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Abstract 20 

Metagenomics has emerged as a central technique for studying the structure and function of 21 

microbial communities. Often the functional analysis is restricted to classification into broad 22 

functional categories. However, important phenotypic differences, such as resistance to 23 

antibiotics, are often the result of just one or a few point mutations in otherwise identical 24 

sequences. Bioinformatic methods for metagenomic analysis have generally been poor at 25 

accounting for this fact, resulting in a somewhat limited picture of important aspects of microbial 26 

communities. Here, we address this problem by providing a software tool called Mumame, which 27 

can distinguish between wildtype and mutated sequences in shotgun metagenomic data and 28 

quantify their relative abundances. We demonstrate the utility of the tool by quantifying antibiotic 29 

resistance mutations in several publicly available metagenomic data sets. We also identified that 30 

sequencing depth is a key factor to detect rare mutations. Therefore, much larger numbers of 31 

sequences may be required for reliable detection of mutations than for most other applications of 32 

shotgun metagenomics. Mumame is freely available from 33 

http://microbiology.se/software/mumame 34 
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Introduction 40 

The revolution in sequencing capacity has created an unprecedented ability to glimpse into the 41 

functionality of microbial communities, using large-scale shotgun metagenomic techniques 42 

(Quince et al. 2017). This has yielded important insights into broad functional patterns of 43 

microbial consortia (Yooseph et al. 2007; Human Microbiome Project Consortium 2012; 44 

Sunagawa et al. 2015). However, while overall pathway abundances inferred from metagenomic 45 

data can tell us much about the general functions of communities and how they change with e.g. 46 

environmental gradients (Bengtsson-Palme 2018; Bahram et al. 2018), there are many important 47 

functional differences that are hidden in the subtleties of these communities (Österlund et al. 48 

2017). For example, many antibiotic resistance phenotypes are the results of single point 49 

mutations rather than acquisition of novel pathways or genes (Johnning et al. 2013). This 50 

complicates the studies of selection pressures in environmental communities, as analysis of such 51 

mutations is generally limited to a narrow range of species (Johnning et al. 2015b; Johnning et al. 52 

2015a; Kraupner et al. 2018). 53 

Because of the immense increase in available sequence data, it would be desirable to study these 54 

mutations from shotgun metagenomic libraries, much as other traits have been studied at a large 55 

scale (Pal et al. 2016). However, attempts to quantify point mutations in metagenomic sequencing 56 

data often go wrong because the methods do not sufficiently well distinguish between mutated 57 

and wildtype variants of the same gene. For example, a sequenced read may map to a region 58 

identical in the mutated and wildtype variant of a gene, causing problems for quantifying their 59 

relative proportions (Bengtsson-Palme et al. 2017). In addition, because the sought-after 60 

mutations generally are rare in most types of sample, and metagenomic studies are often under-61 
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sampled in terms of replicates (Jonsson et al. 2016a), commonly applied statistics methods may 62 

not be sufficiently sensitive to reliably detect differences between samples (Jonsson et al. 2016b). 63 

In this study, we attempt to provide a partial remedy to these problems through the introduction 64 

of a software tool – Mumame – that can quantify and distinguish between wildtype and mutated 65 

gene variants in metagenomic data, and through suggesting a statistical framework for handling 66 

the output data of the software. We further demonstrate the ability of the method to detect 67 

relevant differences between environmental sample types, estimate the sequencing depths 68 

required for the method to perform reliably through simulations, and exemplify the utility of the 69 

software on detecting resistance mutations in publicly available metagenomes. The Mumame 70 

software package is open-source and freely available from 71 

http://microbiology.se/software/mumame 72 

Methods 73 

Software implementation 74 

Mumame is implemented in Perl and consists of two commands: mumame, which performs 75 

mapping to database of mutations, and mumame_build with builds the database for the former 76 

command. The mumame_build command takes a FASTA sequence file and a list of mutations 77 

(CSV format) as input. For each entry in the mutation list, it finds the corresponding sequence(s) 78 

in the FASTA file, either by sequence identifier or by CARD ARO accessions (Jia et al. 2016). It 79 

then excerpts a number of residues upstream and downstream of the mutation position (by 80 

default 20 residues for proteins and 55 for nucleotide sequences) and creates one wildtype 81 

version and one mutated version of the sequence excerpt with unique sequence IDs. For cases 82 
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where multiple mutations can occur close to each other on the same sequence, the software 83 

attempts to create all possible combinations of mutations (if memory permits – is some situations 84 

this is not possible because the number of combinations increase exponentially). The software 85 

tool also generates a mapping file between sequence IDs in the database and mutation 86 

information from the list. 87 

The main mumame command takes any number of input files containing DNA sequence reads 88 

in FASTA or FASTQ format and maps those against the Mumame database using Usearch 89 

(Edgar 2010). For this mapping, the software runs Usearch in search_global mode with target 90 

coverage set to 0.55 (by default; any value ≥ 0.51 should be feasible for target coverage). The 91 

output is then mapped to the wildtype or mutation information in the Mumame database, and 92 

data is collected for each input file and combined into one single output table. 93 

The output table generated by Mumame can then be analyzed using the R script (R Core Team 94 

2016) supplied with the Mumame package. The script reads the read counts for all mutation 95 

positions detected, both for wildtype and mutated sequences, and assesses if there are 96 

significantly different proportions of mutations between different sample groups directly through 97 

a generalized linear model. Alternatively, an overdispersed Poisson generalized linear model 98 

accounting for the discrete nature of the data and the differences in sequencing depth can be 99 

used (Jonsson et al. 2016b; Bengtsson-Palme et al. 2017). The Poisson model is preferable when 100 

the number of counts for a targeted gene is low in all sample groups. 101 

Quantification of mutations in metagenomes 102 

To quantify the abundances of fluoroquinolone resistance mutations in the gyrA and parC genes 103 

(Johnning et al. 2015b), we downloaded the CARD database on 2018-05-24 (Jia et al. 2016). We 104 
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extracted all mutation information regarding the gyrA and parC genes from the “snps.txt” file and 105 

created a new file with that information. We then created a new Mumame database, with the 106 

following command: “mumame_build -i card-data/protein_fasta_protein_variant_model.fasta -m 107 

gyrA_parC_snps.txt -o gyrA_parC”. That database was used to map all the reads from the 108 

samples generated by Kraupner et al. (2018) to the database using Mumame in the Usearch mode 109 

(Edgar 2010) and the following options “-d gyrA_parC -c 0.95”. We did this both for the 110 

shotgun metagenomics data as well as for the amplicon sequences derived specifically from 111 

Enterobacteriaceae gyrA and parC genes. Prior to this sequence mapping raw reads were quality 112 

filtered using Trim Galore! (Babraham Bioinformatics 2012) with the settings “-e 0.1 -q 28 -O 1”. 113 

We then used the R script (R Core Team 2016) provided with the Mumame software to compare 114 

the matches to mutated and wildtype sequences in the database. The same database and method 115 

combination was used to quantify fluoroquinolone resistance mutations in sequence data from an 116 

Indian lake exposed to ciprofloxacin pollution (Bengtsson-Palme et al. 2014), as well as in an 117 

Indian river upstream and downstream of a wastewater treatment plant processing 118 

pharmaceutical waste (Kristiansson et al. 2011; Pal et al. 2016). These samples were preprocessed 119 

in the same way as in the Indian lake study (Bengtsson-Palme et al. 2014). 120 

To quantify resistance mutations to tetracycline in the sequence data generated by (Lundström et 121 

al. 2016), we created a Mumame database for tetracycline resistance mutations in the 16S rRNA 122 

gene. We extracted the mutational information related to tetracycline from the CARD “snps.txt” 123 

file and then built the database using the following command: “mumame_build -i card-124 

data/nucleotide_fasta_rRNA_gene_variant_model.fasta -m Tet_snps.txt -o Tet -n”. We then 125 

mapped all reads from the Lundström et al. (2016) data to the Mumame database using the 126 
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options “-d Tet -c 0.95 -n”. Reads were quality filtered and statistical differences were assessed as 127 

above. 128 

Software evaluation 129 

To assess the limitations of the method in terms of sequencing depth, the samples from the 130 

highest and lowest ciprofloxacin concentrations generated by Kraupner et al. (2018; 10 µg/L and 131 

0 µg/L, respectively) were downsampled to 1, 5, 10, 20, 30, 40 and 50 million reads. Thereafter, 132 

the reads from the downsampled libraries were mapped to the fluoroquinolone resistance 133 

mutation database using Mumame as above. Statistical differences were assessed at all simulated 134 

sequencing depths and average effect sizes calculated for the significantly altered genes. 135 

Results 136 

Mumame can quantify point mutation frequencies in metagenomic data 137 

As a proof-of-concept that our method to identify point mutations in metagenomic sequence 138 

data is functional, we used Mumame to quantify the mutations in amplicon data from the the 139 

gyrA and parC genes. These genes are targets of fluoroquinolone antibiotics, and often acquire 140 

resistance mutations attaining high levels of resistance. We quantified such mutations in an 141 

amplicon data set specifically targeting these two genes in Escherichia coli. This data set derives 142 

from an exposure study with increasing ciprofloxacin concentrations, and enrichments of 143 

mutations in the classical fluoroquinolone resistance determining positions S83 and D87 (gyrA) 144 

and S80 and E84 (parC) have previously been verified using other bioinformatic methods 145 

(Kraupner et al. 2018). This data set therefore serves as an ideal positive control for our novel 146 

method. We found that Mumame were able to identify the difference between the highest 147 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 11, 2018. ; https://doi.org/10.1101/438572doi: bioRxiv preprint 

https://doi.org/10.1101/438572
http://creativecommons.org/licenses/by/4.0/


8 

 

 

concentration (10 µg/L) and the lower ones reported in the original study (Figure 1). However, 148 

Mumame only reported an average frequency of mutations of around 11-12% for gyrA mutations 149 

(Figure 1A), while the original paper finds frequencies of 60-85% (S83) and 30-40% (D87). The 150 

A67 position was not quantified in the original paper. The reason for the discrepancies is 151 

unknown, but it is likely caused by a taxonomic filtration step that selects for E. coli reads used in 152 

the Kraupner et al. study, while Mumame does not perform prior filtering. The decision to 153 

exclude filtering was made in order to mimic a situation with true metagenomic data where 154 

several target species may co-exist. For parC, Mumame only quantified the S80 position (Figure 155 

1C), because the E84 mutations were not included in the version of the CARD database used for 156 

this study. For position S80, Mumame identified around 35% mutated sequences at the highest 157 

concentration of ciprofloxacin, while the original study reported around 50%. 158 
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 159 

Figure 1. Total mutation frequencies quantified using Mumame for three known mutations conferring 160 
resistance to fluoroquinolone in the E. coli gyrA gene based on amplicon sequencing (A) and shotgun 161 
metagenomic data (B) from the same samples. Corresponding data for the S80 mutation in parC is shown 162 
in (C) for amplicon data and (D) for shotgun data. 163 

 164 

We next evaluated the performance of Mumame on the real shotgun data that was also generated 165 

from the same samples as the amplicon libraries. Ideally, this analysis should generate virtually the 166 

same result as the amplicon analysis. Indeed, we found similar results for the A67 and S83 gyrA 167 

mutations (Figure 1B). For the D87 mutation, the frequencies were much lower than for the 168 

other two mutations, albeit still significantly larger than at the lower concentrations (p < 0.01). 169 

0%

10%

20%

30%

40%

50%

60%

0 0.1 1 10Pe
rc

en
ta

ge
 w

ith
 sp

ec
ifi

c m
ut

at
io

ns

Ciprofloxacin concentration

Triple mutations in Escherichia coli gyrA

A67 S83 D87

0%

2%

4%

6%

8%

10%

0 0.1 1 10Pe
rc

en
ta

ge
 w

ith
 sp

ec
ifi

c m
ut

at
io

n

Ciprofloxacin concentration

Single mutation in Escherichia coli parC

S80

0%
2%
4%
6%
8%
10%
12%
14%
16%
18%
20%

0 0.1 1 10Pe
rc

en
ta

ge
 w

ith
 sp

ec
ifi

c m
ut

at
io

ns

Ciprofloxacin concentration

Triple mutations in Escherichia coli gyrA

A67 S83 D87

0%

10%

20%

30%

40%

50%

0 0.1 1 10Pe
rc

en
ta

ge
 w

ith
 sp

ec
ifi

c m
ut

at
io

n

Ciprofloxacin concentration

Single mutation in Escherichia coli parC

S80

Amplicon data Shotgun metagenomic data

A) B)

C) D)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 11, 2018. ; https://doi.org/10.1101/438572doi: bioRxiv preprint 

https://doi.org/10.1101/438572
http://creativecommons.org/licenses/by/4.0/


10 

 

 

For the parC gene, the shotgun metagenomic analysis was too noisy to generate a statistically 170 

significant result, which was highly surprising to us (Figure 1D). Taken together, these results 171 

indicate the high noise levels present for individual gene variants even in deeply sequenced 172 

shotgun metagenomes from controlled exposure studies. 173 

The limits to quantification 174 

Noting the much more instable levels of mutations in the shotgun metagenomes, we next 175 

investigated the effects of sequencing depth on the ability of our method to detect significantly 176 

altered mutation frequencies. For this analysis, we used downsampled data from the shotgun 177 

metagenomic library of the ciprofloxacin exposure study (Figure 2). As expected, we found that 178 

the number of significantly altered mutation frequencies detected increased with larger 179 

sequencing depth (Figure 2A). In addition, the average effect size of the significant mutations 180 

became gradually lower with larger sequence depth, also in accordance with expectations (Figure 181 

2B). Importantly, the average effect size of detectable mutation frequency differences seems to 182 

decrease linearly with sequencing depth. This means that we can calculate an expected detection 183 

limit for the method given the characteristics of the data and experimental setup. At 10 million 184 

reads, we expect that the proportion of reads with mutation must be 30-40% higher in the 185 

exposed sample in order for it to be detected as significant. The required effect decreases to, on 186 

average, 10% higher at 50 million reads (Figure 2B). These numbers are of course also dependent 187 

on other factors, such as the number of replicates per treatment, but nevertheless they can be 188 

used as ballpark numbers to aid the design of metagenomic studies or to interpret non-significant 189 

results derived from Mumame analyses. 190 
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 191 

Figure 2. Relationship between the number of investigated reads and number of mutations with 192 
significantly altered frequencies (A) and the average effect size for those mutations (B); as assessed using 193 
Mumame on shotgun metagenomic data from a ciprofloxacin exposure experiment. 194 

 195 

Tetracycline-exposed Escherichia coli populations do not harbor higher abundances of resistance mutations 196 

After performing the validation and limitation testing of the method, we next used Mumame to 197 

quantify resistance mutations in a similar controlled aquarium setup under exposure to the 198 

antibiotic tetracycline (Lundström et al. 2016). In this study, no amplicon sequencing of the target 199 

gene for tetracycline – the 23S rRNA – was performed, and thus there was no a priori true result 200 

that we could compare to. While Mumame was able to successfully detect tetracycline resistance 201 

mutations in the data, we somewhat surprisingly found no enrichment of tetracycline resistance 202 

mutations in this data (Figure 3). Notably, this result was obtained despite a very high sequencing 203 

depth (on average 181,595,072 paired-end sequences per library). Obtaining a negative result at 204 

this sequencing depth suggests that there actually is no enrichment of known E. coli resistance 205 

mutations in the samples. 206 
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 207 

Figure 3. Frequencies of E. coli tetracycline resistance mutations at exposure to different concentrations 208 
of tetracycline, based on shotgun metagenomic data. 209 

 210 

Fluoroquinolone resistance mutations in ciprofloxacin-polluted sediments 211 

As a final investigation of the performance of the method, we also let Mumame quantify the 212 

fluoroquinolone resistance mutations in river and lake sediments polluted by antibiotic 213 

manufacturing waste, primarily ciprofloxacin (Kristiansson et al. 2011; Bengtsson-Palme et al. 214 

2014; Pal et al. 2016). These libraries are fairly old and were not as deeply sequenced as the other 215 

data sets we investigated. While the experimental setup of these studies in terms of number of 216 

samples does not allow for proper statistical testing, we did find an enrichment of the 217 

fluoroquinolone resistance mutation frequencies downstream of the pollution source, at least for 218 

the E. coli gyrA and parC genes (Figure 4). We also detected a few such mutations in other species, 219 

but the counts of those were low and the results largely non-informative due to the small number 220 

of detections per mutation (Figure 5). 221 
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 222 

Figure 4. Relative frequency of gyrA and parC sequences with resistance mutations in samples taken 223 
downstream, at or upstream of the pharmaceutical production wastewater treatment plant, as well as in a 224 
lake polluted by dumping of pharmaceutical production waste. The numbers at the top of the bars shows 225 
the total number of sequences (wildtype or mutated) identified in each sample. 226 
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 228 

Figure 5. Relative frequency of sequences with resistance mutations in samples taken downstream, at or 229 
upstream of the pharmaceutical production wastewater treatment plant, as well as in a lake polluted by 230 
dumping of pharmaceutical production waste, for Acinetobacter baumanii (A), Salmonella species (B) and 231 
Haemophilus parainfluenzae, Mycobacterium tubercolosis and Neisseria gonorrhoeae (C). 232 

 233 

Discussion 234 

Metagenomics often becomes restricted to investigate gross compositional changes to the 235 

taxonomy and function of microbial communities. Unfortunately, this obscures important 236 

variation between individual sequence variants that may have large outcomes on phenotypes 237 
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(Österlund et al. 2017; Bengtsson-Palme 2018). One example of such point mutations inducing 238 

strong phenotypic changes is resistance mutations in the target genes of antibiotics (Kraupner et 239 

al. 2018). However, including mutated sequence variants in the antibiotic resistance gene 240 

databases is complicated, and can lead to gross misinterpretations of the data (see for example 241 

(Ma et al. 2014). Still, understanding relevant variation between sequences and linking that to 242 

phenotypes is somewhat of a holy Grail of metagenomics. This study has made clear that we are 243 

not yet at that point in terms of bioinformatic methods and the sequencing depth required to 244 

draw firm conclusions. That said, we show in this work that identifying significant and relevant 245 

differences in resistance mutation frequencies between sample groups from shotgun 246 

metagenomic data is possible, given a sufficiently large sequence depth. However, the 247 

quantitative estimates still seem to be highly variable, even at very large sequencing depths. 248 

The results of the Mumame evaluation also provides a few other important clues on potential 249 

pitfalls with inferring mutation frequencies from shotgun metagenomic data. An important such 250 

aspect is the disparity between mutation frequencies described by amplicon sequencing and 251 

shotgun data. Particularly, the ability to relatively consistently identify the A67 and S83 mutations 252 

in parC, while the D87 mutation is seemingly less frequent in the shotgun data is somewhat 253 

troubling if the goal is to identify the actual abundances of such mutations. At the same time, the 254 

statistical significance of those differences could still be identified. For the A67 and S83 255 

mutations, only 5 million reads were required for a significant effect to be detected, while for the 256 

D87 mutations a sequencing depth of 50 million reads was required. This is not necessarily a 257 

shortcoming of the Mumame software, but may just as well be due to the much noisier nature of 258 
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counts from metagenomic sequence data compared to the large number of reads corresponding 259 

to the same genes deriving from amplicon data (Jonsson et al. 2016a). 260 

Another important potential problem highlighted by our evaluation is the need to produce very 261 

large sequence data sets to be able to identify and quantify mutations (and wildtype) sequences 262 

with any certainty. As a rule of thumb, the targeted regions represent less than 0.004% of the 263 

bacterial genome, and each bacterial strain may correspond to only a fraction of a percent of the 264 

reads in the shotgun sequence data (depending on its abundance). This means that to identify a 265 

single read from a resistance region in the data, one would – on average – need to sequence more 266 

than five million reads. To get a reasonably confident measure of reads stemming from wildtype 267 

versus strains with mutations, approximately 10 reads from each group would be needed per 268 

sample (or, say, 20 reads in total). That would, as a rough estimate, correspond to a hundred 269 

million reads per sample. This is, unfortunately, way more sequences than what is typically 270 

generated per sample by shotgun metagenomic sequencing projects. In this study, only the 271 

samples from the tetracycline exposure study corresponded to such a high sequencing depth. 272 

Naturally, these numbers would depend on the proportions of the targeted microorganisms as 273 

well as their genome sizes, but ultimately this still presents the largest limitation to mutation 274 

studies based on metagenomic sequence data. Potentially, this problem could be partially 275 

alleviated by analyzing sufficiently large cohorts and perform the statistical analysis for general 276 

trends, but even large cohorts would be insufficient for mutations rare enough to pass below the 277 

detection limit. 278 

In terms of interpreting the results from the exposure experiments, it is interesting to note the 279 

overall clear increase of fluoroquinolone resistance mutations at the highest ciprofloxacin 280 
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concentration, which nearly perfectly correspond to increases in mobile qnr fluoroquinolone 281 

genes in the same samples (Kraupner et al. 2018). This is contrasted by the trend seen in the 282 

tetracycline exposure experiments, where tetracycline resistance genes – specifically efflux pumps 283 

– were enriched at higher tetracycline concentrations (Lundström et al. 2016), while tetracycline 284 

resistance mutation abundances were not significantly altered. This non-significant result was 285 

obtained despite the exceptionally high sequencing depth of those samples. 286 

While we did not have data from a proper experimental setup to address differences between 287 

sediments exposed to different degrees of fluoroquinolone pollution, the quantification of 288 

resistance mutations seems to provide an important piece of information to explain the results of 289 

previous studies of resistance gene abundances in these river samples (Kristiansson et al. 2011). 290 

In the original paper, the abundance of mobile fluoroquinolone resistance genes (qnr genes) were 291 

shown to be enriched in the low-level polluted upstream samples, compared to the highly 292 

polluted downstream samples. Importantly, the qnr genes only provide resistance to relatively low 293 

levels of fluoroquinolones (Hooper and Jacoby 2015), and the authors of hypothesize that 294 

chromosomal mutations of the target genes are probably necessary to survive the selection 295 

pressure from antibiotics downstream of the pollution source. In this work, we show that this 296 

assumption is likely correct. Only a limited number of reads were mapping to these resistance 297 

regions and the number of samples unfortunately prevents us from properly assessing a statistical 298 

difference between the upstream and downstream samples. Still, the proportion of resistance 299 

mutations seems to be systematically higher in the samples downstream of the pollution source, 300 

at least for E. coli. This indicates that the method we present here can provide important 301 
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additional information to metagenomic studies of resistance patterns in different environment 302 

types, given that a sufficient sequencing depth is achieved. 303 

We have here shown the utility of the Mumame tool for finding resistance mutations in shotgun 304 

metagenomic data. In this paper, we have used the CARD database (Jia et al. 2016) as the 305 

information source for resistance mutation, but the tool is flexible to use any source of such data. 306 

It is also not in any means restricted to the mutations investigated in this paper but is 307 

fundamentally agnostic to the input data. It can also be used in open screening for mutations in 308 

any gene present in the database in parallel, and can handle different mutations in both RNA and 309 

protein coding genes. The tool is flexible and fast and can therefore be implemented as a part 310 

nearly any screening pipeline for antibiotic resistance data in metagenomic data sets. 311 

Conclusion 312 

This paper presents a software tool called Mumame to analyze shotgun metagenomic data for 313 

point mutations, such as those conferring antibiotic resistance to bacteria. Mumame distinguish 314 

between wildtype and mutated gene variants in metagenomic data and quantify them, given a 315 

sufficient sequencing depth. We also provide a statistical framework for handling the generated 316 

count data and account for factors such as differences in sequencing depth. Importantly, our 317 

study also reveals the importance of a high sequencing depth – preferably more than 50 million 318 

sequenced reads per sample – in order to get reasonably accurate estimates of mutation 319 

frequencies, particularly for rare genes or species. The Mumame software package is freely 320 

available from http://microbiology.se/software/mumame. We expect Mumame to be a useful 321 
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addition to metagenomic studies of e.g. antibiotic resistance, and to increase the detail by which 322 

metagenomes can be screened for phenotypically important differences. 323 
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