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Abstract

Metagenomics has emerged as a central technique for studying the structure and function of
microbial communities. Often the functional analysis is restricted to classification into broad
functional categories. However, important phenotypic differences, such as resistance to
antibiotics, are often the result of just one or a few point mutations in otherwise identical
sequences. Bioinformatic methods for metagenomic analysis have generally been poor at
accounting for this fact, resulting in a somewhat limited picture of important aspects of microbial
communities. Here, we address this problem by providing a software tool called Mumame, which
can distinguish between wildtype and mutated sequences in shotgun metagenomic data and
quantify their relative abundances. We demonstrate the utility of the tool by quantifying antibiotic
resistance mutations in several publicly available metagenomic data sets. We also identified that
sequencing depth is a key factor to detect rare mutations. Therefore, much larger numbers of
sequences may be required for reliable detection of mutations than for most other applications of
shotgun metagenomics. Mumame is freely available from

http://microbiology.se/software/mumame
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Introduction

The revolution in sequencing capacity has created an unprecedented ability to glimpse into the
functionality of microbial communities, using large-scale shotgun metagenomic techniques
(Quince et al. 2017). This has yielded important insights into broad functional patterns of
microbial consortia (Yooseph et al. 2007; Human Microbiome Project Consortium 2012;
Sunagawa et al. 2015). However, while overall pathway abundances inferred from metagenomic
data can tell us much about the general functions of communities and how they change with e.g.
environmental gradients (Bengtsson-Palme 2018; Bahram et al. 2018), there are many important
functional differences that are hidden in the subtleties of these communities (Osterlund et al.
2017). For example, many antibiotic resistance phenotypes are the results of single point
mutations rather than acquisition of novel pathways or genes (Johnning et al. 2013). This
complicates the studies of selection pressures in environmental communities, as analysis of such
mutations is generally limited to a narrow range of species (Johnning et al. 2015b; Johnning et al.

2015a; Kraupner et al. 2018).

Because of the immense increase in available sequence data, it would be desirable to study these
mutations from shotgun metagenomic libraries, much as other traits have been studied at a large
scale (Pal et al. 2016). However, attempts to quantify point mutations in metagenomic sequencing
data often go wrong because the methods do not sufficiently well distinguish between mutated
and wildtype variants of the same gene. For example, a sequenced read may map to a region
identical in the mutated and wildtype variant of a gene, causing problems for quantifying their
relative proportions (Bengtsson-Palme et al. 2017). In addition, because the sought-after

mutations generally are rare in most types of sample, and metagenomic studies are often under-
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sampled in terms of replicates (Jonsson et al. 2016a), commonly applied statistics methods may

not be sufficiently sensitive to reliably detect differences between samples (Jonsson et al. 2016b).

In this study, we attempt to provide a partial remedy to these problems through the introduction
of a software tool — Mumame — that can quantify and distinguish between wildtype and mutated
gene variants in metagenomic data, and through suggesting a statistical framework for handling
the output data of the software. We further demonstrate the ability of the method to detect
relevant differences between environmental sample types, estimate the sequencing depths
required for the method to perform reliably through simulations, and exemplify the utility of the
software on detecting resistance mutations in publicly available metagenomes. The Mumame
software package is open-source and freely available from

http://microbiology.se/software/mumame

Methods

Software implementation

Mumame is implemented in Perl and consists of two commands: mumame, which performs
mapping to database of mutations, and mumame_build with builds the database for the former
command. The mumame_build command takes a FASTA sequence file and a list of mutations
(CSV format) as input. For each entry in the mutation list, it finds the corresponding sequence(s)
in the FASTA file, either by sequence identifier or by CARD ARO accessions (Jia et al. 20106). It
then excerpts a number of residues upstream and downstream of the mutation position (by
default 20 residues for proteins and 55 for nucleotide sequences) and creates one wildtype

version and one mutated version of the sequence excerpt with unique sequence IDs. For cases
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83  where multiple mutations can occur close to each other on the same sequence, the software
84  attempts to create all possible combinations of mutations (if memory permits — is some situations
85  this is not possible because the number of combinations increase exponentially). The software
86  tool also generates a mapping file between sequence IDs in the database and mutation

87  information from the list.

88  The main mumame command takes any number of input files containing DNA sequence reads
89  in FASTA or FASTQ format and maps those against the Mumame database using Usearch
90  (Edgar 2010). For this mapping, the software runs Usearch in search_global mode with target
91  coverage set to 0.55 (by default; any value = 0.51 should be feasible for target coverage). The
92 output is then mapped to the wildtype or mutation information in the Mumame database, and

93 data is collected for each input file and combined into one single output table.

94 The output table generated by Mumame can then be analyzed using the R script (R Core Team
95  2016) supplied with the Mumame package. The script reads the read counts for all mutation
96  positions detected, both for wildtype and mutated sequences, and assesses if there are
97  significantly different proportions of mutations between different sample groups directly through
98 a generalized linear model. Alternatively, an overdispersed Poisson generalized linear model
99  accounting for the discrete nature of the data and the differences in sequencing depth can be
100 used (Jonsson et al. 2016b; Bengtsson-Palme et al. 2017). The Poisson model is preferable when

101 the number of counts for a targeted gene is low in all sample groups.

102 Quantification of mutations in metagenomes
103 To quantify the abundances of fluoroquinolone resistance mutations in the gyz4 and parC genes

104 (Johnning et al. 2015b), we downloaded the CARD database on 2018-05-24 (Jia et al. 2016). We
5
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105  extracted all mutation information regarding the gy=4 and parC genes from the “snps.txt” file and
106 created a new file with that information. We then created a new Mumame database, with the
107 following command: “mumame_build -i card-data/protein_fasta_protein_variant_model.fasta -m
108 gyrA_parC_snps.txt -o gyrA_parC”. That database was used to map all the reads from the
109 samples generated by Kraupner et al. (2018) to the database using Mumame in the Usearch mode
110 (Edgar 2010) and the following options “-d gyrA_parC -c¢ 0.95”. We did this both for the
111 shotgun metagenomics data as well as for the amplicon sequences derived specifically from
112 Enterobacteriaceae gyrA and parC genes. Prior to this sequence mapping raw reads were quality
113 filtered using Trim Galore! (Babraham Bioinformatics 2012) with the settings “-e 0.1 -q 28 -O 1”’.
114 We then used the R script (R Core Team 2016) provided with the Mumame software to compare
115 the matches to mutated and wildtype sequences in the database. The same database and method
116 combination was used to quantify fluoroquinolone resistance mutations in sequence data from an
117 Indian lake exposed to ciprofloxacin pollution (Bengtsson-Palme et al. 2014), as well as in an
118  Indian river upstream and downstream of a wastewater treatment plant processing
119 pharmaceutical waste (Kristiansson et al. 2011; Pal et al. 2016). These samples were preprocessed

120 in the same way as in the Indian lake study (Bengtsson-Palme et al. 2014).

121 To quantify resistance mutations to tetracycline in the sequence data generated by (Lundstrom et
122 al. 20106), we created a Mumame database for tetracycline resistance mutations in the 16S rRNA
123 gene. We extracted the mutational information related to tetracycline from the CARD “snps.txt”
124 file and then built the database using the following command: “mumame_build -i card-
125 data/nucleotide_fasta_rRNA_gene_variant_model.fasta -m Tet_snps.txt -0 Tet -n”. We then

126 mapped all reads from the Lundstrom et al. (2016) data to the Mumame database using the
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127 options “-d Tet -c 0.95 -n”. Reads were quality filtered and statistical differences were assessed as

128  above.

129 Software evaluation

130 To assess the limitations of the method in terms of sequencing depth, the samples from the
131 highest and lowest ciprofloxacin concentrations generated by Kraupner et al. (2018; 10 pg/L and
132 0 pg/L, respectively) were downsampled to 1, 5, 10, 20, 30, 40 and 50 million reads. Thereafter,
133 the reads from the downsampled libraries were mapped to the fluoroquinolone resistance
134 mutation database using Mumame as above. Statistical differences were assessed at all simulated

135  sequencing depths and average effect sizes calculated for the significantly altered genes.

136 Results

137 Mumame can quantify point mutation frequencies in metagenomic data

138 As a proof-of-concept that our method to identify point mutations in metagenomic sequence
139 data is functional, we used Mumame to quantify the mutations in amplicon data from the the
140 g4 and parC genes. These genes are targets of fluoroquinolone antibiotics, and often acquire
141 resistance mutations attaining high levels of resistance. We quantified such mutations in an
142 amplicon data set specifically targeting these two genes in Escherichia coli. 'This data set derives
143 from an exposure study with increasing ciprofloxacin concentrations, and enrichments of
144 mutations in the classical fluoroquinolone resistance determining positions S83 and D87 (gyrA)
145  and S80 and E84 (parC) have previously been verified using other bioinformatic methods
146 (Kraupner et al. 2018). This data set therefore serves as an ideal positive control for our novel
147 method. We found that Mumame were able to identify the difference between the highest

7
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concentration (10 ug/L) and the lower ones reported in the original study (Figure 1). However,
Mumame only reported an average frequency of mutations of around 11-12% for gy~ mutations
(Figure 1A), while the original paper finds frequencies of 60-85% (S83) and 30-40% (ID87). The
AG7 position was not quantified in the original paper. The reason for the discrepancies is
unknown, but it is likely caused by a taxonomic filtration step that selects for E. co/i reads used in
the Kraupner et al. study, while Mumame does not perform prior filtering. The decision to
exclude filtering was made in order to mimic a situation with true metagenomic data where
several target species may co-exist. For parC, Mumame only quantified the S80 position (Figure
1C), because the E84 mutations were not included in the version of the CARD database used for
this study. For position S80, Mumame identified around 35% mutated sequences at the highest

concentration of ciprofloxacin, while the original study reported around 50%.
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160 Figure 1. Total mutation frequencies quantified using Mumame for three known mutations conferring
161  resistance to fluoroquinolone in the E. co/i gyrA gene based on amplicon sequencing (A) and shotgun
162 metagenomic data (B) from the same samples. Cotresponding data for the S80 mutation in parC is shown
163 in (C) for amplicon data and (D) for shotgun data.

164

165  We next evaluated the performance of Mumame on the real shotgun data that was also generated
166 from the same samples as the amplicon libraries. Ideally, this analysis should generate virtually the
167  same result as the amplicon analysis. Indeed, we found similar results for the A67 and S83 gyrA
168  mutations (Figure 1B). For the D87 mutation, the frequencies were much lower than for the

169 other two mutations, albeit still significantly larger than at the lower concentrations (p < 0.01).

9
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170 For the parC gene, the shotgun metagenomic analysis was too noisy to generate a statistically
171  significant result, which was highly surprising to us (Figure 1D). Taken together, these results
172 indicate the high noise levels present for individual gene variants even in deeply sequenced

173 shotgun metagenomes from controlled exposure studies.

174 The limits to quantification

175  Noting the much more instable levels of mutations in the shotgun metagenomes, we next
176 investigated the effects of sequencing depth on the ability of our method to detect significantly
177 altered mutation frequencies. For this analysis, we used downsampled data from the shotgun
178 metagenomic library of the ciprofloxacin exposure study (Figure 2). As expected, we found that
179 the number of significantly altered mutation frequencies detected increased with larger
180  sequencing depth (Figure 2A). In addition, the average effect size of the significant mutations
181  became gradually lower with larger sequence depth, also in accordance with expectations (Figure
182 2B). Importantly, the average effect size of detectable mutation frequency differences seems to
183 decrease linearly with sequencing depth. This means that we can calculate an expected detection
184  limit for the method given the characteristics of the data and experimental setup. At 10 million
185  reads, we expect that the proportion of reads with mutation must be 30-40% higher in the
186  exposed sample in order for it to be detected as significant. The required effect decreases to, on
187  average, 10% higher at 50 million reads (Figure 2B). These numbers are of course also dependent
188  on other factors, such as the number of replicates per treatment, but nevertheless they can be
189  used as ballpark numbers to aid the design of metagenomic studies or to interpret non-significant

190 results derived from Mumame analyses.

10
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Figure 2. Relationship between the number of investigated reads and number of mutations with
significantly altered frequencies (A) and the average effect size for those mutations (B); as assessed using
Mumame on shotgun metagenomic data from a ciprofloxacin exposure experiment.

Tetracycline-exposed Escherichia coli populations do not harbor higher abundances of resistance mutations

After performing the validation and limitation testing of the method, we next used Mumame to
quantify resistance mutations in a similar controlled aquarium setup under exposure to the
antibiotic tetracycline (Lundstrém et al. 20106). In this study, no amplicon sequencing of the target
gene for tetracycline — the 23S rfRNA — was performed, and thus there was no a priori true result
that we could compare to. While Mumame was able to successfully detect tetracycline resistance
mutations in the data, we somewhat surprisingly found no enrichment of tetracycline resistance
mutations in this data (Figure 3). Notably, this result was obtained despite a very high sequencing
depth (on average 181,595,072 paired-end sequences per library). Obtaining a negative result at
this sequencing depth suggests that there actually is no enrichment of known E. co/i resistance

mutations in the samples.
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Figure 3. Frequencies of E. co/i tetracycline resistance mutations at exposure to different concentrations
of tetracycline, based on shotgun metagenomic data.

Fluoroquinolone resistance mutations in ciprofloxcacin-polluted sediments

As a final investigation of the performance of the method, we also let Mumame quantify the
fluoroquinolone resistance mutations in river and lake sediments polluted by antibiotic
manufacturing waste, primarily ciprofloxacin (Kristiansson et al. 2011; Bengtsson-Palme et al.
2014; Pal et al. 2016). These libraries are fairly old and were not as deeply sequenced as the other
data sets we investigated. While the experimental setup of these studies in terms of number of
samples does not allow for proper statistical testing, we did find an enrichment of the
fluoroquinolone resistance mutation frequencies downstream of the pollution source, at least for
the E. cli gyrA and parC genes (Figure 4). We also detected a few such mutations in other species,
but the counts of those were low and the results largely non-informative due to the small number

of detections per mutation (Figure 5).
12
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223 Figure 4. Relative frequency of gynA and parC sequences with resistance mutations in samples taken
224 downstream, at or upstream of the pharmaceutical production wastewater treatment plant, as well as in a
225  lake polluted by dumping of pharmaceutical production waste. The numbers at the top of the bars shows
226 the total number of sequences (wildtype or mutated) identified in each sample.

227
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229  Figure 5. Relative frequency of sequences with resistance mutations in samples taken downstream, at or
230 upstream of the pharmaceutical production wastewater treatment plant, as well as in a lake polluted by
231  dumping of pharmaceutical production waste, for Acinetobacter baumanii (A), Salmonella species (B) and
232 Haemophilus parainfluenzae, Mycobacterium tubercolosis and Neisseria gonorrhoeae (C).

233

234  Discussion

235  Metagenomics often becomes restricted to investigate gross compositional changes to the
236 taxonomy and function of microbial communities. Unfortunately, this obscures important

237  variation between individual sequence variants that may have large outcomes on phenotypes

14
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238 (Osterlund et al. 2017; Bengtsson-Palme 2018). One example of such point mutations inducing
239 strong phenotypic changes is resistance mutations in the target genes of antibiotics (Kraupner et
240  al. 2018). However, including mutated sequence variants in the antibiotic resistance gene
241 databases is complicated, and can lead to gross misinterpretations of the data (see for example
242 (Ma et al. 2014). Still, understanding relevant variation between sequences and linking that to
243 phenotypes is somewhat of a holy Grail of metagenomics. This study has made clear that we are
244 not yet at that point in terms of bioinformatic methods and the sequencing depth required to
245  draw firm conclusions. That said, we show in this work that identifying significant and relevant
246  differences in resistance mutation frequencies between sample groups from shotgun
247  metagenomic data is possible, given a sufficiently large sequence depth. However, the

248  quantitative estimates still seem to be highly variable, even at very large sequencing depths.

249 The results of the Mumame evaluation also provides a few other important clues on potential
250  pitfalls with inferring mutation frequencies from shotgun metagenomic data. An important such
251  aspect is the disparity between mutation frequencies described by amplicon sequencing and
252 shotgun data. Particularly, the ability to relatively consistently identify the A67 and S83 mutations
253 in parC, while the D87 mutation is seemingly less frequent in the shotgun data is somewhat
254 troubling if the goal is to identify the actual abundances of such mutations. At the same time, the
255  statistical significance of those differences could still be identified. For the A67 and S83
256  mutations, only 5 million reads were required for a significant effect to be detected, while for the
257 D87 mutations a sequencing depth of 50 million reads was required. This is not necessarily a

258  shortcoming of the Mumame software, but may just as well be due to the much noisier nature of

15
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259 counts from metagenomic sequence data compared to the large number of reads corresponding

260  to the same genes deriving from amplicon data (Jonsson et al. 2016a).

261  Another important potential problem highlighted by our evaluation is the need to produce very
262 large sequence data sets to be able to identify and quantify mutations (and wildtype) sequences
263  with any certainty. As a rule of thumb, the targeted regions represent less than 0.004% of the
264  bacterial genome, and each bacterial strain may correspond to only a fraction of a percent of the
265  reads in the shotgun sequence data (depending on its abundance). This means that to identify a
266  single read from a resistance region in the data, one would — on average — need to sequence more
267  than five million reads. To get a reasonably confident measure of reads stemming from wildtype
268  versus strains with mutations, approximately 10 reads from each group would be needed per
269  sample (or, say, 20 reads in total). That would, as a rough estimate, correspond to a hundred
270  million reads per sample. This is, unfortunately, way more sequences than what is typically
271 generated per sample by shotgun metagenomic sequencing projects. In this study, only the
272 samples from the tetracycline exposure study corresponded to such a high sequencing depth.
273 Naturally, these numbers would depend on the proportions of the targeted microorganisms as
274 well as their genome sizes, but ultimately this still presents the largest limitation to mutation
275  studies based on metagenomic sequence data. Potentially, this problem could be partially
276 alleviated by analyzing sufficiently large cohorts and perform the statistical analysis for general
277  trends, but even large cohorts would be insufficient for mutations rare enough to pass below the

278  detection limit.

279 In terms of interpreting the results from the exposure experiments, it is interesting to note the
280  overall clear increase of fluoroquinolone resistance mutations at the highest ciprofloxacin
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281  concentration, which nearly perfectly correspond to increases in mobile gnr fluoroquinolone
282  genes in the same samples (Kraupner et al. 2018). This is contrasted by the trend seen in the
283  tetracycline exposure experiments, where tetracycline resistance genes — specifically efflux pumps
284  — were enriched at higher tetracycline concentrations (Lundstrom et al. 2016), while tetracycline
285  resistance mutation abundances were not significantly altered. This non-significant result was

286  obtained despite the exceptionally high sequencing depth of those samples.

287  While we did not have data from a proper experimental setup to address differences between
288  sediments exposed to different degrees of fluoroquinolone pollution, the quantification of
289  resistance mutations seems to provide an important piece of information to explain the results of
290  previous studies of resistance gene abundances in these river samples (Kristiansson et al. 2011).
291 In the original paper, the abundance of mobile fluoroquinolone resistance genes (g#r genes) were
292 shown to be enriched in the low-level polluted upstream samples, compared to the highly
293 polluted downstream samples. Importantly, the gnr genes only provide resistance to relatively low
294 levels of fluoroquinolones (Hooper and Jacoby 2015), and the authors of hypothesize that
295  chromosomal mutations of the target genes are probably necessary to survive the selection
296  pressure from antibiotics downstream of the pollution source. In this work, we show that this
297  assumption is likely correct. Only a limited number of reads were mapping to these resistance
298  regions and the number of samples unfortunately prevents us from properly assessing a statistical
299  difference between the upstream and downstream samples. Still, the proportion of resistance
300  mutations seems to be systematically higher in the samples downstream of the pollution source,

301 at least for E. co/i. This indicates that the method we present here can provide important
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302  additional information to metagenomic studies of resistance patterns in different environment

303 types, given that a sufficient sequencing depth is achieved.

304  We have here shown the utility of the Mumame tool for finding resistance mutations in shotgun
305 metagenomic data. In this paper, we have used the CARD database (Jia et al. 2016) as the
306  information source for resistance mutation, but the tool is flexible to use any source of such data.
307 It is also not in any means restricted to the mutations investigated in this paper but is
308  fundamentally agnostic to the input data. It can also be used in open screening for mutations in
309  any gene present in the database in parallel, and can handle different mutations in both RNA and
310  protein coding genes. The tool is flexible and fast and can therefore be implemented as a part

311  nearly any screening pipeline for antibiotic resistance data in metagenomic data sets.

312  Conclusion

313 This paper presents a software tool called Mumame to analyze shotgun metagenomic data for
314  point mutations, such as those conferring antibiotic resistance to bacteria. Mumame distinguish
315  between wildtype and mutated gene variants in metagenomic data and quantify them, given a
316  sufficient sequencing depth. We also provide a statistical framework for handling the generated
317  count data and account for factors such as differences in sequencing depth. Importantly, our
318  study also reveals the importance of a high sequencing depth — preferably more than 50 million
319  sequenced reads per sample — in order to get reasonably accurate estimates of mutation
320  frequencies, particularly for rare genes or species. The Mumame software package is freely

321  available from http://microbiology.se/software/mumame. We expect Mumame to be a useful
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322 addition to metagenomic studies of e.g. antibiotic resistance, and to increase the detail by which

323  metagenomes can be screened for phenotypically important differences.
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