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Abstract

Identifying the genetic and environmental factors underlying phenotypic differences between
populations is fundamental to multiple research communities. To date, studies have focused on
the relationship between population and phenotypic mean. Here we consider the relationship
between population and phenotypic variance, i.e., “population variance structure.” In addition to
gene-gene and gene-environment interaction, we show that population variance structure is a
direct consequence of natural selection. We develop the ancestry double generalized linear
model (ADGLM), a statistical framework to jointly model population mean and variance effects.
We apply ADGLM to several deeply phenotyped datasets and observe ancestry-variance
associations with 12 of 44 tested traits in ~113K Biritish individuals and 3 of 14 tested traits in
~3K Mexican, Puerto Rican, and African-American individuals. We show through extensive
simulations that population variance structure can both bias and reduce the power of genetic
association studies, even when principal components or linear mixed models are used. ADGLM
corrects this bias and improves power relative to previous methods in both simulated and real
datasets. Additionally, ADGLM identifies 17 novel genotype-variance associations across six

phenotypes.
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Introduction

Many complex phenotypes differ dramatically in their distributions between populations due to
genetic and environmental factors. Both broad'? and fine-scale® population differences are
central to epidemiology*, pharmacogenomics®®, biomedicine’, and population genetics®®. In the
context of association studies, statistical correction methods for population structure, such as
principal components'® and linear mixed models'!, have helped identify thousands of loci
associated with hundreds of complex traits'®. This underscores the importance of understanding

the causes and consequences of fine-scale population variation.

To date, studies of phenotypic differences between populations and statistical correction
methods have primarily focused on variation in population means. As we demonstrate below,
while studying fine-scale population structure in UK Biobank, we discovered that phenotypic
variance, in addition to phenotypic mean, varies between populations. Such “population
variance structure” (in analogy to “population mean structure”) can produce substantial
phenotypic differences between populations and has major biological and statistical
implications. For example, we recently showed for sex-biased diseases, even a small difference
in a disease’s liability variance can double its prevalence between groups'®. Various
evolutionary models' also suggest that changes in phenotypic variance allow populations to

adapt quickly in response to environmental perturbations'®.

Although the causes and consequences of phenotypic variance heterogeneity remain
poorly understood, several factors could drive population variance structure. First, it can result
from non-linear interactions among genotypes (i.e. epistasis). Admixture between genetically
diverse populations can disrupt fine-tuned epistatic interactions, increasing phenotypic
variance'®"’. Similarly, gene-environment interactions'® (GxE) can induce changes in
phenotypic variance when environmental exposures differ between populations. Secondly,
population variance structure can emerge under additivity. Phenotypic variance itself is a
genetically-controlled quantitative trait'®?, and as such the frequency of alleles associated with
different levels of variability (vQTLs) may differ across populations. Here we also demonstrate,

for the first time, that natural selection can directly induce phenotype-variance structure.

To identify and model population variance structure we develop the Ancestry Double
Generalized Linear Model (ADGLM). ADGLM accommodates arbitrary phenotypic and covariate
distributions while accounting for broad- and fine-scale population structure of phenotypic mean

as well as variance. Recent work has shown that modeling ancestry-variance effects can reduce
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biases of GWAS test statistics?’*. However, these methods are limited to modeling binary

responses?' or major population groups?®?. Other studies tested for genotypes associated with

phenotypic variance (VQTLs)®, but did not model population-variance relationships?*¢, which
generates false-positives when population variance structure exists. We show via extensive
simulations that ADGLM reliably detects phenotypic variance structure and is robust to several

violations of model assumptions.

To examine the utility of our approach, we first test for population variance structure with
ADGLM in several large human datasets. We discover ancestry-variance associations for 12 of
44 tested phenotypes in ~113K UK Biobank British-ancestry individuals and 3 of 14 tested
phenotypes in ~3K Mexican, Puerto Rican, and African-American individuals. Additionally, we
find 42 ancestry-variance associations in Mexicans of DNA methylation, an epigenetic mark
associated with environment?’, disease phenotypes?, and ethnicity?®. We further illustrate the
utility of ADGLM in the context of genetic association mapping and find that relative to linear
regression with principal components, modeling population variance structure leads to an
increase in power, both in simulated and real datasets. We release ADGLM as open-source R

code.

Material and Methods

Phenotypic models

For a continuous phenotype y, we assume
y=ngs,Bg,s+ &, SNN(OvO-sz In) (Eq 1)

where g, is the genotype of the s SNP, Bg,s is the genotype’s effect size, and errors in ¢ are
assumed to be i.i.d. Gaussian. To model binary phenotypes, this model can be modified into a
probit model by treating y as a liability and then thresholding. The main confounder in genetic
association studies is population structure®. Linear regression with principal components

(LR+PC) corrects for this by including the ancestry covariate 6:
y= ngsﬁg,5+ HBG+ g, SNN(OiO-SZ In) (Eq2)

0 is often a matrix of genetic principal components, but it can contain ancestry admixture

fractions or background covariates like age or sex. Linear mixed models (LMM)*'*2 account for
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background genetic relatedness by including suitably normalized SNP genotypes, Z, as a

random effect:
y= ngsﬁg,5+ HBG+ Zb+€, SNN(OiO-SZ In) (Eq3)

We ran LR+PC as ordinary linear regression for continuous traits and probit regression for
binary traits. We ran LMM with pylmm®3, choosing Z to have centered and scaled columns. Note

that this LMM still models each sample as equally variable (modulo inbreeding).

A statistical model for population variance structure

Population variance structure induces heteroskedasticity**, which violates standard linear model

35,36 24,25,37

assumptions. Recent tests for heteroskedasticity or variance effects are appropriate
when their assumptions are met, but they either cannot adjust for ancestry-variance effects,
cannot simultaneously account for continuous ancestry and continuous phenotypic

distributions?'-??

, or do not scale to UK Biobank sized cohorts. To jointly model phenotypic mean
and variance, we develop a framework based on the double generalized linear model*® (DGLM),
which has link functions and covariates for response mean as well as variance. Since we focus
on ancestry-phenotype relationships, we call our framework the Ancestry Double Generalized
Linear Model (ADGLM). The ADGLM uses standard estimates of ancestry (6), such as

fractional ancestry estimates or genetic principal components:

y = ngslgg,s+ 9186 + ¢, & NN(O: f(o-sz + Hi 0-62)) (Eq 4)

where ¢; is still entry-wise independent and f is the variance link function, typically the
exponential function®®. Negative variance effects decrease variance, but the exponential
function guarantees that total variance is positive. The ADGLM accommodates dichotomous
phenotypes via a probit link function or continuous phenotypes, as well as arbitrary phenotypic

mean and variance covariates.

Association testing with the ADGLM

The ADGLM framework enables likelihood ratio tests (LRTs) for ancestry and genetic

associations. A 1 degree-of-freedom (df) test for ancestry-variance effect (i.e. population
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variance structure, g5=0) uses the null model H, and alternative model H,, while a 1-df LRT for

ancestry-mean effect (89+0) uses models H; and H,:

Hy: y= 0 Bg+ ¢, e~ N(0, 6?)
H: y= ¢, s~N(O, f(a2 + 9062))
Hy: y=0Bg+ ¢, e~N(0, f(a2 + 0}))

The ADGLM also enables 1-df association tests of mean genetic effect (84#0; H, vs. H3) or
variance genetic effect for vQTLs (a;;so; H; vs. H,), both of which are corrected for population
variance structure via 8 and ¢j. In addition, a 2-df test for mean genetic and ancestry-variance

effects uses models H, and H;:
Hy:y= gBy+ 0Bs+ e, &~N(0, f(a2+ 007))
Hy:y= gPBg+ 0PBg+ ¢, e~N(0, f(a? + 6092+ga;))

We used the R packages “dgim” and “glmx” for continuous and binary phenotypes, respectively,
and the exponential variance link function throughout. Though we include a variance intercept
term in continuous phenotypic models, we constrain it to one (1 = exp (0)) in binary phenotypic
models to obtain identification. In the “dglm” package, standard errors of variance terms are
approximated based on the leverages of the variance covariates*® and thus do not depend on
the phenotype if it is scaled. These ancestry and genetic association tests, along with the
diagnostic test for residual variance population structure, are implemented in the ADGLM code

we released.

Simulating data from a structured population

We simulated data from a structured sample of two population as follows. Ancestry of the it"
individual, 6;, is 1 for individuals from population 1, and 0 otherwise. We simulated the st* SNP
genotype of the i*" individual from population j as g;s ~ Binom(Z, psj), where py; is the SNP
MAF in population j. We next simulated independent errors as g; ~ N(O, exp(c? + 6; 092)) and
phenotypes as y; = f,gis + 6; By + &;. We took a sample of 200 individuals (100 per
population), which has population variance structure when g is non-zero. For the Figure 2
simulations with no genetic effect, m = 10,000 SNPs, g, = 0, g = 0, 02 =0.2, 05 =1.4. For the
Table 1 simulations, m = 10,000 SNPs, g, = 0.8, g = 0.2, o% = 0.1, 65 = 1. For the Figure 3
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simulations with a true genetic effect, m = 10,000 SNPs, g, = 0.6, g = 0.3, 02 =0,and g} is

one of 35 equally-spaced values between 0 and 2.

Simulating data from an admixed population

We simulated data from an admixed population composed of two source populations with a
given Fs; as follows. We first drew the st* SNP ancestral minor allele frequency as

ps ~ U(0.01,0.5). We simulated source population MAFs with the Balding-Nichols model*' as
psj ~ Beta(ps(1 — Fst)/Fst, (1 —ps)(1 — Fst)/Fst), j =1,2. The i" individual’s population 1
ancestry fraction was drawn as 0; ~ U(0.5,0.9). For each allele (k = 1,2), we drew local
ancestries as y,~ Bin(1, 8;) and haploid genotypes as [, ~ Beta(1, ps;), where p;; is the MAF
source population y,. We formed the diploid genotype g;, of the " individual at SNP s as the
sum of haploid genotypes. Finally, we simulated independent errors as ¢; ~ N(O, exp(a? +

6; o)) and phenotypes as y; = g;s B, + 6; Bo + <.

Simulating data from an admixed population after differential selection

We simulated data as in “Simulating data from an admixed population” with the following
modifications. For values of T between 0.05 and 0.25 in steps of 0.025, we simulated the it"
individual’'s ancestry as 6;~ N(T,0.15) and truncated it to (0, 1). We drew the st* SNP effect
size as fi,; ~ N(0,0.2). We then changed effect signs to induce a genetically-based correlation
of phenotype and ancestry caused by three strengths of selection. Under neutrality, the sign of

Bgs is unchanged, so S, is uncorrelated with ancestry. Under weak selection, the sign of B is

made positive with probability p = p”%

11Ds2

and negative with probability 1 — p, where py; is
population i MAF. Since the Balding-Nichols model produces identical frequency spectra for all
populations, p = 0.5, and 4, and ancestry are perfectly correlated at half of the SNPs. Finally,
under strong selection, the sign of B, is made positive if pg;> p,, and negative otherwise, so S
and ancestry are perfectly correlated at all SNPs. These sign changes result in effect sizes ;.

For the i individual, we simulated independent error as ¢; ~ N(0,02) and phenotype as y; =
25 Bgs 9is + €. We did this for 2000 SNPs from a sample of 100 individuals for 1000 replicates.
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Outlier simulations

We simulated data from 1000 individuals for 1000 replicate simulations under the null (¢ = 0)
and alternative (6 = 0.4) of the ancestry-variance test. For simulations with heavy-tailed errors,
we simulated errors ¢ from the t distribution (df=6), simulated ancestry as 8; ~ N(0.7, 0.4)
truncated to (0, 1), and formed phenotypes as y; = 6; * 0.4 + &;. In the simulations with real
GALA Il ancestry for 6;, we simulated errors as &; ~ N(0, exp(0.1 + 6; * 6¢)) and phenotypes as
y; = 6; * 0.4 + ¢;. We transformed phenotypes or ancestry by inverse-variance quantile-
normalizing them or truncating them to remove outliers more than two standard deviations from

the mean.

UK Biobank

We obtained UK Biobank data and restricted our analysis to ~113K British-ancestry individuals.
We performed quality control steps as in a previous work*, resulting in genetic PCs and
continuous phenotypes which are standardized to have mean 0 and standard deviation 1. We
additionally quantile-normalized continuous phenotypes. For the variance association test, we
adjusted for assessment center, genotype array, sex, age, and PCs 1-10 in the mean. We
tested for variance effects (age, sex, PCs1-5) one at a time. The associated traits include ten
blood traits, 15 disease traits, body mass index (BMI), blood pressure, educational attainment,
basal metabolic rate, two measures of baseline lung function (forced expiratory volume in 1
second, FEV1, and forced vital capacity, FVC), age at menopause, hair pigment, skin pigment,

and tanning.

SAGE Il and GALA Il datasets

The Study of African Americans, Asthma, Genes & Environments (SAGE 11)*® and Genes-
Environment and Admixture in Latino Americans (GALA 11)* studies are comprised of admixed
individuals (ages 8-21). Individuals were deeply phenotyped and genotyped. SAGE consists of
2,013 African Americans. The GALA Il study consists of 4427 individuals, of whom 1245 are
Mexican and 1785 are Puerto Rican. Genotyping resulted in 482,578 autosomal variants after
filtering. We removed related individuals by excluding one of each of a pair of individuals with a

REAP* coefficient > 0.025, leaving 1160 Mexicans and 1612 Puerto Ricans. For both datasets,
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we removed genotypes with MAF < 0.05 and removed SNPs or individuals with more than 5%
of genotypes missing. Global ancestry fractions were estimated with the program
ADMIXTURE®*® with two ancestral groups (Africans and Europeans) for SAGE and three

ancestral groups (Native Americans, Africans, and Europeans) for GALA II.

SAGE Il and GALA Il association testing

We tested the following phenotypes: asthma; allergy-related disease traits (eczema, hives,
rhinitis, rash, and sinusitis); continuous traits (BMI, height); FEV1 and FVC; lung function
changes after the first (§,) and second (§,) albuterol administrations. We also tested two skin
pigmentation phenotypes: baseline melanin, the average of right and left body measurements of
unexposed areas, and tannability, the difference between baseline and exposed melanin
measurements'®. For ancestry association tests, we included K-1 of K ancestry fractions in the
variance model: for Mexicans and Puerto Ricans, we tested for African ancestry and included
European ancestry as a variance covariate, and analogously for Native American and African,
and African and European ancestry. For African-Americans (K=2), no additional ancestry
variance covariate is required. For genetic association tests, we did not thin SNPs for LD nor
impute missing phenotypic or covariate measurements. Where noted, genomic control*’ was
performed by dividing association test statistics by 1;.. We obtained GWAS associations of
tested phenotypes from the NHGRI catalog*® on April 25, 2018 and thinned it to keep the

strongest SNP association per locus, leaving 246 SNPs.

GALA Il methylation

We used QC for GALA Il methylation data from whole blood as described in Galanter et al.?*,
resulting in batch- and cell type-adjusted methylation at 321,503 autosomal probes. Of the 124
Mexican individuals with methylation measurements, we removed those with outlier Native
American ancestry (> 2 s.d. from the mean), leaving 117 individuals. We quantile-normalized

methylation values and adjusted for age, sex, ancestry fraction, and asthma case status.


https://doi.org/10.1101/439661
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/439661; this version posted October 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Results

Sources of population variance structure

Many studies have explored how genotype-by-environment interactions'® and

epistasis*®!

may lead to a shift in phenotypic variance as a function of allele frequencies or
environmental factors. Here, we consider another possibility: that differential selection between
populations causes population variance structure under a purely additive model. To address this

question, we simulated admixed populations that experienced differential selection.

We first generated allele frequencies at 2,000 SNPs from two ancestral populations
under the Balding-Nichols model*'. We then simulated effect sizes consistent with natural
selection by correlating effect size and allele frequency difference between populations. We
used a correlation of 0.0 under neutrality, 0.5 for weak selection, and 1.0 for strong selection.
Finally, we simulated phenotypes using an additive model for a sample of 100 two-way admixed
individuals composed of these ancestral populations with an average ancestry fraction, 6. Under
neutrality, neither phenotypic mean nor variance depends on ancestry fraction (Figure 1).
However, after either weak or strong selection, both phenotypic mean (Figure 1A) and variance
(Figure 1B) depend on ancestry. This demonstrates that differential selection between
populations is sufficient to induce population variance structure. In humans, strong, genetically-
based ancestry-phenotype correlations are likely due to selection®?, and may therefore be

accompanied by population variance structure.

Ancestry-variance association tests

We first assessed the performance of the ancestry-variance test (67#0) with ADGLM by
applying it to simulated data from a structured sample of two populations (P+, P2) with MAFs p,
and p,. Since the MAF difference (p, — p,) determines the genetic variance difference

(2p1(1 = p1) — 2p, (1 — p,)) between populations, we considered three types of SNPs based on
their MAF in the two populations: SNPs with a MAF difference that is large and negative (p; =
0.05, p, = 0.5), large and positive (p, = 0.5, p, = 0.05) and those with no MAF difference (p; =
0.5, p, = 0.5). We simulated 10,000 SNP genotypes and continuous phenotypes for 100
individuals from each population for a range of g, Bs, g values. Under the null (no ancestry-
variance effect ¢ = 0), ADGLM is calibrated with a false positive rate of 0.052 when 8, = 0 and

0.054 when By = 0.2 at o« = 0.05 (also see Table S1). Under the alternative (67 = 1), population
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P1has greater phenotypic variance than P, creating population variance structure in their
combined sample. Here, ADGLM has power 0.463 when By = 0 and 0.445 when By = 0.2 at «

=5e~7.

Effect of population variance structure on genetic association tests

Genome-wide association tests commonly correct for population structure by using linear
regression with principal components (LR+PC, Eq. 2) or linear mixed models (LMM*', Eq. 3 in
Methods). We compared the performance of genetic association tests (54#0) with ADGLM,
LR+PC, and LMM applied to data simulated as in "Ancestry-variance association tests". First,
we tested for a genetic effect on data simulated under the null (84=0) with population variance
structure, resulting in the quantile-quantile (Q-Q) plots in Figure 2. When population MAFs are
equal, LR+PC is calibrated (Figure 2B, A;c = 1.01). However, when P; MAF is greater than P>
MAF, LR+PC is inflated (Figure 2A, A;c = 1.41); when this MAF relationship is reversed, LR+PC
is deflated (Figure 2C, 1, = 0.59). By contrast, ADGLM is calibrated for all MAFs: in Figs. 2A,
2B, and 2C, A;¢ is 0.98, 1.037, and 1.042, respectively. We also applied a standard LMM with
ancestry as a fixed effect and the genetic relationship matrix as a random effect. LMM has the

same miscalibration as LR+PC (Figure S1), so we do not consider it further.

Next, we assessed the performance of tests for 550 on data simulated with a range of
mean genetic (), mean ancestry (Bs), and ancestry variance (o¢) effects (Table 1, Table S1).
When 84=0 and ¢ = 0, linear regression without ancestry adjustment (LR) is calibrated in the
absence of population mean or variance structure (rows 1-3). However, LR is miscalibrated if
there is population mean structure (row 4) or population variance structure and a MAF
difference (rows 6-7). LR+PC and ADGLM perform similarly in the absence of population
variance structure: they are calibrated (rows 1-4) and have similar power (row 8), despite
ADGLM fitting an additional parameter. When there is population variance structure, ADGLM
and LR+PC are calibrated if there is no MAF difference (row 5), whereas only ADGLM is
calibrated if there is a MAF difference (rows 6-7). When S4#0 and MAFs are the same, ADGLM
is more powerful than LR+PC (rows 9-10). When MAFs differ, LR+PC has less power than

ADGLM (row 11) or an elevated false positive rate (row 12).

Finally, we examined the power of genetic association tests (8,0) for varying ancestry-

variance effects, ;. Power gains of ADGLM over LR+PC increase with 5 when MAFs are the

10
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same (Figure 3B) and when P; MAF is less than P> MAF (Figure 3C). When this MAF
relationship is reversed, LR+PC has false positives, and ADGLM retains its power (Figure 3A).
Taken together, these results demonstrate that tests for genetic association with LR+PC are
miscalibrated and have false positives or false negatives when there is population variance

structure while ADGLM is calibrated and powerful.

Diagnostic test for population variance structure

As we showed above, GWAS performed with standard corrections for population structure may
result in biased test statistics in the presence of population variance structure. We developed a
test for this bias that can be applied to GWAS summary statistics (Supp. Materials). It regresses
association test statistics on the difference of expected genetic variances and tests for a non-
zero slope, which occurs when there is residual population variance structure. This diagnostic
test is well-powered on test statistics from LR+PC applied to data simulated with population

variance structure (p=3.1x10, Figure S2) and is implemented in the ADGLM code repository.

Sensitivity of ancestry-variance test to model assumptions

Double generalized linear models, like most linear models, assume regression errors are
normally distributed®. We assessed the robustness of testing for 670 with ADGLM to violations
of this assumption. We examined the ability of two transformations to reduce Type 1 errors
under model misspecification: inverse-quantile normalization (“normalization”) and outlier

removal (“truncation”).

We simulated data under the null with heavy-tailed errors (t-distribution, df=6) and
applied ADGLM. Although ADGLM is miscalibrated (Aec=1.22, FPR=0.079), phenotype
truncation (Asc=0.95, FPR=0.049) or normalization (Asc=0.97, FPR=0.048) recovers calibration
(Figure 4A). We next applied ADGLM to simulated data where 90% of replicates are null and
found that relative to the original data (TPR=0.344, FPR=0.774), truncation (TPR=0.291,
FPR=0.049 ) or normalization (TPR=0.315, FPR=0.048) improve both power and false positive

rate.

Next, we assessed the robustness of tests for ancestry variance effect (6Z#0) to non-

normal ancestry distributions. We simulated phenotypes using ancestry fraction found in the

11
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Gene-Environment studies of Asthma in Hispanic/Latino children (GALA I1*3, Figure S3) as
described in Methods. We first used the skewed African ancestry distribution from Puerto
Ricans, where 2.0% (35) individuals are ancestry outliers. Applied to data simulated under the
null, ADGLM is calibrated (Acc=0.991, FPR=0.047) and minimally affected by ancestry
truncation (Asc=1.013, FPR=0.048) or normalization (Acc=1.025, FPR=0.051) in Figure 4B. On
data simulated under a mix of the null and alternative, performance is similar for original
(TPR=0.067, FPR=0.047), truncated (TPR=0.057, FPR=0.047), and normalized data
(TPR=0.076, FPR=0.050). Applied to data simulated with the bell-curved European ancestry
from Mexicans with only three ancestry outliers, ADGLM is calibrated under the null (Acc=1.00,
FPR=0.050) and minimally affected by ancestry truncation (Acsc=1.02, FPR=0.050) or
normalization (Aec=1.00, FPR=0.051) in Figure 4C. On data simulated under a mix of the null
and alternative, performance is similar for original (TPR=0.087, FPR=0.050), truncated
(TPR=0.094, FPR=0.051), and normalized data (TPR=0.105, FPR=0.051). Thus, ancestry
distribution transformations improve the performance of ancestry-variance tests, though these

ancestry distributions do not cause substantial miscalibration.

Variance effects in UK Biobank

Individuals from the British Isles have fine-scale population structure which is evident in a large
sample®®. To investigate whether ADGLM can detect fine-scale population variance structure,
we applied ADGLM to ~113K British-ancestry, deeply-phenotyped individuals from UK Biobank
(UKB, Supp. Materials). We tested binary, ordinal, and quantitative phenotypes (scaled to have
mean 0 and variance 1). We included assessment center, genotype array, sex, age, and PCs1-
10 as mean effects and tested for population variance structure (65#0) with ADGLM. We focus
on genetic PCs1-5, which represent geographic population structure in UKB; PC1, specifically,

is correlated with a geographic north-south cline*?.

PC1 is associated (nominal p<0.05) with the phenotypic variance of 17 of 29 tested non-
disease traits (Table S2), 12 of which are significant after Bonferroni correction (Table 2).
Interestingly, 6 of these 12 associations are only with phenotypic variance, and not mean
(absolute correlation of phenotype and PC1 < 0.01). Corpuscular hemoglobin has the strongest
PC1 variance association among continuous traits (Figure S4). In addition, PCs2-5 are

associated with the variance of 18 traits (Table S3), representing finer-scale population variance
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structure: PC3, which is also correlated with a north-south cline*?, has the strongest of these

variance associations.

We also investigated whether age and sex are associated with phenotypic variance
because age varies non-linearly with several phenotypes and different sexes represent different
environments'®. Of the 44 phenotypes tested, 33 have age-variance associations, and 17 have
sex-variance associations (Table S2). Overall, population variance structure, age- and sex-

variance associations are prevalent in a large sample of British-ancestry individuals.

Variance effects in admixed populations

For the remainder of this work, we focus on three admixed populations from two asthma and
allergy studies: Mexicans and Puerto Ricans from GALA Il, and African-Americans from the
Study of African Americans, Asthma, Genes, & Environments (SAGE Il). We analyzed asthma,
allergy-related diseases (eczema, hives, rhinitis, rash, and sinusitis), lung function (FEV1, FVC),
change in lung function after the first (§,) and second (§,) albuterol dose, BMI, height, and skin
pigmentation (baseline melanin, tanning). We adjusted phenotypic means for age, sex, and
ancestry (African and European ancestry fraction for Mexicans and Puerto Ricans; African

ancestry fraction for African-Americans).

Using ADGLM ancestry-variance tests (oZ#0), we find numerous associations (nominal
p<0.05) of ancestry in Figure 5 (also see Tables S4-7), as well as age and sex (Tables S4-7)
with phenotypic variance. The ancestry-variance effect sign for a given phenotype is the same
across populations except for asthma, which has a negative African variance effect in Puerto
Ricans and a positive African variance effect in Mexicans. To test for ancestry-variance
heterogeneity, we performed a K-1 df LRT for a population with K ancestry fractions. Of the 14
phenotypes tested in three populations, 4 associations in 3 phenotypes are significant at a
Bonferroni-corrected level of 0.05 (which is conservative because the phenotypes are highly
correlated): asthma and §, in Puerto Ricans, and §; and 6, in African-Americans. In addition, six
of the phenotypes have previously-documented ancestry-mean associations which are also
detected as mean effects with ADGLM (B,#0): FEV and FEV1 in Puerto Ricans®, asthma in

56,57
) 611

Mexicans and Puerto Ricans®®, baseline melanin and &, in African-Americans®.

13


https://doi.org/10.1101/439661
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/439661; this version posted October 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

ADGLM GWAS in admixed populations

We tested for genetic associations (84#0) of common SNPs (MAF>0.05) in the admixed
datasets above using both ADGLM, which corrects for population variance structure, and
LR+PC, which does not. We represent ancestry using two ancestry fractions (African and
European) for Puerto Ricans and Mexicans, and one (African) for African-Americans. Effect
sizes for dichotomous traits (such as eczema) cannot be compared directly because they were
obtained through probit regression. We discover two novel SNP associations with ADGLM,
neither of which is significant with LR+PC: in Table S8, rs9808780 is associated with eczema in
Mexicans and Puerto Ricans (p=1.53e-8) and rs113736578 is associated with rash in Puerto
Ricans (p=2.14e-8). We next compared ADGLM to LR+PC at GWAS associations in the NHGRI
catalog*®, thinned to one SNP per locus. Since ADGLM is less inflated than LR+PC (Table S9),
we genomic control*’
the 46 GWAS SNPs in our datasets, 12 SNPs replicate with either test (paq < 0.05, Table 3;). Of
these, 11 have a more significant p-value from ADGLM than LR+PC, indicating that ADGLM

has better power to detect genetic associations than LR+PC.

adjusted test statistics when Acc >=1 to be maximally conservative. For

Variance QTL

We next tested for genetic variance associations (oZ+0) with ADGLM to find variance
quantitative trait loci (vQLTs) in the admixed datasets above. For Mexicans and Puerto Ricans,
we included genotype in the mean model and adjusted for ancestry, age, and sex in the mean
and variance models; we did the same for African-Americans, adjusting for significant variance
covariates (Table S6). We detect 17 vQTLs after genomic control adjustment (paq < 5e-8) in
Table 4; the corresponding Acc values are in Table S10. The associations with hives in
Mexicans, height in Puerto Ricans, asthma in African Americans, and tanning in African
Americans are each detected in only one population. Of the 17 genetic variance associations,
only 3 also have significant mean effects (rs1640275, rs117344403, rs55837614).

Methylation association studies

DNA methylation, an epigenetic mark which is affected by environmental factors?’, varies across
disease phenotypes?® and ancestry®®. To characterize the relationship of methylation and

ancestry variance, we analyzed quantile-normalized methylation from 117 Mexican individuals.
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We adjusted for the mean effect of age, sex, ancestry, and asthma case status. We tested for
ancestry-mean effects (By=0) with ADGLM and LR+PC, as well as ancestry-variance effects
(05+0) with ADGLM, resulting in Q-Q plots in Figure S5 and Manhattan plots in Figure S6. After
Bonferroni correction, ADGLM identifies eight loci with ancestry-mean effects and 42 loci with
ancestry-variance effects, 4 of which also have significant mean effects (Table S11). LR+PC, by
contrast, only identifies one mean association, which is declared as a significant variance

association, but not a mean association, by ADGLM.

Discussion

In this study, we describe the presence of and discuss the importance of population variance
structure, the difference of phenotypic variance by population. To model ancestry-variance
relationships, we developed a novel statistical framework, the ancestry double generalized
linear model (ADGLM). Unlike existing variance models, ADGLM accounts for continuous and
discrete definitions of ancestry, arbitrary covariates, and binary or continuous phenotypes. We
used ADGLM to discover many ancestry-variance associations in a British-ancestry and
admixed human populations for a wide range of binary and continuous traits, including diseases

and methylation, many of which have been subject to natural selection*?°6:57:59.60,

When ancestry is related to phenotypic variance, genetic association tests with standard
population structure corrections (e.g. linear regression with principal components adjustment or
linear mixed models) are miscalibrated as a function minor allele frequency. This miscalibration
has been observed for binary traits and can be attributed to the inability of standard LMM to
model differences in disease prevalence?'. We additionally observed this miscalibration for
continuous traits and showed that it is a consequence of unmodeled population variance
structure. Though not always apparent in a genome-wide Q-Q plot, this miscalibration can be
readily detected by our diagnostic test which operates on summary statistics. ADGLM
addresses these problems and association tests with ADGLM are both calibrated and well-

powered for simulated and empirical human data.

The numerous variance associations we observed imply that previously conducted
GWAS using LR+PC or LMM have residual population variance structure. The impact can be
substantial as demonstrated by the inflation of height GWAS test statistics in LDscore

62,63

analysis®'. Two recent studies also found evidence for incomplete population structure
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correction in large cohort studies, including UK Biobank; based on our analysis, this may be due
in part to unmodeled population variance structure. If phenotypes and principal components are
available, population variance structure can be detected with ADGLM. Though the association
of the square of a centered, scaled phenotype with principal components implies population

variance structure may exist®, it is not a direct test.

In addition to acting as a statistical confounder, population variance structure has
important biological implications, including in medical genetics®. Intuitively, differences in
phenotypic distribution between populations imply that the fraction of individuals in the
phenotypic tails differs between populations, and as such, longer tails may indicate a greater
disease burden. As we previously showed, small differences in phenotypic variance between
sexes can create large differences in disease liability'®. Here, we estimate different asthma
African ancestry-variance effects for Mexicans (17.2 £ 7.6) and Puerto Ricans (-4.05 + 2.9).
Mexicans and Puerto Ricans living in the U.S. differ dramatically in their asthma prevalence (8%
vs. 22%), which has been referred to as the “Hispanic Paradox™°. These ancestry-variance

associations might partially explain this difference.

In the 1940s, Waddington proposed that phenotypic variability is under genetic control,
biological systems evolve to maintain homeostasis under a certain range of environmental or
genetic perturbations, and that changing the environment to be outside the normal range will
shift an optimum that has been shaped by stabilizing selection over many generations®®. Under
this model, increasing admixture proportion or shifting environmental conditions will lead to an
increase in population variance, a process known as decanalization®. Although this
phenomenon is well-documented in other species, it has seldom been described in humans,
where it has been proposed as an explanation for the dramatic increase in non-communicable
complex disease prevalence®’. The ability of ADGLM to identify population variance structure as
a function of admixture proportion or specific environmental context offers a new avenue to
identify factors associated with variance heterogeneity, and thus potential drivers of

decanalization.

ADGLM could be used as a screening tool for signals consistent with the presence of
epistatic or genotype-by-environment interactions. ADGLM vQTL, which are controlled for
variance population structure, may point to unmodeled interactions (either GxG or GxE)®® that
can then be tested for interactions with other loci or specific environmental variables*.

Additionally, the presence of population variance structure may affect admixture mapping
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efforts®® and could be corrected for with ADGLM. Finally, we could reduce the running time of
the ADGLM GWAS roughly to ordinary GWAS by fitting the background variance components

only once’, rather than once per SNP.

In conclusion, we find pervasive population variance structure in multiple human
populations. As human studies increase in size and diversity, models that account for population
variance structure, such as ADGLM, will be required for interpretable association testing.
ADGLM has utility in studies of non-human model systems and natural populations, which have
differences in phenotypic variability among groups and variance effects. By focusing primarily
on the effect of genetic variation on phenotypic mean and ignoring its effect on variance, we
have been missing an important axis contributing to phenotypic variation and disease

emergence. Modeling phenotypic variance with ADGLM will enable discoveries along this axis.
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Figure 1: Differential selection induces population variance structure. (A) Phenotypic mean, y, and
(B) phenotypic variance, o2, of an admixed population with average ancestry fraction, 8, composed of two
populations that experienced neutrality (red), weak selection (blue), or strong selection (green). Points are
averages across 1000 simulations and bars denote 95% confidence intervals. Selection induces a
dependence of phenotypic mean, as well as phenotypic variance, on ancestry.
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Figure 2: Q-Q plots of genetic association tests applied simulated null data. Data simulated with
B4=0 and population variance structure for population MAFs: (A) p, = 0.5, p, = 0.05, (B) p, = 0.5,p, =
0.5, or (C) p, = 0.05, p, = 0.5. The null expectation is denoted by the black line and the null 95%
confidence interval by the gray band. LR+PC -log1o(p-values) in red are (A) inflated or (C) deflated when
population MAFs differ; those from ADGLM in blue are calibrated.
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Figure 3: Power of genetic association tests applied to simulated data. Power (< = 5¢78) of tests
applied to data simulated with varying o for three MAF cases. (A) For p; = 0.5, p, = 0.05, LR+PC is
enriched for false positives, and ADGLM is well-powered. For (B) p, = 0.5, p, = 0.5 and (C) p, =

0.05, p, = 0.5, ADGLM has more power than LR+PC when there is population variance structure (o7 > 0).
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Figure 4: Effect of phenotype and ancestry outliers on ancestry-variance tests. Q-Q plots of
ancestry-variance association tests applied to data simulated under the null (¢ = 0). (A) Phenotype

transformation reduces false positives of data simulated with heavy-tail, t-distributed error. (b, c) Tests
applied to data simulated with real (B) African ancestry from Puerto Ricans or (C) European ancestry from

Mexicans are calibrated and unaffected by ancestry transformation.
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Figure 5: Ancestry-variance associations in admixed populations. Associations of African, European,
and Native American ancestry with phenotypic variance in (A) Mexicans, (B) Puerto Ricans, and (C)
African Americans. Points indicate estimates of ancestry variance effects, bands represent 95%
confidence intervals, and starred phenotypes have significant ancestry-variance heterogeneity after
Bonferroni correction (p < 0.05). The gray vertical line denotes o7 = 0.
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Tables
Parameters Discovery rate

Row p1 p2 Be  Bo  0f LR LR+PC ADGLM
1 05 05 O 0 0 0.051 0.051 0.054

2 005 05 O 0 0 0.054 0.052 0.054

3 05 005 O 0 0 0.054 0.050 0.050

4 005 05 O 02 O 0.140 0.053 0.054

5 05 05 0 0 1 0.051 0.051 0.055

6 05 005 O 0 1 0.074 0.086 0.053

7 005 05 O 0 1 0.032 0.021 0.057

8 005 05 08 O 0 0.993 0.783 0.725

9 05 05 08 O 1 0.698 0.693 0.848

10 05 05 08 02 1 0.702 0.702 0.850
11 0.05 05 08 02 1 0.467 0.205 0.606
12 05 005 08 02 1 0.838 0.269 0.135

Table 1: Performance of genetic association tests applied to simulated data. We report false
positive rate (o< = 0.05, rows 1-7) or power (x = 5e~7, rows 8-12) of tests of genetic effect (g = 0) for a

bioRxiv preprint doi: https://doi.org/10.1101/439661; this version posted October 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

range of MAFs (ps, p2) and genetic (Bg), ancestry-mean (Bs), and ancestry-variance (o7) effects. The null
hypothesis is true above the double line and false below it. Linear regression (LR) is miscalibrated in the
presence of population structure. ADGLM is calibrated and powerful while linear regression with principal

components (LR+PC) is often biased or underpowered.

Phenotype Effect size (d7) P-value
Corpuscular hemoglobin -0.025 + 2.5E-03 7.75E-25
Platelet volume * 0.015 + 2.5E-03 1.36E-09
Platelet count -0.012 + 2.5E-03 7.13E-07
Platelet distribution width * 0.015 £ 2.5E-03 2.14E-09
Erythrocyte (red blood cell) distribution width -0.019 + 2.5E-03 3.77E-14
Leukocyte (white blood cell) count -0.018 + 2.5E-03 1.03E-13
Educational attainment * -0.020 + 2.4E-03 5.73E-16
Basal metabolic rate (z) -0.024 + 2.5E-03 3.41E-23
Forced vital capacity (z) * 0.012 £ 2.7E-03 8.89E-06
Hair pigment -0.023 + 2.46E-03 1.28E-21
Skin pigment * -0.074 + 2.45E-03 9.25E-199
Skin tanning * 0.068 + 2.45E-03 4.02E-169

Table 2: UK Biobank variance associations. Ancestry variance effect sizes estimates, standard errors,

and p-values of associations of PC1 with phenotypic variance in UKB British-ancestry individuals.
Associations are significant at a threshold of 0.05 after Bonferroni correction. Phenotypes followed by

“(z)” are z-scores and starred phenotypes have an absolute correlated with PC1 that is greater than 0.01.
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LR+PC ADGLM

Population  Trait SNP Effect size (B4) P-value Effect size (B4) P-value

MX Eczema rs17389644 * 0.252 + 1.51E-01 1.10E-01 4.90E-4 + 2.15E-03 3.49E-02
MX Eczema rs4796793 * -0.412 £ 9.53E-02 3.85E-05 -0.0074 +4.05E-02 2.76E-05
MX Melanin  rs16891982 * 0.487 £ 1.70E-01 8.90E-03 0.591 £ 1.58E-01 8.47E-04
MX Tanning rs12210050 * 0.734 £ 3.32E-01 4.08E-02 0.748 £ 3.35E-01 2.50E-02
MX Tanning rs7969151 * 0.613 £ 2.70E-01 3.63E-02 0.803 £ 2.38E-01 4.10E-03
MX Tanning rs154659 * -0.393 £+ 1.92E-01 5.73E-02 -0.397 £ 1.78E-01 2.41E-02
MX FVC rs9791644 -0.148 £ 6.33E-02 2.65E-02 -0.131 £ 6.32E-02 4.94E-02
MX Rhinitis  rs868688 * -0.137 £ 6.22E-02 3.48E-02 -0.002 £ 8.13E-03 2.25E-02
PR Eczema rs13015714* -0.14 £ 7.29E-02 6.55E-02 -3.22E-4 +7.52E-4 4.15E-03
PR Melanin  rs1834640 * -0.374 £ 9.37E-02 1.81E-04 -0.375 £ 9.32E-02 1.41E-04
PR Melanin  rs6142102 * 0.244 + 8.55E-02 7.02E-03 0.253 £ 8.40E-02 4.45E-03
PR Melanin  rs2675345 * -0.514 £ 9.68E-02 8.84E-07 -0.542 £ 9.48E-02 2.14E-07

Table 3: Replicated GWAS associations in admixed populations. Estimated main genetic effect sizes
and p-values of replicated (paqgi < 0.05) NHGRI associations in admixed individuals (MX: Mexican, PR:

Puerto Rican; FVC: forced vital capacity). ADGLM p-values are smaller than LR+PC p-values at 11 of 12
SNPs (starred).

Population Phenotype SNP  Effect size (o) P-value

Mexican Hives rs705415 1.64 £ 0.33 1.57E-08
FEV1 rs77775114 . -05+0.09  3.85E-08

Puerto Rican FEV1 rs10880087 0.6+£0.10 1.39E-08

FEV1 rs77934571 0.64 £ 0.11 1.18E-08

FEV1 rs1391405 -0.48 £ 0.09 5.12E-09

FEV1 rs1640275 0.41 £ 0.07 1.53E-09

FEV1 rs2567607 -0.52 £ 0.11 2.20E-08

FVC rs117344403 36.85 + 1.02 2.71E-17

Height rs117344403 38.87 £ 0.83 3.41E-25

Mexican and Puerto Rican FEV1 rs55837614 -0.522 £ 0.10 1.16E-09

FEV1 rs4742581 -0.276 £ 0.10 2.19E-08

FVC rs74773809 0.7372 £ 0.10 3.30E-09

African-American Asthma rs59843451 0.75+£0.14 2.09E-07
‘Height rs12908497 -0.58+0.12  1.84E-08

Height rs17712224 -0.34 £ 0.06 2.27E-08

Height rs58053243 -0.36 £ 0.07 9.76E-09

Tanning rs3877136 -65.51 + 1.42 1.23E-08

Table 4: Variance quantitative trait loci in admixed individuals. Estimated genetic variance effects,

standard errors, and p-values of vVQTLs (paqj < 5e-8, adjusted for genomic control) in admixed populations
(FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity). Tests of continuous
phenotypes, which are below the dotted line within each population sub-table, were run on quantile-

normalized phenotypes.
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