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Abstract 
Identifying the genetic and environmental factors underlying phenotypic differences between 

populations is fundamental to multiple research communities. To date, studies have focused on 

the relationship between population and phenotypic mean. Here we consider the relationship 

between population and phenotypic variance, i.e., “population variance structure.” In addition to 

gene-gene and gene-environment interaction, we show that population variance structure is a 

direct consequence of natural selection. We develop the ancestry double generalized linear 

model (ADGLM), a statistical framework to jointly model population mean and variance effects. 

We apply ADGLM to several deeply phenotyped datasets and observe ancestry-variance 

associations with 12 of 44 tested traits in ~113K British individuals and 3 of 14 tested traits in 

~3K Mexican, Puerto Rican, and African-American individuals. We show through extensive 

simulations that population variance structure can both bias and reduce the power of genetic 

association studies, even when principal components or linear mixed models are used. ADGLM 

corrects this bias and improves power relative to previous methods in both simulated and real 

datasets. Additionally, ADGLM identifies 17 novel genotype-variance associations across six 

phenotypes. 
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Introduction 
Many complex phenotypes differ dramatically in their distributions between populations due to 

genetic and environmental factors. Both broad1,2 and fine-scale3 population differences are 

central to epidemiology4, pharmacogenomics5,6, biomedicine7, and population genetics8,9. In the 

context of association studies, statistical correction methods for population structure, such as 

principal components10 and linear mixed models11, have helped identify thousands of loci 

associated with hundreds of complex traits12. This underscores the importance of understanding 

the causes and consequences of fine-scale population variation.  

To date, studies of phenotypic differences between populations and statistical correction 

methods have primarily focused on variation in population means. As we demonstrate below, 

while studying fine-scale population structure in UK Biobank, we discovered that phenotypic 

variance, in addition to phenotypic mean, varies between populations. Such “population 

variance structure” (in analogy to “population mean structure”) can produce substantial 

phenotypic differences between populations and has major biological and statistical 

implications. For example, we recently showed for sex-biased diseases, even a small difference 

in a disease’s liability variance can double its prevalence between groups13. Various 

evolutionary models14 also suggest that changes in phenotypic variance allow populations to 

adapt quickly in response to environmental perturbations15.  

Although the causes and consequences of phenotypic variance heterogeneity remain 

poorly understood, several factors could drive population variance structure. First, it can result 

from non-linear interactions among genotypes (i.e. epistasis). Admixture between genetically 

diverse populations can disrupt fine-tuned epistatic interactions, increasing phenotypic 

variance16,17. Similarly, gene-environment interactions18 (GxE) can induce changes in 

phenotypic variance when environmental exposures differ between populations. Secondly, 

population variance structure can emerge under additivity. Phenotypic variance itself is a 

genetically-controlled quantitative trait19,20, and as such the frequency of alleles associated with 

different levels of variability (vQTLs) may differ across populations. Here we also demonstrate, 

for the first time, that natural selection can directly induce phenotype-variance structure. 

 To identify and model population variance structure we develop the Ancestry Double 

Generalized Linear Model (ADGLM). ADGLM accommodates arbitrary phenotypic and covariate 

distributions while accounting for broad- and fine-scale population structure of phenotypic mean 

as well as variance. Recent work has shown that modeling ancestry-variance effects can reduce 
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biases of GWAS test statistics21,22. However, these methods are limited to modeling binary 

responses21 or major population groups22. Other studies tested for genotypes associated with 

phenotypic variance (vQTLs)23, but did not model population-variance relationships24-26, which 

generates false-positives when population variance structure exists. We show via extensive 

simulations that ADGLM reliably detects phenotypic variance structure and is robust to several 

violations of model assumptions.  

To examine the utility of our approach, we first test for population variance structure with 

ADGLM in several large human datasets. We discover ancestry-variance associations for 12 of 

44 tested phenotypes in ~113K UK Biobank British-ancestry individuals and 3 of 14 tested 

phenotypes in ~3K Mexican, Puerto Rican, and African-American individuals. Additionally, we 

find 42 ancestry-variance associations in Mexicans of DNA methylation, an epigenetic mark 

associated with environment27, disease phenotypes28, and ethnicity29. We further illustrate the 

utility of ADGLM in the context of genetic association mapping and find that relative to linear 

regression with principal components, modeling population variance structure leads to an 

increase in power, both in simulated and real datasets. We release ADGLM as open-source R 

code. 

Material and Methods 
Phenotypic models 

For a continuous phenotype 𝑦, we assume 

𝑦 = ∑ 𝑔%% 𝛽',% + 	𝜀,   𝜀	~	𝑁(0, 𝜎12	𝐼4)                                     (Eq. 1) 

where 𝑔%	is the genotype of the sth SNP, 𝛽',% is the genotype’s effect size, and errors in 𝜀 are 

assumed to be i.i.d. Gaussian. To model binary phenotypes, this model can be modified into a 

probit model by treating 𝑦 as a liability and then thresholding. The main confounder in genetic 

association studies is population structure30. Linear regression with principal components 

(LR+PC)10 corrects for this by including the ancestry covariate 𝜃: 

𝑦 = 	∑ 𝑔%% 𝛽',% + 	𝜃	𝛽7 + 	𝜀,       𝜀	~	𝑁(0, 𝜎12	𝐼4)                       (Eq. 2) 

𝜃 is often a matrix of genetic principal components, but it can contain ancestry admixture 

fractions or background covariates like age or sex. Linear mixed models (LMM)31,32 account for 
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background genetic relatedness by including suitably normalized SNP genotypes, 𝑍, as a 

random effect: 

𝑦 = 	∑ 𝑔%% 𝛽',% + 	𝜃	𝛽7 + 	𝑍𝑏 + 𝜀,      𝜀	~	𝑁(0, 𝜎12	𝐼4)           (Eq. 3) 

We ran LR+PC as ordinary linear regression for continuous traits and probit regression for 

binary traits. We ran LMM with pylmm33, choosing 𝑍 to have centered and scaled columns. Note 

that this LMM still models each sample as equally variable (modulo inbreeding).  

 

A statistical model for population variance structure  

Population variance structure induces heteroskedasticity34, which violates standard linear model 

assumptions. Recent tests for heteroskedasticity35,36 or variance effects24,25,37 are appropriate 

when their assumptions are met, but they either cannot adjust for ancestry-variance effects, 

cannot simultaneously account for continuous ancestry and continuous phenotypic 

distributions21,22, or do not scale to UK Biobank sized cohorts. To jointly model phenotypic mean 

and variance, we develop a framework based on the double generalized linear model38 (DGLM), 

which has link functions and covariates for response mean as well as variance. Since we focus 

on ancestry-phenotype relationships, we call our framework the Ancestry Double Generalized 

Linear Model (ADGLM). The ADGLM uses standard estimates of ancestry (𝜃), such as 

fractional ancestry estimates or genetic principal components: 

𝑦 = ∑ 𝑔%% 𝛽',% + 	𝜃	𝛽7 + 	𝜀,             𝜀:	~	𝑁;0, 	𝑓(𝜎12 	+ 	𝜃:	𝜎72=)                (Eq. 4) 

where 𝜀:	is still entry-wise independent and	𝑓 is the variance link function, typically the 

exponential function39. Negative variance effects decrease variance, but the exponential 

function guarantees that total variance is positive. The ADGLM accommodates dichotomous 

phenotypes via a probit link function or continuous phenotypes, as well as arbitrary phenotypic 

mean and variance covariates. 

 

Association testing with the ADGLM 

The ADGLM framework enables likelihood ratio tests (LRTs) for ancestry and genetic 

associations. A 1 degree-of-freedom (df) test for ancestry-variance effect (i.e. population 
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variance structure, 𝜎72¹0) uses the null model 𝐻? and alternative model 𝐻2, while a 1-df LRT for 

ancestry-mean effect (𝛽7¹0) uses models 𝐻@ and 𝐻2: 

 𝐻?:			𝑦 = 	𝜃	𝛽7 + 	𝜀,             𝜀	~	𝑁(0, 	𝜎12) 

𝐻@:			𝑦 = 	𝜀,              𝜀	~	𝑁;0, 	𝑓(𝜎12 + 	𝜃	𝜎72=) 

 𝐻2:			𝑦 = 	𝜃	𝛽7 + 	𝜀,             𝜀	~	𝑁;0, 	𝑓(𝜎12 + 	𝜃	𝜎72=) 

The ADGLM also enables 1-df association tests of mean genetic effect (𝛽g¹0; 𝐻2 vs. 𝐻B) or 

variance genetic effect for vQTLs (𝜎'2¹0; 𝐻B vs. 𝐻C), both of which are corrected for population 

variance structure via 𝜃 and		𝜎72. In addition, a 2-df test for mean genetic and ancestry-variance 

effects uses models 𝐻? and 𝐻B: 

𝐻B:		𝑦 = 	𝑔	𝛽' + 	𝜃	𝛽7 + 	𝜀,    𝜀	~	𝑁;0, 	𝑓(𝜎12 + 	𝜃	𝜎72)= 

𝐻C:		𝑦 = 	𝑔	𝛽' + 	𝜃	𝛽7 + 	𝜀,    𝜀	~	𝑁;0, 	𝑓(𝜎12 + 	𝜃	𝜎72 + 𝑔	𝜎'2)= 

We used the R packages “dglm” and “glmx” for continuous and binary phenotypes, respectively, 

and the exponential variance link function throughout. Though we include a variance intercept 

term in continuous phenotypic models, we constrain it to one (1 = exp	(0)) in binary phenotypic 

models to obtain identification. In the “dglm” package, standard errors of variance terms are 

approximated based on the leverages of the variance covariates40 and thus do not depend on 

the phenotype if it is scaled. These ancestry and genetic association tests, along with the 

diagnostic test for residual variance population structure, are implemented in the ADGLM code 

we released. 

 

Simulating data from a structured population 

We simulated data from a structured sample of two population as follows. Ancestry of the 𝑖IJ 

individual, 𝜃:, is 1 for individuals from population 1, and 0 otherwise. We simulated the 𝑠IJ SNP 

genotype of the 𝑖IJ individual from population 𝑗 as 𝑔:%	~	𝐵𝑖𝑛𝑜𝑚;2, 𝑝%S=, where 𝑝%S is the SNP 

MAF in population 𝑗. We next simulated independent errors as 𝜀:	~	𝑁;0, 𝑒𝑥𝑝(𝜎12 + 	𝜃:	𝜎72)= and 

phenotypes as 𝑦: = 𝛽'𝑔:% + 𝜃:	𝛽7 +	𝜀:. We took a sample of 200 individuals (100 per 

population), which has population variance structure when 𝜎72 is non-zero. For the Figure 2 

simulations with no genetic effect, m = 10,000 SNPs, 𝛽' = 0, 𝛽7 = 0, 𝜎12 = 0.2, 𝜎72 = 1.4. For the 

Table 1 simulations, m = 10,000 SNPs, 𝛽' = 0.8, 𝛽7 = 0.2, 𝜎12 = 	0.1, 𝜎72 = 1. For the Figure 3 
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simulations with a true genetic effect, m = 10,000 SNPs, 𝛽' = 0.6, 𝛽7 = 0.3, 𝜎12 = 0, and 𝜎72 is 

one of 35 equally-spaced values between 0 and 2. 

 

Simulating data from an admixed population 

We simulated data from an admixed population composed of two source populations with a 

given 𝐹YZ as follows. We first drew the 𝑠IJ SNP ancestral minor allele frequency as 

𝑝%	~	𝑈(0.01, 0.5). We simulated source population MAFs with the Balding-Nichols model41 as 

𝑝%S	~	𝐵𝑒𝑡𝑎(𝑝%(1 − 𝐹𝑠𝑡)/𝐹𝑠𝑡, 	(1 − 𝑝%)(1 − 𝐹𝑠𝑡)/𝐹𝑠𝑡), 𝑗 = 1, 2. The 𝑖IJ individual’s population 1 

ancestry fraction was drawn as 𝜃:	~	𝑈(0.5, 0.9). For each allele (𝑘 = 1,2), we drew local 

ancestries as	𝛾d~	𝐵𝑖𝑛(1, 𝜃:) and haploid genotypes as 𝑙d	~	𝐵𝑒𝑡𝑎;1, 𝑝%S=, where 𝑝%S	is the MAF  

source population 𝛾d . We formed the diploid genotype 𝑔:% of the ith individual at SNP s as the 

sum of haploid genotypes. Finally, we simulated independent errors as 𝜀:	~	𝑁;0, 	exp(𝜎12 +

	𝜃:	𝜎72)= and phenotypes as 𝑦: = 𝑔:%	𝛽' + 𝜃:	𝛽7 +	𝜀:. 

 

Simulating data from an admixed population after differential selection 

We simulated data as in “Simulating data from an admixed population” with the following 

modifications. For values of 𝑇 between 0.05 and 0.25 in steps of 0.025, we simulated the 𝑖IJ 

individual’s ancestry as 𝜃:~	𝑁(𝑇, 0.15) and truncated it to (0, 1). We drew the 𝑠IJ SNP effect 

size as 𝛽'%	~	𝑁(0, 0.2). We then changed effect signs to induce a genetically-based correlation 

of phenotype and ancestry caused by three strengths of selection. Under neutrality, the sign of 

𝛽'% is unchanged, so 𝛽'% is uncorrelated with ancestry. Under weak selection, the sign of 𝛽'% is 

made positive with probability p = ghi
ghijghk

 and negative with probability 1 − p, where 𝑝%: is 

population 𝑖 MAF. Since the Balding-Nichols model produces identical frequency spectra for all 

populations, p = 0.5, and 𝛽'% and ancestry are perfectly correlated at half of the SNPs. Finally, 

under strong selection, the sign of 𝛽'% is made positive if 𝑝%@>	𝑝%2 and negative otherwise, so 𝛽'% 

and ancestry are perfectly correlated at all SNPs. These sign changes result in effect sizes 𝛽'%∗ . 

For the ith individual, we simulated independent error as 𝜀:	~	𝑁(0, 𝜎12) and phenotype as 𝑦: =
∑ 𝛽'%∗ 	𝑔:%% + 𝜀:. We did this for 2000 SNPs from a sample of 100 individuals for 1000 replicates. 
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Outlier simulations  

We simulated data from 1000 individuals for 1000 replicate simulations under the null (𝜎72 = 0) 

and alternative (𝜎72 = 0.4) of the ancestry-variance test. For simulations with heavy-tailed errors, 

we simulated errors 𝜀 from the t distribution (df=6), simulated ancestry as 𝜃: ∼ 	𝑁(0.7, 0.4) 

truncated to (0, 1), and formed phenotypes as 𝑦: = 𝜃: ∗ 0.4 +	𝜀:. In the simulations with real 

GALA II ancestry for 𝜃:, we simulated errors as 𝜀:		~	𝑁(0, exp(0.1 + 𝜃: ∗ 𝜎72)) and phenotypes as 

𝑦: = 𝜃: ∗ 0.4 + 𝜀:. We transformed phenotypes or ancestry by inverse-variance quantile-

normalizing them or truncating them to remove outliers more than two standard deviations from 

the mean.  

 

UK Biobank 

We obtained UK Biobank data and restricted our analysis to ~113K British-ancestry individuals. 

We performed quality control steps as in a previous work42, resulting in genetic PCs and 

continuous phenotypes which are standardized to have mean 0 and standard deviation 1. We 

additionally quantile-normalized continuous phenotypes. For the variance association test, we 

adjusted for assessment center, genotype array, sex, age, and PCs 1-10 in the mean. We 

tested for variance effects (age, sex, PCs1-5) one at a time. The associated traits include ten 

blood traits, 15 disease traits, body mass index (BMI), blood pressure, educational attainment, 

basal metabolic rate, two measures of baseline lung function (forced expiratory volume in 1 

second, FEV1, and forced vital capacity, FVC), age at menopause, hair pigment, skin pigment, 

and tanning. 

 

SAGE II and GALA II datasets 

The Study of African Americans, Asthma, Genes & Environments (SAGE II)43 and Genes-

Environment and Admixture in Latino Americans (GALA II)44 studies are comprised of admixed 

individuals (ages 8-21). Individuals were deeply phenotyped and genotyped. SAGE consists of 

2,013 African Americans. The GALA II study consists of 4427 individuals, of whom 1245 are 

Mexican and 1785 are Puerto Rican. Genotyping resulted in 482,578 autosomal variants after 

filtering. We removed related individuals by excluding one of each of a pair of individuals with a 

REAP45 coefficient > 0.025, leaving 1160 Mexicans and 1612 Puerto Ricans. For both datasets, 
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we removed genotypes with MAF < 0.05 and removed SNPs or individuals with more than 5% 

of genotypes missing. Global ancestry fractions were estimated with the program 

ADMIXTURE46 with two ancestral groups (Africans and Europeans) for SAGE and three 

ancestral groups (Native Americans, Africans, and Europeans) for GALA II. 

 

SAGE II and GALA II association testing 

We tested the following phenotypes: asthma; allergy-related disease traits (eczema, hives, 

rhinitis, rash, and sinusitis); continuous traits (BMI, height); FEV1 and FVC; lung function 

changes after the first (𝛿@) and second (𝛿2) albuterol administrations. We also tested two skin 

pigmentation phenotypes: baseline melanin, the average of right and left body measurements of 

unexposed areas, and tannability, the difference between baseline and exposed melanin 

measurements19. For ancestry association tests, we included K-1 of K ancestry fractions in the 

variance model: for Mexicans and Puerto Ricans, we tested for African ancestry and included 

European ancestry as a variance covariate, and analogously for Native American and African, 

and African and European ancestry. For African-Americans (K=2), no additional ancestry 

variance covariate is required. For genetic association tests, we did not thin SNPs for LD nor 

impute missing phenotypic or covariate measurements. Where noted, genomic control47 was 

performed by dividing association test statistics by 𝜆rs. We obtained GWAS associations of 

tested phenotypes from the NHGRI catalog48 on April 25, 2018 and thinned it to keep the 

strongest SNP association per locus, leaving 246 SNPs. 

 

GALA II methylation 

We used QC for GALA II methylation data from whole blood as described in Galanter et al.29, 

resulting in batch- and cell type-adjusted methylation at 321,503 autosomal probes. Of the 124 

Mexican individuals with methylation measurements, we removed those with outlier Native 

American ancestry (> 2 s.d. from the mean), leaving 117 individuals. We quantile-normalized 

methylation values and adjusted for age, sex, ancestry fraction, and asthma case status. 
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Results 
Sources of population variance structure 

Many studies have explored how genotype-by-environment interactions18 and 

epistasis49-51 may lead to a shift in phenotypic variance as a function of allele frequencies or 

environmental factors. Here, we consider another possibility: that differential selection between 

populations causes population variance structure under a purely additive model. To address this 

question, we simulated admixed populations that experienced differential selection. 

We first generated allele frequencies at 2,000 SNPs from two ancestral populations 

under the Balding-Nichols model41. We then simulated effect sizes consistent with natural 

selection by correlating effect size and allele frequency difference between populations. We 

used a correlation of 0.0 under neutrality, 0.5 for weak selection, and 1.0 for strong selection. 

Finally, we simulated phenotypes using an additive model for a sample of 100 two-way admixed 

individuals composed of these ancestral populations with an average ancestry fraction, 𝜃. Under 

neutrality, neither phenotypic mean nor variance depends on ancestry fraction (Figure 1). 

However, after either weak or strong selection, both phenotypic mean (Figure 1A) and variance 

(Figure 1B) depend on ancestry. This demonstrates that differential selection between 

populations is sufficient to induce population variance structure. In humans, strong, genetically-

based ancestry-phenotype correlations are likely due to selection52, and may therefore be 

accompanied by population variance structure. 

 

Ancestry-variance association tests 

We first assessed the performance of the ancestry-variance test (𝜎72¹0) with ADGLM by 

applying it to simulated data from a structured sample of two populations (P1, P2) with MAFs 𝑝@ 

and 𝑝2. Since the MAF difference (𝑝@ − 𝑝2) determines the genetic variance difference 

(2𝑝@(1 − 𝑝@) − 2𝑝2(1 − 𝑝2)) between populations, we considered three types of SNPs based on 

their MAF in the two populations: SNPs with a MAF difference that is large and negative (𝑝@ =

0.05,	𝑝2 = 0.5), large and positive (𝑝@ = 0.5,	𝑝2 = 0.05) and those with no MAF difference (𝑝@ =

0.5,	𝑝2 = 0.5). We simulated 10,000 SNP genotypes and continuous phenotypes for 100 

individuals from each population for a range of 𝛽g, 𝛽𝜃, 𝜎72 values. Under the null (no ancestry-

variance effect 𝜎72 = 0), ADGLM is calibrated with a false positive rate of 0.052 when 𝛽7 = 0 and 

0.054 when 	𝛽7 = 0.2 at ∝	= 0.05 (also see Table S1). Under the alternative (𝜎72 = 1), population 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/439661doi: bioRxiv preprint 

https://doi.org/10.1101/439661
http://creativecommons.org/licenses/by-nc/4.0/


 10 

P1 has greater phenotypic variance than P2, creating population variance structure in their 

combined sample. Here, ADGLM has power 0.463 when 	𝛽7 = 0 and 0.445 when 	𝛽7 = 0.2 at ∝

	= 5𝑒uv. 

 

Effect of population variance structure on genetic association tests 

Genome-wide association tests commonly correct for population structure by using linear 

regression with principal components (LR+PC, Eq. 2) or linear mixed models (LMM31, Eq. 3 in 

Methods). We compared the performance of genetic association tests (𝛽g¹0) with ADGLM, 

LR+PC, and LMM applied to data simulated as in "Ancestry-variance association tests". First, 

we tested for a genetic effect on data simulated under the null (𝛽g=0) with population variance 

structure, resulting in the quantile-quantile (Q-Q) plots in Figure 2. When population MAFs are 

equal, LR+PC is calibrated (Figure 2B, 𝜆rs = 1.01). However, when P1 MAF is greater than P2 

MAF, LR+PC is inflated (Figure 2A, 𝜆rs = 1.41); when this MAF relationship is reversed, LR+PC 

is deflated (Figure 2C, 𝜆rs = 0.59). By contrast, ADGLM is calibrated for all MAFs: in Figs. 2A, 

2B, and 2C, 𝜆rs is 0.98, 1.037, and 1.042, respectively. We also applied a standard LMM with 

ancestry as a fixed effect and the genetic relationship matrix as a random effect. LMM has the 

same miscalibration as LR+PC (Figure S1), so we do not consider it further.  

Next, we assessed the performance of tests for 𝛽g¹0 on data simulated with a range of 

mean genetic (𝛽g), mean ancestry (𝛽𝜃), and ancestry variance (𝜎72) effects (Table 1, Table S1). 

When 𝛽g=0 and 𝜎72 = 0, linear regression without ancestry adjustment (LR) is calibrated in the 

absence of population mean or variance structure (rows 1-3). However, LR is miscalibrated if 

there is population mean structure (row 4) or population variance structure and a MAF 

difference (rows 6-7). LR+PC and ADGLM perform similarly in the absence of population 

variance structure: they are calibrated (rows 1-4) and have similar power (row 8), despite 

ADGLM fitting an additional parameter. When there is population variance structure, ADGLM 

and LR+PC are calibrated if there is no MAF difference (row 5), whereas only ADGLM is 

calibrated if there is a MAF difference (rows 6-7). When 𝛽g¹0 and MAFs are the same, ADGLM 

is more powerful than LR+PC (rows 9-10). When MAFs differ, LR+PC has less power than 

ADGLM (row 11) or an elevated false positive rate (row 12). 

Finally, we examined the power of genetic association tests (𝛽g¹0) for varying ancestry-

variance effects, 𝜎72. Power gains of ADGLM over LR+PC increase with 𝜎72 when MAFs are the 
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same (Figure 3B) and when P1 MAF is less than P2 MAF (Figure 3C). When this MAF 

relationship is reversed, LR+PC has false positives, and ADGLM retains its power (Figure 3A). 

Taken together, these results demonstrate that tests for genetic association with LR+PC are 

miscalibrated and have false positives or false negatives when there is population variance 

structure while ADGLM is calibrated and powerful. 

 

Diagnostic test for population variance structure 

As we showed above, GWAS performed with standard corrections for population structure may 

result in biased test statistics in the presence of population variance structure. We developed a 

test for this bias that can be applied to GWAS summary statistics (Supp. Materials). It regresses 

association test statistics on the difference of expected genetic variances and tests for a non-

zero slope, which occurs when there is residual population variance structure. This diagnostic 

test is well-powered on test statistics from LR+PC applied to data simulated with population 

variance structure (p=3.1x10-26, Figure S2) and is implemented in the ADGLM code repository. 

 

Sensitivity of ancestry-variance test to model assumptions 

Double generalized linear models, like most linear models, assume regression errors are 

normally distributed23. We assessed the robustness of testing for 𝜎72¹0 with ADGLM to violations 

of this assumption. We examined the ability of two transformations to reduce Type 1 errors 

under model misspecification: inverse-quantile normalization (“normalization”) and outlier 

removal (“truncation”).  

We simulated data under the null with heavy-tailed errors (t-distribution, df=6) and 

applied ADGLM. Although ADGLM is miscalibrated (λGC=1.22, FPR=0.079), phenotype 

truncation (λGC=0.95, FPR=0.049) or normalization (λGC=0.97, FPR=0.048) recovers calibration 

(Figure 4A). We next applied ADGLM to simulated data where 90% of replicates are null and 

found that relative to the original data (TPR=0.344, FPR=0.774), truncation (TPR=0.291, 

FPR=0.049 ) or normalization (TPR=0.315, FPR=0.048) improve both power and false positive 

rate. 

Next, we assessed the robustness of tests for ancestry variance effect (𝜎72¹0) to non-

normal ancestry distributions. We simulated phenotypes using ancestry fraction found in the 
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Gene-Environment studies of Asthma in Hispanic/Latino children (GALA II43, Figure S3) as 

described in Methods. We first used the skewed African ancestry distribution from Puerto 

Ricans, where 2.0% (35) individuals are ancestry outliers. Applied to data simulated under the 

null, ADGLM is calibrated (λGC=0.991, FPR=0.047) and minimally affected by ancestry 

truncation (λGC=1.013, FPR=0.048) or normalization (λGC=1.025, FPR=0.051) in Figure 4B. On 

data simulated under a mix of the null and alternative, performance is similar for original 

(TPR=0.067, FPR=0.047), truncated (TPR=0.057, FPR=0.047), and normalized data 

(TPR=0.076, FPR=0.050). Applied to data simulated with the bell-curved European ancestry 

from Mexicans with only three ancestry outliers, ADGLM is calibrated under the null (λGC=1.00, 

FPR=0.050) and minimally affected by ancestry truncation (λGC=1.02, FPR=0.050) or 

normalization (λGC=1.00, FPR=0.051) in Figure 4C. On data simulated under a mix of the null 

and alternative, performance is similar for original (TPR=0.087, FPR=0.050), truncated 

(TPR=0.094, FPR=0.051), and normalized data (TPR=0.105, FPR=0.051). Thus, ancestry 

distribution transformations improve the performance of ancestry-variance tests, though these 

ancestry distributions do not cause substantial miscalibration. 

 

Variance effects in UK Biobank 

Individuals from the British Isles have fine-scale population structure which is evident in a large 

sample53. To investigate whether ADGLM can detect fine-scale population variance structure, 

we applied ADGLM to ~113K British-ancestry, deeply-phenotyped individuals from UK Biobank 

(UKB, Supp. Materials). We tested binary, ordinal, and quantitative phenotypes (scaled to have 

mean 0 and variance 1). We included assessment center, genotype array, sex, age, and PCs1-

10 as mean effects and tested for population variance structure (𝜎72¹0) with ADGLM. We focus 

on genetic PCs1-5, which represent geographic population structure in UKB; PC1, specifically, 

is correlated with a geographic north-south cline42. 

PC1 is associated (nominal p<0.05) with the phenotypic variance of 17 of 29 tested non-

disease traits (Table S2), 12 of which are significant after Bonferroni correction (Table 2). 

Interestingly, 6 of these 12 associations are only with phenotypic variance, and not mean 

(absolute correlation of phenotype and PC1 < 0.01). Corpuscular hemoglobin has the strongest 

PC1 variance association among continuous traits (Figure S4). In addition, PCs2-5 are 

associated with the variance of 18 traits (Table S3), representing finer-scale population variance 
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structure: PC3, which is also correlated with a north-south cline42, has the strongest of these 

variance associations.  

We also investigated whether age and sex are associated with phenotypic variance 

because age varies non-linearly with several phenotypes and different sexes represent different 

environments13. Of the 44 phenotypes tested, 33 have age-variance associations, and 17 have 

sex-variance associations (Table S2). Overall, population variance structure, age- and sex-

variance associations are prevalent in a large sample of British-ancestry individuals. 

 

Variance effects in admixed populations  

For the remainder of this work, we focus on three admixed populations from two asthma and 

allergy studies: Mexicans and Puerto Ricans from GALA II, and African-Americans from the 

Study of African Americans, Asthma, Genes, & Environments (SAGE II). We analyzed asthma, 

allergy-related diseases (eczema, hives, rhinitis, rash, and sinusitis), lung function (FEV1, FVC), 

change in lung function after the first (𝛿@) and second (𝛿2) albuterol dose, BMI, height, and skin 

pigmentation (baseline melanin, tanning). We adjusted phenotypic means for age, sex, and 

ancestry (African and European ancestry fraction for Mexicans and Puerto Ricans; African 

ancestry fraction for African-Americans). 

Using ADGLM ancestry-variance tests (𝜎72¹0), we find numerous associations (nominal 

p<0.05) of ancestry in Figure 5 (also see Tables S4-7), as well as age and sex (Tables S4-7) 

with phenotypic variance. The ancestry-variance effect sign for a given phenotype is the same 

across populations except for asthma, which has a negative African variance effect in Puerto 

Ricans and a positive African variance effect in Mexicans. To test for ancestry-variance 

heterogeneity, we performed a K-1 df LRT for a population with K ancestry fractions. Of the 14 

phenotypes tested in three populations, 4 associations in 3 phenotypes are significant at a 

Bonferroni-corrected level of 0.05 (which is conservative because the phenotypes are highly 

correlated): asthma and 𝛿@ in Puerto Ricans, and 𝛿@ and 𝛿2 in African-Americans. In addition, six 

of the phenotypes have previously-documented ancestry-mean associations which are also 

detected as mean effects with ADGLM (𝛽7¹0): FEV and FEV1 in Puerto Ricans54, asthma in 

Mexicans and Puerto Ricans55, baseline melanin56,57, 𝛿@, and 𝛿2 in African-Americans58. 
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ADGLM GWAS in admixed populations 

We tested for genetic associations (𝛽g¹0) of common SNPs (MAF>0.05) in the admixed 

datasets above using both ADGLM, which corrects for population variance structure, and 

LR+PC, which does not. We represent ancestry using two ancestry fractions (African and 

European) for Puerto Ricans and Mexicans, and one (African) for African-Americans. Effect 

sizes for dichotomous traits (such as eczema) cannot be compared directly because they were 

obtained through probit regression. We discover two novel SNP associations with ADGLM, 

neither of which is significant with LR+PC: in Table S8, rs9808780 is associated with eczema in 

Mexicans and Puerto Ricans (p=1.53e-8) and rs113736578 is associated with rash in Puerto 

Ricans (p=2.14e-8). We next compared ADGLM to LR+PC at GWAS associations in the NHGRI 

catalog48, thinned to one SNP per locus. Since ADGLM is less inflated than LR+PC (Table S9), 

we genomic control47 adjusted test statistics when λGC >=1 to be maximally conservative. For 

the 46 GWAS SNPs in our datasets, 12 SNPs replicate with either test (padj < 0.05, Table 3;). Of 

these, 11 have a more significant p-value from ADGLM than LR+PC, indicating that ADGLM 

has better power to detect genetic associations than LR+PC. 

 

Variance QTL 

We next tested for genetic variance associations (𝜎'2¹0) with ADGLM to find variance 

quantitative trait loci (vQLTs) in the admixed datasets above. For Mexicans and Puerto Ricans, 

we included genotype in the mean model and adjusted for ancestry, age, and sex in the mean 

and variance models; we did the same for African-Americans, adjusting for significant variance 

covariates (Table S6). We detect 17 vQTLs after genomic control adjustment (padj < 5e-8) in 

Table 4; the corresponding λGC values are in Table S10. The associations with hives in 

Mexicans, height in Puerto Ricans, asthma in African Americans, and tanning in African 

Americans are each detected in only one population. Of the 17 genetic variance associations, 

only 3 also have significant mean effects (rs1640275, rs117344403, rs55837614).  

 

Methylation association studies 

DNA methylation, an epigenetic mark which is affected by environmental factors27, varies across 

disease phenotypes28 and ancestry29. To characterize the relationship of methylation and 

ancestry variance, we analyzed quantile-normalized methylation from 117 Mexican individuals. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/439661doi: bioRxiv preprint 

https://doi.org/10.1101/439661
http://creativecommons.org/licenses/by-nc/4.0/


 15 

We adjusted for the mean effect of age, sex, ancestry, and asthma case status. We tested for 

ancestry-mean effects (𝛽7¹0) with ADGLM and LR+PC, as well as ancestry-variance effects 

(𝜎72¹0) with ADGLM, resulting in Q-Q plots in Figure S5 and Manhattan plots in Figure S6. After 

Bonferroni correction, ADGLM identifies eight loci with ancestry-mean effects and 42 loci with 

ancestry-variance effects, 4 of which also have significant mean effects (Table S11). LR+PC, by 

contrast, only identifies one mean association, which is declared as a significant variance 

association, but not a mean association, by ADGLM. 

 

Discussion 
In this study, we describe the presence of and discuss the importance of population variance 

structure, the difference of phenotypic variance by population. To model ancestry-variance 

relationships, we developed a novel statistical framework, the ancestry double generalized 

linear model (ADGLM). Unlike existing variance models, ADGLM accounts for continuous and 

discrete definitions of ancestry, arbitrary covariates, and binary or continuous phenotypes. We 

used ADGLM to discover many ancestry-variance associations in a British-ancestry and 

admixed human populations for a wide range of binary and continuous traits, including diseases 

and methylation, many of which have been subject to natural selection42,56,57,59,60.  

When ancestry is related to phenotypic variance, genetic association tests with standard 

population structure corrections (e.g. linear regression with principal components adjustment or 

linear mixed models) are miscalibrated as a function minor allele frequency. This miscalibration 

has been observed for binary traits and can be attributed to the inability of standard LMM to 

model differences in disease prevalence21. We additionally observed this miscalibration for 

continuous traits and showed that it is a consequence of unmodeled population variance 

structure. Though not always apparent in a genome-wide Q-Q plot, this miscalibration can be 

readily detected by our diagnostic test which operates on summary statistics. ADGLM 

addresses these problems and association tests with ADGLM are both calibrated and well-

powered for simulated and empirical human data. 

The numerous variance associations we observed imply that previously conducted 

GWAS using LR+PC or LMM have residual population variance structure. The impact can be 

substantial as demonstrated by the inflation of height GWAS test statistics in LDscore 

analysis61. Two recent studies62,63 also found evidence for incomplete population structure 
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correction in large cohort studies, including UK Biobank; based on our analysis, this may be due 

in part to unmodeled population variance structure. If phenotypes and principal components are 

available, population variance structure can be detected with ADGLM. Though the association 

of the square of a centered, scaled phenotype with principal components implies population 

variance structure may exist64, it is not a direct test. 

In addition to acting as a statistical confounder, population variance structure has 

important biological implications, including in medical genetics64. Intuitively, differences in 

phenotypic distribution between populations imply that the fraction of individuals in the 

phenotypic tails differs between populations, and as such, longer tails may indicate a greater 

disease burden. As we previously showed, small differences in phenotypic variance between 

sexes can create large differences in disease liability13. Here, we estimate different asthma 

African ancestry-variance effects for Mexicans (17.2 ± 7.6) and Puerto Ricans (-4.05 ± 2.9). 

Mexicans and Puerto Ricans living in the U.S. differ dramatically in their asthma prevalence (8% 

vs. 22%), which has been referred to as the “Hispanic Paradox”65. These ancestry-variance 

associations might partially explain this difference.  

 

In the 1940s, Waddington proposed that phenotypic variability is under genetic control, 

biological systems evolve to maintain homeostasis under a certain range of environmental or 

genetic perturbations, and that changing the environment to be outside the normal range will 

shift an optimum that has been shaped by stabilizing selection over many generations66. Under 

this model, increasing admixture proportion or shifting environmental conditions will lead to an 

increase in population variance, a process known as decanalization15. Although this 

phenomenon is well-documented in other species, it has seldom been described in humans, 

where it has been proposed as an explanation for the dramatic increase in non-communicable 

complex disease prevalence67. The ability of ADGLM to identify population variance structure as 

a function of admixture proportion or specific environmental context offers a new avenue to 

identify factors associated with variance heterogeneity, and thus potential drivers of 

decanalization.  

ADGLM could be used as a screening tool for signals consistent with the presence of 

epistatic or genotype-by-environment interactions. ADGLM vQTL, which are controlled for 

variance population structure, may point to unmodeled interactions (either GxG or GxE)68 that 

can then be tested for interactions with other loci or specific environmental variables49. 

Additionally, the presence of population variance structure may affect admixture mapping 
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efforts69 and could be corrected for with ADGLM. Finally, we could reduce the running time of 

the ADGLM GWAS roughly to ordinary GWAS by fitting the background variance components 

only once70, rather than once per SNP. 

In conclusion, we find pervasive population variance structure in multiple human 

populations. As human studies increase in size and diversity, models that account for population 

variance structure, such as ADGLM, will be required for interpretable association testing. 

ADGLM has utility in studies of non-human model systems and natural populations, which have 

differences in phenotypic variability among groups and variance effects. By focusing primarily 

on the effect of genetic variation on phenotypic mean and ignoring its effect on variance, we 

have been missing an important axis contributing to phenotypic variation and disease 

emergence. Modeling phenotypic variance with ADGLM will enable discoveries along this axis. 
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Figures 

 

Figure 1: Differential selection induces population variance structure. (A) Phenotypic mean, 𝜇, and 
(B) phenotypic variance, 𝜎2,	of an admixed population with average ancestry fraction, 𝜃, composed of two 
populations that experienced neutrality (red), weak selection (blue), or strong selection (green). Points are 
averages across 1000 simulations and bars denote 95% confidence intervals. Selection induces a 
dependence of phenotypic mean, as well as phenotypic variance, on ancestry. 

 

 

Figure 2: Q-Q plots of genetic association tests applied simulated null data. Data simulated with 
𝛽g=0 and population variance structure for population MAFs: (A) 	𝑝@ = 0.5,	𝑝2 = 0.05, (B) 	𝑝@ = 0.5,	𝑝2 =
0.5, or (C) 	𝑝@ = 0.05,	𝑝2 = 0.5. The null expectation is denoted by the black line and the null 95% 
confidence interval by the gray band. LR+PC -log10(p-values) in red are (A) inflated or (C) deflated when 
population MAFs differ; those from ADGLM in blue are calibrated. 
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Figure 3: Power of genetic association tests applied to simulated data. Power (∝	= 5𝑒ux)	of tests 
applied to data simulated with varying 𝜎72 for three MAF cases. (A) For 𝑝@ = 0.5,	𝑝2 = 0.05, LR+PC is 
enriched for false positives, and ADGLM is well-powered. For (B) 	𝑝@ = 0.5, 	𝑝2 = 0.5 and (C) 	𝑝@ =
0.05,	𝑝2 = 0.5, ADGLM has more power than LR+PC when there is population variance structure (𝜎72 > 0). 

 

 

 

Figure 4: Effect of phenotype and ancestry outliers on ancestry-variance tests. Q-Q plots of 
ancestry-variance association tests applied to data simulated under the null (𝜎72 = 0). (A) Phenotype 
transformation reduces false positives of data simulated with heavy-tail, t-distributed error. (b, c) Tests 
applied to data simulated with real (B) African ancestry from Puerto Ricans or (C) European ancestry from 
Mexicans are calibrated and unaffected by ancestry transformation. 
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Figure 5: Ancestry-variance associations in admixed populations. Associations of African, European, 
and Native American ancestry with phenotypic variance in (A) Mexicans, (B) Puerto Ricans, and (C) 
African Americans. Points indicate estimates of ancestry variance effects, bands represent 95% 
confidence intervals, and starred phenotypes have significant ancestry-variance heterogeneity after 
Bonferroni correction (p < 0.05). The gray vertical line denotes 𝜎72 = 0. 
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Tables 
Parameters Discovery rate 

Row p1 p2 𝛽G 𝛽𝜃 𝜎72 LR LR+PC ADGLM 
1 0.5 0.5 0 0 0 0.051 0.051 0.054 
2 0.05 0.5 0 0 0 0.054 0.052 0.054 
3 0.5 0.05 0 0 0 0.054 0.050 0.050 
4 0.05 0.5 0 0.2 0 0.140 0.053 0.054 
5 0.5 0.5 0 0 1 0.051 0.051 0.055 
6 0.5 0.05 0 0 1 0.074 0.086 0.053 
7 0.05 0.5 0 0 1 0.032 0.021 0.057 
8 0.05 0.5 0.8 0 0 0.993 0.783 0.725 
9 0.5 0.5 0.8 0 1 0.698 0.693 0.848 

10 0.5 0.5 0.8 0.2 1 0.702 0.702 0.850 
11 0.05 0.5 0.8 0.2 1 0.467 0.205 0.606 
12 0.5 0.05 0.8 0.2 1 0.838 0.269 0.135 

 

Table 1: Performance of genetic association tests applied to simulated data. We report false 
positive rate (∝	= 0.05, rows 1-7) or power (∝	= 5𝑒uv, rows 8-12) of tests of genetic effect (𝛽g ¹ 0) for a 
range of MAFs (p1, p2) and genetic (𝛽g), ancestry-mean (𝛽𝜃), and ancestry-variance (𝜎72) effects. The null 
hypothesis is true above the double line and false below it. Linear regression (LR) is miscalibrated in the 
presence of population structure. ADGLM is calibrated and powerful while linear regression with principal 
components (LR+PC) is often biased or underpowered. 

 

Phenotype Effect size (𝜎72) P-value 
Corpuscular hemoglobin -0.025 ± 2.5E-03 7.75E-25 
Platelet volume * 0.015 ± 2.5E-03 1.36E-09 
Platelet count -0.012 ± 2.5E-03 7.13E-07 
Platelet distribution width * 0.015 ± 2.5E-03 2.14E-09 
Erythrocyte (red blood cell) distribution width -0.019 ± 2.5E-03 3.77E-14 
Leukocyte (white blood cell) count -0.018 ± 2.5E-03 1.03E-13 
Educational attainment * -0.020 ± 2.4E-03 5.73E-16 
Basal metabolic rate (z) -0.024 ± 2.5E-03 3.41E-23 
Forced vital capacity (z) * 0.012 ± 2.7E-03 8.89E-06 
Hair pigment -0.023 ± 2.46E-03 1.28E-21 
Skin pigment * -0.074 ± 2.45E-03 9.25E-199 
Skin tanning * 0.068 ± 2.45E-03 4.02E-169 

 

Table 2: UK Biobank variance associations. Ancestry variance effect sizes estimates, standard errors, 
and p-values of associations of PC1 with phenotypic variance in UKB British-ancestry individuals. 
Associations are significant at a threshold of 0.05 after Bonferroni correction. Phenotypes followed by 
“(z)” are z-scores and starred phenotypes have an absolute correlated with PC1 that is greater than 0.01.  
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      LR+PC  ADGLM  

Population Trait SNP Effect size (𝛽') P-value Effect size (𝛽') P-value 
MX Eczema rs17389644 * 0.252 ± 1.51E-01 1.10E-01 4.90E-4 ± 2.15E-03 3.49E-02 
MX Eczema rs4796793 * -0.412 ± 9.53E-02 3.85E-05 -0.0074 ± 4.05E-02 2.76E-05 
MX Melanin rs16891982 * 0.487 ± 1.70E-01 8.90E-03 0.591 ± 1.58E-01 8.47E-04 
MX Tanning rs12210050 * 0.734 ± 3.32E-01 4.08E-02 0.748 ± 3.35E-01 2.50E-02 
MX Tanning rs7969151 * 0.613 ± 2.70E-01 3.63E-02 0.803 ± 2.38E-01 4.10E-03 
MX Tanning rs154659 * -0.393 ± 1.92E-01 5.73E-02 -0.397 ± 1.78E-01 2.41E-02 
MX FVC rs9791644  -0.148 ± 6.33E-02 2.65E-02 -0.131 ± 6.32E-02 4.94E-02 
MX Rhinitis rs868688 * -0.137 ± 6.22E-02 3.48E-02 -0.002 ± 8.13E-03 2.25E-02 
PR Eczema rs13015714 * -0.14 ± 7.29E-02 6.55E-02 -3.22E-4 ± 7.52E-4 4.15E-03 
PR Melanin rs1834640 * -0.374 ± 9.37E-02 1.81E-04 -0.375 ± 9.32E-02 1.41E-04 
PR Melanin rs6142102 * 0.244 ± 8.55E-02 7.02E-03 0.253 ± 8.40E-02 4.45E-03 
PR Melanin rs2675345 * -0.514 ± 9.68E-02 8.84E-07 -0.542 ± 9.48E-02 2.14E-07 

 

Table 3: Replicated GWAS associations in admixed populations. Estimated main genetic effect sizes 
and p-values of replicated (padj < 0.05) NHGRI associations in admixed individuals (MX: Mexican, PR: 
Puerto Rican; FVC: forced vital capacity). ADGLM p-values are smaller than LR+PC p-values at 11 of 12 
SNPs (starred). 
 

Population Phenotype SNP Effect size (𝜎'2) P-value 
Mexican Hives rs705415 1.64 ± 0.33 1.57E-08 
  FEV1 rs77775114 -0.5 ± 0.09 3.85E-08 
Puerto Rican FEV1 rs10880087 0.6 ± 0.10 1.39E-08 
 FEV1 rs77934571 0.64 ± 0.11 1.18E-08 
 FEV1 rs1391405 -0.48 ± 0.09 5.12E-09 
 FEV1 rs1640275 0.41 ± 0.07 1.53E-09 
 FEV1 rs2567607 -0.52 ± 0.11 2.20E-08 
 FVC   rs117344403 36.85 ± 1.02 2.71E-17 
  Height   rs117344403  38.87 ± 0.83 3.41E-25 
Mexican and Puerto Rican FEV1 rs55837614 -0.522 ± 0.10 1.16E-09 
 FEV1 rs4742581 -0.276 ± 0.10 2.19E-08 
 FVC rs74773809  0.7372 ± 0.10 3.30E-09 
African-American Asthma rs59843451 0.75 ± 0.14 2.09E-07 
 Height rs12908497 -0.58 ± 0.12 1.84E-08 
 Height rs17712224 -0.34 ± 0.06 2.27E-08 
 Height rs58053243 -0.36 ± 0.07 9.76E-09 
 Tanning rs3877136 -65.51 ± 1.42 1.23E-08 

 

Table 4: Variance quantitative trait loci in admixed individuals. Estimated genetic variance effects, 
standard errors, and p-values of vQTLs (padj < 5e-8, adjusted for genomic control) in admixed populations 
(FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity). Tests of continuous 
phenotypes, which are below the dotted line within each population sub-table, were run on quantile-
normalized phenotypes. 
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