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Abstract

Much effort has been made toward understanding the genetic architecture of complex traits
and diseases. Recent results from genome-wide association studies (GWASs) suggest the impor-
tance of regulatory genetic effects and pervasive pleiotropy among complex traits. In this study,
we propose a unified statistical approach, aiming to characterize relationship among complex
traits, and prioritize risk variants by leveraging regulatory information collected in functional
annotations. Specifically, we consider a latent probit model (LPM) to integrate summary-level
GWAS data and functional annotations. The developed computational framework not only
makes LPM scalable to hundreds of annotations and phenotypes, but also ensures its statis-
tically guaranteed accuracy. Through comprehensive simulation studies, we evaluated LPM’s
performance and compared it with related methods. Then we applied it to analyze 44 GWASs
with nine genic category annotations and 127 cell-type specific functional annotations. The
results demonstrate the benefits of LPM and gain insights of genetic architecture of complex
traits. The LPM package is available at https://github.com/mingjingsi/LPM.

1 Introduction

In the past decade, genome-wide association studies (GWASs) have been conducted for hundreds
of complex phenotypes, including complex diseases and quantitative traits, resulting in the identifi-
cation of tens of thousands of single-nucleotide polymorphisms (SNPs) associated with one or more
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complex traits at the genome-wide significance level (1). By exploring these fruitful findings, ge-
netic variants that affect multiple seemly irrelevant traits have been discovered. This phenomenon
is known as ‘pleiotropy’ (2). Recently, accumulating studies suggest the pervasiveness of pleiotropy.
Pleiotropic effects can be characterized from both local and global perspectives (3). On one hand,
localization of pleiotropic risk variants offers more insights on the genetic architecture of human com-
plex traits. For example, a nonsynonymous variant (rs13107325) in the zinc transporter SLC39A8
influences both schizophrenia and Parkinson disease (4); and Ellinghaus et al. (5) identified 187
independent multi-disease loci in an analysis of five chronic inflammatory diseases. On the other
hand, genetic correlation between two complex traits has been widely explored in recent studies
(6), providing a comprehensive view on disease classification (7). Substantial genetic correlations
have been revealed among psychiatric disorders, such as the high correlation between schizophrenia
and bipolar disorder, moderate correlation between schizophrenia and major depressive disorder,
bipolar disorder and major depressive disorder, attention-deficit/hyperactivity disorder and major
depressive disorder (8). For autoimmune diseases, primary sclerosing cholangitis and ulcerative
colitis, as well as ulcerative colitis and Crohn’s disease, are suggested to have a relatively high
genome-wide genetic correlation (9).

The evidence of pervasive pleiotropy not only deepens our understanding of genetic basis under-
lying complex traits, but also allows the improved statistical power of identification of risk variants
by joint analysis of multiple traits. To name a few, joint analysis of schizophrenia and bipolar disor-
der could significantly improve association mapping power for each of the diseases (10). The power
to identify associated variants for systolic blood pressure was increased by considering GWASs of
other phenotypes, such as low-density lipoprotein, body mass index and type 1 diabetes mellitus
(11).

An increasing number of reports suggest that SNPs with important functional implications can
explain more heritability of complex traits (12, 13, 14) and the pattern of enrichment in a spe-
cific genic annotation category is consistent across diverse phenotypes (12). For example, SNPs
in 5’UTR, exons and 3’UTR of genes are significantly enriched, SNPs in introns are moderately
enriched and intergenic SNPs are not enriched in height, schizophrenia and tobacco smoking (12).
It is coincidence with the finding that pleiotropic SNPs are more often exonic and less often in-
tergenic compared with non-pleiotropic SNPs (15). Additionally, some cell-type specific functional
annotations are also shown to be relevant to complex traits. For example, functional annotations
in liver are relevant to lipid-related traits, such as low-density lipoprotein, high-density lipoprotein
and total cholesterol (16, 17); functional annotations in immune system are relevant to many au-
toimmune diseases, such as Crohn’s disease, ulcerative colitis and rheumatoid arthritis (17). Large
amounts of functional annotation data have been provided by the Encyclopedia of DNA Elements
(ENCODE) project (18) and the NIH Roadmap Epigenomics Mapping Consortium (16).

With the availability of functional annotation data and summary statistics from GWASs on a
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wide spectrum of phenotypes, we aim to propose a unified framework which can (i) characterize
relationship among complex traits, including identifying pleiotropic associations and estimating
correlations among traits, (ii) increase the association mapping power for one or more traits, and
(iii) investigate the effect of functional annotations. Existing statistical methods based on summary
statistics are not able to achieve these aims simultaneously. Methods such as cross-trait LD Score
regression (19) and GNOVA (20), provide genetic correlation estimation for pair of traits, but are
not able to prioritize GWAS results. In contrast, RiVIERA (21) can prioritize disease-associated
variants by joint analysis of summary statistics across multiple traits and epigenomic annotations,
but does not measure pleiotropy. Other methods such as GPA (10) and graph-GPA (22), can
both infer the relationship among traits and identify causal variants. However, statistical and
computational challenges arise as the number of traits increases. GPA assumes a four-group model
for the case of two GWASs. The number of groups increases exponentially with the number of traits.
Graph-GPA is not able to integrate functional annotations, and its implementation is based on an
MCMC algorithm which is time-consuming. Additionally, the relationship among traits inferred by
graph-GPA can be hard to interpret in real data analysis, because graph-GPA suggests a graphical
model based on an Markov random field which represents a conditional independent structure for
genetic relationship among traits and the structure may change when adding or removing some
traits.

Here we propose a latent probit model (LPM) to characterize relationship among complex traits
by integrating summary statistics from multiple GWASs and functional annotations. To make LPM
scalable to millions of SNPs and hundreds of traits, instead of working with a brute-force algorithm
to handle all the data simultaneously, we develope an efficient parameter-expanded EM (PX-EM)
algorithm for pair-wise analysis and implement a dynamic threading strategy to enhance its par-
allel property. This pair-wise strategy is guaranteed to give consistent results by our theoretical
analysis from the perspective of the composite likelihood approach (23). We conducted compre-
hensive simulations to evaluate the performance of LPM. Then we analyzed 44 GWASs of complex
traits with nine genic category annotations and 127 cell-type specific functional annotations using
LPM. The results demonstrate that our method can not only fulfill the three goals (characterizing
relationship, prioritizing SNPs and integrating functional annotations) under a unified framework,
but also achieve a better performance than conventional methods.

2 Materials and methods

2.1 GWAS summary statistics and functional annotations

The source of the summary statistics of 44 GWASs is given in Supplementary Table S1. The
traits are across a wide range of domains, including psychiatric disorders (e.g. bipolar disor-
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der and schizophrenia), hematopoietic traits (e.g. mean cell haemoglobin concentration and red
blood cell count), autoimmune diseases (e.g. Crohn’s disease and ulcerative colitis), lipid-related
traits (e.g. HDL and triglycerides) and anthropometric traits (e.g. height and BMI). The genic
category annotations were provided by ANNOVAR (24). In this paper, we used nine genic cate-
gory annoations which include upstream, downstream, exonic, intergenic, intronic, ncRNA_exonic,
ncRNA_intronic, UTR’3 and UTR’5, where ncRNA referred to RNA without coding annotation.
The cell-type specific functional annotations were generated using epigenetic markers (H3k4me1,
H3k4me3, H3k36me3, H3k27me3, H3k9me3, H3k27ac, H3k9ac and DNase I Hypersensitivity) in
127 tissue and cell types from the Epigenomics Roadmap Project. We collected 127 cell-type specific
functional annotations from GenoSkylinePlus (25) (http://genocanyon.med.yale.edu/GenoSkyline).
We excluded the SNPs in the MHC region (Chromosome 6, 25-35 Mb) to avoid unusually large
GWAS signals.

2.2 Methods for comparison

2.2.1 GPA

GPA (10) is a statistical approach to prioritizing GWAS results incorporating pleiotropy and annota-
tion. The GPA package can be downloaded from GitHub (https://github.com/dongjunchung/GPA).
We followed the package vignette to fit GPA models for pairs of GWASs with and without func-
tional annotations, and implement association mapping and hypothesis testing of pleiotropy. We
compared GPA with LPM in both simulations and real data analysis.

2.2.2 graph-GPA

Graph-GPA (22) is a graphical model for prioritizing GWAS results and investigating pleiotropic ar-
chitecture. The GGPA package can be downloaded from GitHub (https://github.com/dongjunchung/GGPA).
We followed the package vignette to fit graph-GPA models for P -values of multiple GWASs, imple-
ment association mapping and investigate pleiotropic architecture using the default settings. We
compared graph-GPA with LPM in both simulations and real data analysis.

2.2.3 RiVIERA

RiVIERA (21) is a Bayesian model for inference of driver variants using summary statistics across
multiple traits and epigenomic annotations. It takes linkage disequilibrium (LD) into account and
assumes that there is one causal variant per locus. RiVIERA is able to provide 95% credible sets
for each locus. The RiVIERA package can be downloaded from GitHub (https://github.com/yueli-
compbio/RiVIERA-beta). We followed the package vignette to fit RiVIERA using the default
settings. We compared RiVIERA with LPM in simulations.
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2.2.4 cross-trait LD Score regression

Cross-trait LD Score regression (19) is a technique for estimating genetic correlations among traits.
It can be implemented in LDSC which can be downloaded from GitHub (https://github.com/bulik/ldsc).
We followed the ldsc wiki to estimate the genetic correlation for each pair of traits. We filtered
GWAS data to HapMap3 SNPs (w_hm3.snplist.bz2) and used the LD Scores (eur_w_ld_chr.tar.bz2)
as the independent variable and weights in the LD Score regression. The files can be downloaded
from https://data.broadinstitute.org/alkesgroup/LDSCORE. We compared cross-trait LD Score
regression with LPM in real data analysis.

2.3 Latent probit model (LPM)

Suppose we have the summary statistics (P -values) forM SNPs in K GWASs. In this paper, we use
j = 1, ...,M to index SNPs and k = 1, ...,K to index GWAS data sets. For each GWAS, we consider
the P -values following a two-group model (26), i.e., a mixture of null and non-null distributions,
and introduce a latent variable ηjk to indicate which group the j-th SNP belongs to for the k-th
GWAS. Here ηjk = 0 and ηjk = 1 indicate the j-th SNP is un-associated (in the null group) and
associated (in the non-null group) with the k-th trait, respectively. We assume the P -values in the
k-th GWAS to be distributed as

Pjk ∼

U [0, 1] , ηjk = 0,

Beta (αk, 1) , ηjk = 1,
(1)

where U [0, 1] is the uniform distribution on [0, 1] and Beta (αk, 1) is the beta distribution with
the constraint 0 < αk < 1. This model is designed to capture the pattern that P -values from the
non-null group have higher density near zero (10, 17).

To adjust the effect of functional annotations and model the relationship among traits, we
consider the following latent probit model (LPM):

ηjk =

1, if Zjk > 0,

0, if Zjk ≤ 0,
(2)

Zj = βXj + εj , (3)

εj ∼ N(0,R), (4)

where Z ∈ RM×K is the matrix of latent variables, X ∈ RM×(D+1) is the design matrix of functional
annotations, comprised of an intercept and D annotations, and β ∈ RK×(D+1) is the matrix of
coefficients. For the j-th SNP, ZTj , XT

j and εTj correspond to the j-th row of Z, X and ε, respectively.
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Furthermore, R ∈ RK×K is the correlation matrix measuring the relationship among K traits. If
the correlation between any two traits exists, the corresponding entry in R is expected to differ
from 0. We let θ = {α,β,R} be the collection of model parameters.

Instead of working with K traits simultaneously, we analyze the GWASs in a pair-wise manner
based on the composite likelihood approach (see more details in the discussion section). In this
case, K = 2 and we denote this model as bivariate LPM (bLPM):

P̃jk ∼

U [0, 1] , η̃jk = 0,

Beta (α̃k, 1) , η̃jk = 1,
(5)

η̃jk =

1, if Z̃jk > 0,

0, if Z̃jk ≤ 0,
(6)

Z̃j = β̃Xj + ε̃j , (7)

ε̃j ∼ N(0, R̃), (8)

where k = 1, 2, β̃ ∈ R2×(D+1) and

R̃ =
(

1 ρ

ρ 1

)
. (9)

Let θ̃ =
{

α̃, β̃, R̃
}
be the collection of parameters in bLPM. The logarithm of the marginal

likelihood can be written as

log Pr
(
P̃|X; θ̃

)
= log

∑
η̃

∫
Pr
(
P̃, η̃, Z̃|X; θ̃

)
dZ̃, (10)

where
Pr
(
P̃, η̃, Z̃|X; θ̃

)
= Pr

(
P̃|η̃; α̃

)
Pr
(
Z̃|X; β̃, R̃

)
, (11)

and

Pr
(
P̃|η̃; α̃

)
=

M∏
j=1

2∏
k=1

(
α̃kP̃

α̃k−1
jk

)η̃jk

, (12)

Pr
(
Z̃|X; β̃, R̃

)
=

M∏
j=1

N(Z̃j ; β̃Xj , R̃). (13)

In (12) and (13), we assume conditional independence among M SNPs given annotation matrix
X. Our goal is to find θ̃ which maximizes the marginal likelihood (10) for each pair of GWASs and
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then obtain an estimate of θ in LPM. Denote the estimate of θ as θ̂. We can compute the posterior

Pr
(

η|P,X; θ̂
)

=
Pr
(
P,η|X; θ̂

)
Pr
(
P|X; θ̂

) , (14)

and make statistical inferences on the association of SNPs and relationship among traits.

2.4 Algorithm for LPM

The standard EM algorithm converges slowly on LPM. Instead, we propose a PX-EM algorithm,
which converges much faster than the standard EM algorithm (27), for parameter estimation and
posterior calculation in bLPM. We expand the parameter in bLPM to Θ = {α̃,γ,Σ}. Accordingly,
models (7) and (8) are expanded to

Z̃j = γXj + ε̃j , (15)

ε̃j ∼ N(0,Σ), (16)

where γ = Dβ̃,

Σ = DR̃D =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, (17)

and

D =
(
σ1 0
0 σ2

)
(18)

is the auxiliary parameter whose value is fixed at the identity matrix in the original model.
For the expanded model, the complete-data log-likelihood can be written as

log Pr
(
P̃, η̃, Z̃|X; Θ

)
= log Pr

(
P̃|η̃; α̃

)
+ log Pr

(
Z̃|X; γ,Σ

)
, (19)

where

log Pr
(
Z̃|X; γ,Σ

)
=

M∏
j=1

N(Z̃j ; γ̃Xj ,Σ). (20)

In the PX-E step, the Q function is evaluated as

Q = Eη̃,Z̃ log Pr
(
P̃, η̃, Z̃|X; Θ

)
, (21)

where the expectation is calculated based on the current Θ in the original model.
In the PX-M step, we maximize the Q function with respect to Θ and obtain the updating

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/439133doi: bioRxiv preprint 

https://doi.org/10.1101/439133
http://creativecommons.org/licenses/by-nc-nd/4.0/


equations for each iteration

α̃
(t)
k =−

∑M
j=1 E [η̃jk]∑M

j=1 E [η̃jk] log P̃jk
, (22)

γ(t) =E
[
Z̃T
]
X
(
XTX

)−1
, (23)

Σ(t) = 1
M

 M∑
j=1

E
[
Z̃jZ̃Tj

]− γ(t)XTE
[
Z̃
] , (24)

where the superscript (t) denotes the t-th iteration.
In the reduction step, we obtain the estimates for the original parameters:

β̃
(t) =

(
D(t)

)−1
γ(t), (25)

R̃(t) =
(
D(t)

)−1
Σ(t)

(
D(t)

)−1
. (26)

The details of the derivation can be found in the Supplementary Section S1.
If the correlation coefficient ρ is zero, we can analyze the traits independently, which provides

warm starts for generating our three-stage algorithm for bLPM. In the first stage, we set all the
coefficients in β̃ (except the intercept term) and the correlation coefficient ρ to be zero, and run an
EM algorithm to obtain the estimates for α̃ and β̃0. Then in the second stage, we use the estimated
parameters as the starting point to obtain α̃ and β̃ using a PX-EM algorithm. Finally, in the third
stage, we run the above PX-EM algorithm, using initial parameters those obtained in the second
stage, and update α̃, β̃ and ρ simultaneously until convergence. Since our algorithm is based on
the framework of EM and PX-EM, the likelihood is guaranteed to increase at each iteration. The
details of the algorithm are provided in the Supplementary Section S2.

For K GWASs, we analyze them pairwisely using the above algorithm and obtain the corre-
sponding estimates ˆ̃θ. We can implement this procedure parallelly. To obtain the estimates α̂k and
β̂k for LPM, we use the average over the pairs containing the k-th GWAS:

α̂k =
K∑
l 6=k

ˆ̃αlk(k), (27)

β̂k =
K∑
l 6=k

ˆ̃βlk(k), (28)

where ˆ̃αlk and ˆ̃βlk are the estimate of α̃ and β̃ respectively in bLPM for the l-th trait and the
k-th trait, and (k) means the entry for the k-th trait. We can also form a matrix R̂pair using
the corresponding estimation ρ̂ in pairwise analysis. In real data analysis, the number of SNPs
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M is often different in each GWAS due to different genotyping platform and quality control. To
avoid losing much information, we allow different M in each bLPM. However, since the pairwise
analysis is not based on the same data, R̂pair may not be positive semidefinite, which is required
for a correlation matrix. As such, we solve the following optimization problem to obtain the nearest
correlation matrix R̂:

min1
2 ||R − R̂pair||2

s.t.Rkk = 1, k = 1, ...,K,

R ∈ SK+ ,

where SK+ is the cone of positive semidefinite matrices in the space ofK×K symmetric matrices, and
|| · || is the Frobenius norm. This optimization problem can be efficiently solved by a Newton-type
method (28).

2.5 Inferences based on LPM

2.5.1 Identification of risk SNPs

After we obtain the estimates of parameters in LPM, we are able to prioritize risk SNPs based on
the posterior of η, which indicates the strength of association of the SNPs with the traits. If we
consider the traits separately, the association mapping of the j-th SNP on the k-th trait can be
inferred from Pr (ηjk = 1|Pjk,X). In this case, the relationship among traits is ignored and only
the current GWAS data is used.

If two traits are considered, risk SNPs for both the k-th trait and the k′-th trait can be inferred
from

Pr (ηjk = 1, ηjk′ = 1|Pjk, Pjk′ ,X) . (29)

In addition, we can infer the risk SNPs for the k-th trait by calculating the marginal posterior

Pr (ηjk = 1|Pjk, Pjk′ ,X)

= Pr (ηjk = 1, ηjk′ = 1|Pjk, Pjk′ ,X)

+ Pr (ηjk = 1, ηjk′ = 0|Pjk, Pjk′ ,X) . (30)

Similarly, we can consider more than two traits, e.g. three traits, and obtain the posterior that
the j-th SNP is associated with the k-th, k′-th and k′′-th trait

Pr (ηjk = 1, ηjk′ = 1, ηjk′′ = 1|Pjk, Pjk′ , Pjk′′ ,X) , (31)
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the marginal posterior that the j-th SNP is associated with the k-th and k′-th trait

Pr (ηjk = 1, ηjk′ = 1|Pjk, Pjk′ , Pjk′′ ,X) , (32)

and the marginal posterior that the j-th SNP is associated with the k-th trait

Pr (ηjk = 1|Pjk, Pjk′ , Pjk′′ ,X) . (33)

Moreover, we can calculate the local false discovery rate and use the direct posterior proba-
bility approach (29) to control the global false discovery rate (FDR). The details are shown in
Supplementary Section S3.

2.5.2 Relationship test among traits

We test the relationship between two traits in the pairwise analysis by the hypothesis:

H0 : ρ = 0 v.s. H1 : ρ 6= 0. (34)

We use the likelihood ratio test. The test statistic is

λ = 2
[
log Pr

(
P̃|X; θ̃

)
− log Pr

(
P̃|X; θ̃0

)]
, (35)

where θ̃0 is the parameter estimates under H0, i.e., the estimates we obtain in the second stage of
the algorithm. The probability distribution of λ is asymptotically a χ2 distribution with df = 1
under the null.

2.5.3 Hypothesis testing of annotation enrichment

When we integrate functional annotation data, we are interested in the enrichment of annotation
for a specific trait. We consider the following test:

H0 : βkd = 0 v.s. H1 : βkd 6= 0. (36)

To estimate the standard error of β̂kd, we consider the single trait case. The log-likelihood for the
k-th trait is

L =
M∑
j=1

log
{

Φ
(

βTkXj

)
αkP

αk−1
jk + 1− Φ

(
βTkXj

)}
. (37)

The information matrix can be computed by

I
(

θ̂k

)
= −H|θ̂k

= −∇2L (θk) |θ̂k
, (38)
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where θk =
(
αk,β

T
k

)T
and θ̂k is the estimate in LPM. The details for calculation are shown in

Supplementary Section S4.
Then the inverse of observed information matrix provides an estimator of the asymptotic co-

variance matrix. The Wald test statistic is

W = β̂2
kd[

I
(

θ̂k

)]−1

d+1,d+1

. (39)

The probability distribution of W is approximately a χ2 distribution with df = 1 under the null.

2.6 Simulation of eight traits

To evaluate the performance of the proposed LPM, we generated the simulation data for multiple
traits using the generative model. The procedure was as follows. We considered eight traits which
were divided into three groups: (i) P1, P2 and P3; (ii) P4, P5, P6; and (iii) P7, P8. Correlation
existed only within the groups. Specifically, we set the correlation matrix R with the corresponding
entries ρ12 = 0.7, ρ13 = 0.4, ρ23 = 0.2, ρ45 = 0.6, ρ46 = 0.3, ρ56 = 0.1 and ρ78 = 0.5 (all the other
entries were set to zeros). The relationship among the traits is depicted in Figure 1a. The numbers
of SNPs and functional annotations were set to be M = 100, 000 and D = 5, respectively. First,
we generated the design matrix X and coefficients β of functional annotations. The entries in
X excluded the intercept were generated from Bernoulli (0.2). The entries in first column of β

were set to be −1 and the other entries were first generated from N (0, 1) and then transformed to
control the relative signal strengh between annotated part and un-annotated part r = [V ar(XβT )]

kk

[V ar(ε)]kk

for k = 1, ..., 8 to be 1. Both X and β were kept fixed in multiple replications. Then we simulated
ηjk according to the multivariate probit model (2)-(4). Finally, we generated Pjk from U [0, 1] if
ηjk = 0 and Beta (αk, 1) if ηjk = 1 with α1 = 0.2, α2 = 0.35, α3 = 0.5, α4 = 0.3, α5 = 0.45,
α6 = 0.55, α7 = 0.25 and α8 = 0.4.

3 Results

We conducted comprehensive simulation studies to evaluate the performance of the proposed LPM
and then applied it to analyze 44 GWASs with nine genic category annotations and 127 cell-type
specific functional annotations. In spirit of reproducibility, all simulation codes and real data sets
in this study have been made publicly available at https://github.com/mingjingsi/LPM.
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Figure 1: Correlation graphs. (a) true graph. (b) average estimated correlation graph using
LPM. The numbers on the edges and the widths of the edges indicate the correlation between the
connected traits. The results are summarized from 50 replications.

3.1 Simulations: performance in characterizing the correlations among
the traits

We first evaluated the performance of LPM in characterizing the correlations among the traits in
our simulations. We simulated summary statistics of eight GWASs and the design matrix of five
functional annotations (Materials and methods). Figure 1b shows that the correlation graph is
accurately estimated using LPM. We also evaluated the type I error rate and power of LPM for
the relationship test among the traits. As shown in Figure 2a, the type I error rates are almost 0
for all the pairs with no correlation and the powers are almost 1 except for two pairs (P2 and P3,
P5 and P6) in which cases the correlations are relatively small and the signal strength is relatively
weak, i.e., the corresponding ρs are relatively small and αs are relatively large. The comparison
results of GPA and graph-GPA are shown in Figures 2b and 2c. As the relationship both GPA
and graph-GPA measured does not adjust the effect of functional annotations, more significant
relationships are detected. If all the functional annotations have no role in the simulation, i.e., X
only had the intercept term and β only had one column in which the entries were set to be −1, the
relationship test graphs of LPM, GPA and graph-GPA are similar (see Supplementary Fig. S1).

To provide a better illustration for the performance of LPM, we conducted more simulations
which considered only two traits. In this simulation, we set the signal strength of the traits to
be the same, i.e., α1 = α2 = α. We varied α in {0.2, 0.4, 0.6} and r in {0.25, 1, 4} to obtain the
type I error rate, and varied ρ in {0, 0.05, 0.1, 0.15, 0.2, 0.25} to obtain the power of LPM for the
relationship test between the traits. As shown in Figure 3, the type I error rates are well controlled
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Figure 2: Relationship test graphs of (a) LPM, (b) GPA, and (c) graph-GPA. The numbers on
the edges and the widths of the edges indicate the type I error or power of the relationship test for
the connected traits. For LPM and GPA, we controlled family-wise error rate at 0.05. The results
are summarized from 50 replications.

in all cases and the power increases as α decreases and as ρ increases. However, we noted that a
large relative signal strength r could lead to a small power. This is because the correlation resulting
from annotations increases as r increases and the correlation we aim to estimate becomes relatively
smaller.

3.2 Simulations: performance in the identification of risk SNPs for one
or multiple traits

We further evaluated the performance of LPM in the identification of risk SNPs for one or multiple
traits in the simulation of eight traits (Materials and methods).

To identify risk SNPs for one specific trait, we consider three cases (i) separate analysis of the
target trait, (ii) joint analysis of the target trait with another trait, and (iii) joint analysis of the
target trait with other two traits, using LPM. If the integrated traits are correlated with the target
trait, the power to identify risk SNPs is expected to increase in joint analysis. We compared LPM
with GPA under these three cases in terms of their empirical FDR and AUC. The results for P1 are
shown in Figure 4 (results for other traits are given in Supplementary Figs S2-S8). The empirical
FDRs of LPM are indeed controlled at the nominal level. However, the FDRs of GPA are inflated
in some cases when the GWAS signal is relatively weak and are conservative when the GWAS
signal is relatively strong. Moreover, LPM outperformed GPA for all the cases in terms of AUC. As
expected, the AUC of LPM increases when correlated traits are integrated. For example, as shown
in Figure 4b, the power to identify risk SNPs for P1 increases when the correlated traits (P2 and
P3) are jointly analyzed. Specifically, integrating traits with high correlation with the target trait
could result in a better improvement of AUC (simulations are described in Supplementary Section
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Figure 3: Type I error rate and power of LPM for the relationship test between two traits. The
bars represent one standard error. We evaluate type I error rate and power at 0.05 significance
level. The results are summarized from 500 replications.

S6.3). We also compared LPM with RiVIERA. The details of simulation are given in Supplementary
Section S6.4. As shown in Supplementary Fig. S10, LPM achieved a better performance compared
to RiVIERA.

For the identification of SNPs associated with two and three traits, the comparison performance
of LPM and GPA are shown in Supplementary Fig. S11 and Supplementary Fig. S12, respectively.
LPM performed better in terms of FDR control and AUC. In the identification of risk SNPs for
both P1 and P4, a larger AUC can be achieved by integrating traits correlated with either P1 and
P4, i.e., integrating P2, P3, P5 or P6.

When functional annotations do not play a role, we have shown that the relationship test graphs
are similar for LPM, GPA and graph-GPA. In this case, we also compared their performance in
the identification of risk SNPs of one specific trait. The results are shown in Supplementary Figs
S13-S20. The performance of LPM and GPA is very close in terms of FDR and AUC. However, for
graph-GPA, the empirical FDRs are conservative and AUCs are relatively small.
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Figure 4: (a) FDR and (b) AUC of LPM and GPA for identification of risk SNPs for P1. The
text in the x-axis indicates which traits are used in analysis, e.g., P1 indicates separate analysis
using only trait P1, +P2 indicates joint analysis of P1 and P2. We controlled global FDR at 0.1
to evaluate empirical FDR. The red horizontal line in (b) was set at the median AUC in separate
analysis using LPM as a reference line. The results are summarized from 50 replications.

3.3 Simulations: type I error rate and power for the hypothesis testing
of annotation enrichment

We further conducted simulations to evaluate the type I error rate and power of LPM for the
hypothesis testing of annotation enrichment. We conducted simulations which considered only two
traits with number of annotationsD = 1 and correlation coefficient ρ = 0, and set the signal strength
of the traits to be the same, i.e., α1 = α2 = α. We varied α in {0.2, 0.4, 0.6} to obtain the type
I error rate, and varied the coefficient of annotation β in {−0.4,−0.3,−0.2,−0.1, 0.1, 0.2, 0.3, 0.4}
to obtain the power of LPM for the enrichment test of the annotation. The results are shown
in Supplementary Fig S21. We observed that the type I error rate was indeed controlled at the
nominal level and the power was close to one when the signal strength was relatively strong (i.e.,
α = 0.2 or 0.4), and the coefficient was not very small (i.e., |β| ≥ 0.2).

3.4 Simulations: computational time

Figure 5 shows the computational time of LPM with M = 100, 000 and D = 5. For one pair of
traits, the computational time depends on the signal strength of GWAS data and their correlation.
When the number of traits increases, the time can be largely shortened by using more cores in
parallel computation. However, the time is not linear in the number of cores. One reason is
that the time we recorded not only included the time to fit bLPM for pairs of GWASs which is
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Figure 5: Computational time of LPM. (a) For one pair of traits, we varied the signal strength α
and the correlation ρ. (b) For different numbers of traits, we varied the number of cores we used.
The results are summarized from 10 replications.

implemented parallelly, but also included the time for data preparation. Another reason is that
we used Armadillo (30) in our R package which has already executed many functions (e.g., matrix
multiplication) in parallel.

3.5 Real data applications: correlations among 44 GWASs

We applied LPM to analyze 44 GWASs of complex traits integrated with 9 genic category anno-
tations and 127 cell-type specific functional annotations (Materials and methods). The estimated
correlations among 44 GWASs are shown in Figure 6. We observed that the correlations among
traits were quite dense indicating that pleiotropy was pervasive (see Supplementary Table S3).

According to Figure 6, traits can be divided into several groups with relatively strong correlations
and these are consistent with the categories of traits. Main groups are psychiatric disorders (average
of the estimated correlations in this group ρ̄ = 0.7269) which include bipolar disorder (BIP) (31),
schizophrenia (SCZ) (32, 33, 34, 35), neuroticism (36), depressive symptoms (36), major depressive
disorder (MDD) (37), attention deficit hyperactivity disorder (38), autism spectrum disorder (39)
and anorexia nervosa (40); hematopoietic traits (ρ̄ = 0.8498) which include mean cell haemoglobin
concentration, mean cell haemoglobin, mean cell volume, red blood cell count, haemoglobin and
packed cell volume (41); autoimmune diseases (ρ̄ = 0.7317) which include systemic lupus erythe-
matosus (42), atopic dermatitis (43), primary biliary cirrhosis (PBC) (44), Crohn’s disease (CD)
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Figure 6: The estimated R̂ for 44 GWAS with 9 genic category annotations and 127 cell-type
specific functional annotations integrated.

(45), ulcerative colitis (UC) (45), inflammatory bowel disease (45), celiac disease (46), rheumatoid
arthritis (RA) (47), multiple sclerosis (48) and type 1 diabetes (T1D) (49); and lipid-related traits
(ρ̄ = 0.8427) which include high-density lipoprotein (HDL), triglycerides, low-density lipoprotein
(LDL), and total cholesterol (TC) (50).

We also found some significant relationships between complex diseases and metabolic traits. For
example, relatively high correlations were observed between coronary artery disease (CAD) (51)
and lipid-related traits (ρ̄ = 0.7929), among type 2 diabetes (T2D) (52), fasting glucose (53) and
fasting insulin (53) (ρ̄ = 0.7745). We observed that psychiatric disorders were correlated with many
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other traits, such as BMI (54) (ρ̄ = 0.7242), years of education (55, 56) (ρ̄ = 0.7167), HIV (57)
(ρ̄ = 0.6549) and ever smoked (58) (ρ̄ = 0.6921). Similar evidence of the relationship has been
found by Hartwig et al. (59), Breslau et al. (60), Chandra et al. (61) and Laurence et al. (62). We
also discovered connections between height (63) and pubertal growth (64) (ρ̂ = 0.8111), between
age at menopause (65) and fasting insulin (ρ̂ = 0.6214), between Alzheimer (66) and lipid-related
traits (ρ̄ = 0.7109).

As a comparison, we used cross-trait LD Score regression to estimate the genic correlations
among several traits (six hematopoietic traits, four lipid-related traits, CAD, height and pubertal
growth). The results are shown in Supplementary Fig. S38. Although the definitions of correlation
in cross-trait LD Score regression and LPM are different, the trends of relationship among these
traits are quite similar because the two versions of correlation essentially capture the dependence
among traits. We also applied graph-GPA to infer the relationship among traits. As graph-GPA
was not scalable to a large number of traits, we can only analyze a subset of the traits (SCZ,
CD, UC, RA, T2D, HDL, BIP and MDD). The relationship estimated by graph-GPA changed
a lot as the number of traits changed (see Supplementary Fig. S39). This was because graph-
GPA represented the relationship from a conditional independent structure, and the conditional
independent structure might change when adding more traits or removing some included traits.

3.6 Real data applications: association mapping

We compared the number of SNPs identified to be associated with each of the 44 traits using
LPM by five different analysis approaches: (i) separate analysis without annotation, (ii) separate
analysis with genic category annotations, (iii) separate analysis with all annotations (genic category
annotations and cell-type specific annotations), (iv) joint analysis of the top 1 correlated trait with
all annotations and (v) joint analysis of the top 2 correlated traits with all annotations. The details
of the top correlated traits are given in Supplementary Table S4. Using the fifth approach as a
reference, we calculated the ratio of the number of risk SNPs identified using each approach.

Figure 7 shows that more risk SNPs can be identified by integrating functional annotations and
correlated traits. For HIV, age at menopause and Alzheimer, a clear improvement was observed
between the first two approaches, reflecting a significant enrichment of genic category annotations.
Comparing the second and the third approaches, the contributions of cell-type specific functional
annotations were observed to be significant for many traits, such as atopic dermatitis, fasting insulin,
multiple sclerosis, PBC, RA and T1D. The differences between the fourth and fifth approaches were
due to pleiotropy. For example, LDL and TC were observed to be highly correlated (ρ̂ = 0.9720).
As a result, joint analysis of these two traits led to an improvement in identifying risk SNPs.
Specifically, for the identification of risk SNPs of LDL with all annotations integrated, 3,758 SNPs
were identified in separate analysis of LDL, whereas in joint analysis of LDL and TC, 7,845 SNPs
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were identified, when the global FDR was controlled at 0.1. The Manhattan plots are provided in
Supplementary Fig. S40.
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Figure 7: The numbers of variants identified to be associated with each of the 44 traits using LPM
by five different analysis approaches: (i) separate analysis without annotation, (ii) separate analysis
with genic category annotations, (iii) separate analysis with all annotations, (iv) joint analysis of
the top 1 correlated trait with all annotations and (v) joint analysis of the top 2 correlated traits
with all annotations. We controlled global FDR at 0.1. For visualization purpose, these numbers
are normalized by dividing the corresponding number of variants identified by the fifth approach
(joint analysis of the top 2 correlated traits with all annotations).

3.7 Real data applications: enrichment of functional annotations

The results for the enrichment test of nine genic category annotations and 127 cell-type specific
functional annotations are shown in Figure 8. The detailed results of enrichment test are given
in Supplementary Figs S41-S47 and the estimated coefficients of genic category annotations and
cell-type specific functional annotation are given in Supplementary Figs S48-S52 and Figs S53-S59,
respectively.

We noted that the estimated coefficients for genic category annotations were positive for most
traits except for intergenic. The estimated coefficients of the intergenic annotation were negative for
many traits, e.g., β̂ = −1.6649 (se= 0.9995) for puberal growth and β̂ = −0.5992 (se= 0.7783) for
ever smoked. Comparing the number of traits with significant coefficients for each genic category
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annotation, we found that exonic and UTR’3 were enriched most. Our results are consistent with
the findings in the previous study (12).

For cell-type specific functional annotations, we detected enrichment of functional annotations
in liver (liver and HepG2 cells) and fat (adipose nuclei) for lipid-related traits. Specifically, the
enrichment in liver was significant for all the four lipid-related traits (HDL: β̂ = 0.3015, se= 0.0256;
LDL: β̂ = 0.3609, se= 0.0267; TC: β̂ = 0.3823, se= 0.0237; Triglycerides: β̂ = 0.2478, se= 0.0293),
which was consistent with findings in previous studies (16, 25, 17). SNPs annotated in cells of
immune system were observed to be enriched for many traits, including autoimmune diseases, lipid-
related traits, hematopoietic traits, some psychiatric disorders such as SCZ and BIP. For height,
significant functional annotations included cells in immune system, bone, liver, muscle and skin.
The foreskin fibroblast primary cells were shown to be enriched for some autoimmune diseases and
lipid-related traits (17).

3.8 Real data applications: replications

Among the 44 GWASs, we analyzed four different GWASs of SCZ, Schizophrenia1 (9,379 cases and
7,736 controls) (32), Schizophrenia2 (9,394 cases and 12,462 controls) (33), Schizophrenia3 (13,833
cases and 18,310 controls) (34) and Schizophrenia4 (36,989 cases and 113,075 controls) (35). We
found that the correlations among them were very high (ρ̄ = 0.9505) and their enrichment of genic
category annotations (see Supplementary Figs S48-S52) and cell-type specific functional annotations
(see Supplementary Figs S60-S61) were highly consistent, indicating that the findings of LPM is
replicable. As the sample size for GWASs from Schizophrenia1 to Schizophrenia4 became larger,
the standard error of the estimated coefficients became smaller and the P -values of the enrichment
test for annotations became more and more significant. For Schizophrenia1-3, only SNPs annotated
in K562 Leukemia cells were enriched (Schizophrenia1: β̂ = 0.1775, se= 0.0366; Schizophrenia2:
β̂ = 0.1846, se= 0.0310; Schizophrenia3: β̂ = 0.1882, se= 0.0257). For Schizophrenia4, besides
K562 Leukemia cells (β̂ = 0.0830, se= 0.0178) more enrichment in functional annotations was
detected, such as brain anterior caudate (β̂ = 0.1076, se= 0.0179) and brain angular gyrus (β̂ =
0.1208, se= 0.0238). As shown in Figure 7, more risk SNPs were identified to be associated with
schizophrenia by jointly analyzing these GWASs. Similar results can be found (see Supplementary
Figs S62-S63) for GWASs of educational traits, where Years of Education2 has a larger sample size
than Years of Education1.

We also compared the results of UC, CD with IBD, and depressive symptoms with MDD. As
IBD is comprised of two major disorders: UC and CD, depressive symptoms includes MDD, the
consistent results from analyzing these GWASs also indicate the replicability of our method (see
Supplementary Figs S64-S67).
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4 Discussion

From the perspective of statistical modeling, a remarkable benefit of our model is its scalability to
a large number of GWASs. Under LPM, the number of parameters in R only increases quadrat-
ically (K2) with the number of traits K. However, for other methods such as GPA, the number
of groups will increase exponentially (2K). In particular, the design of LPM naturally allows a
parallel algorithm such that the model fitting can be computationally efficient. The feasibility of
the approach is demonstrated by our simulations in which the accuracy of parameter estimation
using LPM is evaluated. Supplementary Fig. S22 shows that LPM provides satisfactory estimate
of α, β and R. Specifically, the estimates of α̃, β̃ and R̃ using bLPM for different pairs are stable
which shows the consistency and reliability of our algorithm (Figs S23-S32 in Supplementary). It
also has theoretical supports which are based on the composite likelihood approach. The details
of related theorem is provided in Supplementary Section S8. Because of the pairwise analysis, the
number of SNPs for each pair of GWASs can be different. There is no need to remove SNPs with
missing values in any one of the GWASs, avoiding the huge information loss especially for large
amounts of traits.

LPM assumes that the P -values of SNPs in each GWAS are from a mixture of uniform and Beta
distributions. We have shown that LPM is robust to violation of this assumption. We considered the
situations when P -values in non-null group are from distributions other than the Beta distribution
and when P -values are obtained from individual-level data (details are given in Supplementary
Section S6.11 and S6.12 respectively). The results show that the type I error rate of LPM for the
relationship test and the empirical FDR for identification of risk SNPs are well controlled at the
nominal level.

In LPM, SNPs are assumed to be conditionally independent given the functional annotations.
This assumption greatly simplifies our model and facilitates the computation and inference. How-
ever, in real application the genotype of SNPs are correlated in the presence of linkage disequilibrium
(LD) effects. We conducted simulations to evaluate the impact of LD effects on our LPM model.
The details of the simulations are given in Supplementary Section S6.13. The results (Supplemen-
tary Fig. S37) indicate that LPM can provide a satisfactory FDR control in terms of identifying a
local genomic region of the risk SNPs.

In summary, we have presented a statistical approach, LPM, to integrate summary statistics
from multiple GWASs and functional annotations. This unified framework can characterize rela-
tionship among complex traits, increase the statistical power for association mapping, integrate
and investigate the effect of functional annotations simultaneously. With extensive simulations and
real data analysis of 44 GWASs, we have demonstrated the statistical efficiency and computational
scalability of LPM.
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