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Abstract 

Understanding how metabolites are longitudinally influenced by age and sex could facilitate the 

identification of metabolomic profiles and trajectories that indicate disease risk. We investigated 

the metabolomics of age and sex using longitudinal plasma samples from the Wisconsin Registry 

for Alzheimer’s Prevention (WRAP), a cohort of participants who were dementia free at 

enrollment. Metabolomic profiles were quantified for 2,316 fasting plasma samples among 1,187 

participants, each with up to three study visits. Of 1,097 metabolites tested, 608 (55.4%) were 

associated with age and 680 (62.0%) with sex after correcting for multiple testing. 

Approximately twice as many metabolites were associated with age in stratified analyses of 

women versus men, and 63 metabolite trajectories significantly differed by sex, most notably 

including sphingolipids, which tended to increase in women and decrease in men with age. Using 

genome-wide genotyping, we also report the heritabilities of metabolites investigated, which 

ranged dramatically (0.2–99.2%); however, the median heritability of 36.2% suggests that many 

metabolites are highly influenced by a complex combination of genomic and environmental 

influences. These findings offer a more profound description of the aging process and may 

inform many new hypotheses regarding the role metabolites play in healthy and accelerated 

aging. 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/436931doi: bioRxiv preprint 

https://doi.org/10.1101/436931
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

Introduction 

The metabolome represents the functional endpoints of a complex network of biological 

events, including genomic, epigenomic, transcriptomic, proteomic, and environmental factors 

(Deidda, Piras, Bassareo, Dessalvi, & Mercuro, 2015). Being the final downstream product, the 

metabolome is the closest to the phenotype among the biological systems (Horgan & Kenny, 

2011), making it particularly relevant to investigate. Age is known to be the single largest risk 

factor of most prevalent diseases in developed countries (Niccoli & Partridge, 2012). A better 

understanding of how the metabolome changes with age could further reveal the mechanisms by 

which age influences disease risk and could facilitate the identification of high-risk metabolomic 

profiles that are suggestive of the early stages of particular diseases.  

Previous studies have provided important evidence that age and sex influence the 

metabolome (Chaleckis, Murakami, Takada, Kondoh, & Yanagida, 2016; Dunn et al., 2015; 

Krumsiek et al., 2015; Menni et al., 2013; Mittelstrass et al., 2011; Rist et al., 2017; Yu et al., 

2012). While informative, these studies are limited by their cross-sectional designs and the 

relatively small number of metabolites assessed by most. According to the Human Metabolite 

Database (HMDB) v4.0, there are an estimated 25,424 blood metabolites (Wishart et al., 2018). 

However, due to current technical limitations in identifying and quantifying metabolites, most 

recent studies have only been able to confidently capture ~100-600 of these. A larger panel of 

metabolites will provide a more comprehensive understanding of the metabolomics of age and 

sex. Further, in order to assess the metabolomics of aging, it is crucial to use a longitudinal study 

design that can capture age-related phenomena, particularly due to the high variability of 

metabolites (Makinen & Ala-Korpela, 2016). Longitudinal assessments also facilitate the 

examination of metabolite trajectories, which can address important biological questions.  
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Using longitudinal plasma samples from the Wisconsin Registry for Alzheimer’s 

Prevention (WRAP), we investigated how a large panel of metabolites is influenced by age and 

sex, and whether metabolite trajectories vary by sex. To facilitate the interpretation of our results 

and determine whether identified metabolites are more strongly influenced by genetic or 

environmental factors, we used genome-wide genotyping data to assess the heritability (h2) of 

metabolites.  

 

Results 

Participants 

A total of 1,212 WRAP participants with 2,344 longitudinal fasting plasma samples were 

available for analyses. At the baseline visit for the current study, participants were 61 years old 

on average, 69% were female, and 94% were Caucasian (Table 1). Most individuals were 

unrelated (n=825), but 147 families had >1 individual (family sizes ranged from 1-9 members, 

with an average of 1.2 individuals per family). Analyses stratified by sex included 838 women 

and 374 men, who had similar characteristics with the exception of more men taking cholesterol 

lowering medications than women. Participants each had 1,097 plasma metabolites available for 

analyses, 347 (31.6%) of which were of unknown chemical structure. Correlations between 

metabolites were assessed using Pearson r and the first available sample for each individual (i.e., 

using a cross-sectional approach). Metabolites were largely uncorrelated with each other (Figure 

S1). Properties of each metabolite, such as biochemical name, super pathway, and sub pathway, 

are described in Table S1. 

Metabolome-wide association study 

Aging Metabolomics 
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Associations were tested using linear mixed effects regression models implemented in the 

SAS MIXED procedure. Primary predictors included age and sex, which were assessed within 

the same models. To examine effect modification of the metabolomics trajectories by sex, 

analyses were repeated stratifying the sample by sex. To assess the statistical significance of the 

effect modification, separate models were run that included an interaction term for age-by-sex 

using the full sample (men and women combined). All models included random intercepts for 

within-subject correlations (due to repeated measures) and within-family correlations (due to 

siblings). Models included fixed effects for age, sex, self-reported race, and cholesterol lowering 

medication use, which was the most commonly used class of medications in our sample. 

Sensitivity analyses were performed with an additional fixed effect for plasma sample storage 

time. Each set of analyses was corrected for multiple testing using the Benjamini-Hochberg 

(Benjamini & Hochberg, 1995) adjustment with an alpha of 0.05. 

All metabolome-wide association results are summarized in Table 2 and detailed in Table 

S1. After adjusting for multiple testing, the levels of 637 metabolites (58.1% of metabolites 

assessed) significantly changed with age, 516 of which increased with age (Figure S2A and 

Figure 1). Of the total 34 steroid lipids tested, 28 significantly decreased with age (including 

20/22 androgenic, 5/5 progestin, 4/4 pregnenolone, and 1/3 corticosteroids), while two, 11-

ketoetiocholanolone glucuronide, an androgenic steroid, and cortisol, significantly increased with 

age.  

Higher levels of most fatty acid lipids were associated with increased age (including 

13/14 long chain fatty acids, 28/34 acylcarnitines, and 41/78 other fatty acids), with the 

exception of eicosanodioate (C20-DC), a dicarboxylate fatty acid that decreased with age. Higher 
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levels of sphingolipids tended to be associated with increased age (19/21 associated 

sphingolipids).  

The majority of amino acids associated with age increased with age (82.6% or 90/109 

associated amino acids), including glutamine, one of the 20 common amino acids that are 

encoded directly by the genetic code. Seven other common amino acids decreased with age 

(histidine, threonine, tryptophan, leucine, methionine, aspartate, and asparagine), while the 12 

others were not associated with age.  

Sex Metabolomics 

Six hundred and ninety-eight metabolites (63.6% of metabolites assessed) significantly 

differed by sex, with the slight majority (388 metabolites or 55.6%) found in lower levels in 

women (Figure 2B and Figure 2). Of the metabolites associated with sex, 415 were also 

associated with age. Twenty-nine steroid lipids were associated with sex, all of which were 

found in significantly lower levels in women, with the exception of two corticosteroids (cortisol 

and corticosterone), which were found in higher levels in women. Androgenic steroids 

constituted the three metabolites most strongly associated with sex (5alpha-androstan-3alpha, 

17beta-diol monosulfate, P<4.0e-308, 5alpha-androstan-3alpha, 17beta-diol 17-glucuronide, 

P=4.3e-226, and 5alpha-androstan-3alpha, 17beta-diol disulfate, P=2.6e-185).  

Ninety fatty acids were associated with sex, 60 of which were found in higher levels in 

women. Acylcarnitine fatty acids were an exception, as 17/26 significantly associated 

acylcarnitines were found in lower levels in women. Among all tested phospholipids, 73.8% 

(48/65) were higher in women, as were 85% (34/40) of all tested sphingolipids.  

The majority of amino acids associated with sex were found in lower levels in women 

(76.8% or 86/112), including 13 of the 20 common amino acids (alanine, tyrosine, methionine, 
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arginine, proline, aspartate, asparagine, tryptophan, glutamate, phenylalanine, and the three 

branched-chain amino acids (BCAAs): leucine, isoleucine, and valine), while two were found in 

higher levels in women (glycine and serine). The remaining five did not significantly differ by 

sex.  

Effect Modification of Metabolomics Trajectories by Sex 

Analyses stratified by sex identified 588 metabolites (53.6% of metabolites assessed) that 

were significantly associated with age among women (Figure S3A and Figure S4) and 297 

metabolites (27.1% of metabolites assessed) among men (Figure S3B and Figure S5), with 206 

being common to both groups.  

The trajectories of 80 metabolites (7.3%) significantly differed over time by sex (Figures 

S3C and S6). Of the four most significant metabolites, three were sphingolipids, which were also 

the largest group of metabolites whose trajectories differed by sex (20.0% or 16/80). Fifteen of 

these sphingolipids increased with age among women and decreased with age among men. 

Several other groups of metabolites had trajectories that also differed by sex, including seven 

fatty acids, six of which showed larger increases with age among women than men; nine steroid 

lipids, eight of which showed larger decreases with age among women than men; eight 

phospholipids, five of which increased in women and decreased in men with age; and 

cholesterol, which increased in women and decreased in men with age. 

Metabolite heritability estimates 

 The h2 of each metabolite was estimated using a variance components method that jointly 

models narrow-sense h2 and the h2 explained by genotyped variants (Zaitlen et al., 2013), which 

allows for the inclusion of both closely and distantly related individuals, as implemented in 

GCTA (Yang, Lee, Goddard, & Visscher, 2011). A genetic relationship matrix was created from 
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272,839 weakly linked (R2<0.50) and common (MAF>0.05) directly genotyped variants. 

Analyses of h2 were cross-sectional, using the first available metabolomics sample for 1,111 

Caucasians that had both metabolomic and genomic data, and adjusted for sex and age. To assess 

whether metabolite h2 could influence the effect of age or sex on metabolite levels, Pearson r was 

used to calculate correlations between h2 estimates and the strength of associations (i.e., P-

values) for age and sex. 

Metabolite h2 estimates ranged widely (0.2–99.1%) and had a median h2 of 36.3%, with a 

first quartile (Q1) of 25.5% and a third quartile (Q3) of 49.7% (Figure 3 and Table S1). The 

metabolites with the lowest h2 were three lipids: adipoylcarnitine (C6-DC), an acylcarnitine (h2 = 

0.2%), 15-methylpalmitate (i17:0), a branched fatty acid (h2=0.2%), and glycosyl-N-stearoyl-

sphingosine (d18:1/18:0), a ceramide lipid (h2=0.6%). The metabolites with the highest h2 

estimates were two unknown metabolites (X-12093 and X-24328, h2=99.1% and 91.1%, 

respectively) and a nucleotide involved in purine metabolism (N2,N2-dimethylguanosine, 

h2=90.0%). Metabolon recently identified X-12093 as N2-acetyl, N6 methyllysine, an amino 

acid in the lysine catabolic sub pathway. 

Super pathway median h2 estimates ranged from 23.2–46.3%, with peptides having the 

highest median, followed by amino acids (40.4%), and partially characterized molecules having 

the lowest median, although the latter pathway only contained five metabolites. Among the 

metabolite subgroups that were recurrent themes in our association results (i.e., sub pathways 

highlighted in Table 2), the 20 common amino acids had a median h2 of 49.3% (Q1–Q3: 36.9–

65.1%); fatty acids overall had a median h2 of 30.3% (Q1–Q3: 16.9–42.4%), while acylcarnitines 

had a slightly higher median h2 of 41.3% (Q1–Q3: 26.6–56.0%); phospholipids overall had a 

median h2 of 35.9 (Q1–Q3: 24.7–53.3%), while phosphatidylcholines had a slightly lower median 
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h2 of 30.6% (Q1–Q3: 22.6–39.6%); sphingolipids had a median h2 of 42.0% (Q1–Q3: 31.8–

51.7%); and steroid lipids overall had a median h2 of 39.6% (Q1–Q3: 35.0–50.7%), while 

androgenic steroids had a median h2 of 42.5% (Q1–Q3: 37.6–50.7%). 

Metabolites associated with age and sex had h2 estimates that were representative of 

overall metabolite h2 estimates. Among the 608 metabolites associated with age, the median 

h2=36.1% and Q1–Q3: 25.9–50.0%. Similarly, among the 680 metabolites associated with sex, 

the median h2=37.1% and Q1-Q3: 26.0–50.6%. Overall, metabolite h2 estimates were not 

correlated with the strength of associations for age or sex (Pearson r=-0.03 and -0.02, 

respectively). 

 

Discussion 

To our knowledge, this is the first longitudinal metabolomics assessment of aging and sex 

and uses one of the largest panels of metabolites reported to date. Our results provide strong 

evidence that most plasma metabolite levels are highly influenced by aging and that aging has a 

broader effect on metabolites in women than men. Metabolites are also highly influenced by sex, 

with men and women having substantially different metabolomic profiles. We report h2 estimates 

on more metabolites than previously reported and find that the variation of only a few metabolite 

levels can be attributed almost entirely to either genetic or environmental influences. Rather, 

most are influenced by a complex combination of genetic and environmental factors, consistent 

with previous studies (Long et al., 2017; Shin et al., 2014). How heritable a metabolite was did 

not appear to influence the effect of age or sex on metabolite levels. 

Differences in levels of plasma lipid steroids, including androgens, progestins, and 

pregnenolones, were among the most significant findings for both age and sex. The steroid sex 
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differences serve as a proof of concept, as it is well established that androgens are present in 

lower levels in women than men (Goodman-Gruen & Barrett-Connor, 2000). Androgens are also 

known to decrease with age among men in both plasma (Ferrini & Barrett-Connor, 1998) and 

serum (Harman et al., 2001), and also decline with age in serum among women (Spencer, Klein, 

Kumar, & Azziz, 2007), perhaps most steeply during early reproductive years (Davison, Bell, 

Donath, Montalto, & Davis, 2005). 

The plasma metabolites we identified to be associated with sex and age are consistent 

with findings from previous cross-sectional studies. The UK Adult Twin Registry (TwinsUK) 

study reported 165 out of 280 (58.9%) tested serum and plasma metabolites to be associated with 

age in cross-sectional analyses (Menni et al., 2013). Our data had 114 of these 165 metabolites, 

of which 71 were significantly associated with age, and 65 had effects that were in the same 

direction as those reported in the TwinsUK study (Table S2). The metabolites that had the 

opposite direction of effect between studies were four amino acids (dimethylarginine, leucine, 

asparagine, and tryptophan), one nucleotide (uridine), and one xenobiotic (theophylline), all of 

which we reported decreased with age, with the exception of dimethylarginine, which increased 

with age, contradictory to findings from the TwinsUK study. However, other studies have 

reported that serum tryptophan levels decrease with age (Dunn et al., 2015; Yu et al., 2012). 

Among the 65 metabolites with the same effect, 29 were lipids, all of which increased with age 

(the majority were fatty acids, including 10 long chain fatty acids, six polyunsaturated fatty 

acids, and six other fatty acids), and 13 were amino acids (including glutamine, which increased 

with age, and histidine and aspartate, which both decreased with age). 

The Cooperative Health Research in the Region of Augsburg (KORA F4) study, which 

was also cross-sectional, reported 180 out of 507 (35.5%) tested serum metabolites to be 
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associated with sex (Krumsiek et al., 2015). Our data had 98 of these 180 metabolites, of which 

84 were significantly associated with sex, and all had effects that were in the same direction as 

those reported in KORA F4 (Table S3). Among these were 33 amino acids (including 11 

common amino acids, all of which were lower in women except glycine and serine, which is also 

consistent with Mittelstrass et al. (Mittelstrass et al., 2011)); 18 lipids (including five long chain 

fatty acids and three medium chain acids, all of which were higher in women, and three 

androgenic steroids, all of which were lower in women); and 18 unknown metabolites (all but 

one were lower in women). The single most significant finding in the KORA F4 study was the 

third most significant in our study (5alpha-androsta-3beta, 17beta-diol disulfate, an androgenic 

steroid; the two other androgenic steroids that were our first and second most significant sex 

findings were not tested in the KORA F4 study). Also consistent with our findings, other studies 

have reported serum and plasma phosphatidylcholines and sphingolipids levels to be higher in 

women than men (Gonzalez-Covarrubias et al., 2013; Mittelstrass et al., 2011; Rist et al., 2017), 

and serum acylcarnitines to be lower in women (Mittelstrass et al., 2011).  

Consistent with results from our sex-stratified analyses, a previous KORA F4 publication 

also reported serum sphingolipids to increase in concentrations with age among women and 

acylcarnitines to increase with age among both women and men (Yu et al., 2012). The KORA F4 

study, which had a sample of 1,038 women and 1,124 men, also similarly found twice as many 

metabolites associated with age among women than men. This suggests that our similar 

observation may not be driven solely by the differences in sample sizes between women and men 

in our study and that it may have biological implications; i.e., aging may influence a wider 

breadth of metabolites in women than men. A probable cause for such a difference may be that 

during menopause, women experience very abrupt and dramatic hormone changes and loss of 
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ovarian function, whereas during “andropause”, men experience a gradual loss of hormones and 

decline in fertility(Vermeulen, 2000). These hormonal changes could be associated with other 

metabolic changes as well. Post-menopausal women have higher levels of sphingomyelins, fatty 

acids, acylcarnitines, lysophosphatidylcholines, and several amino acids than pre-menopausal 

women (Auro et al., 2014; Ke et al., 2015), and a recent study found that plasma and urine 

metabolomics can be used to predict menopause status with 90% accuracy. Moreover, 

androgenic steroids have been linked to lipid levels in postmenopausal women (Noyan, Yucel, & 

Sagsoz, 2004). Given that the baseline average ages of women and men in our sample are each 

~61 years old, it is likely that our results are indicative of hormonal changes that occur in later 

ages and that most of our female participants have undergone menopause. It will be crucial to 

replicate these findings with a metabolomics panel that captures a larger proportion of the 

~25,000 known blood metabolites in order to determine the validity of this hypothesis. 

Among the 80 metabolites with different trajectories between women and men were 

sphingolipids, phosphatidylcholines, and cholesterol. Metabolites from the latter two subgroups 

have been previously reported to have similar trajectories as what we identified, i.e., increasing 

with age in women and decreasing in men (Auro et al., 2014). To our knowledge, a decrease of 

sphingolipid levels in men as our results suggest has not been previously reported. However, 

greater sphingomyelin increases with age in women than men have been previously 

described(Mielke et al., 2015).  

We compared our metabolite h2 estimates to those recently estimated from a twin study 

of 1,930 individuals in the TwinsUK cohort (Long et al., 2017). Among the 466 metabolites 

overlapping with our study, h2 estimates were only moderately correlated (Pearson r=0.36) and 

our estimates were 9.6 percentage points lower on average. However, our metabolite h2 estimates 
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were 8.9 percentage points higher on average (and had a lower correlation of r=0.25) when 

comparing 191 overlapping metabolite h2 estimates from an earlier twin study based on 7,824 

individuals from both the KORA F4 and TwinsUK cohorts (Shin et al., 2014). Interestingly, 

despite having some overlapping participants, h2 estimates between these two previous studies 

were only moderately correlated: among 163 overlapping metabolite h2 estimates, Pearson r was 

0.38, with estimates based on the TwinsUK cohort being 18.8 percentage points higher on 

average than the combined KORA and TwinsUK study. Differences in h2 estimates may be 

driven by differences in population composition and size, phenotypic variation, and analytic 

approaches.  

This study was not without limitations. Our findings are likely driven by our panel of 

metabolites, and it is possible that a different panel of metabolites could produce different 

results. Many of our findings are in accordance with previous publications, thereby strengthening 

confidence in our results that have not been previously investigated with regards to age and sex. 

Accordingly, it will be crucial to replicate novel findings with an external cohort. However, we 

also identified several inconsistencies between our study and others regarding h2 estimates and a 

few of our association results, which could have been due to differences in study designs and 

sample populations. This challenge is common (Enche Ady et al., 2017), as the field of 

metabolomics is rapidly developing and widely accepted standards for quality control techniques 

are forthcoming. Differences in platforms, quantification techniques, statistical analysis methods, 

laboratory techniques for sample handling (i.e., anti-coagulation method, preservation, storage 

duration), and fasting status at the time of the sample draw may result in large variations from 

one study to another (Gonzalez-Dominguez, Sayago, & Fernandez-Recamales, 2017). The 

metabolomics quality control process we have outlined here as well as that described in Voyle et 
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al. (Voyle et al., 2016) could serve as guidelines for future studies. Many of our findings 

included metabolites that had unknown chemical structures, which is a current limitation of the 

field of metabolomics, as it can be difficult and costly to accurately identify metabolites. Further, 

we only investigated linear effects of age, but non-linear age effects may exist and should be 

investigated in future investigations. 

Using a large panel of longitudinal metabolomics data, we conducted a comprehensive 

investigation of the influence of aging and sex on metabolomics. Our findings suggest that levels 

of most metabolites are highly influenced by sex and age, and that sex differentially influences 

levels and trajectories of many metabolites. These findings underscore the importance of 

incorporating age and sex in the design and analysis of metabolomics investigations. We also 

report that many metabolite levels are influenced by a complex combination of both genomic and 

environmental influences. These findings offer a deeper understanding of the aging process and 

could inform many novel hypotheses regarding the role of metabolites in healthy and accelerated 

aging.  

 

Methods 

Participants 

Study participants were from WRAP, a longitudinal study of initially dementia free 

middle-aged adults that allows for the enrollment of siblings and is enriched for a parental 

history of Alzheimer’s disease. Further details of the study design and methods used have been 

previously described (Johnson et al., 2018; Sager, Hermann, & La Rue, 2005). For the current 

analyses, follow-up occurred every two years. This study was conducted with the approval of the 
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University of Wisconsin Institutional Review Board and all subjects provided signed informed 

consent before participation. 

Plasma collection and sample handling 

 Fasting blood samples for this study were drawn the morning of each study visit. Blood 

was collected in 10 mL ethylenediaminetetraacetic acid (EDTA) vacutainer tubes. They were 

immediately placed on ice, and then centrifuged at 3000 revolutions per minute for 15 minutes at 

room temperature. Plasma was pipetted off within one hour of collection. Plasma samples were 

aliquoted into 1.0 mL polypropylene cryovials and placed in -80°C freezers within 30 minutes of 

separation. Samples were never thawed before being shipped overnight on dry ice to Metabolon, 

Inc. (Durham, NC), where they were again stored in -80°C freezers and thawed once before 

testing.  

Metabolomic profiling and quality control 

 An untargeted plasma metabolomics analysis was performed by Metabolon, Inc. using 

Ultrahigh Performance Liquid Chromatography-Tandom Mass Spectrometry (UPLC-MS/MS). 

Quantification was performed as previously described (Evans et al., 2014); details are outlined in 

the Supplemental Note. Metabolites within nine super pathways were identified: amino acids, 

carbohydrates, cofactors and vitamins, energy, lipids, nucleotides, partially characterized 

molecules, peptides, and xenobiotics. 

 Up to three longitudinal plasma samples were available for each participant. Metabolites 

with an interquartile range of zero (i.e., those with very low or no variability) were excluded 

from analyses (n=178 metabolites). After removing these metabolites, samples were missing a 

median of 11.7% metabolites, while metabolites were missing in a median of 1.2% of samples. 

Missing metabolite values were imputed to the lowest level of detection for each metabolite. 
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Metabolite values were median-scaled and log-transformed to normalize metabolite distributions 

(van den Berg, Hoefsloot, Westerhuis, Smilde, & van der Werf, 2006). If a participant reported 

that they did not fast or withhold medications and caffeine for at least eight hours, the sample 

was excluded from analyses (n=159 samples). A total of 1,097 metabolites among 2,344 samples 

remained for analyses. 

DNA collection and genomics quality control 

DNA was extracted from whole blood samples using the PUREGENE® DNA Isolation 

Kit (Gentra Systems, Inc., Minneapolis, MN). DNA concentrations were quantified using the 

Invitrogen™ Quant-iT™ PicoGreen™ dsDNA Assay Kit (Thermo Fisher Scientific, Inc., 

Hampton, NH) analyzed on the Synergy 2 Multi-Detection Microplate Reader (Biotek 

Instruments, Inc., Winooski, VT). Samples were diluted to 50 ng/ul following quantification.  

A total of 1,340 samples were genotyped using the Illumina Multi-Ethnic Genotyping 

Array at the University of Wisconsin Biotechnology Center (Figure S7). Thirty-six blinded 

duplicate samples were used to calculate a concordance rate of 99.99%, and discordant 

genotypes were set to missing. Sixteen samples missing >5% of variants were excluded, while 

35,105 variants missing in >5% of individuals were excluded. No samples were removed due to 

outlying heterozygosity. Six samples were excluded due to inconsistencies between self-reported 

and genetic sex.  

Due to sibling relationships in the WRAP cohort, genetic ancestry was assessed using 

Principal Components Analysis in Related Samples (PC-AiR), a method that makes robust 

inferences about population structure in the presence of relatedness (Conomos, Miller, & 

Thornton, 2015). This approach included several iterative steps and was based on 63,503 linkage 

disequilibrium (LD) pruned (r2<0.10) and common (MAF>0.05) variants, using the 1000 
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Genomes data as reference populations (Genomes Project et al., 2015). First, kinship coefficients 

(KCs) were calculated between all pairs of individuals using genomic data with the Kinship-

based Inference for Gwas (KING)-robust method (Manichaikul et al., 2010). PC-AiR was used 

to perform principal components analysis (PCA) on the reference populations along with a 

subset of unrelated individuals identified by the KCs. Resulting principal components (PCs) 

were used to project PC values onto the remaining related individuals. All PCs were then used to 

recalculate the KCs taking ancestry into account using the PC-Relate method, which estimates 

KCs robust to population structure (Conomos, Reiner, Weir, & Thornton, 2016). PCA was 

performed again using the updated KCs, and KCs were also estimated again using updated PCs. 

The resulting PCs identified 1,198 WRAP participants whose genetic ancestry was primarily of 

European descent. This procedure was repeated within this subset of participants (excluding 

1000 Genomes individuals) to obtain PC estimates used to adjust for population stratification in 

subsequent genomic analyses. Among European descendants, 160 variants were not in Hardy-

Weinberg equilibrium (HWE) and 327,064 were monomorphic and thus, removed.  

A total of 1,294,660 bi-allelic autosomal variants among 1,198 European descendants 

remained for imputation, which was performed with the Michigan Imputation Server v1.0.3 (Das 

et al., 2016), using the Haplotype Reference Consortium (HRC) v. r1.1 2016 (McCarthy et al., 

2016) as the reference panel and Eagle2 v2.3 (Loh et al., 2016) for phasing. Prior to imputation, 

the HRC Imputation Checking Tool (Rayner, Robertson, Mahajan, & McCarthy, 2016) was used 

to identify variants that did not match those in HRC, were palindromic, differed in MAF>0.20, 

or that had non-matching alleles when compared to the same variant in HRC, leaving 898,220 

for imputation. A total of 39,131,578 variants were imputed. Variants with a quality score 

R2<0.80, MAF<0.001, or that were out of HWE were excluded, leaving 10,400,394 imputed 
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variants. These were combined with the genotyped variants, leading to 10,499,994 imputed and 

genotyped variants for analyses. Data cleaning and file preparation were completed using PLINK 

v1.9 (Chang et al., 2015) and VCFtools v0.1.14 (Danecek et al., 2011). Coordinates are based on 

GRCh37 assembly hg19. 
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Figure Legends 

Figure 1. Adjusted effects of a 10-year increase in age on the top 100 metabolites most strongly 

influenced by age. Positive values indicate the amount a metabolite increased over 10 years, 

whereas negative values indicate the amount a metabolite decreased over 10 years. Black vertical 

lines indicate 10*standard errors. 

Figure 2. Adjusted effects of the top 100 metabolites most strongly influenced by sex. Positive 

values indicate that the metabolite was higher in women, whereas negative values indicate that 

the metabolite was higher in men. Black vertical lines indicate 10*standard errors. 

Figure 3. Pinwheel plot of metabolite heritabilities. Each bar indicates the heritability of the 

corresponding metabolite. Metabolite names are indicated in the outer circle.  
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Tables 

 

Table 1. WRAP Participant Characteristics at Baseline for the Current Study. Mean (SD) or N 

(%). 

Characteristic 

Overall 

(N=1,212, 

obs=2,344) 

Male 

(n=374, 

obs=731) 

Female 

(n=838, 

obs=1,613) 

Age (years) 60.8 (6.7) 61.2 (6.9) 60.7 (6.6) 

Caucasian 1,135 (93.7) 351 (93.9) 784 (93.6) 

Cholesterol lowering 

medication 
387 (31.9) 146 (39.0)* 241 (28.8)* 

Sample storage (days) 1,510.5 (415.7) 1,511.2 (424.3) 1,510.2 (412.0) 

obs=number of longitudinal observations 

*Differs between men and women with P=3.9e-4 
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Table 2. Metabolome-wide association results summary. Number of metabolites associated with 

each trait by pathways and recurrent sub pathways after correcting for multiple comparisons. 

 Age Sex Age in Women Age in Men Age*Sex (female/male) 

Metabolite Super/Sub Pathways 

(#Metabolites) 

Tot +β –β Tot +β –β Tot +β –β Tot +β –β Tot +/+ –/– +/– –/+ 

Amino Acids (175) 109 90 19 112 26 86 106 93 13 51 39 12 8 3 0 4 1 

    Common Amino Acids (20) 8 1 7 15 2 13 7 2 5 4 0 4 0 0 0 0 0 

Carbohydrates (23) 17 16 1 13 6 7 17 17 0 7 6 1 1 1 0 0 0 

Cofactors and Vitamins (28) 19 16 3 16 8 8 20 17 3 14 9 5 1 0 0 1 0 

Energy (8) 6 6 0 6 4 2 6 6 0 2 2 0 1 1 0 0 0 

Lipids (353) 198 152 46 252 176 76 191 158 33 86 44 42 50 9 9 28 4 

    Fatty Acids (126) 83 82 1 90 60 30 83 82 1 23 22 1 7 4 0 2 1 

        Acylcarnitines (34) 28 28 0 26 9 17 32 32 0 7 7 0 5 4 0 1 0 

    Phospholipids (65) 22 9 13 52 48 4 12 10 2 16 5 11 8 0 3 5 0 

        Lysophospholipids (24) 3 1 2 17 15 2 1 1 0 2 0 2 3 0 0 3 0 

        Phosphatidylcholines (19) 8 4 4 17 16 1 5 4 1 8 3 5 4 0 2 2 0 

        Phosphatidylethanolamine (9) 2 1 1 7 7 0 2 2 0 2 0 2 1 0 1 0 0 

    Sphingolipids (40) 21 19 2 34 34 0 26 25 1 8 0 8 16 1 0 15 0 

    Steroids (34) 30 2 28 29 2 27 29 1 28 19 1 18 9 0 6 0 3 

        Androgenic (22) 20 1 19 20 0 20 20 1 19 15 0 15 4 0 2 0 2 

        Progestin (5) 5 0 5 2 0 2 5 0 5 0 0 0 5 0 4 0 1 

        Pregnenolone (4) 4 0 4 4 0 4 4 0 4 3 0 3 0 0 0 0 0 

        Corticosteroids (3) 1 1 0 3 2 1 0 0 0 1 1 0 0 0 0 0 0 

Nucleotides (35) 20 19 1 24 1 23 18 18 0 11 10 1 1 1 0 0 0 

Partially Characterized Molecules (5) 3 3 0 2 0 2 4 4 0 0 0 0 0 0 0 0 0 

Peptides (22) 12 11 1 16 3 13 14 13 1 4 3 1 1 1 0 0 0 

Xenobiotics (101) 44 36 8 52 19 33 39 32 7 18 13 5 3 1 1 1 0 

Unknown (347) 209 167 42 205 67 138 173 146 27 104 78 26 14 7 1 3 3 

Total (1,097) 637 516 121 698 310 388 588 504 84 297 204 93 80 24 11 37 8 
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Shaded rows represent super pathways, which sum to the “Total” row. Sub pathways are 

indented. In the Sex columns, + means the metabolite was higher in women, whereas – means 

the metabolite was higher in men. For all other columns, + means the metabolite increased with 

age, whereas – means it decreased with age. In the Age*Sex columns, +/+ means the metabolite 

increased with age in both women and men, –/– means it decreased with age in both women and 

men, +/– means it increased with age in women and decreased with age in men, and –/+ means it 

decreased with age in women and increased with age in men. Results from the Age and Sex 

columns were assessed within the same model; results from the Age in Women and Age in Men 

columns were assessed within separate models stratifying the sample by sex; and results from the 

Age*Sex column were assessed within a separate model including an age-by-sex interaction 

term.  
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