U. & Karpen, G. H. Heterochromatin: Guardian of the
517 Genome. *Annu. Rev. Cell Dev. Biol.* (2018). doi:10.1146/annurev-cellbio-100617-062653
- 518 6. James, T. C. & Elgin, S. C. Identification of a nonhistone chromosomal protein
519 associated with heterochromatin in *Drosophila melanogaster* and its gene. *Mol. Cell. Biol.*
520 **6**, 3862–3872 (1986).
- 521 7. Eissenberg, J. C. & Elgin, S. C. R. HP1a: a structural chromosomal protein regulating
522 transcription. *Trends Genet.* **30**, 103–110 (2014).
- 523 8. Lomberk, G., Wallrath, L. & Urrutia, R. The Heterochromatin Protein 1 family. *Genome*
524 *Biol.* **7**, 228 (2006).
- 525 9. Dinant, C. & Luijsterburg, M. S. The emerging role of HP1 in the DNA damage response.
526 *Mol. Cell. Biol.* **29**, 6335–6340 (2009).
- 527 10. Fanti, L. & Pimpinelli, S. HP1: a functionally multifaceted protein. *Curr. Opin. Genet. Dev.*
528 **18**, 169–174 (2008).
- 529 11. Nishibuchi, G. & Nakayama, J. Biochemical and structural properties of heterochromatin
530 protein 1: understanding its role in chromatin assembly. *J. Biochem.* **156**, 11–20 (2014).
- 531 12. Eissenberg, J. C., Morris, G. D., Reuter, G. & Hartnett, T. The heterochromatin-
532 associated protein HP-1 is an essential protein in *Drosophila* with dosage-dependent
533 effects on position-effect variegation. *Genetics* **131**, 345–352 (1992).

- 534 13. Schott, S., Coustham, V., Simonet, T., Bedet, C. & Palladino, F. Unique and redundant
535 functions of *C. elegans* HP1 proteins in post-embryonic development. *Dev. Biol.* **298**,
536 176–187 (2006).
- 537 14. Allan, R. S. *et al.* An epigenetic silencing pathway controlling T helper 2 cell lineage
538 commitment. *Nature* **487**, 249–253 (2012).
- 539 15. Aucott, R. *et al.* HP1-beta is required for development of the cerebral neocortex and
540 neuromuscular junctions. *J. Cell Biol.* **183**, 597–606 (2008).
- 541 16. Abe, K. *et al.* Loss of heterochromatin protein 1 gamma reduces the number of primordial
542 germ cells via impaired cell cycle progression in mice. *Biol. Reprod.* **85**, 1013–1024
543 (2011).
- 544 17. Brown, J. P. *et al.* HP1gamma function is required for male germ cell survival and
545 spermatogenesis. *Epigenetics Chromatin* **3**, 9 (2010).
- 546 18. Dialynas, G. K., Vitalini, M. W. & Wallrath, L. L. Linking Heterochromatin Protein 1 (HP1)
547 to cancer progression. *Mutat. Res.* **647**, 13–20 (2008).
- 548 19. Vad-Nielsen, J. & Nielsen, A. L. Beyond the histone tale: HP1 α deregulation in breast
549 cancer epigenetics. *Cancer Biology & Therapy* **16**, 189–200 (2015).
- 550 20. Janssen, A., Colmenares, S. U. & Karpen, G. H. Heterochromatin: Guardian of the
551 Genome. *Annu. Rev. Cell Dev. Biol.* (2018). doi:10.1146/annurev-cellbio-100617-062653
- 552 21. Herquel, B. *et al.* Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to
553 form regulatory complexes that suppress murine hepatocellular carcinoma. *Proc. Natl.
554 Acad. Sci. U.S.A.* **108**, 8212–8217 (2011).
- 555 22. Fan, D. N.-Y. *et al.* Histone lysine methyltransferase, suppressor of variegation 3-9
556 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated
557 by microRNA-125b. *Hepatology* **57**, 637–647 (2013).
- 558 23. Bojkowska, K. *et al.* Liver-specific ablation of Krüppel-associated box-associated protein
559 1 in mice leads to male-predominant hepatosteatosis and development of liver adenoma.
560 *Hepatology* **56**, 1279–1290 (2012).

- 561 24. Khetchoumian, K. *et al.* Loss of Trim24 (Tif1alpha) gene function confers oncogenic
562 activity to retinoic acid receptor alpha. *Nat. Genet.* **39**, 1500–1506 (2007).
- 563 25. Hardy, T. & Mann, D. A. Epigenetics in liver disease: from biology to therapeutics. *Gut*
564 **65**, 1895–1905 (2016).
- 565 26. Postic, C. *et al.* Dual roles for glucokinase in glucose homeostasis as determined by liver
566 and pancreatic beta cell-specific gene knock-outs using Cre recombinase. *J. Biol. Chem.*
567 **274**, 305–315 (1999).
- 568 27. Weisend, C. M., Kundert, J. A., Suvorova, E. S., Prigge, J. R. & Schmidt, E. E. Cre
569 activity in fetal albCre mouse hepatocytes: Utility for developmental studies. *Genesis* **47**,
570 789–792 (2009).
- 571 28. Si-Tayeb, K., Lemaigre, F. P. & Duncan, S. A. Organogenesis and development of the
572 liver. *Dev. Cell* **18**, 175–189 (2010).
- 573 29. Shi, S. *et al.* Drosophila STAT is required for directly maintaining HP1 localization and
574 heterochromatin stability. *Nat. Cell Biol.* **10**, 489–496 (2008).
- 575 30. Bosch-Presegué, L. *et al.* Mammalian HP1 Isoforms Have Specific Roles in
576 Heterochromatin Structure and Organization. *Cell Rep* **21**, 2048–2057 (2017).
- 577 31. Kuo, L. J. & Yang, L.-X. Gamma-H2AX - a novel biomarker for DNA double-strand
578 breaks. *In Vivo* **22**, 305–309 (2008).
- 579 32. Strick-Marchand, H. & Weiss, M. C. Inducible differentiation and morphogenesis of
580 bipotential liver cell lines from wild-type mouse embryos. *Hepatology* **36**, 794–804
581 (2002).
- 582 33. Niu, Z.-S., Niu, X.-J. & Wang, W.-H. Genetic alterations in hepatocellular carcinoma: An
583 update. *World J Gastroenterol* **22**, 9069–9095 (2016).
- 584 34. Bruix, J. & Sherman, M. Management of hepatocellular carcinoma: An update.
585 *Hepatology* **53**, 1020–1022 (2011).
- 586 35. Guengerich, F. P. Cytochrome P450 research and The Journal of Biological Chemistry.
587 *J. Biol. Chem.* (2018). doi:10.1074/jbc.TM118.004144

- 588 36. Bhattacharyya, S., Sinha, K. & Sil, P. C. Cytochrome P450s: mechanisms and biological
589 implications in drug metabolism and its interaction with oxidative stress. *Curr. Drug
590 Metab.* **15**, 719–742 (2014).
- 591 37. Park, J. W., Reed, J. R., Brignac-Huber, L. M. & Backes, W. L. Cytochrome P450 system
592 proteins reside in different regions of the endoplasmic reticulum. *Biochem. J.* **464**, 241–
593 249 (2014).
- 594 38. Paik, Y.-H. *et al.* Role of NADPH oxidases in liver fibrosis. *Antioxid. Redox Signal.* **20**,
595 2854–2872 (2014).
- 596 39. Yang, P., Wang, Y. & Macfarlan, T. S. The Role of KRAB-ZFPs in Transposable Element
597 Repression and Mammalian Evolution. *Trends Genet.* **33**, 871–881 (2017).
- 598 40. O'Geen, H. *et al.* Genome-wide analysis of KAP1 binding suggests autoregulation of
599 KRAB-ZNFs. *PLoS Genet.* **3**, e89 (2007).
- 600 41. Ecco, G. *et al.* Transposable Elements and Their KRAB-ZFP Controllers Regulate Gene
601 Expression in Adult Tissues. *Dev. Cell* **36**, 611–623 (2016).
- 602 42. Herquel, B. *et al.* Trim24-repressed VL30 retrotransposons regulate gene expression by
603 producing noncoding RNA. *Nat. Struct. Mol. Biol.* **20**, 339–346 (2013).
- 604 43. Ecco, G., Imbeault, M. & Trono, D. KRAB zinc finger proteins. *Development* **144**, 2719–
605 2729 (2017).
- 606 44. Herzog, M. *et al.* TIF1 β association with HP1 is essential for post-gastrulation
607 development, but not for Sertoli cell functions during spermatogenesis. *Dev. Biol.* **350**,
608 548–558 (2011).
- 609 45. Huang, C. *et al.* Cbx3 maintains lineage specificity during neural differentiation. *Genes
610 Dev.* **31**, 241–246 (2017).
- 611 46. Mattout, A. *et al.* Heterochromatin Protein 1 β (HP1 β) has distinct functions and distinct
612 nuclear distribution in pluripotent versus differentiated cells. *Genome Biol* **16**, (2015).
- 613 47. Kwon, S. H. & Workman, J. L. The changing faces of HP1: From heterochromatin
614 formation and gene silencing to euchromatic gene expression: HP1 acts as a positive
615 regulator of transcription. *Bioessays* **33**, 280–289 (2011).

- 616 48. Fausto, N., Campbell, J. S. & Riehle, K. J. Liver regeneration. *Hepatology* **43**, S45-53
617 (2006).
- 618 49. Kurinna, S. & Barton, M. C. Cascades of transcription regulation during liver
619 regeneration. *Int. J. Biochem. Cell Biol.* **43**, 189–197 (2011).
- 620 50. Lehnertz, B. *et al.* Suv39h-mediated histone H3 lysine 9 methylation directs DNA
621 methylation to major satellite repeats at pericentric heterochromatin. *Curr. Biol.* **13**,
622 1192–1200 (2003).
- 623 51. Velazquez Camacho, O. *et al.* Major satellite repeat RNA stabilize heterochromatin
624 retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid
625 formation. *Elife* **6**, (2017).
- 626 52. Pogribny, I. P. *et al.* Histone H3 lysine 9 and H4 lysine 20 trimethylation and the
627 expression of Suv4-20h2 and Suv-39h1 histone methyltransferases in
628 hepatocarcinogenesis induced by methyl deficiency in rats. *Carcinogenesis* **27**, 1180–
629 1186 (2006).
- 630 53. Brustel, J. *et al.* Histone H4K20 tri-methylation at late-firing origins ensures timely
631 heterochromatin replication. *EMBO J.* **36**, 2726–2741 (2017).
- 632 54. Jørgensen, S., Schotta, G. & Sørensen, C. S. Histone H4 lysine 20 methylation: key
633 player in epigenetic regulation of genomic integrity. *Nucleic Acids Res.* **41**, 2797–2806
634 (2013).
- 635 55. Du, Q. *et al.* Replication timing and epigenome remodelling are associated with the
636 nature of chromosomal rearrangements in cancer. *Nat Commun* **10**, 416 (2019).
- 637 56. Lee, D. H. *et al.* DNA microarray profiling of genes differentially regulated by three
638 heterochromatin protein 1 (HP1) homologs in Drosophila. *Biochem. Biophys. Res.*
639 *Commun.* **434**, 820–828 (2013).
- 640 57. Piacentini, L. *et al.* Heterochromatin protein 1 (HP1a) positively regulates euchromatic
641 gene expression through RNA transcript association and interaction with hnRNPs in
642 Drosophila. *PLoS Genet.* **5**, e1000670 (2009).

- 643 58. Vakoc, C. R., Mandat, S. A., Olenchock, B. A. & Blobel, G. A. Histone H3 lysine 9
644 methylation and HP1gamma are associated with transcription elongation through
645 mammalian chromatin. *Mol. Cell* **19**, 381–391 (2005).
- 646 59. Takaki, A. & Yamamoto, K. Control of oxidative stress in hepatocellular carcinoma:
647 Helpful or harmful? *World J Hepatol* **7**, 968–979 (2015).
- 648 60. Cizkova, K., Konieczna, A., Erdosova, B., Lichnovska, R. & Ehrmann, J. Peroxisome
649 Proliferator-Activated Receptors in Regulation of Cytochromes P450: New Way to
650 Overcome Multidrug Resistance? *J Biomed Biotechnol* **2012**, (2012).
- 651 61. Bishayee, A. The role of inflammation and liver cancer. *Adv. Exp. Med. Biol.* **816**, 401–
652 435 (2014).
- 653 62. Pogribny, I. P. & Rusyn, I. Role of epigenetic aberrations in the development and
654 progression of human hepatocellular carcinoma. *Cancer Lett* **342**, 223–230 (2014).
- 655 63. Jacobs, F. M. J. *et al.* An evolutionary arms race between KRAB zinc-finger genes
656 ZNF91/93 and SVA/L1 retrotransposons. *Nature* **516**, 242–245 (2014).
- 657 64. Wolf, G. *et al.* The KRAB zinc finger protein ZFP809 is required to initiate epigenetic
658 silencing of endogenous retroviruses. *Genes Dev.* **29**, 538–554 (2015).
- 659 65. Thompson, P. J., Macfarlan, T. S. & Lorincz, M. C. Long Terminal Repeats: From
660 Parasitic Elements to Building Blocks of the Transcriptional Regulatory Repertoire. *Mol.*
661 *Cell* **62**, 766–776 (2016).
- 662 66. Maksakova, I. A. *et al.* H3K9me3-binding proteins are dispensable for
663 SETDB1/H3K9me3-dependent retroviral silencing. *Epigenetics Chromatin* **4**, 12 (2011).
- 664 67. Bojkowska, K. *et al.* Liver-specific ablation of Krüppel-associated box-associated protein
665 1 in mice leads to male-predominant hepatosteatosis and development of liver adenoma.
666 *Hepatology* **56**, 1279–1290 (2012).
- 667 68. Cammas, F. *et al.* Mice lacking the transcriptional corepressor TIF1beta are defective in
668 early postimplantation development. *Development* **127**, 2955–2963 (2000).
- 669

LEGENDS FIGURES

Figure 1: HP1 are not required for hepatocyte survival nor for liver organization and function. (A) Schematic representation of the strategy to inactivate the three HP1-encoding genes (*Cbx1*, 3 and 5) specifically in hepatocytes using the recombinase Cre expressed under the control of the albumin promoter. (B) The hepatocyte-specific excision (L- alleles) of the *Cbx1* (HP1 β) and *Cbx3* (HP1 γ) genes and ubiquitous excision of *Cbx5* (HP1 α) in HP1-TKO (1-4) mice was verified by PCR. Controls were littermates with either L2 (*Cbx1* and *Cbx3*) or "+" (*Cbx5*) alleles (5-8). Note that control #7 is *Cbx5*^{L/+}. (C) Western blot analysis of whole-cell extracts from liver samples confirmed the absence of HP1 α and the decreased expression of HP1 β and HP1 γ , due to the hepatocytes-specific excision of the corresponding genes in HP1-TKO as compared to age-matched control mice. Ponceau staining was used as loading control. (D) Immuno-fluorescence analysis of liver tissue cryosections confirmed the absence of HP1 β and HP1 γ expression in about 60% of cells in 7-weeks old HP1-TKO mice compared with controls. (E) Immuno-histochemistry analysis of paraffin-embedded liver sections revealed no significant difference in proliferation (Ki67), apoptosis (caspase 3A), and DNA damage (γ H2AX) between 7-week-old (n=5) and 3-6month-old mice (n= 5) HP1-TKO and control mice (n=7 and n= 4 respectively). The number of positive cells were normalized to the total number of cells in each section and graphs recapitulating these data are shown as the mean \pm SEM. ns, no significant difference (Student's t-test). (F) Schematic representation of the strategy to establish BMEL cells from *Cbx5*^{-/-}; *Cbx1L2/L2*; *Cbx3L2/L2* fetal livers and to inactivate the three HP1-encoding genes. (G) Western blot analysis of whole-cell extracts from BMEL cells confirmed the absence of all HP1 isoforms in HP1-TKO (*Cbx5*^{-/-}; *Cbx1L2/L2*, *Cbx3L2/L2*; Cre-ERT treated with tamoxifen). "Het" were *Cbx5*^{+/}⁻; *Cbx1L2/L2* BMEL cells and "Ctl" were *Cbx5*^{-/-}; *Cbx1L2/L2*; *Cbx3L2/L2*; Cre-ERT non treated with tamoxifen. (H) Proliferation curves of "Het", 2 Control clones (C3 and C5) and 2 HP1-TKO clones (KO1 and KO3). The graph represent the average of three independent experiments done in triplicates.

Figure 2: HP1 prevent tumor development in liver. (A) Controls (Ctl, n=67) and HP1-TKO (TKO, n=17) animals older than one year of age were sacrificed and the percentage of animals with tumors (morphological and histological analysis) was calculated. (B) Morphology of the livers with tumors (arrows) in three HP1-TKO females (F TKO1, 2 and 3) and three HP1-TKO males (M TKO1, 2 and 3) older than one year of age. The liver morphology of one age-matched control female and male is also shown (F Ctl and M Ctl, respectively). (C) Liver histological analysis (hematoxylin-eosin-Safran staining) of one representative HP1-TKO female (F-TKO) and one representative HP1-TKO male (M-TKO). Upper panels: tumor/liver parenchyma interface highlighted by arrowheads (low magnifications). Bottom panels: magnification (x 100) of the boxes in the upper panels showing the tumor in the right part of the images (thick plates of atypical hepatocytes). A venous tumor thrombus is also present (asterisk). (D) RT-qPCR analysis of the expression of the indicated genes in control (Ctl, n=5) and HP1-TKO (TKON: normal liver, n=6; TKOT: tumor, n=5) livers of animals older than one year.

Figure 3: HP1 are essential for heterochromatin organization but not to regulate the expression of major satellites. (A) HP1 are essential for the maintenance of the two heterochromatin hallmarks H3K9me3 and H4K20me3 in hepatocytes. Western blot analysis of nuclear extracts from liver of 7-week-old and middle-aged (3-6-month-old) controls (Ctl: 1; 2; 5; 6) and HP1-TKO (TKO: 3; 4; 7; 8) mice with antibodies against the indicated histone marks. Ponceau staining was used as loading control. (B) Western blot analysis of the indicated marks in BMEL cells. (C) IF analysis of H3K9me3, H3K27me3, 5mC and LamB1 in BMEL cells. (D) Loss of HP1 leads to a partial relocation of DAPI-dense regions towards the nuclear periphery. Representative images of paraffin-embedded liver tissue sections from 7-week-old control (Ctl) and HP1-TKO (TKO) mice stained with DAPI (63x magnification). To select mostly hepatocytes, only the largest nuclei with a size comprised between 70 and 150 μm^2 and with a circular shape were selected for this analysis. 2D sections of nuclei were

divided in four concentric areas (1 to 4) and DAPI staining intensity was quantified using the cell profiler software. The mean fractional intensity at a given radius was calculated as the fraction of the total intensity normalized to the fraction of pixels at a given radius in n=584 control and n=762 HP1-TKO (TKO) nuclei. Data are the mean \pm SEM. ***p value <0.001. (E) Loss of the three HP1 proteins in hepatocytes did not affect the expression of major satellites. qPCR assays were performed using total RNA from livers of 7-week-old control (n=4) and HP1-TKO mice (n=4) and on control (Ctl) and HP1-TKO (TKO) BMEL. (F) Satellite repeats were quantified by qPCR on genomic DNA from the same animals as those used for (E).

Figure 4: HP1 are essential regulators of gene expression in liver. (A) MA plot after DSeq2 normalization of RNA-seq data from 7-week-old control (n=3) and HP1-TKO (n=4) liver RNA samples. Red dots represent genes that are differentially expressed between control and HP1-TKO mice (adjusted p-value p <0.05). (B) Functional clustering of HP1-dependent genes using the DAVID Gene Ontology software. (C) Validation by RT-qPCR of the altered expression of the indicated genes. RNA was extracted from livers of 7-weeks control (Ctl, n=4) and HP1-TKO (TKO, n=4) animals. Data were normalized to *Hprt* expression and are shown as the mean \pm SEM. *p value <0.05; ***p value <0.001 (Student's t-test).

Figure 5: HP1 are required for silencing specific endogenous retroviruses (ERVs) in hepatocytes. (A) MA-plot after DSeq2 normalization of RNA-seq reads including repeats aligned against the Repbase database. Red dots represent genes and repeats that are differentially expressed between controls and HP1-TKO liver samples (p<0.05). (B) ERVs are over-represented in repeats that are up-regulated upon loss of HP1 (Repeat_Up) compared to repeats that are down-regulated (Repeat_Down) and to the genome-wide distribution of repeats according to the RepeatMasker database (All). (C) Repeats over-expressed in HP1-TKO liver samples compared with controls (Repeat_Up) are over-represented in regions (\pm 100kb) around genes that are over-expressed in HP1-TKO (genes_up). Conversely, repeats

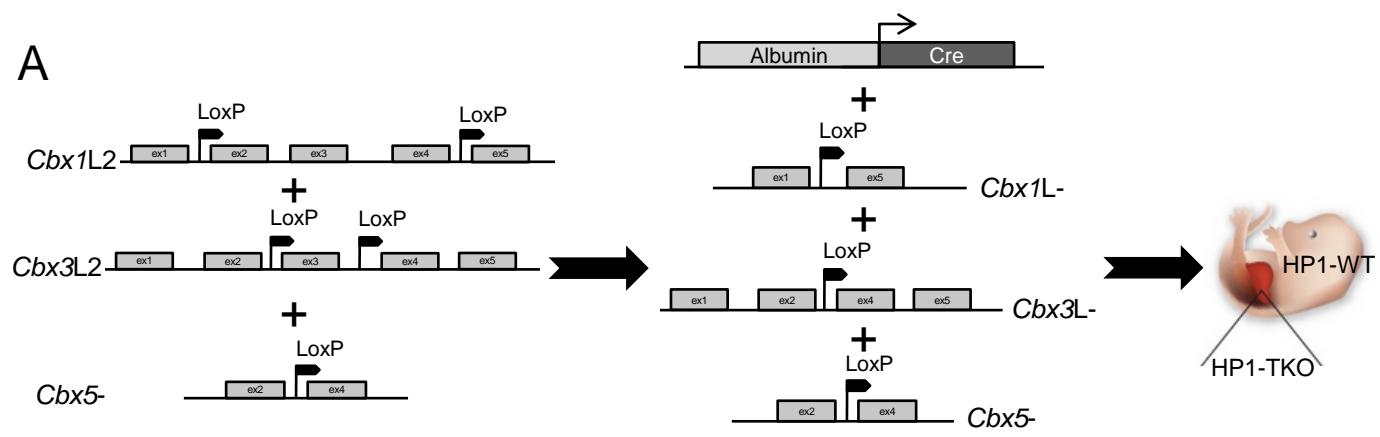
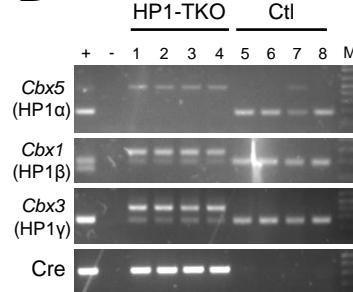
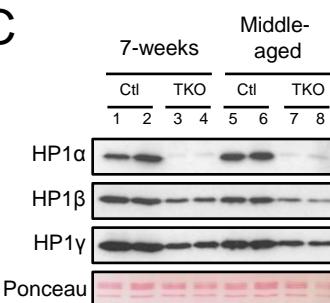
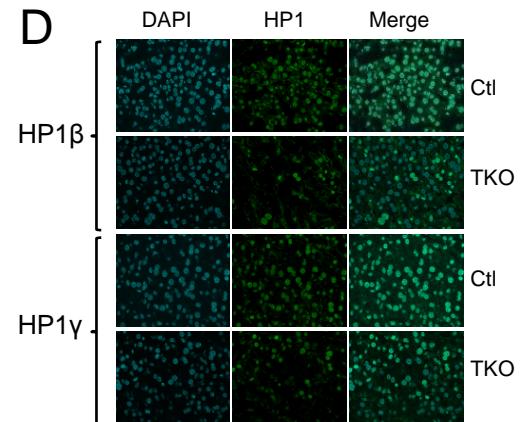
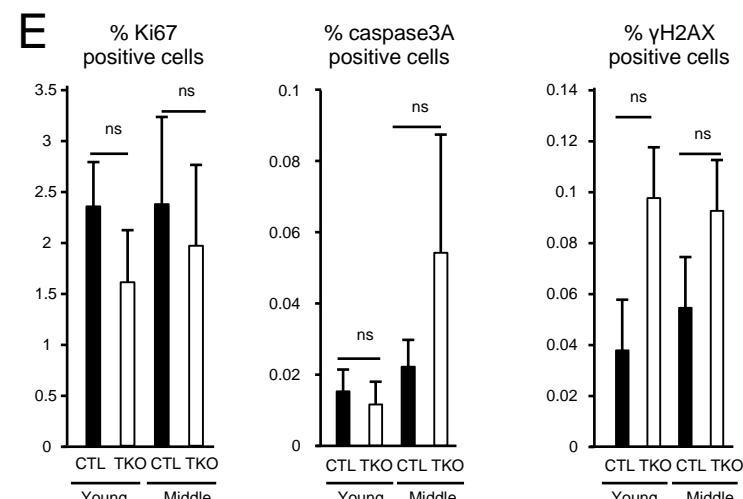
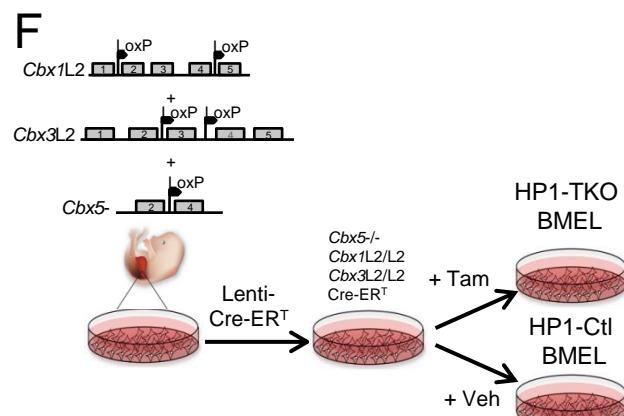
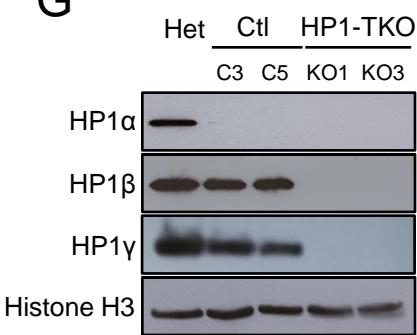
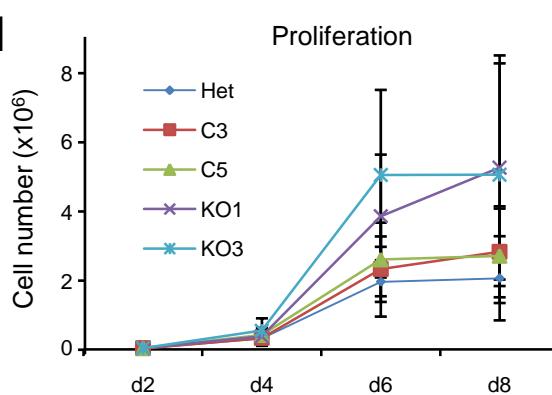








down-regulated in HP1-TKO liver samples compared with controls (Repeat_Down) are over-represented in regions ($\pm 100\text{kb}$) around genes repressed in HP1-TKO (genes_down). (D) Repeats that are up-regulated or down-regulated upon HP1 loss tend to be closer to genes that are up- or down-regulated in HP1-TKO, respectively. The absolute distance (in base pairs) was measured between the gene transcriptional start site and the beginning of the repeat, according to the RepeatMasker annotation. (E) Representative Integrative Genomic Viewer snapshots of the indicated up-regulated genes associated with up-regulated repeat sequences.

Figure 6: The loss of association between HP1 and TRIM28 partially recapitulates the phenotypes induced by the loss of HP1. (A) TRIM28 expression is independent of HP1 proteins. RT-qPCR quantification of TRIM28 expression in total RNA from livers of 7-week-old control (Ctl; n=4) and HP1-TKO (TKO; n=4) mice. Data were normalized to *Hprt* expression and are shown as the mean \pm SEM. (B) Western blot analysis of 50 μg of whole cell extracts from 7-week-old control (1 and 2) and HP1-TKO (3 to 5) livers using an anti-TRIM28 polyclonal antibody. Tubulin was used as loading control. (C) The loss of interaction between TRIM28 and HP1 does not significantly alter the level of expression of neither TRIM28 nor HP1. 50 μg of whole liver extracts from 7-week-old controls (1; 2), TRIM28KO (T28KO; 3-5) and TRIM29HP1box (T28HP1box; 6-8) mice were analyzed by western blotting using the anti-TRIM28 polyclonal and anti-HP1 α , β and γ monoclonal antibodies. GAPDH and Ponceau staining were used as loading controls. (D) TRIM28 is involved in the regulation of the expression of some but not all HP1-dependent genes. RT-qPCR analysis using liver RNA samples from 5 week-old control (n=5), T28KO (n=5) and T28HP1box (n=5) mice. (E) TRIM28 is involved in the regulated expression of HP1- and ERV-dependent genes. Analysis of *Mbd1* and *Bglap3* expression by RT-qPCR using liver RNA samples from 7-week-old control (Ctl) and HP1-TKO (TKO) mice, and 5-week-old control (n=5), T28KO (n=5) and T28HP1box (n=5) mice. (F) The association between TRIM28 and HP1 is

essential in hepatocytes to prevent liver tumor development. Control (n=42), T28KO (n=32) and T28HP1box (n=30) mice older than one year were sacrificed and the percentage of animals with tumors (morphological and histological analysis) was calculated. Representative morphological aspect of TRIM28 mutant livers. (G) *Bglap3* and *Mbd1* are over-expressed in HP1-TKO livers of old (>1year) mice. RT-qPCR was performed using RNA from old control (n=7), and HP1-TKO liver samples (TKON for normal part, TKOT for tumor part) (n=7). (H) The alteration of *Mbd1* and *Bglap3* expression upon loss of the association between TRIM28 and HP1 proteins was not maintained in old animals. RT-qPCR analysis using RNA from control (n=5), T28KO (T28KON for normal part, T28KOT for tumor part) (n=5) and T28HP1box (T28HP1boxN for normal part, T28HP1boxT for tumor part) livers (n=5). All expression data were normalized to *Hprt* expression and are shown as the mean \pm SEM. ns, no significant difference *p value <0.05; **p value <0.01; ***p value <0.001 (Student's t-test).

Supplementary Figure 1: The absence of HP1 proteins in hepatocytes did not induce any significant histological alteration in the liver of young (7-week-old) and middle-aged (3-6-month-old) HP1-TKO mice. (A-D) low magnification, (E-H) high magnification.

Supplementary Figure 2: (A) Excision of the *Cbx1* and *Cbx3* genes in the liver of old (x-week-old) HP1-TKO mice (TKON: normal part of liver; TKOT: tumor part of liver) compared with age-matched controls (CTL). (B) Quantification of Ki67-, caspase 3A- and γ H2AX-positive cells on liver Tissue Micro Areas of old HP1-TKO mice and age-matched controls.

A**B****C****D****E****F****G****H****Figure 1.** Saksouk & Hajdari et al.

A

% animals developing tumors

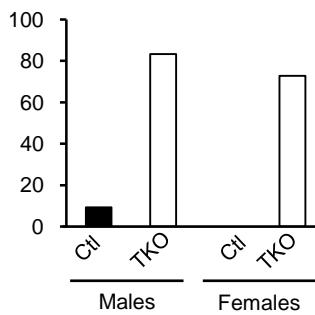
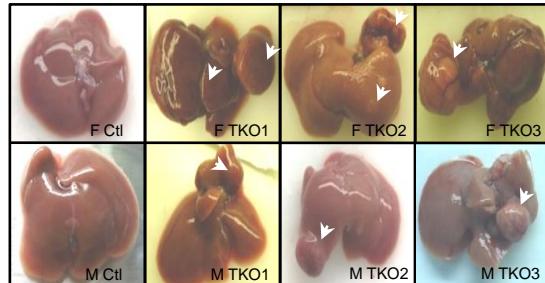
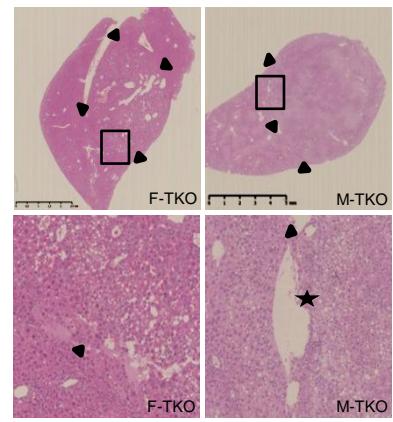
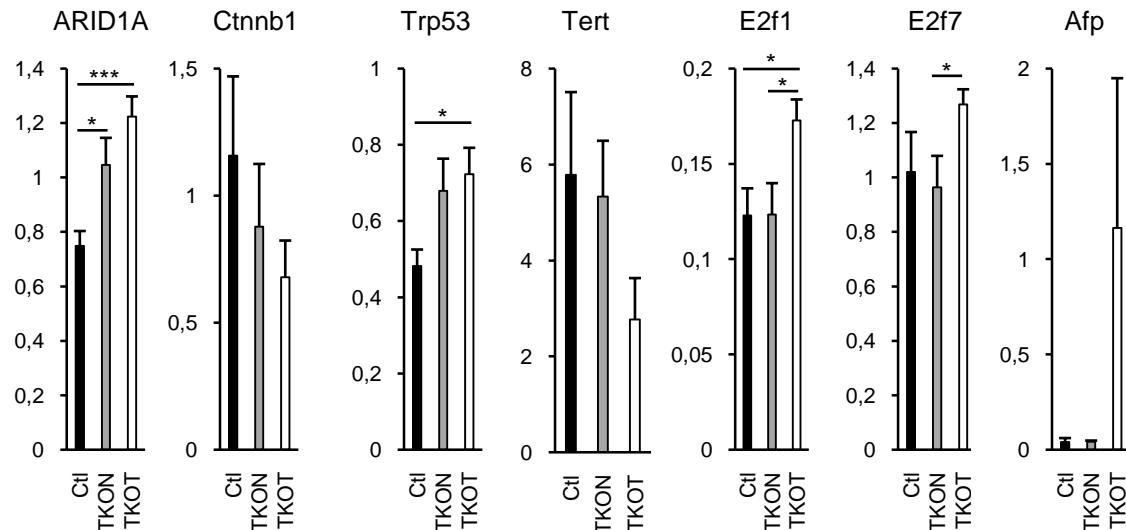




B**C****D**

Figure 2 Saksouk & Hajdari et al,

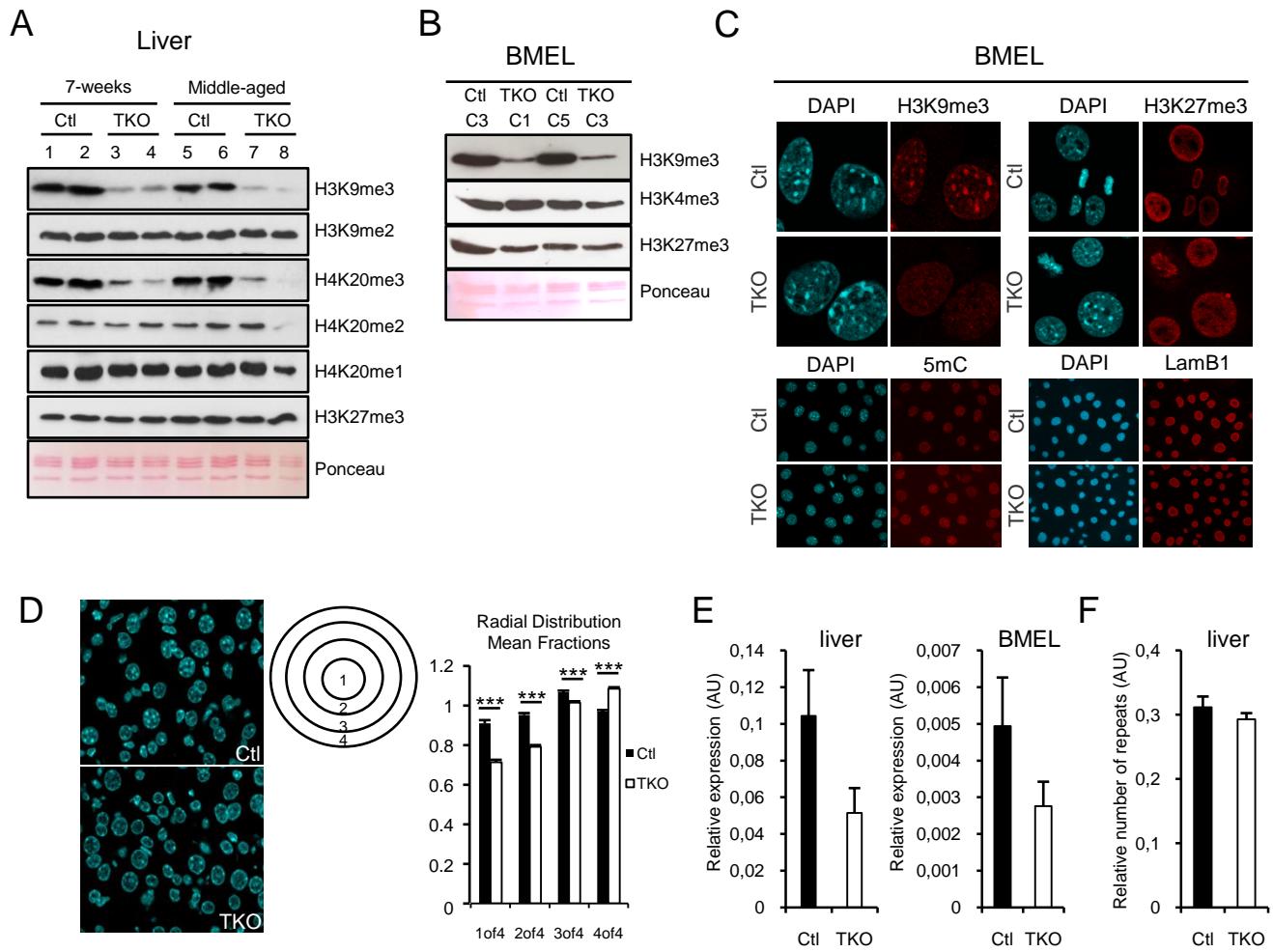


Figure 3 Saksouk & Hajdari et al,

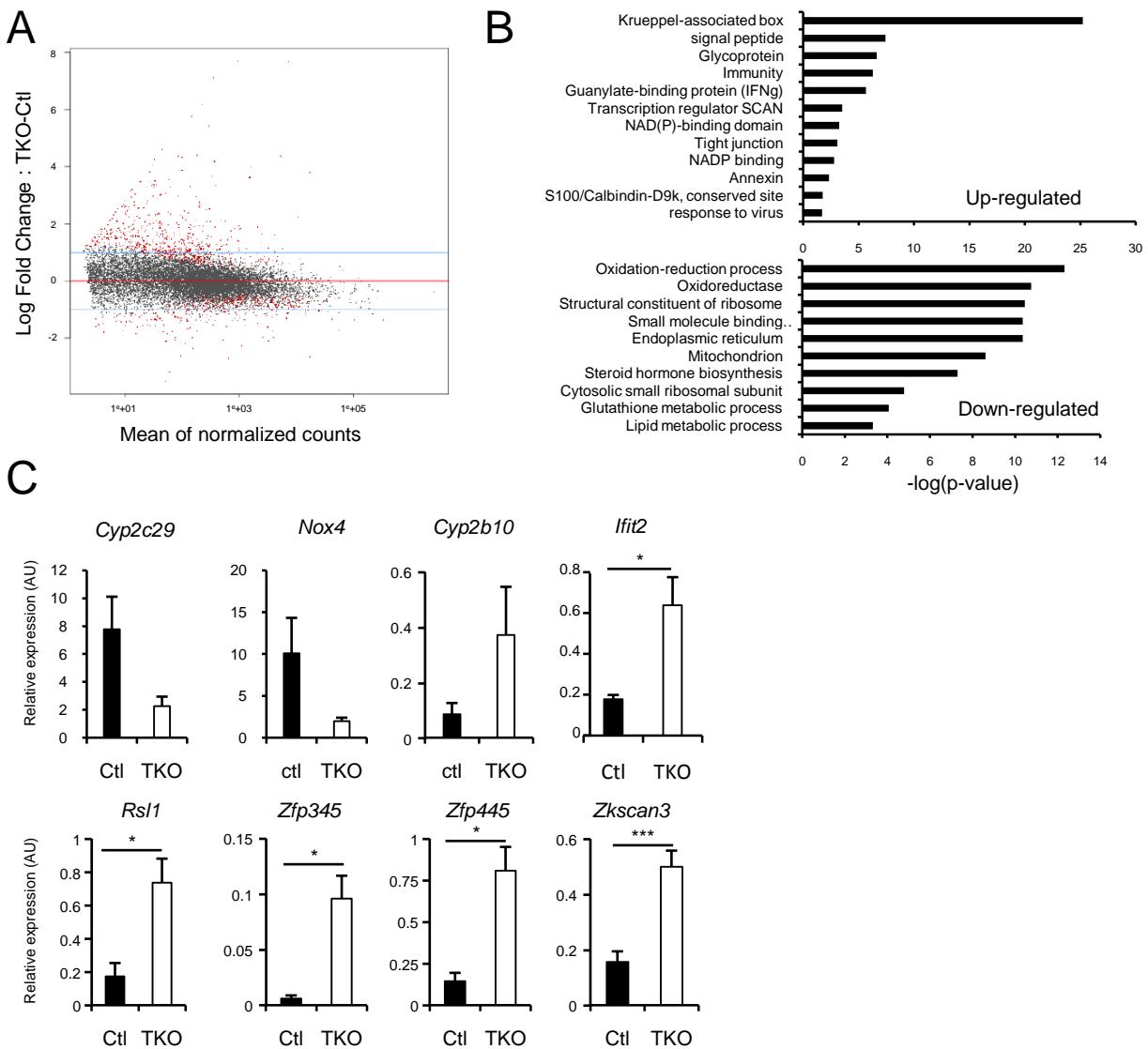


Figure 4 Saksouk & Hajdari et al,

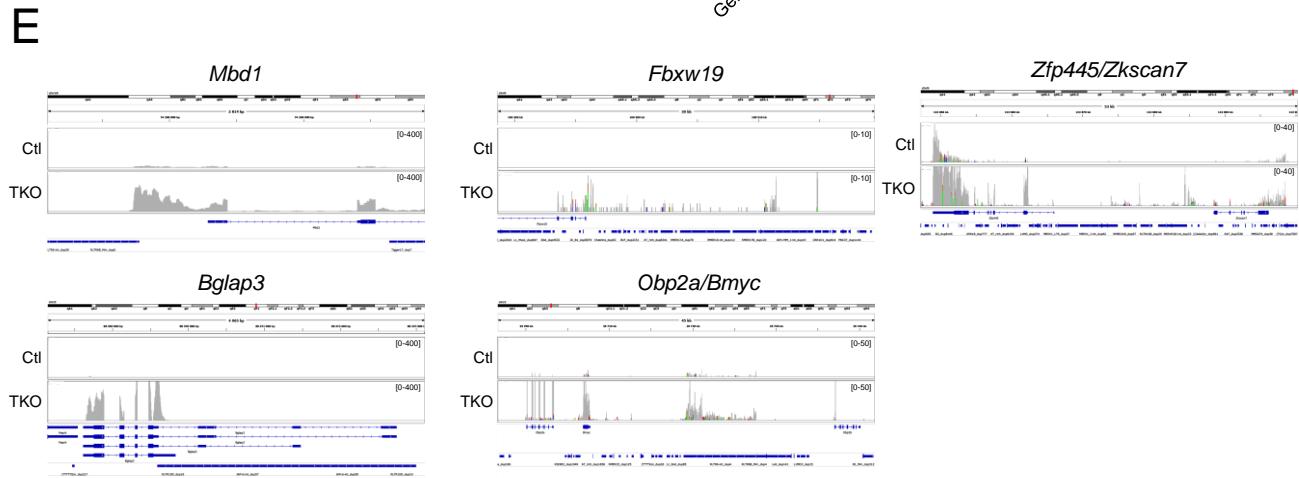
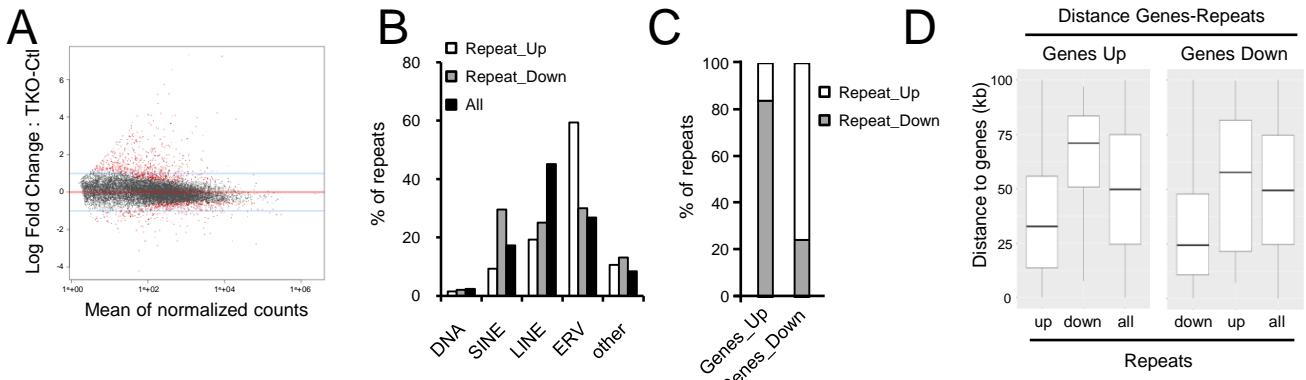



Figure 5 Saksouk & Hajdari et al,

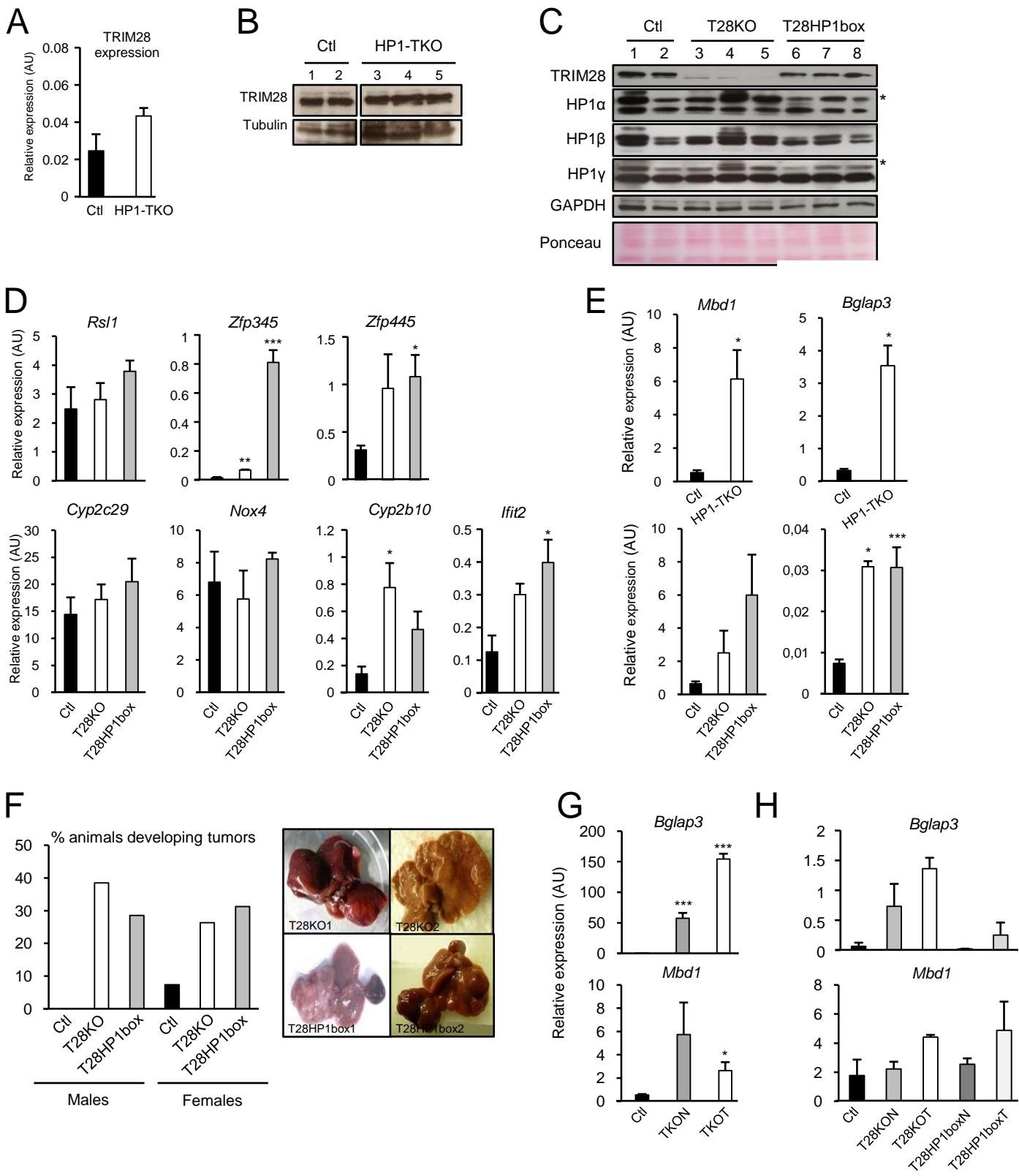


Figure 6, Saksouk & Hajdari et al,