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Abstract

Understanding how metabolites are longitudinally influenced by age and sex could facilitate the
identification of metabolomic profiles and trgjectories that indicate disease risk. We investigated
the metabolomics of age and sex using longitudinal plasma samples from the Wisconsin Registry
for Alzheimer’s Prevention (WRAP), a cohort of participants who were dementiafree at
enrollment. Metabolomic profiles were quantified for 2,316 fasting plasma samples among 1,187
participants, each with up to three study visits. Of 1,097 metabolites tested, 608 (55.4%) were
associated with age and 680 (62.0%) with sex after correcting for multiple testing.
Approximately twice as many metabolites were associated with age in stratified analyses of
women versus men, and 63 metabolite trajectories significantly differed by sex, most notably
including sphingolipids, which tended to increase in women and decrease in men with age. Using
genome-wide genotyping, we also report the heritabilities of metabolites investigated, which
ranged dramatically (0.2—99.2%); however, the median heritability of 36.2% suggests that many
metabolites are highly influenced by a complex combination of genomic and environmental
influences. These findings offer a more profound description of the aging process and may

inform many new hypotheses regarding the role metabolites play in healthy and accelerated

aging.
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Introduction

The metabolome represents the functional endpoints of acomplex network of biological
events, including genomic, epigenomic, transcriptomic, proteomic, and environmental factors
(Deidda, Piras, Bassareo, Dessalvi, & Mercuro, 2015). Being the final downstream product, the
metabolome is the closest to the phenotype among the biological systems (Horgan & Kenny,
2011), making it particularly relevant to investigate. Age is known to be the single largest risk
factor of most prevalent diseases in developed countries (Niccoli & Partridge, 2012). A better
understanding of how the metabolome changes with age could further reveal the mechanisms by
which age influences disease risk and could facilitate the identification of high-risk metabolomic
profiles that are suggestive of the early stages of particular diseases.

Previous studies have provided important evidence that age and sex influence the
metabolome (Chaleckis, Murakami, Takada, Kondoh, & Y anagida, 2016; Dunn et al., 2015;
Krumsiek et al., 2015; Menni et al., 2013; Mittelstrass et al., 2011; Rist et al., 2017; Yu et al.,
2012). While informative, these studies are limited by their cross-sectional designs and the
relatively small number of metabolites assessed by most. According to the Human Metabolite
Database (HMDB) v4.0, there are an estimated 25,424 blood metabolites (Wishart et al., 2018).
However, due to current technical limitationsin identifying and quantifying metabolites, most
recent studies have only been able to confidently capture ~100-600 of these. A larger panel of
metabolites will provide a more comprehensive understanding of the metabolomics of age and
sex. Further, in order to assess the metabolomics of aging, it is crucial to use alongitudinal study
design that can capture age-related phenomena, particularly due to the high variability of
metabolites (Makinen & Ala-Korpela, 2016). Longitudinal assessments also facilitate the

examination of metabolite trajectories, which can address important biological questions.
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Using longitudina plasma samples from the Wisconsin Registry for Alzheimer’s
Prevention (WRAP), we investigated how a large pand of metabolitesisinfluenced by age and
sex, and whether metabolite trg ectories vary by sex. To facilitate the interpretation of our results
and determine whether identified metabolites are more strongly influenced by genetic or
environmental factors, we used genome-wide genotyping data to assess the heritability (h%) of

metabolites.

Results
Participants

A total of 1,212 WRAP participants with 2,344 longitudinal fasting plasma samples were
available for analyses. At the baseline visit for the current study, participants were 61 years old
on average, 69% were female, and 94% were Caucasian (Table 1). Most individuals were
unrelated (n=825), but 147 families had >1 individual (family sizes ranged from 1-9 members,
with an average of 1.2 individuals per family). Analyses stratified by sex included 838 women
and 374 men, who had similar characteristics with the exception of more men taking cholesterol
lowering medications than women. Participants each had 1,097 plasma metabolites available for
analyses, 347 (31.6%) of which were of unknown chemical structure. Correlations between
metabolites were assessed using Pearson r and the first available sample for each individual (i.e.,
using a cross-sectional approach). Metabolites were largely uncorrelated with each other (Figure
S1). Properties of each metabolite, such as biochemical name, super pathway, and sub pathway,
are described in Table S1.
M etabolome-wide association study

Aging Metabolomics
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Associations were tested using linear mixed effects regression models implemented in the
SAS MIXED procedure. Primary predictors included age and sex, which were assessed within
the same models. To examine effect modification of the metabolomics trajectories by sex,
analyses were repeated stratifying the sample by sex. To assess the statistica significance of the
effect modification, separate models were run that included an interaction term for age-by-sex
using the full sample (men and women combined). All models included random intercepts for
within-subject correlations (due to repeated measures) and within-family correlations (due to
siblings). Models included fixed effects for age, sex, self-reported race, and cholesterol lowering
medi cation use, which was the most commonly used class of medicationsin our sample.
Sensitivity analyses were performed with an additional fixed effect for plasma sample storage
time. Each set of analyses was corrected for multiple testing using the Benjamini-Hochberg
(Benjamini & Hochberg, 1995) adjustment with an alpha of 0.05.

All metabolome-wide association results are summarized in Table 2 and detailed in Table
S1. After adjusting for multiple testing, the levels of 637 metabolites (58.1% of metabolites
assessed) significantly changed with age, 516 of which increased with age (Figure S2A and
Figure 1). Of the total 34 steroid lipids tested, 28 significantly decreased with age (including
20/22 androgenic, 5/5 progestin, 4/4 pregnenolone, and 1/3 corticosteroids), while two, 11-
ketoeti ocholanolone glucuronide, an androgenic steroid, and cortisol, significantly increased with
age.

Higher levels of most fatty acid lipids were associated with increased age (including
13/14 long chain fatty acids, 28/34 acylcarnitines, and 41/78 other fatty acids), with the

exception of eicosanodioate (C20-DC), a dicarboxylate fatty acid that decreased with age. Higher
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levels of sphingolipids tended to be associated with increased age (19/21 associated
sphingolipids).

The majority of amino acids associated with age increased with age (82.6% or 90/109
associated amino acids), including glutamine, one of the 20 common amino acids that are
encoded directly by the genetic code. Seven other common amino acids decreased with age
(histidine, threonine, tryptophan, leucine, methionine, aspartate, and asparagine), while the 12
others were not associated with age.

Sex Metabolomics

Six hundred and ninety-eight metabolites (63.6% of metabolites assessed) significantly
differed by sex, with the slight mgjority (388 metabolites or 55.6%) found in lower levelsin
women (Figure 2B and Figure 2). Of the metabolites associated with sex, 415 were also
associated with age. Twenty-nine steroid lipids were associated with sex, all of which were
found in significantly lower levelsin women, with the exception of two corticosteroids (cortisol
and corticosterone), which were found in higher levels in women. Androgenic steroids
constituted the three metabolites most strongly associated with sex (5alpha-androstan-3al pha,
17beta-diol monosulfate, P<4.0e-308, 5alpha-androstan-3alpha, 17beta-diol 17-glucuronide,
P=4.3e-226, and 5al pha-androstan-3alpha, 17beta-diol disulfate, P=2.6e-185).

Ninety fatty acids were associated with sex, 60 of which were found in higher levelsin
women. Acylcarnitine fatty acids were an exception, as 17/26 significantly associated
acylcarnitines were found in lower levelsin women. Among all tested phospholipids, 73.8%
(48/65) were higher in women, as were 85% (34/40) of all tested sphingolipids.

The majority of amino acids associated with sex were found in lower levels in women

(76.8% or 86/112), including 13 of the 20 common amino acids (alanine, tyrosine, methionine,
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arginine, proline, aspartate, asparagine, tryptophan, glutamate, phenylalanine, and the three
branched-chain amino acids (BCAAS): leucine, isoleucine, and valine), while two were found in
higher levels in women (glycine and serine). The remaining five did not significantly differ by
Sex.
Effect Modification of Metabolomics Trajectories by Sex

Analyses stratified by sex identified 588 metabolites (53.6% of metabolites assessed) that
were significantly associated with age among women (Figure S3A and Figure $4) and 297
metabolites (27.1% of metabolites assessed) among men (Figure S3B and Figure S5), with 206
being common to both groups.

The trajectories of 80 metabolites (7.3%) significantly differed over time by sex (Figures
S3C and S6). Of the four most significant metabolites, three were sphingolipids, which were also
the largest group of metabolites whose trajectories differed by sex (20.0% or 16/80). Fifteen of
these sphingolipids increased with age among women and decreased with age among men.
Several other groups of metabolites had trgjectories that also differed by sex, including seven
fatty acids, six of which showed larger increases with age among women than men; nine steroid
lipids, eight of which showed larger decreases with age among women than men; eight
phospholipids, five of which increased in women and decreased in men with age; and
cholesterol, which increased in women and decreased in men with age.
Metabolite heritability estimates

The h? of each metabolite was estimated using a variance components method that jointly
models narrow-sense h? and the h? explained by genotyped variants (Zaitlen et al., 2013), which
allows for the inclusion of both closely and distantly related individuals, asimplemented in

GCTA (Yang, Lee, Goddard, & Visscher, 2011). A genetic relationship matrix was created from
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272,839 weakly linked (R?<0.50) and common (MAF>0.05) directly genotyped variants.
Analyses of h* were cross-sectional, using the first available metabolomics sample for 1,111
Caucasians that had both metabolomic and genomic data, and adjusted for sex and age. To assess
whether metabolite h? could influence the effect of age or sex on metabolite levels, Pearson r was
used to calculate correlations between h? estimates and the strength of associations (i.e., P-
values) for age and sex.

Metabolite h? estimates ranged widely (0.2-99.1%) and had a median h? of 36.3%, with a
first quartile (Q,) of 25.5% and athird quartile (Qs) of 49.7% (Figure 3 and Table S1). The
metabolites with the lowest h* were three lipids: adipoylcarnitine (C6-DC), an acylcarnitine (h? =
0.2%), 15-methylpalmitate (117:0), a branched fatty acid (h’=0.2%), and glycosyl-N-stearoy!-
sphingosine (d18:1/18:0), a ceramide lipid (h?=0.6%). The metabolites with the highest h?
estimates were two unknown metabolites (X-12093 and X-24328, h*=99.1% and 91.1%,
respectively) and a nucleotide involved in purine metabolism (N2,N2-dimethylguanosine,
h?=90.0%). M etabolon recently identified X-12093 as N2-acetyl, N6 methyllysine, an amino
acid in the lysine catabolic sub pathway.

Super pathway median h? estimates ranged from 23.2—46.3%, with peptides having the
highest median, followed by amino acids (40.4%), and partially characterized molecules having
the lowest median, although the latter pathway only contained five metabolites. Among the
metabolite subgroups that were recurrent themes in our association results (i.e., sub pathways
highlighted in Table 2), the 20 common amino acids had a median h? of 49.3% (Q—Qs: 36.9—
65.1%); fatty acids overall had a median h? of 30.3% (Q:—Qs: 16.9-42.4%), while acylcarnitines
had a slightly higher median h? of 41.3% (Q—Qs: 26.6-56.0%); phospholipids overall had a

median h? of 35.9 (Q:—Qs: 24.7-53.3%), while phosphatidylcholines had a slightly lower median
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h? of 30.6% (Q1—Qs: 22.6-39.6%); sphingolipids had a median h? of 42.0% (Q—Qs: 31.8—
51.7%); and steroid lipids overall had a median h? of 39.6% (Q—Qs: 35.0-50.7%), while
androgenic steroids had a median h? of 42.5% (Q—Qs: 37.6-50.7%).

M etabolites associated with age and sex had h? estimates that were representative of
overall metabolite h? estimates. Among the 608 metabolites associated with age, the median
h?=36.1% and Q;—Qs: 25.9-50.0%. Similarly, among the 680 metabolites associated with sex,
the median h?=37.1% and Q:-Qs: 26.0-50.6%. Overall, metabolite h? estimates were not

correlated with the strength of associations for age or sex (Pearson r=-0.03 and -0.02,

respectively).

Discussion

To our knowledge, thisisthefirst longitudinal metabol omics assessment of aging and sex
and uses one of the largest panels of metabolites reported to date. Our results provide strong
evidence that most plasma metabolite levels are highly influenced by aging and that aging has a
broader effect on metabolites in women than men. Metabolites are also highly influenced by sex,
with men and women having substantially different metabolomic profiles. We report h? estimates
on more metabolites than previously reported and find that the variation of only afew metabolite
levels can be attributed almost entirely to either genetic or environmental influences. Rather,
most are influenced by a complex combination of genetic and environmental factors, cons stent
with previous studies (Long et al., 2017; Shin et al., 2014). How heritable a metabolite was did
not appear to influence the effect of age or sex on metabolite levels.

Differencesin levels of plasmallipid steroids, including androgens, progestins, and

pregnenolones, were among the most significant findings for both age and sex. The steroid sex
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differences serve as a proof of concept, asit iswell established that androgens are present in
lower levels in women than men (Goodman-Gruen & Barrett-Connor, 2000). Androgens are also
known to decrease with age among men in both plasma (Ferrini & Barrett-Connor, 1998) and
serum (Harman et al., 2001), and also decline with age in serum among women (Spencer, Klein,
Kumar, & Azziz, 2007), perhaps most steeply during early reproductive years (Davison, Bell,
Donath, Montalto, & Davis, 2005).

The plasma metabolites we identified to be associated with sex and age are consistent
with findings from previous cross-sectional studies. The UK Adult Twin Registry (TwinsUK)
study reported 165 out of 280 (58.9%) tested serum and plasma metabolites to be associated with
age in cross-sectional analyses (Menni et al., 2013). Our data had 114 of these 165 metabolites,
of which 71 were significantly associated with age, and 65 had effects that were in the same
direction as those reported in the TwinsUK study (Table S2). The metabolites that had the
opposite direction of effect between studies were four amino acids (dimethylarginine, leucine,
asparagine, and tryptophan), one nucleotide (uridine), and one xenobiatic (theophylline), all of
which we reported decreased with age, with the exception of dimethylarginine, which increased
with age, contradictory to findings from the TwinsUK study. However, other studies have
reported that serum tryptophan levels decrease with age (Dunn et al., 2015; Yu et al., 2012).
Among the 65 metabolites with the same effect, 29 were lipids, al of which increased with age
(the mgjority were fatty acids, including 10 long chain fatty acids, six polyunsaturated fatty
acids, and six other fatty acids), and 13 were amino acids (including glutamine, which increased
with age, and histidine and aspartate, which both decreased with age).

The Cooperative Health Research in the Region of Augsburg (KORA F4) study, which

was also cross-sectional, reported 180 out of 507 (35.5%) tested serum metabolites to be

10
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associated with sex (Krumsiek et al., 2015). Our data had 98 of these 180 metabolites, of which
84 were significantly associated with sex, and all had effects that were in the same direction as
those reported in KORA F4 (Table S3). Among these were 33 amino acids (including 11
common amino acids, all of which were lower in women except glycine and serine, which isalso
consistent with Mittelstrass et al. (Mittelstrass et al., 2011)); 18 lipids (including five long chain
fatty acids and three medium chain acids, all of which were higher in women, and three
androgenic steroids, all of which were lower in women); and 18 unknown metabolites (all but
one were lower in women). The single most significant finding in the KORA F4 study was the
third most significant in our study (5a pha-androsta-3beta, 17beta-diol disulfate, an androgenic
steroid; the two other androgenic steroids that were our first and second most significant sex
findings were not tested in the KORA F4 study). Also consistent with our findings, other studies
have reported serum and plasma phosphatidylcholines and sphingolipids levels to be higher in
women than men (Gonzalez-Covarrubias et al., 2013; Mittelstrass et al., 2011; Rist et al., 2017),
and serum acylcarnitines to be lower in women (Mittelstrass et al., 2011).

Consistent with results from our sex-stratified analyses, a previous KORA F4 publication
also reported serum sphingolipids to increase in concentrations with age among women and
acylcarnitines to increase with age among both women and men (Yu et al., 2012). The KORA F4
study, which had a sample of 1,038 women and 1,124 men, also similarly found twice as many
metabolites associated with age among women than men. This suggests that our similar
observation may not be driven solely by the differences in sample sizes between women and men
in our study and that it may have biological implications; i.e., aging may influence a wider
breadth of metabolites in women than men. A probable cause for such a difference may be that

during menopause, women experience very abrupt and dramatic hormone changes and |oss of

11
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ovarian function, whereas during “andropause’, men experience agradual loss of hormones and
decline in fertility(Vermeulen, 2000). These hormonal changes could be associated with other
metabolic changes as well. Post-menopausal women have higher levels of sphingomyelins, fatty
acids, acylcarnitines, lysophosphatidylcholines, and several amino acids than pre-menopausal
women (Auro et a., 2014; Ke et al., 2015), and a recent study found that plasma and urine
metabolomics can be used to predict menopause status with 90% accuracy. Moreover,
androgenic steroids have been linked to lipid levelsin postmenopausal women (Noyan, Yucd, &
Sagsoz, 2004). Given that the baseline average ages of women and men in our sample are each
~61 yearsold, it islikely that our results are indicative of hormonal changes that occur in later
ages and that most of our female participants have undergone menopause. It will be crucial to
replicate these findings with a metabolomics pand that captures alarger proportion of the
~25,000 known blood metabolites in order to determine the validity of this hypothesis.

Among the 80 metabolites with different trajectories between women and men were
sphingolipids, phosphatidylcholines, and cholesterol. Metabolites from the latter two subgroups
have been previously reported to have similar trgjectories as what we identified, i.e., increasing
with age in women and decreasing in men (Auro et al., 2014). To our knowledge, a decrease of
sphingolipid levelsin men as our results suggest has not been previously reported. However,
greater sphingomyelin increases with age in women than men have been previously
described(Mielke et al., 2015).

We compared our metabolite h? estimates to those recently estimated from a twin study
of 1,930 individualsin the TwinsUK cohort (Long et al., 2017). Among the 466 metabolites
overlapping with our study, h? estimates were only moderately correlated (Pearson r=0.36) and

our estimates were 9.6 percentage points lower on average. However, our metabolite h? estimates
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were 8.9 percentage points higher on average (and had a lower correlation of r=0.25) when
comparing 191 overlapping metabolite h” estimates from an earlier twin study based on 7,824
individuals from both the KORA F4 and TwinsUK cohorts (Shin et al., 2014). Interestingly,
despite having some overlapping participants, h? estimates between these two previous studies
were only moderately correlated: among 163 overlapping metabolite h? estimates, Pearson r was
0.38, with estimates based on the TwinsUK cohort being 18.8 percentage points higher on
average than the combined KORA and TwinsUK study. Differences in h? estimates may be
driven by differences in population composition and size, phenotypic variation, and analytic
approaches.

This study was not without limitations. Our findings are likely driven by our pandl of
metabolites, and it is possble that a different panel of metabolites could produce different
results. Many of our findings are in accordance with previous publications, thereby strengthening
confidence in our results that have not been previously investigated with regards to age and sex.
Accordingly, it will be crucial to replicate nove findings with an external cohort. However, we
also identified several inconsistencies between our study and others regarding h? estimates and a
few of our association results, which could have been due to differences in study designs and
sample populations. This challengeis common (Enche Ady et al., 2017), asthefield of
metabolomicsis rapidly developing and widely accepted standards for quality control techniques
are forthcoming. Differencesin platforms, quantification techniques, statistical analysis methods,
laboratory techniques for sample handling (i.e., anti-coagulation method, preservation, storage
duration), and fasting status at the time of the sample draw may result in large variations from
one study to another (Gonzalez-Dominguez, Sayago, & Fernandez-Recamales, 2017). The

metabolomics quality control process we have outlined here as well as that described in Voyle et
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a. (Voyleet a., 2016) could serve as guidelines for future studies. Many of our findings
included metabolites that had unknown chemical structures, which isacurrent limitation of the
field of metabolomics, asit can be difficult and costly to accurately identify metabolites. Further,
we only investigated linear effects of age, but non-linear age effects may exist and should be
investigated in future investigations.

Using alarge panel of longitudinal metabolomics data, we conducted a comprehensive
investigation of the influence of aging and sex on metabolomics. Our findings suggest that levels
of most metabolites are highly influenced by sex and age, and that sex differentially influences
levels and trajectories of many metabolites. These findings underscore the importance of
incorporating age and sex in the design and analysis of metabolomics investigations. We also
report that many metabolite levels are influenced by a complex combination of both genomic and
environmental influences. These findings offer a deeper understanding of the aging process and

could inform many novel hypotheses regarding the role of metabolites in healthy and accelerated

aging.

Methods
Participants

Study participants were from WRAP, alongitudinal study of initially dementiafree
middle-aged adults that allows for the enrollment of siblings and is enriched for a parental
history of Alzheimer’s disease. Further details of the study design and methods used have been
previously described (Johnson et al., 2018; Sager, Hermann, & La Rue, 2005). For the current

analyses, follow-up occurred every two years. This study was conducted with the approval of the
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University of Wisconsin Institutional Review Board and all subjects provided signed informed
consent before participation.
Plasma collection and sample handling

Fasting blood samples for this study were drawn the morning of each study visit. Blood
was collected in 10 mL ethylenediaminetetraacetic acid (EDTA) vacutainer tubes. They were
immediately placed on ice, and then centrifuged at 3000 revolutions per minute for 15 minutes at
room temperature. Plasma was pipetted off within one hour of collection. Plasma samples were
aliquoted into 1.0 mL polypropylene cryovials and placed in -80°C freezers within 30 minutes of
separation. Samples were never thawed before being shipped overnight on dry ice to Metabolon,
Inc. (Durham, NC), where they were again stored in -80°C freezers and thawed once before
testing.

M etabolomic profiling and quality control

An untargeted plasma metabolomics analysis was performed by Metabolon, Inc. usng
Ultrahigh Performance Liquid Chromatography-Tandom Mass Spectrometry (UPLC-MS/MYS).
Quantification was performed as previously described (Evans et al., 2014); details are outlined in
the Supplemental Note. M etabolites within nine super pathways were identified: amino acids,
carbohydrates, cofactors and vitamins, energy, lipids, nucleotides, partially characterized
molecules, peptides, and xenobiotics.

Up to three longitudinal plasma samples were available for each participant. Metabolites
with an interquartile range of zero (i.e., those with very low or no variability) were excluded
from analyses (n=178 metabolites). After removing these metabolites, samples were missing a
median of 11.7% metabolites, while metabolites were missing in a median of 1.2% of samples.

Missing metabolite values were imputed to the lowest level of detection for each metabolite.
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Metabolite values were median-scaled and |og-transformed to normalize metabolite distributions
(van den Berg, Hoefsloot, Westerhuis, Smilde, & van der Werf, 2006). If a participant reported
that they did not fast or withhold medications and caffeine for at least eight hours, the sample
was excluded from analyses (n=159 samples). A total of 1,097 metabolites among 2,344 samples
remained for analyses.

DNA collection and genomics quality control

DNA was extracted from whole blood samples using the PUREGENE® DNA Isolation
Kit (Gentra Systems, Inc., Minneapolis, MN). DNA concentrations were quantified using the
Invitrogen™ Quant-iT™ PicoGreen™ dsDNA Assay Kit (Thermo Fisher Scientific, Inc.,
Hampton, NH) analyzed on the Synergy 2 Multi-Detection Microplate Reader (Biotek
Instruments, Inc., Winooski, VT). Samples were diluted to 50 ng/ul following quantification.

A total of 1,340 samples were genotyped using the Illumina Multi-Ethnic Genotyping
Array at the University of Wisconsin Biotechnology Center (Figure S7). Thirty-six blinded
duplicate samples were used to calculate a concordance rate of 99.99%, and discordant
genotypes were set to missing. Sixteen samples missing >5% of variants were excluded, while
35,105 variants missing in >5% of individuals were excluded. No samples were removed due to
outlying heterozygosity. Six samples were excluded due to inconsi stencies between self-reported
and genetic sex.

Due to sibling relationshipsin the WRAP cohort, genetic ancestry was assessed using
Principal Components Analysisin Related Samples (PC-AiR), a method that makes robust
inferences about population structure in the presence of relatedness (Conomos, Miller, &
Thornton, 2015). This approach included several iterative steps and was based on 63,503 linkage

disequilibrium (LD) pruned (r°<0.10) and common (MAF>0.05) variants, using the 1000
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Genomes data as reference populations (Genomes Project et al., 2015). First, kinship coefficients
(KCs) were calculated between all pairs of individuals using genomic data with the Kinship-
based Inference for Gwas (KING)-robust method (Manichaikul et al., 2010). PC-AiR was used
to perform principal components analysis (PCA) on the reference populations along with a
subset of unrelated individuals identified by the KCs. Resulting principal components (PCs)
were used to project PC values onto the remaining related individuals. All PCs were then used to
recalculate the KCs taking ancestry into account using the PC-Relate method, which estimates
KCsrobust to population structure (Conomos, Reiner, Weir, & Thornton, 2016). PCA was
performed again using the updated KCs, and KCs were also estimated again using updated PCs.
The resulting PCsidentified 1,198 WRAP participants whose genetic ancestry was primarily of
European descent. This procedure was repeated within this subset of participants (excluding
1000 Genomes individuals) to obtain PC estimates used to adjust for population stratification in
subsequent genomic analyses. Among European descendants, 160 variants were not in Hardy-
Weinberg equilibrium (HWE) and 327,064 were monomorphic and thus, removed.

A total of 1,294,660 bi-allelic autosomal variants among 1,198 European descendants
remained for imputation, which was performed with the Michigan Imputation Server v1.0.3 (Das
et al., 2016), using the Haplotype Reference Consortium (HRC) v. r1.1 2016 (McCarthy et al.,
2016) asthe reference pand and Eagle2 v2.3 (Loh et al., 2016) for phasing. Prior to imputation,
the HRC Imputation Checking Tool (Rayner, Robertson, Mahgan, & McCarthy, 2016) was used
to identify variants that did not match those in HRC, were palindromic, differed in MAF>0.20,
or that had non-matching alleles when compared to the same variant in HRC, leaving 898,220
for imputation. A total of 39,131,578 variants were imputed. Variants with a quality score

R?<0.80, MAF<0.001, or that were out of HWE were excluded, leaving 10,400,394 i mputed
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variants. These were combined with the genotyped variants, leading to 10,499,994 imputed and
genotyped variants for analyses. Data cleaning and file preparation were completed using PLINK
v1.9 (Chang et a., 2015) and VCFtools v0.1.14 (Danecek et al., 2011). Coordinates are based on

GRCh37 assembly hg19.
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Figure Legends

Figure 1. Adjusted effects of a 10-year increase in age on the top 100 metabolites most strongly
influenced by age. Positive values indicate the amount a metabolite increased over 10 years,
whereas negative values indicate the amount a metabolite decreased over 10 years. Black vertical
lines indicate 10* standard errors.

Figure 2. Adjusted effects of the top 100 metabolites most strongly influenced by sex. Positive
values indicate that the metabolite was higher in women, whereas negative values indicate that
the metabolite was higher in men. Black vertical lines indicate 10* standard errors.

Figure 3. Pinwhed plot of metabolite heritabilities. Each bar indicates the heritability of the

corresponding metabolite. M etabolite names are indicated in the outer circle.
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Tables

Table 1. WRAP Participant Characteristics at Baseline for the Current Study. Mean (SD) or N

aCC-BY-NC-ND 4.0 International license.

(%).
Overall Male Female
Characteristic (N=1,212, (n=374, (n=838,
obs=2,344) obs=731) obs=1,613)
Age (years) 60.8 (6.7) 61.2 (6.9) 60.7 (6.6)
Caucasian 1,135 (93.7) 351 (93.9) 784 (93.6)
Cholesterol lowering
387 (31.9) 146 (39.0)* 241 (28.8)*
medication
Sample storage (days) | 1,510.5 (415.7) | 1,511.2 (424.3) | 1,510.2 (412.0)

obs=number of longitudinal observations

*Differs between men and women with P=3.9e-4
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Table 2. Metabolome-wide associ ation results summary. Number of metabolites associated with

each trait by pathways and recurrent sub pathways after correcting for multiple comparisons.

Age Sex Age in Women Agein Men Age* Sex (female/male)
Metabolite Super/Sub Pathways Tot | +B | B | Tot | +p | B | Tot | +p | 3 | Tot | +B | B | Tot | +/+ | o= | +/— | <+
(#Metabolites)
Amino Acids (175) 109 | 90| 19| 112 | 26| 8| 106 | 93 131 51| 39 12 8 3 0 4 1
Common Amino Acids (20) 8 1 71 15 2| 13 7 2 5 4 0 4 0 0 0 0 0
Carbohydrates (23) 17| 16 1 13 6 7 17 17 0 7 6 1 1 1 0 0 0
Cofactors and Vitamins (28) 19| 16 3| 16 8 8| 20| 17 3| 14 9 5 1 0 0 1 0
Energy (8) 6| 6| ol 6| 4| 2| 6| 6| ol 2| 2| ol 21| 1] o o] o
Lipids (353) 198 | 152 | 46| 252 | 176 | 76| 191 | 158 | 33| 86| 44| 42| 50 9 9| 28 4
Fatty Acids (126) 83| 82 1] 90| 60| 30| 83| 82 1] 23| 22 1 7 4 0 2 1
Acylcarnitines (34) 28| 28 0] 26 9 7] 32| 32 0 7 7 0 5 4 0 1 0
Phospholipids (65) 22 9| 13| 52| 48 41 12| 10 2| 16 5| 11 8 0 3 5 0
Lysophospholipids (24) 3] 1| 2| 17| 15| 2| 1| 1] ol 2] o 2| 3] o] o 3] o
Phosphatidylcholines (19) 8| 4| 4| 17| 16| 1| 5| 4] 1| 8| 3| s| 4| o] 2] 2] o
Phosphatidylethanolamine (9) 2 1 1 7 7 0 2 2 0 2 0 2 1 0 1 0 0
Sphingolipids (40) 21| 19 2| 34| H# 0| 26| 25 1 8 0 8] 16 1 0| 15 0
Steroids (34) 30 2] 281 29 21 27 29 1| 28 19 1 18 9 0 6 0 3
Androgenic (22) 20 1| 19| 20 0| 20| 20 1| 19| 15 0| 15 4 0 2 0 2
Progestin (5) 5 0 5 2 0 2 5 0 5 0 0 0 5 0 4 0 1
Pregnenolone (4) 4 0 4 4 0 4 4 0 4 3 0 3 0 0 0 0 0
Corticosteroids (3) 1 1 0 3 2 1 0 0 0 1 1 0 0 0 0 0 0
Nucleotides (35) 20| 19 11 24 1| 23 18 18 0 11| 10 1 1 1 0 0 0
Partially Characterized Molecules (5) 3 3 0 2 0 2 4 4 0 0 0 0 0 0 0 0 0
Peptides (22) 12| 11 1 16 3 13 14 13 1 4 3 1 1 1 0 0 0
Xenobiotics (101) 44 | 36 8| 52| 19| 33| 39| 32 7] 18| 13 5 3 1 1 1 0
Unknown (347) 209 | 167 | 42| 205 | 67 | 138 | 173 | 146 | 27| 104 | 78| 26 14 7 1 3 3
Total (1,097) | 637 | 516 | 121 | 698 | 310 | 388 | 588 | 504 | 84| 297 | 204 | 93| 80| 24| 11| 37 8
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Shaded rows represent super pathways, which sum to the “Total” row. Sub pathways are
indented. In the Sex columns, + means the metabolite was higher in women, whereas — means
the metabolite was higher in men. For all other columns, + means the metabolite increased with
age, whereas — means it decreased with age. In the Age* Sex columns, +/+ means the metabolite
increased with age in both women and men, —/— means it decreased with age in both women and
men, +/—means it increased with age in women and decreased with age in men, and —/+ meansiit
decreased with age in women and increased with age in men. Results from the Age and Sex
columns were assessed within the same mode!; results from the Age in Women and Agein Men
columns were assessed within separate models stratifying the sample by sex; and results from the
Age* Sex column were assessed within a separate model including an age-by-sex interaction

term.
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