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Abstract

One fundamental question is what makes two brain states similar. For ex-
ample, what makes the activity in visual cortex elicited from viewing a robin
similar to a sparrow? One common assumption in fMRI analysis is that neu-
ral similarity is described by Pearson correlation. However, there are a host
of other possibilities, including Minkowski and Mahalanobis measures, with
each differing in its mathematical, theoretical, neural computational assump-
tions. Moreover, the operable measures may vary across brain regions and
tasks. Here, we evaluated which of several competing similarity measures
best captured neural similarity. Our technique uses a decoding approach to
assess the information present in a brain region and the similarity measures
that best correspond to the classifier’s confusion matrix are preferred. Across
two published fMRI datasets, we found the preferred neural similarity mea-
sures were common across brain regions, but differed across tasks. Moreover,
Pearson correlation was consistently surpassed by alternatives.
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1. Introduction1

Detecting similarities is critical to a range of cognitive processes and tasks,2

such as memory retrieval, analogy, decision making, categorization, object3

recognition, and reasoning [1, 2, 3, 4, 5, 6]. Key questions for neuroscience4

include which measures of similarity does the brain use, and do similarity5

computations differ across brain regions and tasks. Whereas psychology has6

considered a dizzying array of competing accounts of similarity [7, 8, 9, 10,7

11, 12, 13], research in neuroscience usually assumes that Pearson correlation8

captures the similarity between different brain states [14, 15, 16, 17, 18, 19,9

20, 21]), though see [22, 23, 24, 16].10

On the face of it, it seems unlikely that the brain would use a single mea-11

sure of similarity across regions and tasks. First, across regions, the signal12

and type of information represented can differ [6, 25, 26], which might lead13

the accompanying similarity operations to also differ. Second, task differ-14

ences, such as those that shift attention [27, 28, 29], lead to changes in the15

brain’s similarity space which may reflect basic changes in the underlying16

similarity computation. Outside neuroscience it is common to use different17

similarity measures on different representations. For example, in machine18

learning, Euclidean measures are often used to determine neighbors in im-19

age embeddings whereas cosine similarity is more commonly used in natural20

language processing [30].21

In this contribution, we developed a technique to address two specific22

goals. The first goal was to ascertain whether the similarity measures used by23

the brain differ across regions. The second goal was to investigate whether the24

preferred measures differ across tasks and stimulus conditions. Our broader25

aim was to elucidate the nature of neural similarity.26

Previous studies have adopted different similarity measures to relate pairs27

of brain states such as Pearson correlation or the Mahalanobis measure [31,28

32, 33, 14]. However, the basis for choosing one measure over another is not29

always clear. The choice of measure induces a host of assumptions, including30

assumptions about how the brain codes and processes information. While31

all the measures considered operate on two vectors associated with two brain32

states (e.g., the BOLD response elicited across voxels when a subject views33

a truck vs. a moped), the operations performed when comparing these two34

vectors differ for each similarity measure.35
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1.1. Families of similarity measures1

To better understand these assumptions and their importance, we or-2

ganise common measures of similarity, many of which are used in the neu-3

roscience literature, into three families (see Figure 1, left side). The most4

basic split is between similarity measures that focus on the angle between5

vectors (e.g., Pearson correlation or cosine distance) and measures that focus6

on differences in vector magnitudes. The latter branch subdivides between7

distributional measures that are sensitive to covariance across vector dimen-8

sions (e.g., Mahalanobis) and those that are not (e.g., Euclidean). Of course9

there are uncountably infinite similarity measures one could choose to assess;10

the goal here is to compare common measures that can discriminate between11

different computations of interest as organized by these families of measures12

with focus on angle, magnitude, and distributional properties.13

The choice of similarity measure can shape how neural data are inter-14

preted. Consider the right panel in Figure 1. In this example, the neural15

representation of object a is more similar to that of b than c when an angle16

measure is used, but this pattern reverses when a magnitude measure is used.17

Unlike the other measures, distributional measures are anisotropic, mean-18

ing the direction of measurement is consequential.1 Examples of such mea-19

sures are variation of information, Mahalanobis, and Bhattacharyya mea-20

sures. These measures consider the covariance between stimuli dimensions,21

which implies that the direction (in feature or voxel space) along which the22

measurement is made will impact the measurement itself.23

The choice of similarity measure reflects basic assumptions about the na-24

ture of the underlying neural computation. For example, Pearson correlation25

(a common measure for neural similarity in fMRI, e.g., [14, 15, 16, 17, 18,26

19, 20, 35]) assumes that overall levels of voxel activity are normalized and27

that each voxel independently contributes to similarity, whereas Minkowski28

measures assume similarity involves distances in a metrical space instead of29

vector directions. Furthermore, the Mahalanobis measure expands on both30

Minkowski and Pearson by assuming that the distributional pattern of voxel31

activity is consequential.32

Knowing which similarity measure best describes the brain’s operation33

would not only improve data analyses, but could also illuminate the nature34

1Anisotropic measures should not be confused with asymmetric measures; the latter
gives different values based on which stimulus is measured first [34, 7].
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Figure 1: Families of similarity measures. (left panel) Similarity measures divide into those
concerned with angle vs. magnitude differences between vectors. Pearson correlation
and Euclidean distance are common angle and magnitude measures, respectively. The
magnitude family further subdivides according to distributional assumptions. Measures
like Mahalanobis are distributional in that they are sensitive to co-variance such that
similarity falls more rapidly along low variance directions. (right panel) The choice of
similarity measure can strongly affect inferences about neural representational spaces. In
this example, stimuli a, b, and c elicit different patterns of activity across two voxels.
When Pearson correlation is used, stimulus a is more similar to b than to c. However,
when the Euclidean measure is used, the pattern reverses such that stimulus a is more
similar to c than b.

of neural computation at multiple levels of analysis. For example, if a brain1

region normalized input patterns for key computations, then Pearson cor-2

relation might have superior descriptive power than the dot product. At a3

lower level, such a result would be consistent with mutually inhibiting single4

cells [36]. On the other hand, if the brain matches to a rigid template or filter5

(e.g., [37]), then the Euclidean measure should provide a better explanation6

for neural data.7

To identify which similarity measures are used by the brain requires ad-8

dressing a number of challenges. One challenge is to specify a standard by9

which to evaluate competing similarity measures. Related work in Psychol-10

ogy and Neuroscience has relied on evaluating against verbal report. How-11

4

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/439893doi: bioRxiv preprint 

https://doi.org/10.1101/439893
http://creativecommons.org/licenses/by/4.0/


ever, such an approach is not suited to our aims because we are interested1

in neural computations that may differ across brain regions and which may2

not be accessible by verbal report or introspection.3

Instead, we rely on a decoding approach to assess the information latent4

in a brain region. The intuition is that brain states that are similar should be5

confusable in decoding. For example, a machine classifier may be more likely6

to confuse the brain activity elicited by a bicycle with that by a motorcycle7

than a car. In this fashion, we can evaluate competing similarity measures8

on a per region basis in a manner that is not constrained by verbal report.9

The insight that similarity is intimately related to confusability has a long10

and rich intellectual history [38, 39, 40] though has not yet been considered11

to evaluate what makes two brain states similar.12

1.2. Discrimination of similarity measures13

Our method for distinguishing the similarity measure used by the brain14

involves two basic steps:15

1. For each ROI, compute a pairwise confusion matrix using a classifier.16

For each ROI, also compute a similarity matrix for each candidate17

similarity measure.18

2. For each similarity measure, correlate its similarity matrix with the19

confusion matrix using Spearman correlation to avoid scaling issues.20

The better a similarity measures characterizes what makes two brain21

states similar, the higher its Spearman correlation with the confusion matrix22

should be. This analysis uses the confusion matrix as an approximation of23

what information is present in a brain region (more on this below).24

The matrices for each similarity measure were optimized to maximize25

the Spearman correlation with the confusion matrix by performing feature26

selection on voxels (see Figure 2). See the SI (Supplemental Information)27

for details on the similarity measures. Importantly, to understand the re-28

sults, some similarity measures that estimate covariance matrices are tagged29

according to the type of regularization used; with (d) for keeping only the30

diagonal entries and (r) for Ledoit-Wolf shrinkage.31

We considered all 110 regions of interest (see SI for a list of the 11032

regions) from the Oxford-Harvard Brain Atlas (provided with FSL, [41]) for33

two previously published datasets. One dataset was from a study in which34

participants viewed geometric shapes (GS) [28] and the other dataset was35
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Figure 2: Evaluating the similarity profile for a ROI. The confusion matrix from a classifier
is used to approximate the information present in the ROI. The similarity matrix from each
similarity measure is correlated with this confusion matrix (i.e., the classifier matrix in the
figure). The pattern of these correlations (i.e., the performance of the various similarity
measures) is the similarity profile for that ROI. Similarity profiles can be compared between
ROIs, both within and between datasets (see Materials and Methods section for more
details).

from a study in which participants viewed natural images (NI) [6]. For1

each dataset, we determined the top 10 ROIs for decoding accuracy (cf.2

Bhandari et al. [42]). The union of these top ROIs provided 12 ROIs that3

were considered in subsequent analyses (see SI).4

1.3. Lower confusability as information gain5

As mentioned above, our proposed method involves approximating brain6

state information with a classifier. Subsequently, we use this approxima-7

tion to assess an array of similarity measures. The motivation for using a8

classifier to approximate information in a brain state arises from an infor-9

mation theoretic perspective. For example, suppose one’s prior assumption10

is that two stimuli are equally likely, which corresponds to random guess-11

ing or maximal entropy (1 bit). If a probabilistic classifier with the same12

prior is applied to the stimulus and approaches 100% accuracy, then the13
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information gain approaches 1 bit. Formally, one can measure the Kullback-1

Leibler (KL) divergence (a continuous, non-saturating measure) between a2

prior distribution p (centered at 0.5) and an updated distribution q defined3

by the classifier’s output. With a suitable prior distribution for the classi-4

fier, the KL-divergence is always defined and enables a computable measure5

of brain state information. Thus, KL-divergence, or information gain, will6

be inversely proportional to confusability as measured by the classifier. Of7

course, in practice, machine classifiers do not reach close to 100% accuracy8

with fMRI data for the types of discriminations that we consider. The point9

is that decoding and measuring available information in a brain state are10

intimately linked.11

1.4. Classification is not similarity12

Although it should be clear cognitive scientists of all varieties that simi-13

larity and classification are conceptually distinct (see [2]), it may not be as14

apparent to some neuroscientists whose focus is elsewhere. To view simi-15

larity and classification as one in the same, would be akin to viewing any16

operation in which similarity could be relevant, such as memory retrieval, as17

synonymous with similarity [1].18

Mathematically, the domain and range of similarity and classification19

functions are distinct. Similarity takes as its domain (i.e., input) two states20

and its range (i.e., output) is a scalar value (i.e., the similarity). Notice that21

similarity can apply to any two states, irrespective of class membership. A22

similarity function does not need to be “trained” and “tested” on a particular23

discrimination, but instead can apply broadly. In contrast, a classification24

function takes as its domain (i.e., input) items drawn from a predetermined25

set of classes and its range (i.e., output) is a nominal value indicating the class26

membership of the item. A classifier is trained on items from the contrasting27

classes and tested only on items drawn from these same distributions.28

To showcase the distinction between similarly and classification opera-29

tors, in addition to our main results, we also present a results for a non-30

classification task that relies on neural similarity. In particular, we present31

results for a triplet task in which we assess whether neural similarity between32

a standard stimulus and two probe stimuli, one of which matches in shape.33

The similarity measures that perform best in the triplet task are the ones that34

perform best in our main decoding analyses. Critically, the stimulus classes35

used in the triplet task were not included in the decoding analysis, which36

highlights that similarity functions apply more broadly than classification37

7
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functions and that our method for selecting the brain’s preferred similarity1

functions generalizes to novel stimulus classes. Before visiting this result,2

we present the main results that answer key questions, such as whether the3

brain’s preferred similarity measures are common across regions and tasks.4

2. Results5

2.1. Neural similarity6

What makes two brain states similar and does it vary across brain re-7

gions and tasks? The following analyses focus both on the performance of8

individual similarity measures and on the pattern of performance across a9

set of candidate measures, which we refer to as the similarity profile for an10

ROI (see Figure 2).11

As a precursor, we first tested whether similarity measures differed in their12

performance (Figure 3a). Specifically, we evaluated whether certain measures13

better describe what makes two brain states similar by nested comparison14

using a mixed-effects model for each study (see Materials and Methods).15

For both studies, similarity measures differed in their performance, χ2(2) =16

1720.331, p < 0.001; χ2(2) = 6770.249, p < 0.001, for the GS and NI studies,17

respectively.18

We tested whether the similarity profile differed across brain regions19

within each study. The similarity profiles (i.e., mean aggregate performance20

across measures) were remarkably alike across ROIs (see Materials and Methods).21

High (Pearson) correlations are presented within task for both the GS study22

(Figure 3b) and the NI study (Figure 3c) between all pairs of ROIs; where23

mean correlation of the upper triangle is 0.95 (s.d. = 0.034) in the former24

and 0.96 (s.d. = 0.027) in the latter. Bartlett’s test [43], which evaluates25

whether the matrices are different from an identity matrix, was significant for26

both the GS study, χ2(66) = 432.847, p < 0.001, and the NI study, χ2(66)27

= 502.7494, p < 0.001. Permutation tests (with 10,000 iterations), where28

the labels of the similarity measures were permuted, confirmed these results29

(p < 0.001). These results are consistent with the same similarity measures30

being used across brain regions within each study.31

We tested whether similarity profiles differed between studies. The results32

indicated that similarity profiles differed between studies, suggesting that33

the operable neural similarity measures can change as a function of task or34

stimuli (Figure 3d). In particular, similarity profiles between studies were35

negatively correlated with a mean correlation of the upper triangle of -0.2736

8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/439893doi: bioRxiv preprint 

https://doi.org/10.1101/439893
http://creativecommons.org/licenses/by/4.0/


Figure 3: Similarity measure profiles and ROI correlation matrices. Mean Spearman cor-
relations (a) for each similarity measure and the classifier confusion matrix in the GS study
(grey bars) and the NI study (black bars) are displayed. To convey the variability, error
bars are plotted as standard deviations and each ROI mean is plotted as a green point.
ROI correlation matrices for the (b) GS and (c) NI studies, demonstrating that the simi-
larity profiles were alike across brain regions (i.e., were positively Pearson correlated). ROI
correlation matrix (d) demonstrating that the similarity profiles disagreed across studies
(i.e, were negatively Pearson correlated). The 12 ROIs were left and right intracalcarine
cortex (CALC), left and right lateral occipital cortex (LO) inferior and superior divisions,
left and right lingual gyrus (LING), left and right occipital fusiform gyrus (OF), and left
and right occipital pole (OP).

(s.d. = 0.148). Jennrich’s test [44] showed that this matrix was different1

than a matrix of zeros, χ2(66) = 769.0349, p < 0.001. Permutation tests2

(10,000 iterations) with shuffling of similarity label measures also confirmed3

these results (p < 0.001).4

2.2. Searchlight analysis5

In light of these results, post hoc pairwise tests of each similarity against6

the Pearson similarity measure, which is the de facto default choice in the7

literature, were conducted. The contrasts from the mixed effects models8

(mentioned above, see Materials and Methods) presented in Table 1 pro-9

vide evidence that some similarity measures are a superior description of the10

brain’s similarity measure. The performance of many measures differed from11

Pearson, especially in the NI study. Notably, only two variants of the Ma-12

9
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GS Study
Similarity measure z p

Minkowski(5) 12.562 < 0.001
Euclidean 12.145 < 0.001
Minkowski(10) 10.459 < 0.001
city-block 10.479 < 0.001
Mahalanobis(d) 8.825 < 0.001
Minkowski(50) 6.624 < 0.001
Chebyshev 6.353 < 0.001
cosine 4.532 < 0.001
dot product 4.053 < 0.001
Mahalanobis (3.161) 0.02

NI study
Similarity measure z p

Mahalanobis(r) 11.301 < 0.001
Mahalanobis 10.304 < 0.001
Minkowski(50) 4.920 < 0.001
Chebyshev 4.733 < 0.001
Minkowski(10) 4.005 < 0.001
Euclidean (5.170) < 0.001
Mahalanobis(d) (7.593) < 0.001
city-block (10.411) < 0.001
cosine (22.803) < 0.001
dot product (29.547) < 0.001

Table 1: Comparison of similarity measures to Pearson correlation. Top panel shows
significant z statistics for measures worse than Pearson correlation (in brackets) and better
than Pearson correlation for the GS study. Bottom panel shows the same for the NI study.
p-values are Bonferroni corrected.
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halanobis measure and three Minkowski measures outperformed Pearson. In1

the GS study, we can observe that all the Minkowski distances performed2

better than Pearson as well as cosine, Mahalanobis(d), and the dot product.3

Once again, the contrasting pattern of results between the two studies is4

striking.5

Given the performance of the Euclidean and Mahalanobis(r) measures,6

and that they have been used previously in analyzing neural data [16, 45, 46,7

47], we selected these measures for inclusion in a searchlight analysis (Figure8

4, see Materials and Methods for details). By comparing the Euclidean and9

Mahalanobis(r) measures to Pearson correlation on a voxel-by-voxel basis10

for the 12 ROIs, we aimed to provide a visualization of the performance11

of similarity measures across regions and studies. Figure 4 illustrates the12

regions where these two measures outperform Pearson correlation, displaying13

the maximum t for voxels where both Euclidean and Mahalanobis overlap14

(see SI for visualizations of the overlap).15

In the NI study, the Mahalanobis(r) measure dominated (Figure 4b), con-16

firming the results from the previous analyses. In contrast, in the GS study17

(Figure 4a) Euclidean dominates in some regions whereas Mahalanobis(r)18

dominates in others. Despite it being a de facto standard, Pearson similarity19

was never the top measure. For this post hoc analysis, the measures were20

compared using permuted paired sample t statistics for each voxel. Positive21

t statistics that survived threshold-free cluster enhancement (TFCE) correc-22

tion with p < 0.001 are presented in Figure 4 (see Materials and Methods23

for the rationale behind this threshold).24

2.3. Triplet task25

As discussed in the Introduction, similarity and classification are distinct26

concepts. To illustrate, we show how similarity measures can be used in27

non-classification tasks involving stimuli from novel (untrained) classes. In28

particular, we consider a triplet task involving data from the NI study (Figure29

5). The task is to decide which of two probe items is more neurally similar30

to the standard stimulus. Trials are defined as correct when the probe that31

matches in shape is more neurally similar. To foreshadow our results, neural32

measures that perform best in our decoding analysis perform best in the33

triplet task, despite the entire classes used in the triplet task being withheld34

from the decoding analysis. These results indicate that approximating the35

information available in a brain state through decoding can select similarity36

measures that broadly generalize and perform sensibly in novel tasks.37
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Figure 4: Euclidean & Mahalanobis(r) outperform Pearson. Occipito-lateral views of the
left and right hemispheres for the GS study (a) and the NI study (b) displaying maximum t
statistics where either the Euclidean measure (blue) or the Mahalanobis(r) measure (red)
outperformed the Pearson correlation measure (i.e., each voxel displays the t statistic
for the measure with highest t). The t statistics were based on a searchlight analysis
of Spearman correlations of each measure with each voxel’s SVM confusion matrix (see
Materials and Methods). Only displaying t statistics where p < 0.001 for paired sample t-
tests, TFCE corrected; computed with FSL’s randomise function with 5000 permutations,
using as a mask the 12 ROIs with best accuracy (see Materials and Methods). Note:
very few voxels only show the Euclidean measure significantly outperforming Pearson
correlation in the NI study, thus do not appear in this visualization.
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The triplet task allows a separate evaluation of the similarity measures of1

interest by comparing the accuracies in such a task to the similarity profile2

of the NI Study (Figure 5a); Pearson correlation of r(12) = 0.63, p = 0.017,3

across the fourteen similarity measures of interest. For this association, the4

scatterplot in Figure 5a shows the variance associated to the twelve regions5

of interest presented above. Measures like Mahalanobis and Mahalanobis(r)6

clearly do best; in line with the original similarity profile of the NI Study7

reported in the Neural Similarity analysis (Figure 3a). The similarity profile8

correlations were adjusted to account for the held-out pairs from the triplet9

task (with standard and correct probe removed), thus termed (reduced) in10

contrast to the original profile and reported here as (complete) (see Materials11

and Methods). In Figure 5b, all the similarity profiles are related amongst12

each other and with the triplet task accuracies. Most notably, the bottom row13

of the diagonal matrix displays how the triplet task accuracies also Pearson14

correlate negatively with the GS Study Similarity profile as in Figure 3d,15

r(12) = −0.81, p < 0.001. For comparison purposes, we also present the16

Pearson correlation of the triplet task accuracies with NI Study Similarity17

profile (complete), r(12) = 0.63, p = 0.016. The triplet task is thus an18

independent assessment of the validity of our neural similarity analysis.19

These results clearly demonstrate that there is no circularity in our method20

of selecting similarity measures based on a decoding approach that approxi-21

mates the information available in a brain state. In the triplet task, similarity22

measures that performed best in our neural similarity analysis also performed23

best in this novel task involving untrained classes.24

More basic evidence against circularity claims is also presented in the SI;25

the best-performing classifier is a linear SVM for both the GS and NI study26

whereas we find dramatic differences in similarity profiles between studies.27

Clearly, similarity is not a simple recapitalization of classification.28
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Figure 5: Triplet task accuracies correlate with NI Study similarity profiles. In (a) each
data point represents one similarity measure per region of interest. The Spearman cor-
relations in (a) have been recalculated with the removal of held-out pairs used in the
triplet task (where each pair is the standard and the correct probe), thus termed NI Study
similarity profile (reduced) (see Materials and Methods). In (b) we Pearson correlate the
similarity profiles from the Neural Similarity analysis with the accuracies derived from
the triplet task as well as with each other. NI Study similarity profile (complete) and GS
Study similarity profile are the same Spearman correlations as displayed in Figure 3a (see
Materials and Methods).
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3. Discussion1

One fundamental question for neuroscience is what makes two brain states2

similar. This question is so basic that in some ways it has been overlooked3

or sidestepped by assuming that Pearson correlation captures neural similar-4

ity. Here, we made an initial effort to evaluate empirically which of several5

competing similarity measures is the best description of neural similarity.6

Our basic approach was to characterize the question as a model selec-7

tion problem in which each similarity measure is a competing model. The8

various similarity measures (i.e., models) competed to best account for the9

data, which was the confusion matrix from a classifier (i.e., decoder) that10

approximated the information present in a brain region of interest. The mo-11

tivation for this approach is that more similar items (e.g., a sparrow and a12

robin) should be more confusable than dissimilar items (e.g., a sparrow and a13

moped). Thus, the test of a similarity measure, which is a pairwise operator14

on two neural representations, is how well its predicted neural similarities15

agree with the classifier’s confusion matrix.16

At this early juncture, basic questions, such as whether different brain17

regions use different measures of similarity and whether the nature of neural18

similarity is constant across studies remained unanswered. Our results indi-19

cated that the neural similarity profile (i.e., the pattern of performance across20

candidate similarity measures) was constant across brain regions within a21

study, though strongly differed across the two studies we considered. Fur-22

thermore, Pearson correlation, the de facto standard for neural similarity,23

was bested by competing similarity measures in both studies.24

Support for the validity of our method came from the follow-on triplet25

task in which we tested the ability of the similarity measures to select which26

of two probe items was most neurally similar to a comparison item. Simi-27

larity measures that performed best at this task (by selecting the probe that28

matched the comparison in stimulus shape) were those that also performed29

best under our decoding approach to evaluating neural similarity, despite30

the fact that the stimuli and classes used in the triplet were withheld from31

the decoding analyses. These results establish that our method of evaluat-32

ing similarity measures selects measures that generalize well to novel tasks33

and stimulus classes. It also highlights that similarity and classification are34

distinct functions.35

Accordingly, we report results in the SI in which the best performing36

similarity measures vary while the best performing classifier remains con-37
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stant, providing an illustration of how similarity and classifier performance1

can diverge. Of course, despite similarity and classification being distinct,2

the classifier used to estimate the information present in a brain region could3

bias the results. We recommend the procedure we followed: Consider a va-4

riety of classifiers and choose the best performing classifier independently of5

how the neural similarity measures perform (see SI). In practice, this means6

that an advance in classifier techniques would invite reconsidering how neural7

similarity measures perform.8

One question is why the neural similarity profile would differ across stud-9

ies. There are host of possibilities. One is that the nature of stimuli drove10

the differences. The stimuli in the GS study were designed to be psycho-11

logically separable, consisting of four independent binary dimensions (color:12

red or green, shape: circle or triangle, size: large or small, and position:13

right or left). These stimuli were designed to conform to a Euclidean space14

so that cognitive models assuming such similarity spaces could be fit to the15

behavioural data. Accordingly, in our analyses, the neural similarity mea-16

sures from the Minkowski family (including Euclidean) performed best. In17

contrast, the NI study consisted of naturalistic stimuli (photographs) that18

covaried in a manner not easily decomposable into a small set of shared fea-19

tures. One possibility is that these types of complex feature distributions are20

better paired with the Mahalanobis measure (cf. [48]). Of course, task also21

varied with stimuli which offers yet another possible higher-level explanation22

for the differences observed in neural similarity performance. For example,23

the task in the GS study emphasized analytically decomposing stimuli into24

separable dimensions whereas holistic processing of differences was a viable25

strategy in the NI study. In general, different tasks will require neural rep-26

resentations that differ in their dimensionality or complexity [26], which has27

ramifications for what similarity measure is most suitable.28

A host of other concerns related to data quality may also influence how29

similarity measures perform. The nature of fMRI BOLD response itself places30

strong constraints on the types of models that can succeed [49], which sug-31

gests that future work should apply the techniques presented here to other32

measures of neural activity. Regardless of the measure of neural activity,33

more complex models of neural similarity will require higher quality data34

to be properly estimated. For example, measures such as Mahalanobis or35

Bhattacharyya need to estimate inverse covariance matrices. These matrices36

grow with the square of the number of vector components which approaches37

both numerical and statistical unreliability when the number of components38
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approaches the number of observations. For these reasons, we optimized the1

number of top features (i.e., voxels) separately for each similarity measure2

(see Materials and Methods), except in the searchlight analysis where this3

was not possible. We also considered regularized versions of similarity mea-4

sures, such as Mahalanobis(d), that should be more competitive when data5

quality is limited.6

Although the similarity measures considered are relatively simple, they7

make a host of assumptions that are theoretically and practically conse-8

quential. For example, angle measures, such as Pearson correlation, are9

unconcerned with differences in the overall level of neural activity, an as-10

sumption that strongly contrasts with magnitude measures, such as those11

in the Minkowski family (e.g., Euclidean measure). Therefore, the choice12

of similarity measure is central to any mechanistic theory of brain function13

and has practical ramifications when analyzing neural data, such as when14

characterizing neural representation spaces. In this light, operations that15

may seem routine, such as normalizing data in various ways, can affect the16

interpretation of results. For example, vector cosine only differs from dot17

product by virtue of normalizing by the magnitude of the two state vectors.18

As mentioned previously, the space of possible similarity measures is un-19

countably infinite and new measures routinely enter the literature [50, 46]. In20

line with our main results, sometimes new measures like crossnobis perform21

well, and sometimes they fail [51]. Here, we aimed to include representative22

measures from the main families of similarity measures we identified (see23

Figure 1, left side). Others are free to replicate our analyses with alternative24

sets of measures.25

Although we focus on the BOLD response, our approach applies equally26

to other neural measures, such as single-unit recordings. One important open27

question is whether the same similarity measures perform well across mea-28

sures that differ dramatically in terms of spatial and temporal resolution, as29

well as the aspects of neural activity they capture. Likewise, our approach30

can be applied to complex artificial neural networks, such as deep convolu-31

tions neural networks (CNN), which have become popular in neuroscience by32

virtue of their ability to track neural activity along the ventral stream during33

object recognition tasks [52]. In standard neural networks, the basic math-34

ematics of integrate-and-fire artificial neurons (i.e., units) can be viewed as35

a similarity operation, namely a dot product between the weight representa-36

tion of the unit and the activity pattern at the previous layer. Alternatively,37

many of the other similarity functions we considered are differentiable and38
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could be used in CNNs trained through backpropagation to perhaps provide1

better performance and agreement with neural measures. The question of2

which similarity functions manifest at the unit level of a CNN vs. at a larger3

organizational level recapitulate the previous discussion of the human brain.4

In conclusion, we took a step toward determining what makes two brain5

states similar. Working with two fMRI datasets, we found that the best6

performing similarity measures are common across brain regions within a7

study, but vary across studies. Furthermore, we found that the de facto sim-8

ilarity measure, Pearson correlation, was bested in both studies. Although9

follow-up work is needed, the current findings and technique suggest a host10

of productive questions and have practical ramifications, such as determining11

the appropriate measure of similarity before conducting a neural represen-12

tational analysis. In time, efforts making use of this and similar approaches13

may lead to mechanistic theories that bridge neural circuits, related mea-14

surement data, and higher-level descriptions.15

4. Materials and Methods16

4.1. Datasets17

The analyses are based on two previous fMRI studies: a study that pre-18

sented simple geometric shapes (GS) to participants [28] and a study that19

presented natural images (NI) to participants [6]. The GS study consisted20

of a visual categorization task with 20 participants and the NI study of a 1-21

back size judgment task with 14 participants. Descriptions of the tasks and22

acquisition parameters can be consulted in the SI. For further information,23

the reader should consult the source citation directly.24

4.2. Classification analysis25

Pattern classification analyses were implemented using PyMVPA [53],26

Scikit-Learn [54], and custom Python code. The input to the classifiers27

were least squares separate (LS-S) beta coefficients for each presentation of a28

stimulus [55] (see SI). Three classifiers were used for the pattern classification:29

Gaussian näıve Bayes, k -nearest neighbor, and linear support vector machine30

(SVM). The output of one of these classifiers was to be chosen as the best31

representation of the underlying similarity matrix to which all other similarity32

measures would be compared to (see Neural similarity analysis below). The33

linear SVM was implemented with the Nu parametrization [56]. This Nu34

parameter controls the fraction of data points inside the soft margin; the35

18
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default value of 0.5 was used for all classifications. The k -nearest neighbor1

classifier was implemented using five neighbors. No hyperparameters required2

setting for the Gaussian näıve Bayes classifier.3

To pick the best-performing classifier, classification was conducted on4

the whole-brain (no parcellation into distinct ROIs) for each study indepen-5

dently. All classifiers were trained with leave-one-out k -fold cross-validation,6

where k was equal to the number of functional runs for each participant in7

each study (e.g. six runs in the GS study or sixteen runs in the NI study).8

To do feature selection on voxels, all voxels were ordered according to their9

F values computed from an ANOVA across all class (stimuli) labels. The10

top 300 voxels with the highest F values were retained based on classifier11

performance (i.e., accuracy) on the test run. For these classifiers, accuracy12

was computed across all classes (16 classes for the GS study and 54 classes for13

the NI study) with a majority vote rule across all computed decision bound-14

aries (for classifiers where this is applicable like linear SVM). This means15

that random classification is equal to 6.25% for the GS study and 1.85% for16

the NI study for this whole-brain analysis. However, for all other classifi-17

cation analyses, accuracy is computed as mean pairwise accuracy across all18

classes, which means that random classification is equal to 50%. The best-19

performing classifier was selected as the classifier with highest mean accuracy20

(mean across participants) in the GS and NI study, independently. Classi-21

fier accuracies (i.e., confusion matrices) were multiplied by negative one for22

the neural similarity analysis explained. This was done so that they would23

correlate positively with the similarity measures and facilitate presentation24

of results.25

The following analysis was performed for each of the 110 ROIs that are de-26

scribed in the SI. To train the classifiers leave-one-out k -fold cross-validation27

was also used. Within each fold, a (randomly) picked validation run was28

used to tune the number of features (i.e., voxels) that would be selected for29

that fold. Thus, feature selection was done within each fold. To do this fea-30

ture selection, all voxels were ordered according to their F values computed31

from an ANOVA across all class (stimuli) labels. This step aids classifier32

performance because it preselects task relevant voxels (as opposed to item33

discriminative voxels). It is important to note that these ANOVAs were com-34

puted on the training runs but not on the validation run nor on the held-out35

test run, to avoid overfitting. The top n voxels with the highest F values36

were retained based on classifier performance (i.e., accuracy) on the valida-37

tion run. Scipy’s minimize scalar function [57] was used to optimize this38
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validation run accuracy with respect to the top n voxels. After picking the1

top n voxels, the classifiers were trained on both the training runs and the2

validation run. Subsequently, the classifiers were tested on the held-out test3

run for that fold. This classification analysis was done for all possible pair-4

wise classifications for each study (i.e., 120 pairwise classifications in the GS5

study and 1431 pairwise classifications in the NI study). From this analysis,6

the pairwise classification accuracies were retained for both the validation7

run and the test run for each fold. Further ROI selection (top twelve ROIs8

reported in the Results) is described in the SI.9

4.3. Neural similarity analysis10

The goal of this analysis was to compare the representation of different11

similarity measures in the brain. The regions considered here are the ones12

reported in the Results and described in the secondary ROI selection sec-13

tion in the SI. The comparison criterion was chosen as Spearman correlation14

between all pairwise similarities and the classification accuracies mentioned15

above. This criterion was used since it avoids scaling issues. To achieve this,16

first all pairwise similarities (i.e., for all pairs of stimuli) were computed from17

the training runs defined in the classification analysis not including the vali-18

dation run. Incidentally, feature selection was also realized here. In the same19

fashion as in the classification analysis, all voxels were ordered according to20

their F values computed from an ANOVA across all class (stimuli) labels.21

Then, the top n voxels with the highest F values were retained based on22

Spearman correlation of the similarities with the validation run accuracies of23

the classifier that were previously computed. After picking the top n voxels,24

the similarities were computed across training runs and validation run for25

those voxels. These similarities were then used to compute the final Spear-26

man correlation with the classifier test run accuracies. Conducting feature27

selection for the similarity measures is important because different measures28

leverage information differently.29

This analysis parallels the classification analysis in every way except that30

instead of optimizing model accuracy, here the optimization criterion was31

model correlation (i.e., Spearman correlation) with the previously computed32

pairwise classifier accuracies.33

4.4. Mixed effects models34

A mixed effects model was performed with the lme4 package [58] for35

each study with Spearman correlations from the neural similarity analysis36

20
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(i.e., similarity profile) as the response variable. The models contained fixed1

effects of similarity measure, linear SVM accuracy, participant, and ROI.2

Linear SVM accuracy, participant, and ROI variables only serve to account3

for variance and obtain better estimates. The models also contained random4

effects of ROI (varying per participant) and of similarity measure (varying5

per ROI). Model comparisons were performed between the full model and a6

null model without any similarity measures. 2
7

4.5. Post hoc searchlight analysis8

Searchlight analyses [59] have become an increasingly popular multivari-9

ate tool for spatial localizations of brain activations in recent years. This10

analysis is based on the definition of a sphere with radius in millimeters (or11

cube with radius in number of voxels) that computes a statistic, centered on12

each voxel of interest, using as input only the voxel values that fall within the13

confines of the predefined sphere. Depending on the number of voxels con-14

sidered, this analysis can be computationally expensive. Thus for reasons of15

computational tractability, a searchlight analysis was not used as the primary16

analysis but as a post hoc tool to inquire over the spatial specificity of cer-17

tain measures of interest commonly used in the literature such as Euclidean,18

Pearson correlation and Mahalanobis [16]. Since optimizing the searchlight19

radius for each voxel is not feasible with current computational resources - to20

equate measure complexity by feature selection as done in the main analysis21

- the searchlight radius was set to 3 voxels. The analysis was done only for22

Euclidean, Pearson correlation, and Mahalanobis(r). This searchlight anal-23

ysis was done within the union of the top 10 ROIs across both studies (see24

Secondary ROI selection above) in the native space of each subject using25

PyMVPA’s searchlight function. For each voxel, the similarity matrices were26

Spearman correlated with the best performing classifier in the same fashion27

as in the main analysis above. For each study, the statistical maps of Eu-28

clidean and Mahalanobis(r) were compared to the statistical map of Pearson29

correlation, using it as a baseline measure. All maps were transformed to30

MNI space for this comparison. The threshold-free enchancement (TFCE)31

corrected p values for the paired t statistics were computed with FSL’s ran-32

domise function with 5000 permutations. Only t statistics that presented33

TFCE corrected p values below 0.001 were considered as significant. This34

2A full model that included both studies was not possible due to convergence issues.
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more conservative threshold was based upon this being a post hoc analysis1

(i.e., supposing all 17 measures would have been compared against Pearson2

correlation, then the appropriate Bonferroni corrected threshold would have3

been p = 0.05/17 ≈ 0.0029).4

4.6. Triplet task5

In this task, a stimulus is chosen as a standard and paired with a correct6

probe. These pairs of standard and correct probe are designated as held-out7

pairs for reasons that will seem obvious below. The correct probes are chosen8

so as to share a common dimension with the standard. For the NI study, this9

was possible since shape (or silhouette) and category were two orthogonal di-10

mensions that were part of the experimental setup of the fifty-four stimuli11

in the original study. In that study, six categories of stimuli were orthogonal12

to nine types of shape or silhouette (see SI). Subsequently, incorrect probes13

were chosen on the basis of not sharing values for either the shape or cat-14

egory dimensions for both the standard and correct probe. Thus, if basing15

the choice of correct probe on agreement with the shape dimension, then16

thirty-two (out of fifty-four) stimuli remain as choices for incorrect probes17

(i.e., shape triplet task). However, if the choice of correct probe is agreement18

with category, then thirty-five (out of fifty-four) stimuli remain as choices19

for incorrect probes (i.e., category triplet task). Either way, the task then20

consists of comparing the similarity between standard and correct probe with21

similarity between standard and incorrect probe for a given similarity mea-22

sure. If the similarity measure is higher between standard and correct probe23

than it is for standard and incorrect probe, then the outcome of such a com-24

parison is labelled with value one, otherwise zero. This operation was done25

for all possible incorrect probes and accuracy was computed as the number26

of outcomes equal to one divided by the number of incorrect probes (thirty-27

two for the shape triplet task and thirty-five for the category triplet task).28

This procedure was repeated for all possible pairs of standard and correct29

probe per similarity measure (out of 14 similarity measures reported in the30

Results), per run, per region of interest (out of the 12 ROIs reported in the31

Results), and per subject.32

Accuracies computed for the triplet task should show performance of33

similarity measures that are in agreement with the similarity profiles from34

the neural similarity analysis. To adequately assess such an agreement, we35

recalculated the similarity profiles based on a subset of the original Spearman36

correlations used in the neural similarity analysis. The subset consisted of37
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removing correlations for held-out pairs (standard and correct probe) that1

were being assessed in the triplet task. Such a procedure is necessary to2

claim independence between the neural similarity analysis and the triplet3

task and avoid inflated correlations between tasks. This subset of Spearman4

correlations was used to calculate the similarity profile referred to as NI5

Study Similarity Profile (reduced), whereas the original similarity profile was6

referred to as NI Study Similarity Profile (complete) in the Triplet Task7

subsection of the Result section.8

Data and code availability9

For open access to the data or code please visit:10

1) Raw fMRI data for the GS Study: https://osf.io/62rgs/11

2) Raw fMRI data for the NI Study: https://osf.io/qp54f/12

3) Data and code for the neural similarity analysis: https://osf.io/5a6bd/13
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Supplementary Information

A. Task descriptions and fMRI parameters1

A.1 Geometric shapes (GS) study2

The GS study presented sixteen objects in total, which varied on four3

different binary features: (color: red or green, shape: circle or triangle, size:4

large or small, and position: right or left). Participants in this study were5

trained to do a categorization task. They were first trained on five objects of6

one category and four of the other (nine objects total during training) with7

twenty repetitions of each object. During the anatomical scan, participants8

saw four more repetitions of the training items as a refresher. Then during9

the functional scanning phase, participants were asked to categorize the nine10

familiar objects they saw during the training phase and seven novel objects11

they had not seen before. Each trial during the functional scanning phase12

lasted 10 seconds; 3.5 seconds where one of the sixteen objects (nine training13

stimuli and seven novel transfer stimuli) was presented after which a fixation14

cross was presented for 6.5 seconds. No feedback was provided during this15

phase. Each stimulus was presented three times within a run across six runs16

resulting in each stimulus being presented a total of eighteen times during the17

functional scanning phase except for one participant who only participated18

in five runs of the scanning phase.19

Whole-brain imaging data were acquired on a 3.0T GE Sigma MRI system20

(GE Medical Systems). Structural images were acquired using a T2-weighted21

flow-compensated spin-echo pulse sequence (TR=3s; TE=68ms, 256x256 ma-22

trix, 1x1mm in-plane resolution) with thirty-three 3-mm thick oblique axial23

slices (0.6mm gap), approximately 20 off the AC-PC line. Functional images24

were acquired with an echo planar imaging sequence using the same slice25

prescription as the structural images (TR=2s, TE=30.5ms, flip angle=73,26

64x64 matrix, 3.75x3.75 in-plane resolution, bottom-up interleaved acqui-27

sition, 0.6mm gap). An additional high-resolution T1-weighted 3D SPGR28

structural volume (256x256x172 matrix, 1x1x1.3mm voxels) was acquired29

for registration and cortex parcellation.30
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A.2 Natural images (NI) study1

The NI study presented fifty-four objects in total, which varied in two2

ways. The 54 stimulus items were conceived to either be organized by cat-3

egory (6 categories: minerals, animals, fruits/vegetables, music, sports, or4

tools) or by their silhouette (9 silhouettes) which cut orthogonally across the5

category distinction. Participants in this study were asked to perform a 1-6

back real-world size judgment task (i.e., to respond according to whether the7

object on the previous trial was larger or smaller than the current image on8

screen). Participants were scanned on two separate sessions (different days).9

Each session consisted of eight functional scanning runs resulting in sixteen10

runs total except for one participant for which four of the runs of the first ses-11

sion were lost due to scanning issues. Each one of the fifty-four objects were12

presented twice within each run in a randomized sequence. This resulted in13

each object being presented a total of thirty-two times (or twenty-four times14

for the participant that only had twelve runs). On each trial, each object15

was presented for 1.5 seconds after which a fixation cross was presented for16

1.5 seconds. Each run started with a fixation cross for fourteen seconds and17

ended with a fixation cross for fourteen seconds. Thirty-six fixation trials18

lasting three seconds each were also randomly presented within each run.19

Data collection was performed on a 3T Philips scanner with a 32-channel20

coil at the Department of Radiology of the University Hospitals Leuven.21

MRI volumes were collected using echo planar (EPI) T2*-weighted scans.22

Acquisition parameters were as follows: repetition time (TR) of 2 s, echo time23

(TE) of 30 ms, flip angle (FA) of 90, field of view (FoV) of 216 mm, and matrix24

size of 72x72. Each volume comprised 37 axial slices (covering the whole25

brain) with 3 mm thickness and no gap. The T1-weighted anatomical images26

were acquired with an MP-RAGE sequence, with 1x1x1 mm resolution.27

A.3 fMRI preprocessing28

The original raw (NIfTI formatted) files from both studies were prepro-29

cessed and analyzed using FSL 4.1 [1]. Functional images were realigned to30

the first volume in the time series to correct for motion, co-registered to the31

T2-weighted structural volume, high-pass filtered (128s), and detrended to32

remove linear trends within each run. All analyses were performed in the33

native space of each participant.34
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A.4 Trial-by-trial estimates1

For both studies, after preprocessing the fMRI data with FSL, the method2

suggested by Mumford et al. [2] known as LS-S (least squares separate) beta3

estimation was used to get a coefficient estimate for each individual presen-4

tation of each object. This method consists of calculating a general linear5

model for each object presentation with only two regressors; one regressor6

representing the effect of interest (the object presentation in question) and7

another regressor representing all other object presentations within the re-8

spective run. This procedure was done for each run separately to preserve9

as much statistical independence as possible between runs. Such a step is10

necessary for doing the multivoxel pattern analysis. After successfully esti-11

mating the object presentation coefficients within each run, these were then12

concatenated into a single 4D NIfTI formatted file. Furthermore, all runs13

were subsequently aligned to the last run within each study (e.g. the sixth14

run in the GS study or the sixteenth run in the NI study). The runs were15

then concatenated into a single 4D NIfTI formatted file for each participant16

within each study.17

B. Regions of interest from the Harvard-Oxford atlas18

B.1 Initial region of interest (ROI) selection19

The Harvard-Oxford cortical and subcortical structural atlases provided20

with FSL [1] were used to parcellate the different anatomical regions for21

each participant. A total of 110 regions of interest were used as masks that22

would be used in the multivoxel pattern analyses. The goal was to evaluate23

classifier accuracy across the whole brain (except for areas like cerebral white24

matter or the lateral ventricles). More areas could have been excluded based25

on a priori hypotheses of where similarity signals would arise. However,26

including areas where no signal was expected served as an informal control27

for the method and still retained the possibility that similarity signals could28

have been found in otherwise unexpected brain regions. The masks were29

transformed from MNI space to each participants native space. This masking30

by anatomical region can be considered the first part of a feature selection31

procedure. Feature selection was also done within each region of interest for32

each participant (see Materials and Methods). All regions from the Harvard-33

Oxford atlas were included in the analyses except for cerebral white matter,34

the lateral ventricles, left and right cerebral cortex, and the brain stem.35

This results in 48 cortical regions and 7 subcortical regions; doubling for36

lateralization results in the 110 regions of interest.37
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B.2 Cortical regions of interest1

Frontal Pole, Insular Cortex, Superior Frontal Gyrus, Middle Frontal2

Gyrus, Inferior Frontal Gyrus (pars triangularis), Inferior Frontal Gyrus (pars3

opercularis), Precentral Gyrus, Temporal Pole, Superior Temporal Gyrus4

(anterior division), Superior Temporal Gyrus (posterior division), Middle5

Temporal Gyrus (anterior division), Middle Temporal Gyrus (posterior di-6

vision), Middle Temporal Gyrus (temporooccipital part), Inferior Tempo-7

ral Gyrus (anterior division), Inferior Temporal Gyrus (posterior division),8

Inferior Temporal Gyrus (temporooccipital part), Postcentral Gyrus, Supe-9

rior Parietal Lobule, Supramarginal Gyrus (anterior division), Supramarginal10

Gyrus (posterior division), Angular Gyrus, Lateral Occipital Cortex (supe-11

rior division), Lateral Occipital Cortex (inferior division), Intracalcarine Cor-12

tex, Frontal Medial Cortex, Juxtapositional Lobule Cortex (formerly Supple-13

mentary Motor Cortex), Subcallosal Cortex, Paracingulate Gyrus, Cingulate14

Gyrus (anterior division), Cingulate Gyrus (posterior division), Precuneous15

Cortex, Cuneal Cortex, Frontal Orbital Cortex, Parahippocampal Gyrus (an-16

terior division), Parahippocampal Gyrus (posterior division), Lingual Gyrus,17

Temporal Fusiform Cortex (anterior division), Temporal Fusiform Cortex18

(posterior division), Temporal Occipital Fusiform Cortex, Occipital Fusiform19

Gyrus, Frontal Operculum Cortex, Central Opercular Cortex, Parietal Oper-20

culum Cortex, Planum Polare, Heschl’s Gyrus (includes H1 and H2), Planum21

Temporale, Supracalcarine Cortex, & Occipital Pole.22

B.3 Subcortical regions of interest23

Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, &24

Accumbens.25

B.4 Secondary ROI selection26

The 110 ROIs were rank ordered by mean classifier accuracy (mean across27

participants) within each study. Subsequently, the union of the top ten ROIs28

was selected for the neural similarity analysis. This procedure was done to29

ensure that the ROIs used to evaluate the similarity measures was based on30

brain areas with adequate signal-to-noise ratio. The 12 ROIs as reported in31

the Results were left and right intracalcarine cortex (CALC), left and right32

lateral occipital cortex (LO) inferior and superior divisions, left and right33

lingual gyrus (LING), left and right occipital fusiform gyrus (OF), and left34

and right occipital pole (OP).35
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C. Classifier selection1

The best performing classifier was chosen out of three candidates; Gaus-2

sian näıve Bayes (GNB), k -nearest neighbor (KNN), and linear support vec-3

tor machine (SVM). These classifiers were chosen because they are commonly4

used in data analysis, both inside and outside the field of neuroimaging, and5

they compute classification in very distinct ways (see [3]).6

The linear SVM classifier was the clear winner across both studies, thus7

was chosen as our gold standard approximation to the brain’s similarity mea-8

sure. The performance of the linear SVM classifier compared to the other9

two classifiers is shown in Table C1.10

GS Study NI study
mean s.d. mean s.d.

Linear SVM 20.49% 12.64% 23.51% 5.50%
GNB 15.00% 8.79% 10.24% 2.84%
KNN 14.51% 8.50% 8.49% 3.09%
Random classification 6.25% 1.85%

t p t p

Linear SVM vs. GNB 5.22 < 0.001 14.33 < 0.001
Linear SVM vs. KNN 4.59 < 0.001 17.80 < 0.001
degrees of freedom 19 13

Table C1. Linear SVM is best-performing classifier in both studies. Top panel shows mean
accuracy and standard deviations (s.d.) (across participants) for each classifier. Bottom
panel shows t-tests comparing the best-performing classifier (linear SVM) to the other two
classifiers.

In addition to comparing the performance of the classifiers judged by11

their performance accuracy, the confusion matrices between classifiers - from12

the same analysis - were also compared. Although the classifiers are quite13

distinct algorithmically speaking, extreme differences between their confu-14

sion matrices would be unlikely. Indeed it was the case that the average15

correlations (averaged across subjects) were all significantly above zero for16

both studies. In the GS study, linear SVM correlated highest with GNB (m17

= 0.47, s.d. = 0.172, t(19) = 12.01, p < 0.001), second highest with KNN18

(m = 0.37, s.d. = 0.197, t(19) = 8.21, p < 0.001), and GNB correlated19

with KNN in third place (m = 0.32, s.d. = 0.195, t(19) = 7.06, p < 0.001).20
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In the NI study, linear SVM correlated highest with GNB (m = 0.35, s.d.1

= 0.072, t(13) = 17.55, p < 0.001), second highest with KNN (m = 0.29,2

s.d. = 0.080, t(13) = 13.06, p < 0.001), and GNB correlated with KNN in3

third place (m = 0.22, s.d. = 0.091, t(13) = 8.94, p < 0.001). These results4

provide supplementary support for choosing linear SVM as the brain’s gold5

standard for these two datasets given that it’s confusion matrix correlates6

highest with the confusion matrices of the other two classifiers.7

Thus, the linear SVM classifier was optimized for each of the initial 1108

ROIs. The ROIs were rank-ordered in terms of accuracy in each study and the9

union of the top 10 ROIs across both studies was: left and right intracalcarine10

cortex (CALC), left and right lateral occipital cortex (LO) inferior division,11

left and right lateral occipital cortex (LO) superior division, left and right12

lingual gyrus (LING), left and right occipital fusiform gyrus (OF), and left13

and right occipital pole (OP). This resulted in a secondary ROI selection of14

12 ROIs with best (linear SVM) classifier accuracy.15

Classifications were performed pairwise for this analysis and thus random16

classification was expected at 50% for both studies (see Materials and Meth-17

ods). The mean accuracy for the linear SVM classifier in the 12 regions of18

interest was 59.47% (s.d. = 7.97%) in the GS study and 78.43% (s.d. =19

7.41%) in the NI study. The best-performing classifier (linear SVM) was20

performing above 50% chance level in both studies; t(19) = 5.18, p < 0.001,21

in the GS study and t(13) = 13.84, p < 0.001, in the NI study (degrees of22

freedom are based on number of participants for each study). This provides23

reassurance that the ROIs that were selected indeed have information regard-24

ing stimuli presentation. Classification accuracy for the NI study was higher25

than in the GS study t(32) = 6.82, p < 0.001, showing a potential difference26

in data quality due to the higher number of observations per stimuli in the27

NI study (see Materials and Methods).28

D. Similarity measures29

The following similarity measures were evaluated: dot product, cosine dis-30

tance, city-block (Manhattan), Euclidean, three variants of Minkowski (with31

norms 5, 10 and 50), Chebyshev, Spearman correlation, Pearson correlation,32

three variants of Mahalanobis, three variants of Bhattacharyya, variation33

of information, and distance correlation. City-block, Euclidean, Minkowski,34

Chebyshev, Mahalanobis, Bhattacharyya and variation of information are35

proper distance metrics; to convert them to similarity measures they were36

multiplied by minus one. Other linking functions between similarities and37
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distances are possible, as in a negative exponential [4], but not relevant here1

since our optimization criterion was Spearman correlation. The three vari-2

ants of Mahalanobis and Bhattacharyya were due to the way the sample co-3

variance matrix was regularized; either no regularization, Ledoit-Wolf shrink-4

age (implemented through Scikit-Learn, [5, 6] or diagonal regularization. Di-5

agonal regularization was defined as the sample covariance matrix with all6

the off-diagonal elements set to zero (see below); such as measure is also7

known as the normed Euclidean distance. Note that city-block, Euclidean,8

and Chebyshev are also special cases of the Minkowski measure where the9

norms are set to one, two and infinity, respectively. To keep calculations con-10

sistent across all similarity measures, vector representations for each stimulus11

were defined as the mean vectors across trial presentations for that stimu-12

lus. Below are the equations for each similarity measure and the covariance13

matrix regularization procedures.14

In constructing the similarity profiles, we only used similarity measures15

that presented a mean Spearman correlation within three median absolute16

deviations away from the group average (group refers to measures here). Mea-17

sures that did not meet these criteria were considered outliers (these measures18

were close to zero mean Spearman correlation). The median Spearman cor-19

relation across the 18 similarity measures evaluated was 0.203 for the GS20

study 0.125 and for the NI study and their median absolute deviation was21

0.0482 for the GS study and 0.0234 for the NI study. The mean Spearman22

correlations (across participants) and the standard deviations for the mea-23

sures that were more than three median absolute deviations away from the24

group average were: Bhattacharya without covariance matrix regularization25

(mean = 0.001 and s.d. = 0.004 for the GS study, mean = 0.0002 and s.d.26

= 0.0006 for the NI study), Bhattacharya (d) (with diagonal regularization)27

(mean = -0.0005 and s.d. = 0.003 for the GS study, mean = -0.0001 and s.d.28

= 0.0007 for the NI study), variance of information (mean = -0.04 and s.d.29

= 0.037 for the GS study, mean = -0.012 and s.d. = 0.004 for the NI study),30

and distance correlation (mean = -0.037 and s.d. = 0.026 for the GS study,31

mean = -0.0009 and s.d. = 0.0038 for the NI study). These statistics were32

computed across the 110 original ROIs.33

Below is a list of the equations for each measure considered.34

For two classes represented as vectors35

X = (x1, x2, ..., xn) ∈ Rn
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and1

Y = (y1, y2, ..., yn) ∈ Rn

where each component is computed as the arithmetic mean across m2

observations (trial-by-trial β coefficients) per class, per run, and n is the3

number of voxels. This notation is valid except for where these vectors show4

subscripts denoting individual observations as opposed to mean vectors (this5

is only the case when discussing distance correlation).6

Dot product7

XY T

Cosine distance8

The (negative) cosine distance is:9

−(1− XY T

‖X‖2‖Y ‖2
)

where ‖ · ‖2 denotes the L2 (Euclidean) norm.10

Minkowski distance11

The (negative) Minkowski distance is:12

−

(
n∑

i=1

|xi − yi|p
)1/p

For the city-block distance p = 1, for the Euclidean distance p = 2, and13

for the Chebyshev distance p =∞.14

Pearson correlation15 ∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

where x̄ and ȳ are the component-wise arithmetic means of vectors X16

and Y , respectively.17
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Spearman correlation1

1− 6
∑n

i=1(rg(xi)− rg(yi))
2

n(n2 − 1)

where rg(xi) and rg(yi) are the ranks of the values xi and yi, respectively.2

This formulation assumes distinct integer rankings.3

Mahalanobis distance4

The (negative) Mahalanobis measure between two random vectors coming5

from the same multivariate normal distribution is:6

−
√

(X − Y )TΣ−1(X − Y )

where Σ is the n× n covariance matrix between voxels.7

Bhattacharyya distance8

The (negative) Bhattacharyya measure between two multivariate normal9

distributions N (X,ΣX) and N (Y,ΣY ), where each voxel covariance matrix10

ΣX and ΣY is estimated separately for each class X and Y , respectively, is:11

−
(

1

8
(X − Y )T Σ̄−1(X − Y ) +

1

2
ln

(
detΣ̄√

detΣXdetΣY

))
where12

Σ̄ =
ΣX + ΣY

2

Distance correlation13

The distance correlation is equal to 1 when X and Y span the same14

linear subspace under some linear transformation and 0 when X and Y are15

independent. It is defined as:16

dCov(X, Y )

dV ar(X)dV ar(Y )

where dCov2(X, Y ) is17

1

m2

m∑
j=1

m∑
k=1

Aj,kBj,k
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and dV ar2(X) is1

1

m2

m∑
j=1

m∑
k=1

A2
j,k

where Aj,k is the matrix computed from doubly-centering the matrix aj,k2

(subtracting row and column means while adding the grand mean), where3

aj,k = ||Xj −Xk||2
Thus, Bj,k is computed from bj,k, where4

bj,k = ||Yj − Yk||2
These pairwise distance matrices are computed from distances between5

observations.6

Variation of information7

For two classes X and Y represented as two multivariate Gaussian dis-8

tributions, the (negative) Variation of information is9

V I(X;Y ) = I(X;Y )−H(X, Y )

where H(X) is the entropy of X and I(X;Y ) is the mutual information10

between X and Y .11

For a multivariate Gaussian X, H(X) is:12

1

2
ln(det(2πeΣX)) ∗ n

where n is the number of observations. The mutual information between13

X and Y is:14

1

2
ln(

detΣXdetΣY

detΣ∗ )

where Σ∗
15

=

[
ΣX ΣXY

ΣY X ΣY

]
and ΣXY is the between-class voxel covariance matrix. ΣY X is the trans-16

pose of ΣXY .17
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Covariance matrix regularization1

Two types of covariance matrix regularization were used for the Maha-2

lanobis distance: diagonal regularization and Ledoit-Wolf regularization.3

Diagonal regularization4

Diagonal regularization for a covariance matrix Σ was computed as Σ◦ I,5

where ◦ is the hadamard product (element-wise multiplication) and I is the6

identity matrix.7

The distance measure that comes as a result of this type of regularization,8

when applied to the covariance matrix of the Mahalanobis distance, is also9

known as the normed Euclidean distance.10

Ledoit-Wolf regularization11

Ledoit-Wolf regularization for a covariance matrix Σ was computed as:12

(1− shrinkage)Σ + (shrinkage)(µ)I

where µ = trace(Σ)/n and the optimal shrinkage parameter is a value13

between 0 and 1 estimated according to the derivation in [5].14

E. Post hoc searchlight analysis15

Supplementary Figure 1 presents voxels where both the Euclidean mea-16

sure and the Mahalanobis(r) measure outperformed Pearson correlation.17
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Supplementary Figure 1: Voxels where Euclidean & Mahalanobis(r) overlap (outperform-
ing Pearson). Lateral views of the left and right hemispheres for the GS study (top row)
and the NI study (bottom row) displaying t statistics where both the Euclidean mea-
sure (blue) and the Mahalanobis(r) measure (red) outperformed the Pearson correlation
measure. The t statistics were based on a searchlight analysis of Spearman correlations
of each measure with each voxel’s SVM confusion matrix (see Materials and Methods).
Only displaying t statistics where p < 0.001 for paired sample t-tests, TFCE corrected;
computed with FSL’s randomise function with 5000 permutations, using as a mask the 12
ROIs with best accuracy (see Materials and Methods).
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