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Abstract

Although Alzheimer’s disease (AD) is highly heritable, genetic variants known to be associated
with AD only explain a small proportion of its heritability. Genetic factors may only convey
disease risk in individuals with certain environmental exposures, suggesting that a multi-omics
approach could reveal underlying mechanisms contributing to complex traits, such as AD. We
developed an integrated network to investigate relationships between metabolomics, genomics,
and AD risk factors using Wisconsin Registry for Alzheimer’s Prevention participants. Analyses
included 1,111 non-Hispanic Caucasian participants with whole blood expression for 11,376
genes (imputed from dense genome-wide genotyping), 1,097 fasting plasma metabolites, and 17
AD risk factors. A subset of 155 individuals also had 364 fasting cerebral spinal fluid (CSF)
metabolites. After adjusting each of these 12,854 variables for potential confounders, we
developed an undirected graphical network, representing all significant pairwise correlations
upon adjusting for multiple testing. There were many instances of genes being indirectly linked
to AD risk factors through metabolites, suggesting that genes may influence AD risk through
particular metabolites. Follow-up analyses suggested that glycine mediates the relationship
between CPSL and measures of cardiovascular and diabetes risk, including body mass index,
waist-hip ratio, inflammation, and insulin resistance. Further, 38 CSF metabolites explained
more than 60% of the variance of CSF levels of tau, a detrimental protein that accumulates in the
brain of AD patients and is necessary for its diagnosis. These results further our understanding of
underlying mechanisms contributing to AD risk while demonstrating the utility of generating and

integrating multiple omics data types.
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Introduction

Genome-wide association studies (GWAS) have identified tens of thousands of single
nucleotide polymorphism (SNP)-trait associations(1). However, these variants tend to have very
small effect sizes and typically explain a small portion of trait heritability. Late onset
Alzheimer’s disease (AD) is an example of such a trait: 53% of its phenotypic variance can be
explained by genomic variants, collectively (i.e., SNP heritability); yet, the 21 GWAS variants
identified in a meta-analysis to be associated with AD only account for 31% of its genetic
variance, leaving 69% unaccounted for(2). In order to more comprehensively understand the
disease risk conveyed by genetic factors, it is crucial to consider genomics in combination with
other omics data types and to use integrative multi-omics approaches that can capture intricate
relationships.

Although there has been great interest recently in the integration of multi-omics datasets,
progress in this field is still fairly limited and it faces many challenges(3-8). However, studies
have been able to show that the use of multiple omics data types is more predictive than single
data types(5, 9). A recent study with dense longitudinal omics data displayed the utility of
integrating such data with regards to personalized medicine(10). Although limited by its sample
size of 108 participants, this investigation identified meaningful systems biology relationships
that were able to improve the health of its participants. As it is becoming more feasible and
common to acquire multiple omics data types, it is essential that we move towards systems
biology approaches of understanding complex diseases, rather than focusing on single data types
that are unable to capture the intricacies imposed by biology.

Recent technological advances have made metabolomics studies increasingly favorable

among investigations of AD(11), obesity(12), and cardiovascular disease(13), to name a few. An
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appeal of the metabolome is that of the biological systems, metabolomics could offer an effective
way to accurately capture individual-level environmental exposures; it is the most proximal to
the development of the phenotype(14) and many metabolites have a low heritability(15, 16),
implying that such metabolites are more strongly influenced by the environment than genomics.
Metabolomic variations that precede disease onset could prove to be highly informative for
predictive models as well as preventative and therapeutic medicine. Pathological changes that
cause AD are known to begin decades before the diagnosis of AD(17). As such, an integrated
approach of studying the genomics and metabolomics of risk factors that precede an AD
diagnosis could provide a better understanding of the underlying biological and environmental
mechanisms that lead to the onset of AD.

We developed an integrative network to investigate relationships between plasma
metabolomics, cerebral spinal fluid (CSF) metabolomics, genomics, and AD risk factors using
1,111 participants with deep longitudinal phenotypes from the Wisconsin Registry for
Alzheimer’s Prevention (WRAP). AD risk factors included neuropsychological measures of
cognitive function, CSF levels of the two proteins required for an AD diagnosis that are known
to accumulate in the brains of AD patients, amyloid-beta (Ap) and tau, and measures of
cardiovascular disease and diabetes risk, two diseases that are known to increase AD risk.
Further, in order to understand whether plasma metabolite levels are representative of
metabolites in CSF, which may be a more relevant tissue for neurological diseases, we also

assessed the correlation of plasma and CSF metabolite levels.

Materials and Methods

Participants
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Study participants were from WRAP, a longitudinal study of initially dementia free middle-aged
adults that allows for the enrollment of siblings and is enriched for a parental history of
Alzheimer’s disease. Further details of the study design and methods used have been previously
described(18, 19). Participants included in this analysis had genetic ancestry that was primarily
of European descent, had both genomic and metabolomic data available, and up to seventeen AD
risk factors (Table 1; of note, cholesterol is not included in this table because it was measured on
the metabolite panel). This study was conducted with the approval of the University of
Wisconsin Institutional Review Board, and all subjects provided signed informed consent before
participation.
Plasma and CSF collection and sample handling

Fasting blood samples for this study were drawn the morning of each study visit. Plasma
samples were stored in ethylenediaminetetraacetic acid (EDTA) tubes at -80°C. Blood was
collected in 10 mL ethylenediaminetetraacetic acid (EDTA) vacutainer tubes. They were
immediately placed on ice, and then centrifuged at 3000 revolutions per minute for 15 minutes at
room temperature. Plasma was pipetted off within one hour of collection. Plasma samples were
aliquoted into 1.0 mL polypropylene cryvolials and placed in -80°C freezers within 30 minutes
of separation.

As previously described(20), CSF was collected via lumbar puncture (LP) in the morning
after a 12-hour fast, not necessarily on the same day as a study visit (LPs were drawn within a
median of 120 days of the study visit, ranging from 0-661 days). LPs were performed using a
Sprotte 25- or 24-gauge spinal needle at the L3/4 or L4/5 interspace using gentle extraction into

polypropylene syringes. CSF (22 mL) was then gently mixed and centrifuged at 2000g for 10
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minutes. Supernatants were frozen in 0.5 mL aliquots in polypropylene tubes and stored at
—-80°C.

Plasma and CSF samples were never thawed before being shipped overnight on dry ice to
Metabolon (Durham, NC), where they were again stored in -80°C freezers and thawed once
before testing.

CSF biomarker quantification

CSF A4, total tau (T-tau), and phosphorylated tau (P-tau) were quantified with
sandwich ELISAs (INNOTEST B-amyloid1-42, hTAU-Ag, and Phospho-Tau[181P],
respectively; Fujirebio Europe, Ghent, Belgium). CSF levels of AB4, and A4 (a less
amyloidogenic AP fragment as compared to AP4,) were used to calculate the ratio of APs/ABao
were quantified by electrochemiluminescence (ECL) using an AP triplex assay (MSD Human A
peptide Ultra-Sensitive Kit, Meso Scale Discovery, Gaithersburg, MD). A total of 223 samples
with CSF biomarkers among 141 individuals were available for this analysis.

Plasma and CSF metabolomic profiling and quality control

Untargeted plasma and CSF metabolomic analyses and quantification were performed by
Metabolon (Durham, NC) using Ultrahigh Performance Liquid Chromatography-Tandom Mass
Spectrometry (UPLC-MS/MS)(21); details are outlined in the Supplemental Note. Metabolites
within eight super pathways were identified: amino acids, carbohydrates, cofactors and vitamins,
energy, lipids, nucleotides, peptides, and xenobiotics.

Up to three longitudinal plasma samples were available for each participant. Plasma
metabolites with an interquartile range of zero (i.e., those with very low or no variability) were

excluded from analyses (178 metabolites). After removing these metabolites, samples were
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missing a median of 11.7% plasma metabolites, while plasma metabolites were missing in a
median of 1.2% of samples.

Up to four longitudinal CSF samples were available for each participant. Similarly, CSF
metabolites with an interquartile range of zero were excluded from analyses (48 CSF
metabolites). After removing these metabolites, samples were missing a median of 6.9% CSF
metabolites, while CSF metabolites were missing in a median of 0.3% of samples.

Missing plasma and CSF metabolite values were imputed to the lowest level of detection
for each metabolite(22). Metabolite values were median-scaled and log-transformed to normalize
metabolite distributions(23). If a participant reported that they did not fast or withhold
medications and caffeine for at least eight hours prior to the blood draw, the plasma sample was
excluded from analyses (159 plasma samples), leaving 1,097 plasma metabolites among 2,189
plasma samples (1,111 individuals) for analyses. Similarly, if a participant reported that they did
not fast for at least eight hours prior to the LP, the CSF sample was excluded from analyses (4
CSF samples), leaving 364 CSF metabolites among 346 CSF samples (155 individuals) for
analyses.

CSF and plasma metabolite correlations

A total of 326 metabolites were captured in both CSF and plasma. The correlations of
these metabolites between tissue types were calculated using the Pearson correlation coefficient.
In order to reduce variability due to the time interval between plasma and CSF sample collection,
correlations were based on 141 pairs of plasma and CSF samples that were collected within a
timespan of four months of each other. After removing these samples, plasma and CSF samples
were collected a median of 27 days apart.

DNA collection and genomics quality control
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DNA was extracted from whole blood samples using the PUREGENE® DNA Isolation
Kit (Gentra Systems, Inc., Minneapolis, MN). DNA concentrations were quantified using the
Invitrogen™ Quant-iT™ PicoGreen™ dsDNA Assay Kit (Thermo Fisher Scientific, Hampton,
NH) analyzed on the Synergy 2 Multi-Detection Microplate Reader (Biotek Instruments,
Winooski, VT). Samples were normalized to 50 ng/ul following quantification.

A total of 1,340 samples were genotyped using the lllumina Multi-Ethnic Genotyping
Array at the University of Wisconsin Biotechnology Center (Figure S1). Thirty-six blinded
duplicate samples were used to calculate a concordance rate of 99.99%, and discordant
genotypes were set to missing. Sixteen samples missing >5% of variants were excluded, while
35,105 variants missing in >5% of individuals were excluded. No samples were removed due to
outlying heterozygosity. Six samples were excluded due to inconsistencies between self-reported
and genetic sex.

Due to the sibling relationships present in the WRAP cohort, genetic ancestry was
assessed using Principal Components Analysis in Related Samples (PC-AiR), a method that
makes robust inferences about population structure in the presence of relatedness(24). This
approach included several iterative steps and was based on 63,503 linkage disequilibrium (LD)
pruned (r’<0.10) and common (MAF>0.05) variants, using the 1000 Genomes data as reference
populations(25). First, kinship coefficients (KCs) were calculated between all pairs of
individuals using genomic data with the Kinship-based Inference for Gwas (KING)-robust
method(26). PC-AIR was used to perform principal components analysis (PCA) on the reference
populations along with a subset of unrelated individuals identified by the KCs. Resulting
principal components (PCs) were used to project PC values onto the remaining related

individuals. All PCs were then used to recalculate the KCs taking ancestry into account using the


https://doi.org/10.1101/436923
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/436923; this version posted October 5, 2018. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

aCC-BY-NC-ND 4.0 International license.

PC-Relate method, which estimates KCs robust to population structure(27). PCA was performed
again using the updated KCs, and KCs were also estimated again using updated PCs. The
resulting PCs identified 1,198 WRAP participants whose genetic ancestry was primarily of
European descent. This procedure was repeated within this subset of participants (excluding
1000 Genomes individuals) to obtain PC estimates used to adjust for population stratification in
subsequent genomic analyses. Among European descendants, 160 variants were not in Hardy-
Weinberg equilibrium (HWE) and 327,064 were monomorphic and thus, removed.

A total of 1,294,660 bi-allelic autosomal variants among 1,198 European descendants
remained for imputation, which was performed with the Michigan Imputation Server v1.0.3(28),
using the Haplotype Reference Consortium (HRC) v. r1.1 2016(29) as the reference panel and
Eagle2 v2.3(30) for phasing. Prior to imputation, the HRC Imputation Checking Tool(31) was
used to identify variants that did not match those in HRC, were palindromic, differed in
MAF>0.20, or that had non-matching alleles when compared to the same variant in HRC,
leaving 898,220 for imputation. A total of 39,131,578 variants were imputed. Variants with a
quality score R?<0.80, MAF<0.001, or that were out of HWE were excluded, leaving 10,400,394
imputed variants. These were combined with the genotyped variants, leading to 10,499,994
imputed and genotyped variants for analyses. Data cleaning and file preparation were completed
using PLINK v1.9(32) and VCFtools v0.1.14(33). Coordinates are based on GRCh37 assembly
hg19.

Whole blood gene expression imputation

The resulting 10,499,994 imputed and genotyped variants were used to impute whole

blood gene expression using PrediXcan(34) with the Depression Genes and Networks reference

dataset(35), PrediXcan’s largest reference sample consisting of 922 individuals with RNA
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sequencing on whole blood and GWAS data. PrediXcan filters results to only include genes that
are imputed with reasonable accuracy, using a false discovery rate of 0.05. After removing genes
with zero variability between individuals (162 genes), whole blood gene expression data for
11,376 genes were available for analyses.
I ntegrative network analysis

The analytic approach we used for our network analysis was similar to that of Price et al.,
2017(10). A total of 12,856 variables, including 11,376 expressed genes, 1,097 plasma
metabolites, 364 CSF metabolites, and 17 AD risk factors, were available for the network
analysis. Linear mixed models, as implemented by the Ime4 package in R(36), were used to
adjust each variable for age and sex and included a random intercept for individual to account for
repeated measures and family to account for sibling relationships. Further adjustments were
made specific to the variable being assessed: imputed gene expression was also adjusted for the
first four principal components to account for ancestry; CSF and plasma metabolites were
adjusted for cholesterol lowering medication use and sample storage time; the executive function
and delayed recall composite scores were adjusted for practice effects; and systolic and diastolic
blood pressure were adjusted for ace inhibitor and beta blocker medication use. For longitudinal
traits (such as metabolites), random intercepts were used as the new outcomes for each
individual, whereas for constant traits (such as imputed gene expression values), residuals were
used as the new outcomes for each individual. These adjusted outcomes were used to assess all
82,606,231 pairwise correlations between traits using Spearman rank, and significance was
determined using a Bonferroni-adjusted P-value (0.05/82,606,231=6.1e-10). To identify
relationships between omics data, significant inter-omic associations and significant associations

with an AD risk factor were used to develop an integrative network, which was created using the

10
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igraph R package(37). Dense subgraphs were identified using a community detection algorithm
that maximizes the modularity of the network, such that there is high connectivity within
communities (or groups of distinct variables), but low connectivity between communities(38).
Targeted mediation and interaction analyses

Results from the integrated network analysis were used to identify potential mediation
and interactions between imputed gene expression and metabolite levels that could impact AD
risk factors, as a proof of concept. Although our network analysis suggested many potentially
meaningful mediation or interaction relationships, we only investigated gene-metabolite
correlations with the most consistent biological support from the GWAS catalog(1)

(www.ebi.ac.uk/gwas, date accessed: May 9, 2018), to illustrate the utility of the network

analysis results. Such relationships were investigated using the longitudinal data (2,198
observations among 1,111 individuals) with linear mixed models, again as implemented by the
Ime4 package in R(36), including random intercepts for within-individual repeated measures and
within-family relationships. To assess whether a metabolite mediated the relationship between
imputed gene expression and an AD risk factor, models were run to assess whether: 1) the gene
predicted the AD risk factor, 2) the gene predicted metabolite levels, 3) the metabolite predicted
the AD risk factor, and 4) the gene predicted the AD risk factor while adjusting for the
metabolite. The causal mediation effect, or the indirect effect of a gene on an AD risk factor
through a metabolite, was calculated as the difference between the effect of the gene in model 1
and model 4, as implemented in the R mediation package(39). To determine whether this
difference was significant, standard errors and P-values were estimated using the quasi-Bayesian
Monte Carlo method with 1,000 simulations. Because the mediation package can only handle

mixed models with one random effect, the mediation analysis was run with models 1 and 4

11
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excluding the random effect for family. As a sensitivity analysis, the mediation analysis was
rerun limiting models 1 and 4 to unrelated individuals (n=898 with 1,774 observations). A fifth
linear mixed model was used to assess interactions by adding a gene*metabolite interaction term
to model 4. Model 5 did not use the mediation package and was thus able to include random
intercepts for both within-individual repeated measures and within-family relationships. All
models including a gene had covariates for age, sex, and the first four PCs, while models
including a metabolite had covariates for age, sex, cholesterol lowering medication use, and

sample storage time.

Results
Participants

Atotal of 1,111 WRAP participants had both genomic and plasma metabolomic data. At
baseline, 68.9% of participants were female and participants were 61.0 years old with a
bachelor’s degree, on average (Table 2). Participants each had 1,097 plasma metabolites
available for analyses, 347 (31.6%) of which were of unknown chemical structure, whole blood
gene expression for 11,376 genes, and up to 17 AD risk factors. A subset of 155 individuals also
had 364 CSF metabolites available for analyses, 56 (15.4%) of which were of unknown chemical
structure. Participants with CSF metabolomic data had similar characteristics as the full sample
(Table 2). Properties of each plasma and CSF metabolite, such as biochemical name, super
pathway, and sub pathway are described in Table S1, and numbers of metabolites within each
super pathway are summarized in Table S2.

Correlation between plasma and CSF metabolomics

12
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The median correlation between the 326 metabolites common to both plasma and CSF
was r=0.26, with some variability existing between different metabolite pathways (Figure 1).
Xenobiotics had the highest median correlation (r=0.53), while lipids had the lowest (r=0.11).
Overall, metabolite correlations ranged from |r|=0.0002 (inosine, a nucleotide) to |r|=0.88
(quinate, a xenobiotic). Interestingly, one of the highest correlations was caffeine (r=0.81).
Correlations between each of the 326 CSF and plasma metabolites are described in Table S3.
I ntegrated networ k

After applying a Bonferroni correction for multiple testing, a total of 90,308 significant
correlations (edges) among 10,869 variables (nodes) were used to develop an overall *hairball’
network (Figure S2). Notably, although there were far fewer metabolites than genes in the
network (1,387 metabolites versus 9,481 genes), there were more edges between metabolites
than genes (49,499 versus 37,473 edges, respectively).

The inter-omic network is shown in Figure 2 (a labeled version is shown in Figure S3),
and its corresponding community partitions are shown in Figure S4. This network had 1,224
edges and 635 nodes, including 171 metabolite-gene and 833 metabolite-AD risk factor edges.
Of these, there were only four CSF metabolite-gene edges and 73 CSF metabolite-AD risk factor
edges, likely due to the much smaller number of CSF metabolomic samples. No genes were
directly linked to AD risk factors; however, many genes were indirectly linked to AD risk factors
through metabolites, as described below. Each of the 1,224 correlations is described in Table S4.

The largest community contained 680 edges among 289 nodes, which included 264
plasma metabolites, ten CSF metabolites, eight genes, and seven AD risk factors related to
cardiovascular disease and diabetes: body mass index (BMI), waist-hip ratio (WHR),

homeostatic model assessment of insulin resistance (HOMA-IR), interleukin 6 (IL-6), metabolic

13
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equivalents (METSs), diastolic blood pressure (DBP), and systolic blood pressure (SBP) (Figure
S5). Expression levels of these eight genes were all indirectly linked to AD risk factors within
this community through plasma metabolites. CPSL expression levels were negatively correlated
with plasma gamma-glutamylglycine, proprionylglycine, and glycine levels, all of which were
negatively correlated with BMI, WHR, IL-6, and/or HOMA-IR (Figure 3). TMEM229B and
PLEKHH1 were both negatively correlated with two glycerophosphatidylcholines (1-(1-enyl-
palmitoyl)-2-palmitoleoyl-GPC (P-16:0/16:1) and 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-
16:0/16:0)), which were also negatively correlated with BMI, WHR, and/or HOMA-IR.
NAALAD?2 was negatively correlated with an amino acid beta-citrylglutamate, which was
positively correlated with BMI, WHR, IL-6, and HOMA-IR. ZNF655 and ZKSCAN1 were both
positively correlated with X-12063, which was also positively correlated with BMI, WHR, and
HOMA-IR. CHRNAS was positively correlated with 5-hydroxylysine, which was positively
correlated with BMI, WHR, IL-6, and HOMA-IR, and negatively correlated with METs. ARVCF
was negatively correlated with X-11593, which was positively correlated with BMI, IL-6, and
HOMA-IR.

Several genes outside of the cardiovascular and diabetes community were indirectly
linked to AD risk factors within this community. Gene expression of FOS.2, KRTCAP3, and
ZNF513 were positively correlated, while IFT172, NRBP1, PPM1G, and ZNF512 were
negatively correlated, with levels of plasma mannose, a carbohydrate that was positively
correlated with BMI, WHR, IL-6, and HOMA-IR (Figure S6A). CABP1, SPPL3, and UNC119B
expression levels were negatively correlated with plasma butyrylcarnitine (C4), which was
positively correlated with BMI, WHR, IL-6, and HOMA-IR (Figure S6B). S_.C27A4, PHYHD1,

ENDOG, and SH3GLB2 expression levels were negatively correlated with plasma 2’-O-
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317  methyluridine and 2’-O-methylcytidine levels, both nucleotides involved in pyrimidine

318 metabolism, and the latter nucleotide is also negatively correlated with BMI and WHR (Figure
319 S6C). PHYHD1 was also negatively correlated with CSF levels of 2’-O-methylcytidine.

320 The only correlations identified among the CSF biomarkers (i.e., amyloid and tau) are
321  shown in Figure 4. Higher CSF T-tau and P-tau levels were correlated with higher levels of 38
322  CSF metabolites, collectively. These metabolites included 13 lipids (six phosphatidylcholines,
323  two lysophosphatidylcholines, five sphingolipids, and cholesterol), seven amino acids, five

324  carbohydrates, one nucleotide, one energy metabolite, one cofactor and vitamin metabolite, one
325  xenobiotic, and nine unknown metabolites. However, none of the CSF amyloid biomarkers were
326  correlated with CSF metabolites. We investigated how much of the variance of T-tau and P-tau
327  could be explained by these metabolites with linear mixed models that included random

328 intercepts for within-subject repeated measures and within-family relationships, using the R?
329  statistic for mixed models as defined by Edwards et al., 2008(40) and implemented in the

330 r2glmm R package. After removing the variation explained by age and sex, the 37 metabolites
331  correlated with T-tau explained 60.7% of the variation of T-tau, while the 35 metabolites

332 correlated with P-tau explained 64.0% of the variation of P-tau.

333  Targeted mediation and interaction analyses

334 Targeted mediation and interaction analyses were focused on a particular pathway

335 identified within the large cardiovascular and diabetes community involving CPSL, glycine

336  plasma metabolites (glycine, proprionylglycine, and gamma-glutamylglycine), BMI, WHR, IL-6,
337 and HOMA-IR. Associations between CPSL variants and glycine have been reported in at least
338  nine studies(15, 16, 41-47), more than any of the other gene-metabolite associations identified in

339  our network analysis, and these studies were based not only on Caucasian populations, but also
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340  on Japanese and African American populations. Many previous studies have also reported

341  associations between glycine and cardiovascular risk factors, including BMI, waist

342  circumference, inflammation, and HOMA-IR(45, 48-55). This evidence made this pathway a
343  strong candidate for mediation and interaction analyses.

344 Figure 5 shows results from the mediation analyses using glycine as the mediator,

345 including the total effect (i.e., the effect of CPSL in the model unadjusted for glycine), the direct
346  effect (i.e., the effect of CPSL in the model adjusted for glycine), and the indirect effect (i.e., the
347  effect of CPSL due to the effect of CPSL on glycine) for BMI (Figure 5A and Figure5B), WHR
348  (Figure 5C and Figure 5D), IL-6 (Figure 5E and Figure 5F), and HOMA-IR (Figure 5G and

349  Figure 5H). The total effect of CPSL was null for each of these three outcomes, likely due to the
350 negative association between CPSL and glycine coupled with the negative association between
351  glycine and the AD risk factor, resulting in direct and indirect effects that had opposing

352  directions(56). Our results show that lower levels of CPSL expression lead to increased glycine
353 levels, and higher glycine levels lead to decreased BMI, WHR, IL-6, and HOMA-IR. Thus, with
354  glycine as a mediator, lower levels of CPSL lead to decreased BMI, WHR, IL-6, and HOMA-IR.
355  Mediation analyses using propionylglycine and gamma-glutamylglycine as the mediator showed
356  similar results and can be found in Figure S7 and Figure S8. We did not identify any interactions
357  Dbetween CPSL and the three glycine metabolites that were associated with BMI, WHR, IL-6, or
358 HOMA-IR (all P-values>0.07).

359

360  Discussion

361 We developed an integrative network to investigate relationships between genomics,

362  plasma metabolomics, CSF metabolomics, and AD risk factors. Although no gene expression
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levels were directly correlated with AD risk factors, there were many instances of genes being
indirectly correlated with AD risk factors though metabolites. Building on one such instance, we
found that glycine mediated the pathway between CPS1 expression and cardiovascular and
diabetes risk factors. This suggests that our results may have generated many valid hypotheses
that warrant further investigation. We also found that correlations between plasma and CSF
metabolites ranged widely but typically had low correlations. This could suggest that most
plasma metabolites are not representative of certain metabolic changes occurring in the brain,
although we cannot rule out the possibility that the low average correlation is, at least partially,
due to the time difference between the plasma and CSF sample collection.

The low correlation we observed between plasma and CSF metabolite levels could be
related to ~98% of small molecules not being able to pass the blood-brain barrier (BBB)(57).
Cholesterol is an example of a lipid metabolite that typically cannot pass the BBB(58), and was
not correlated between tissues (r=-0.07). On the other hand, caffeine (a xenobiotic) readily
crosses the BBB(59) and it was highly correlated between tissues (r=0.81), as was 5-
acetylamino-6-amino-3-methyluracil (r=0.82), which is a caffeine metabolite, and theophylline
(r=0.82), which is structurally and pharmacologically similar to caffeine. This could contribute to
lipids having the weakest average correlation and xenobiotics having the strongest average
correlation between plasma and CSF tissues. However, it is important to note that metabolites
within a given pathway can vary widely from each other and should be considered on an
individual basis, accordingly, as the averages presented here may not reflect a particular
metabolite’s unique properties. The hypothesis about plasma and CSF differing due to the BBB
is also supported by the only correlations in the network analysis involving CSF biomarkers (i.e.,

tau) being with CSF metabolites, although we cannot rule out the possibility that this correlation
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is related to CSF biomarkers and CSF metabolomics being analyzed from the same sample and
thus, not having time-related variation.

Our network analysis revealed that 38 CSF metabolites were highly predictive of CSF T-
tau and P-tau, collectively explaining 60.7% and 64.0% of the variance of T-tau and P-tau,
respectively. Further investigations of these CSF metabolites could lead to a better understanding
of mechanisms and pathways that influence the development of tau tangles. In contrast, no CSF
metabolites were correlated with CSF amyloid biomarkers, which could have implications about
the biological function of amyloid versus tau. It is possible that we did not capture the small
molecules that amyloid may be associated with, or that amyloid is generally not associated with
small molecules. Although our CSF findings were limited by their small sample size, they offer
potentially novel information regarding the interface between CSF biomarkers and CSF
metabolites, as we have not identified previous studies investigating these relationships.

One advantage of using imputed gene expression data is that it only represents the
genetically regulated component of gene expression, reducing the risk of confounding due to
environmental factors and reverse causality in mediation analyses. We found that glycine
mediated the relationship between CPSL and BMI, WHR, IL-6, and HOMA-IR, such that lower
CPSL1 expression was associated with higher levels of glycine, which were associated with lower
BMI, WHR, IL-6, and HOMA-IR. Relationships between CPSL, glycine, and cardiovascular risk
factors have been hypothesized recently, but not clearly defined(43, 60). The CPSL (Carbamoyl-
Phosphate Synthase 1) gene encodes for a mitochondrial enzyme that catalyzes the first step of
the hepatic urea cycle by synthesizing carbamoyl phosphate from ammonia, bicarbonate, and two
molecules of ATP, and is important for removal of urea from cells(61). Notably, all genes

encoding enzymes involved in the urea cycle are expressed in the brain, including CPSL1(62), and
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levels of enzymes and metabolic intermediates involved in the urea cycle are altered in AD
patients(63). CPSL variants have been linked to CPS1 deficiency(61), neonatal pulmonary
hypertension(64), vascular function(65), traits related to blood clotting, such as fibrinogen levels
and platelet count(66-69), homocysteine levels(70-73), HDL cholesterol(74), kidney function
and disease(75-78), AD(79), and BMI(80, 81). Higher adipose tissue expression of CPSL1 has
been associated with detrimental traits, including weight gain(60). At least nine studies have
reported associations between CPSL variants and glycine(15, 16, 41-47) and others have reported
associations with betaine, a derivative of glycine(15, 16, 82). Glycine is a common amino acid
involved in the production of DNA, phospholipids, and collagen, and in the release of energy.
Previous studies have identified negative correlations between glycine and cardiovascular and
diabetes risk factors such as BMI, waist circumference, HOMA-IR, obesity and visceral obesity,
subcutaneous and visceral fat area, hypertension, and acute myocardial infarction(45, 48-55).
These previous findings are in the same direction as our findings and are highly supportive of the
biological relevance of our results, which lead us to hypothesize that the CPS1-cardiovascular
risk pathway is linked through the mediation of glycine.

One particular CPSL variant, rs715, has been linked to urine and blood glycine levels(15,
16, 43-45), blood levels of betaine(15, 16, 82), blood levels of fibrinogen(66, 67), and BMI(80).
This is a common variant, with a MAF=0.27 based on 62,784 whole genome sequences from
Trans-Omics for Precision Medicine (TOPMed)(83). The minor C allele of rs715 decreases
CPS1 expression(82). To further test our findings, we conducted additional mediation analyses
using this variant and found highly consistent results, suggesting that having one or two minor

alleles of rs715 (which decreases CPSL expression) increases levels of the three glycine plasma
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metabolites, which decreases BMI, WHR, IL-6, and HOMA-IR (Figures S9-S11). Thus, the
minor C allele of rs715 may have a protective role in cardiovascular risk.

One of the primary strengths of this analysis is that it shows the feasibility of performing
integrated omics analyses and the potential utility of such approaches. It is becoming more
common for cohorts to collect such datasets; for example, the National Institutes of Health is
sponsoring the new TOPMed nation-wide consortium that aims to deeply phenotype its

participants utilizing omics technologies (www.nhlbiwgs.org). It is anticipated that initiatives

such as TOPMed will greatly advance our knowledge of many complex diseases and traits.
However, to fully utilize these rich data, it will be crucial to identify effective means of
integrating them and maximize their potential to provide a more holistic understanding of the
disease process. While there is still a great need for such methods, our inter-omic network
analysis and subsequent targeted follow-up analyses outlines one approach to effectively
integrate omics data.

This study was not without limitations. Due to computational burdens, our network
analysis did not fully utilize the longitudinal aspect of our data. Further, our sample sizes for
CSF biomarkers and metabolites were limited, which is likely why we had few CSF findings in
our network analysis. Plasma and CSF samples typically were not collected on the same day,
which could influence our correlation results. However, this may not have influenced our
network analysis to a large extent because we averaged the residuals of longitudinal traits. We
were unable to include smoking behavior in our network analysis due to the prohibitive number
of smokers in our cohort (n=48). Despite these limitations, we were encouraged to find that
many of our results had been previously reported, thereby strengthening confidence in our novel

findings.
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Opponents of the “big data” era have criticized omics approaches because they are not
hypothesis driven and do not follow the standard scientific method(84, 85). However, we know
biology to be complex far beyond our current understanding. To believe that we currently have
the ability to generate valid biological hypotheses to understand complex conditions without data
would be a fallacy. This was a lesson learned in the years preceding the completion of the human
genome sequence in 2001 when research efforts were heavily invested into targeted genetic loci
and genome-wide linkage screens of ~500 loci(86). This approach was successful for genes that
follow Mendelian patterns, such as highly penetrant variants in the BRCA1 and BRCAZ2 genes
that are responsible for inherited forms of breast cancer and the APP, PSEN1, and PSEN2 genes
that cause the inherited early onset form of AD. However, it had limited success for traits that
follow complex inheritance patterns(86). The utility of omics data, and particularly integrated
omics approaches, is the ability to generate data driven hypotheses. Our knowledge of biology
has been evolving for centuries; however, with the data we are able to generate due to recent
biotechnological advances, we now have the opportunity to advance our knowledge of biology at
an unprecedented rate. Such data could lead to dramatic improvements in the state of
preventative and therapeutic medicine, particularly for complex diseases such as AD, for which
few such preventative or therapeutic methods exist and little is known about the underlying
biological mechanisms.

By integrating genomics, metabolomics, and clinical risk factors for AD, we were able to
identify complex relationships that offer insight into the onset of AD and risk factors associated
with its onset. Our research has generated many promising hypotheses that could drive
subsequent experimental investigations and potentially offer clinicians and researchers new

insights regarding the development of tau tangles. As the generation of omics data accelerates
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across investigations of a variety of research fields, continued efforts to navigate statistical and
computational issues will be critical. The work presented here represents early efforts to integrate
omics data, but much more research is needed to identify the most effective means of doing so
and thereby maximize the utility of such rich sources of data. The success of precision medicine
is heavily reliant on the advancement of computational biology and the ability to translate

millions of biological data points into individual clinical implications.
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Figure Legends

Figure 1. Correlations between plasma and CSF metabolites by super pathway. Vertical bars
represent median correlations; box width represents the first and third quartiles; horizontal bars
(whiskers) represent the range of correlations that are within 1.5 times the interquartile range;
and dots represent outlier correlations that exceed 1.5 times the interquartile range.

Figure 2. Inter-omic network. This network has 1,224 edges and 635 nodes, which included 171
metabolite-gene edges, 833 metabolite-AD risk factor edges. Of these, 73 were CSF metabolite-
AD risk factor edges (CSF T-tau and P-tau, exclusively) and 4 were CSF metabolite-gene edges.
Red edges indicate negative correlations and blue edges indicate positive correlations.

Figure 3. CPSL, glycine, and cardiovascular and diabetes sub-network. Relationships within this
pathway are highly cited; however, the pathway as a whole is not understood as well. Red edges
indicate negative correlations and blue edges indicate positive correlations.

Figure 4. CSF biomarker community. This network has 73 edges among 38 CSF metabolites and
CSF biomarkers T-tau and P-tau. Red edges indicate negative correlations and blue edges
indicate positive correlations.

Figure 5. Mediation analyses to assess whether plasma glycine mediates the relationships
between imputed CPSL expression, BMI, WHR, IL-6, and HOMA-IR. A. Total effect of CPSL
on BMI. B. Direct and indirect effects of CPS1 on BMI. C. Total effect of CPSL on WHR. D.
Direct and indirect effects of CPS1 on WHR. E. Total effect of CPSL on IL-6. F. Direct and
indirect effects of CPS1 on IL-6. F. Total effect of CPSL on HOMA-IR. G. Direct and indirect
effects of CPS1 on HOMA-IR. All models adjusted for age and sex; models including CPSL
additionally adjusted for the first four PCs; models that included glycine additionally adjusted for

cholesterol lowering medication use and sample storage time.
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795  Tables
Table 1. Seventeen AD Risk Factors Included in Network Analysis
Category of Risk Factor Risk Factor N
Executive function Composite Score 1,096
Delayed Recall Composite Score 1,107
Cognitive Education 1,111
Mom’s age at memory loss 608
Dad’s age at memory loss 340
APz 141
T-tau 141
Cerebral Spinal Fluid
P-tau 141
AP ABao 141
BMI 1,111
WHR 1,111
Cardiovascular/Diabetic METSs 1,108
Alcohol use 1,104
IL-6 1,088
SBP 1,111
Cardiovascular
DBP 1,111
Diabetic HOMA-IR 1,107

796  AD: Alzheimer’s disease, AP4.: p-Amyloids,, T-tau: Total-tau, P-tau: Phosphorylated-tau, APao:

797  B-Amyloids, BMI: Body-mass index, WHR: Waist-hip ratio, METs: Metabolic equivalents, IL-
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798  6: Interleukin 6, SBP: Systolic blood pressure, DBP: Diastolic blood pressure, HOMA-IR:
799  Homeostatic model assessment of insulin resistance

800  Alcohol use=(#drinks/day)*(#days/week)

801
802
Table 2. WRAP Participant Characteristics at Baseline Sample. Mean (SD) or N (%).
Overall CSF Metabolomics
Characteristic
(N=1,111, obs=2,191) (N=155, obs=346)
Age (years) 61.0 (6.7) 61.2 (6.6)
Female 766 (68.9) 103 (66.5)
Years of education 16.4 (2.8) 16.7 (2.9)
Parental history of 803 (72.3) 112 (72.3)
AD
Use of cholesterol- 354 (31.9) 45 (29.0)
lowering medication
Number of Visits 2.0 (0.6) 2.2 (1.0)

803  obs: observations, CSF: cerebral spinal fluid, AD: Alzheimer’s disease
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