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Abstract 21 

Although Alzheimer’s disease (AD) is highly heritable, genetic variants known to be associated 22 

with AD only explain a small proportion of its heritability. Genetic factors may only convey 23 

disease risk in individuals with certain environmental exposures, suggesting that a multi-omics 24 

approach could reveal underlying mechanisms contributing to complex traits, such as AD. We 25 

developed an integrated network to investigate relationships between metabolomics, genomics, 26 

and AD risk factors using Wisconsin Registry for Alzheimer’s Prevention participants. Analyses 27 

included 1,111 non-Hispanic Caucasian participants with whole blood expression for 11,376 28 

genes (imputed from dense genome-wide genotyping), 1,097 fasting plasma metabolites, and 17 29 

AD risk factors. A subset of 155 individuals also had 364 fasting cerebral spinal fluid (CSF) 30 

metabolites. After adjusting each of these 12,854 variables for potential confounders, we 31 

developed an undirected graphical network, representing all significant pairwise correlations 32 

upon adjusting for multiple testing. There were many instances of genes being indirectly linked 33 

to AD risk factors through metabolites, suggesting that genes may influence AD risk through 34 

particular metabolites. Follow-up analyses suggested that glycine mediates the relationship 35 

between CPS1 and measures of cardiovascular and diabetes risk, including body mass index, 36 

waist-hip ratio, inflammation, and insulin resistance. Further, 38 CSF metabolites explained 37 

more than 60% of the variance of CSF levels of tau, a detrimental protein that accumulates in the 38 

brain of AD patients and is necessary for its diagnosis. These results further our understanding of 39 

underlying mechanisms contributing to AD risk while demonstrating the utility of generating and 40 

integrating multiple omics data types. 41 

 42 

 43 
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Introduction 44 

Genome-wide association studies (GWAS) have identified tens of thousands of single 45 

nucleotide polymorphism (SNP)-trait associations(1). However, these variants tend to have very 46 

small effect sizes and typically explain a small portion of trait heritability. Late onset 47 

Alzheimer’s disease (AD) is an example of such a trait: 53% of its phenotypic variance can be 48 

explained by genomic variants, collectively (i.e., SNP heritability); yet, the 21 GWAS variants 49 

identified in a meta-analysis to be associated with AD only account for 31% of its genetic 50 

variance, leaving 69% unaccounted for(2). In order to more comprehensively understand the 51 

disease risk conveyed by genetic factors, it is crucial to consider genomics in combination with 52 

other omics data types and to use integrative multi-omics approaches that can capture intricate 53 

relationships.  54 

Although there has been great interest recently in the integration of multi-omics datasets, 55 

progress in this field is still fairly limited and it faces many challenges(3-8). However, studies 56 

have been able to show that the use of multiple omics data types is more predictive than single 57 

data types(5, 9). A recent study with dense longitudinal omics data displayed the utility of 58 

integrating such data with regards to personalized medicine(10). Although limited by its sample 59 

size of 108 participants, this investigation identified meaningful systems biology relationships 60 

that were able to improve the health of its participants. As it is becoming more feasible and 61 

common to acquire multiple omics data types, it is essential that we move towards systems 62 

biology approaches of understanding complex diseases, rather than focusing on single data types 63 

that are unable to capture the intricacies imposed by biology. 64 

Recent technological advances have made metabolomics studies increasingly favorable 65 

among investigations of AD(11), obesity(12), and cardiovascular disease(13), to name a few. An 66 
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appeal of the metabolome is that of the biological systems, metabolomics could offer an effective 67 

way to accurately capture individual-level environmental exposures; it is the most proximal to 68 

the development of the phenotype(14) and many metabolites have a low heritability(15, 16), 69 

implying that such metabolites are more strongly influenced by the environment than genomics. 70 

Metabolomic variations that precede disease onset could prove to be highly informative for 71 

predictive models as well as preventative and therapeutic medicine.  Pathological changes that 72 

cause AD are known to begin decades before the diagnosis of AD(17). As such, an integrated 73 

approach of studying the genomics and metabolomics of risk factors that precede an AD 74 

diagnosis could provide a better understanding of the underlying biological and environmental 75 

mechanisms that lead to the onset of AD. 76 

We developed an integrative network to investigate relationships between plasma 77 

metabolomics, cerebral spinal fluid (CSF) metabolomics, genomics, and AD risk factors using 78 

1,111 participants with deep longitudinal phenotypes from the Wisconsin Registry for 79 

Alzheimer’s Prevention (WRAP). AD risk factors included neuropsychological measures of 80 

cognitive function, CSF levels of the two proteins required for an AD diagnosis that are known 81 

to accumulate in the brains of AD patients, amyloid-beta (Aβ) and tau, and measures of 82 

cardiovascular disease and diabetes risk, two diseases that are known to increase AD risk. 83 

Further, in order to understand whether plasma metabolite levels are representative of 84 

metabolites in CSF, which may be a more relevant tissue for neurological diseases, we also 85 

assessed the correlation of plasma and CSF metabolite levels. 86 

 87 

Materials and Methods 88 

Participants 89 
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Study participants were from WRAP, a longitudinal study of initially dementia free middle-aged 90 

adults that allows for the enrollment of siblings and is enriched for a parental history of 91 

Alzheimer’s disease. Further details of the study design and methods used have been previously 92 

described(18, 19). Participants included in this analysis had genetic ancestry that was primarily 93 

of European descent, had both genomic and metabolomic data available, and up to seventeen AD 94 

risk factors (Table 1; of note, cholesterol is not included in this table because it was measured on 95 

the metabolite panel). This study was conducted with the approval of the University of 96 

Wisconsin Institutional Review Board, and all subjects provided signed informed consent before 97 

participation. 98 

Plasma and CSF collection and sample handling 99 

 Fasting blood samples for this study were drawn the morning of each study visit. Plasma 100 

samples were stored in ethylenediaminetetraacetic acid (EDTA) tubes at -80°C. Blood was 101 

collected in 10 mL ethylenediaminetetraacetic acid (EDTA) vacutainer tubes. They were 102 

immediately placed on ice, and then centrifuged at 3000 revolutions per minute for 15 minutes at 103 

room temperature. Plasma was pipetted off within one hour of collection. Plasma samples were 104 

aliquoted into 1.0 mL polypropylene cryvolials and placed in -80°C freezers within 30 minutes 105 

of separation.  106 

As previously described(20), CSF was collected via lumbar puncture (LP) in the morning 107 

after a 12-hour fast, not necessarily on the same day as a study visit (LPs were drawn within a 108 

median of 120 days of the study visit, ranging from 0-661 days). LPs were performed using a 109 

Sprotte 25- or 24-gauge spinal needle at the L3/4 or L4/5 interspace using gentle extraction into 110 

polypropylene syringes. CSF (22 mL) was then gently mixed and centrifuged at 2000g for 10 111 
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minutes. Supernatants were frozen in 0.5 mL aliquots in polypropylene tubes and stored at 112 

−80°C.  113 

Plasma and CSF samples were never thawed before being shipped overnight on dry ice to 114 

Metabolon (Durham, NC), where they were again stored in -80°C freezers and thawed once 115 

before testing. 116 

CSF biomarker quantification 117 

CSF Aβ42, total tau (T-tau), and phosphorylated tau (P-tau) were quantified with 118 

sandwich ELISAs (INNOTEST β-amyloid1-42, hTAU-Ag, and Phospho-Tau[181P], 119 

respectively; Fujirebio Europe, Ghent, Belgium). CSF levels of Aβ42 and Aβ40 (a less 120 

amyloidogenic Aβ fragment as compared to Aβ42) were used to calculate the ratio of Aβ42/Aβ40 121 

were quantified by electrochemiluminescence (ECL) using an Aβ triplex assay (MSD Human Aβ 122 

peptide Ultra-Sensitive Kit, Meso Scale Discovery, Gaithersburg, MD). A total of 223 samples 123 

with CSF biomarkers among 141 individuals were available for this analysis. 124 

Plasma and CSF metabolomic profiling and quality control 125 

 Untargeted plasma and CSF metabolomic analyses and quantification were performed by 126 

Metabolon (Durham, NC) using Ultrahigh Performance Liquid Chromatography-Tandom Mass 127 

Spectrometry (UPLC-MS/MS)(21); details are outlined in the Supplemental Note. Metabolites 128 

within eight super pathways were identified: amino acids, carbohydrates, cofactors and vitamins, 129 

energy, lipids, nucleotides, peptides, and xenobiotics. 130 

 Up to three longitudinal plasma samples were available for each participant. Plasma 131 

metabolites with an interquartile range of zero (i.e., those with very low or no variability) were 132 

excluded from analyses (178 metabolites). After removing these metabolites, samples were 133 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/436923doi: bioRxiv preprint 

https://doi.org/10.1101/436923
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

missing a median of 11.7% plasma metabolites, while plasma metabolites were missing in a 134 

median of 1.2% of samples.  135 

Up to four longitudinal CSF samples were available for each participant. Similarly, CSF 136 

metabolites with an interquartile range of zero were excluded from analyses (48 CSF 137 

metabolites). After removing these metabolites, samples were missing a median of 6.9% CSF 138 

metabolites, while CSF metabolites were missing in a median of 0.3% of samples.  139 

Missing plasma and CSF metabolite values were imputed to the lowest level of detection 140 

for each metabolite(22). Metabolite values were median-scaled and log-transformed to normalize 141 

metabolite distributions(23). If a participant reported that they did not fast or withhold 142 

medications and caffeine for at least eight hours prior to the blood draw, the plasma sample was 143 

excluded from analyses (159 plasma samples), leaving 1,097 plasma metabolites among 2,189 144 

plasma samples (1,111 individuals) for analyses. Similarly, if a participant reported that they did 145 

not fast for at least eight hours prior to the LP, the CSF sample was excluded from analyses (4 146 

CSF samples), leaving 364 CSF metabolites among 346 CSF samples (155 individuals) for 147 

analyses.  148 

CSF and plasma metabolite correlations 149 

A total of 326 metabolites were captured in both CSF and plasma. The correlations of 150 

these metabolites between tissue types were calculated using the Pearson correlation coefficient. 151 

In order to reduce variability due to the time interval between plasma and CSF sample collection, 152 

correlations were based on 141 pairs of plasma and CSF samples that were collected within a 153 

timespan of four months of each other. After removing these samples, plasma and CSF samples 154 

were collected a median of 27 days apart. 155 

DNA collection and genomics quality control 156 
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DNA was extracted from whole blood samples using the PUREGENE® DNA Isolation 157 

Kit (Gentra Systems, Inc., Minneapolis, MN). DNA concentrations were quantified using the 158 

Invitrogen™ Quant-iT™ PicoGreen™ dsDNA Assay Kit (Thermo Fisher Scientific, Hampton, 159 

NH) analyzed on the Synergy 2 Multi-Detection Microplate Reader (Biotek Instruments, 160 

Winooski, VT). Samples were normalized to 50 ng/ul following quantification.  161 

A total of 1,340 samples were genotyped using the Illumina Multi-Ethnic Genotyping 162 

Array at the University of Wisconsin Biotechnology Center (Figure S1). Thirty-six blinded 163 

duplicate samples were used to calculate a concordance rate of 99.99%, and discordant 164 

genotypes were set to missing. Sixteen samples missing >5% of variants were excluded, while 165 

35,105 variants missing in >5% of individuals were excluded. No samples were removed due to 166 

outlying heterozygosity. Six samples were excluded due to inconsistencies between self-reported 167 

and genetic sex.  168 

Due to the sibling relationships present in the WRAP cohort, genetic ancestry was 169 

assessed using Principal Components Analysis in Related Samples (PC-AiR), a method that 170 

makes robust inferences about population structure in the presence of relatedness(24). This 171 

approach included several iterative steps and was based on 63,503 linkage disequilibrium (LD) 172 

pruned (r2<0.10) and common (MAF>0.05) variants, using the 1000 Genomes data as reference 173 

populations(25). First, kinship coefficients (KCs) were calculated between all pairs of 174 

individuals using genomic data with the Kinship-based Inference for Gwas (KING)-robust 175 

method(26). PC-AiR was used to perform principal components analysis (PCA) on the reference 176 

populations along with a subset of unrelated individuals identified by the KCs. Resulting 177 

principal components (PCs) were used to project PC values onto the remaining related 178 

individuals. All PCs were then used to recalculate the KCs taking ancestry into account using the 179 
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PC-Relate method, which estimates KCs robust to population structure(27). PCA was performed 180 

again using the updated KCs, and KCs were also estimated again using updated PCs. The 181 

resulting PCs identified 1,198 WRAP participants whose genetic ancestry was primarily of 182 

European descent. This procedure was repeated within this subset of participants (excluding 183 

1000 Genomes individuals) to obtain PC estimates used to adjust for population stratification in 184 

subsequent genomic analyses. Among European descendants, 160 variants were not in Hardy-185 

Weinberg equilibrium (HWE) and 327,064 were monomorphic and thus, removed.  186 

A total of 1,294,660 bi-allelic autosomal variants among 1,198 European descendants 187 

remained for imputation, which was performed with the Michigan Imputation Server v1.0.3(28), 188 

using the Haplotype Reference Consortium (HRC) v. r1.1 2016(29) as the reference panel and 189 

Eagle2 v2.3(30) for phasing. Prior to imputation, the HRC Imputation Checking Tool(31) was 190 

used to identify variants that did not match those in HRC, were palindromic, differed in 191 

MAF>0.20, or that had non-matching alleles when compared to the same variant in HRC, 192 

leaving 898,220 for imputation. A total of 39,131,578 variants were imputed. Variants with a 193 

quality score R2<0.80, MAF<0.001, or that were out of HWE were excluded, leaving 10,400,394 194 

imputed variants. These were combined with the genotyped variants, leading to 10,499,994 195 

imputed and genotyped variants for analyses. Data cleaning and file preparation were completed 196 

using PLINK v1.9(32) and VCFtools v0.1.14(33). Coordinates are based on GRCh37 assembly 197 

hg19. 198 

Whole blood gene expression imputation 199 

The resulting 10,499,994 imputed and genotyped variants were used to impute whole 200 

blood gene expression using PrediXcan(34) with the Depression Genes and Networks reference 201 

dataset(35), PrediXcan’s largest reference sample consisting of 922 individuals with RNA 202 
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sequencing on whole blood and GWAS data. PrediXcan filters results to only include genes that 203 

are imputed with reasonable accuracy, using a false discovery rate of 0.05. After removing genes 204 

with zero variability between individuals (162 genes), whole blood gene expression data for 205 

11,376 genes were available for analyses. 206 

Integrative network analysis 207 

The analytic approach we used for our network analysis was similar to that of Price et al., 208 

2017(10). A total of 12,856 variables, including 11,376 expressed genes, 1,097 plasma 209 

metabolites, 364 CSF metabolites, and 17 AD risk factors, were available for the network 210 

analysis. Linear mixed models, as implemented by the lme4 package in R(36), were used to 211 

adjust each variable for age and sex and included a random intercept for individual to account for 212 

repeated measures and family to account for sibling relationships. Further adjustments were 213 

made specific to the variable being assessed: imputed gene expression was also adjusted for the 214 

first four principal components to account for ancestry; CSF and plasma metabolites were 215 

adjusted for cholesterol lowering medication use and sample storage time; the executive function 216 

and delayed recall composite scores were adjusted for practice effects; and systolic and diastolic 217 

blood pressure were adjusted for ace inhibitor and beta blocker medication use. For longitudinal 218 

traits (such as metabolites), random intercepts were used as the new outcomes for each 219 

individual, whereas for constant traits (such as imputed gene expression values), residuals were 220 

used as the new outcomes for each individual. These adjusted outcomes were used to assess all 221 

82,606,231 pairwise correlations between traits using Spearman rank, and significance was 222 

determined using a Bonferroni-adjusted P-value (0.05/82,606,231=6.1e-10). To identify 223 

relationships between omics data, significant inter-omic associations and significant associations 224 

with an AD risk factor were used to develop an integrative network, which was created using the 225 
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igraph R package(37). Dense subgraphs were identified using a community detection algorithm 226 

that maximizes the modularity of the network, such that there is high connectivity within 227 

communities (or groups of distinct variables), but low connectivity between communities(38).  228 

Targeted mediation and interaction analyses 229 

 Results from the integrated network analysis were used to identify potential mediation 230 

and interactions between imputed gene expression and metabolite levels that could impact AD 231 

risk factors, as a proof of concept. Although our network analysis suggested many potentially 232 

meaningful mediation or interaction relationships, we only investigated gene-metabolite 233 

correlations with the most consistent biological support from the GWAS catalog(1) 234 

(www.ebi.ac.uk/gwas, date accessed: May 9, 2018), to illustrate the utility of the network 235 

analysis results. Such relationships were investigated using the longitudinal data (2,198 236 

observations among 1,111 individuals) with linear mixed models, again as implemented by the 237 

lme4 package in R(36), including random intercepts for within-individual repeated measures and 238 

within-family relationships. To assess whether a metabolite mediated the relationship between 239 

imputed gene expression and an AD risk factor, models were run to assess whether: 1) the gene 240 

predicted the AD risk factor, 2) the gene predicted metabolite levels, 3) the metabolite predicted 241 

the AD risk factor, and 4) the gene predicted the AD risk factor while adjusting for the 242 

metabolite. The causal mediation effect, or the indirect effect of a gene on an AD risk factor 243 

through a metabolite, was calculated as the difference between the effect of the gene in model 1 244 

and model 4, as implemented in the R mediation package(39). To determine whether this 245 

difference was significant, standard errors and P-values were estimated using the quasi-Bayesian 246 

Monte Carlo method with 1,000 simulations. Because the mediation package can only handle 247 

mixed models with one random effect, the mediation analysis was run with models 1 and 4 248 
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excluding the random effect for family. As a sensitivity analysis, the mediation analysis was 249 

rerun limiting models 1 and 4 to unrelated individuals (n=898 with 1,774 observations). A fifth 250 

linear mixed model was used to assess interactions by adding a gene*metabolite interaction term 251 

to model 4. Model 5 did not use the mediation package and was thus able to include random 252 

intercepts for both within-individual repeated measures and within-family relationships. All 253 

models including a gene had covariates for age, sex, and the first four PCs, while models 254 

including a metabolite had covariates for age, sex, cholesterol lowering medication use, and 255 

sample storage time.  256 

 257 

Results 258 

Participants 259 

A total of 1,111 WRAP participants had both genomic and plasma metabolomic data. At 260 

baseline, 68.9% of participants were female and participants were 61.0 years old with a 261 

bachelor’s degree, on average (Table 2). Participants each had 1,097 plasma metabolites 262 

available for analyses, 347 (31.6%) of which were of unknown chemical structure, whole blood 263 

gene expression for 11,376 genes, and up to 17 AD risk factors. A subset of 155 individuals also 264 

had 364 CSF metabolites available for analyses, 56 (15.4%) of which were of unknown chemical 265 

structure. Participants with CSF metabolomic data had similar characteristics as the full sample 266 

(Table 2). Properties of each plasma and CSF metabolite, such as biochemical name, super 267 

pathway, and sub pathway are described in Table S1, and numbers of metabolites within each 268 

super pathway are summarized in Table S2. 269 

Correlation between plasma and CSF metabolomics 270 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/436923doi: bioRxiv preprint 

https://doi.org/10.1101/436923
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

 The median correlation between the 326 metabolites common to both plasma and CSF 271 

was r=0.26, with some variability existing between different metabolite pathways (Figure 1). 272 

Xenobiotics had the highest median correlation (r=0.53), while lipids had the lowest (r=0.11). 273 

Overall, metabolite correlations ranged from |r|=0.0002 (inosine, a nucleotide) to |r|=0.88 274 

(quinate, a xenobiotic). Interestingly, one of the highest correlations was caffeine (r=0.81). 275 

Correlations between each of the 326 CSF and plasma metabolites are described in Table S3. 276 

Integrated network 277 

After applying a Bonferroni correction for multiple testing, a total of 90,308 significant 278 

correlations (edges) among 10,869 variables (nodes) were used to develop an overall ‘hairball’ 279 

network (Figure S2). Notably, although there were far fewer metabolites than genes in the 280 

network (1,387 metabolites versus 9,481 genes), there were more edges between metabolites 281 

than genes (49,499 versus 37,473 edges, respectively).  282 

The inter-omic network is shown in Figure 2 (a labeled version is shown in Figure S3), 283 

and its corresponding community partitions are shown in Figure S4. This network had 1,224 284 

edges and 635 nodes, including 171 metabolite-gene and 833 metabolite-AD risk factor edges. 285 

Of these, there were only four CSF metabolite-gene edges and 73 CSF metabolite-AD risk factor 286 

edges, likely due to the much smaller number of CSF metabolomic samples. No genes were 287 

directly linked to AD risk factors; however, many genes were indirectly linked to AD risk factors 288 

through metabolites, as described below. Each of the 1,224 correlations is described in Table S4. 289 

The largest community contained 680 edges among 289 nodes, which included 264 290 

plasma metabolites, ten CSF metabolites, eight genes, and seven AD risk factors related to 291 

cardiovascular disease and diabetes: body mass index (BMI), waist-hip ratio (WHR), 292 

homeostatic model assessment of insulin resistance (HOMA-IR), interleukin 6 (IL-6), metabolic 293 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/436923doi: bioRxiv preprint 

https://doi.org/10.1101/436923
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

equivalents (METs), diastolic blood pressure (DBP), and systolic blood pressure (SBP) (Figure 294 

S5). Expression levels of these eight genes were all indirectly linked to AD risk factors within 295 

this community through plasma metabolites. CPS1 expression levels were negatively correlated 296 

with plasma gamma-glutamylglycine, proprionylglycine, and glycine levels, all of which were 297 

negatively correlated with BMI, WHR, IL-6, and/or HOMA-IR (Figure 3). TMEM229B and 298 

PLEKHH1 were both negatively correlated with two glycerophosphatidylcholines (1-(1-enyl-299 

palmitoyl)-2-palmitoleoyl-GPC (P-16:0/16:1) and 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-300 

16:0/16:0)), which were also negatively correlated with BMI, WHR, and/or HOMA-IR. 301 

NAALAD2 was negatively correlated with an amino acid beta-citrylglutamate, which was 302 

positively correlated with BMI, WHR, IL-6, and HOMA-IR. ZNF655 and ZKSCAN1 were both 303 

positively correlated with X-12063, which was also positively correlated with BMI, WHR, and 304 

HOMA-IR. CHRNA5 was positively correlated with 5-hydroxylysine, which was positively 305 

correlated with BMI, WHR, IL-6, and HOMA-IR, and negatively correlated with METs. ARVCF 306 

was negatively correlated with X-11593, which was positively correlated with BMI, IL-6, and 307 

HOMA-IR. 308 

Several genes outside of the cardiovascular and diabetes community were indirectly 309 

linked to AD risk factors within this community. Gene expression of FOSL2, KRTCAP3, and 310 

ZNF513 were positively correlated, while IFT172, NRBP1, PPM1G, and ZNF512 were 311 

negatively correlated, with levels of plasma mannose, a carbohydrate that was positively 312 

correlated with BMI, WHR, IL-6, and HOMA-IR (Figure S6A). CABP1, SPPL3, and UNC119B 313 

expression levels were negatively correlated with plasma butyrylcarnitine (C4), which was 314 

positively correlated with BMI, WHR, IL-6, and HOMA-IR (Figure S6B). SLC27A4, PHYHD1, 315 

ENDOG, and SH3GLB2 expression levels were negatively correlated with plasma 2’-O-316 
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methyluridine and 2’-O-methylcytidine levels, both nucleotides involved in pyrimidine 317 

metabolism, and the latter nucleotide is also negatively correlated with BMI and WHR (Figure 318 

S6C). PHYHD1 was also negatively correlated with CSF levels of 2’-O-methylcytidine. 319 

The only correlations identified among the CSF biomarkers (i.e., amyloid and tau) are 320 

shown in Figure 4. Higher CSF T-tau and P-tau levels were correlated with higher levels of 38 321 

CSF metabolites, collectively. These metabolites included 13 lipids (six phosphatidylcholines, 322 

two lysophosphatidylcholines, five sphingolipids, and cholesterol), seven amino acids, five 323 

carbohydrates, one nucleotide, one energy metabolite, one cofactor and vitamin metabolite, one 324 

xenobiotic, and nine unknown metabolites. However, none of the CSF amyloid biomarkers were 325 

correlated with CSF metabolites. We investigated how much of the variance of T-tau and P-tau 326 

could be explained by these metabolites with linear mixed models that included random 327 

intercepts for within-subject repeated measures and within-family relationships, using the R2 328 

statistic for mixed models as defined by Edwards et al., 2008(40) and implemented in the 329 

r2glmm R package. After removing the variation explained by age and sex, the 37 metabolites 330 

correlated with T-tau explained 60.7% of the variation of T-tau, while the 35 metabolites 331 

correlated with P-tau explained 64.0% of the variation of P-tau. 332 

Targeted mediation and interaction analyses 333 

Targeted mediation and interaction analyses were focused on a particular pathway 334 

identified within the large cardiovascular and diabetes community involving CPS1, glycine 335 

plasma metabolites (glycine, proprionylglycine, and gamma-glutamylglycine), BMI, WHR, IL-6, 336 

and HOMA-IR. Associations between CPS1 variants and glycine have been reported in at least 337 

nine studies(15, 16, 41-47), more than any of the other gene-metabolite associations identified in 338 

our network analysis, and these studies were based not only on Caucasian populations, but also 339 
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on Japanese and African American populations. Many previous studies have also reported 340 

associations between glycine and cardiovascular risk factors, including BMI, waist 341 

circumference, inflammation, and HOMA-IR(45, 48-55). This evidence made this pathway a 342 

strong candidate for mediation and interaction analyses.  343 

Figure 5 shows results from the mediation analyses using glycine as the mediator, 344 

including the total effect (i.e., the effect of CPS1 in the model unadjusted for glycine), the direct 345 

effect (i.e., the effect of CPS1 in the model adjusted for glycine), and the indirect effect (i.e., the 346 

effect of CPS1 due to the effect of CPS1 on glycine) for BMI (Figure 5A and Figure5B), WHR 347 

(Figure 5C and Figure 5D), IL-6 (Figure 5E and Figure 5F), and HOMA-IR (Figure 5G and 348 

Figure 5H). The total effect of CPS1 was null for each of these three outcomes, likely due to the 349 

negative association between CPS1 and glycine coupled with the negative association between 350 

glycine and the AD risk factor, resulting in direct and indirect effects that had opposing 351 

directions(56). Our results show that lower levels of CPS1 expression lead to increased glycine 352 

levels, and higher glycine levels lead to decreased BMI, WHR, IL-6, and HOMA-IR. Thus, with 353 

glycine as a mediator, lower levels of CPS1 lead to decreased BMI, WHR, IL-6, and HOMA-IR. 354 

Mediation analyses using propionylglycine and gamma-glutamylglycine as the mediator showed 355 

similar results and can be found in Figure S7 and Figure S8. We did not identify any interactions 356 

between CPS1 and the three glycine metabolites that were associated with BMI, WHR, IL-6, or 357 

HOMA-IR (all P-values>0.07). 358 

 359 

Discussion 360 

We developed an integrative network to investigate relationships between genomics, 361 

plasma metabolomics, CSF metabolomics, and AD risk factors.  Although no gene expression 362 
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levels were directly correlated with AD risk factors, there were many instances of genes being 363 

indirectly correlated with AD risk factors though metabolites. Building on one such instance, we 364 

found that glycine mediated the pathway between CPS1 expression and cardiovascular and 365 

diabetes risk factors. This suggests that our results may have generated many valid hypotheses 366 

that warrant further investigation. We also found that correlations between plasma and CSF 367 

metabolites ranged widely but typically had low correlations.  This could suggest that most 368 

plasma metabolites are not representative of certain metabolic changes occurring in the brain, 369 

although we cannot rule out the possibility that the low average correlation is, at least partially, 370 

due to the time difference between the plasma and CSF sample collection.  371 

The low correlation we observed between plasma and CSF metabolite levels could be 372 

related to ~98% of small molecules not being able to pass the blood-brain barrier (BBB)(57). 373 

Cholesterol is an example of a lipid metabolite that typically cannot pass the BBB(58), and was 374 

not correlated between tissues (r=-0.07). On the other hand, caffeine (a xenobiotic) readily 375 

crosses the BBB(59) and it was highly correlated between tissues (r=0.81), as was 5-376 

acetylamino-6-amino-3-methyluracil (r=0.82), which is a caffeine metabolite, and theophylline 377 

(r=0.82), which is structurally and pharmacologically similar to caffeine. This could contribute to 378 

lipids having the weakest average correlation and xenobiotics having the strongest average 379 

correlation between plasma and CSF tissues. However, it is important to note that metabolites 380 

within a given pathway can vary widely from each other and should be considered on an 381 

individual basis, accordingly, as the averages presented here may not reflect a particular 382 

metabolite’s unique properties. The hypothesis about plasma and CSF differing due to the BBB 383 

is also supported by the only correlations in the network analysis involving CSF biomarkers (i.e., 384 

tau) being with CSF metabolites, although we cannot rule out the possibility that this correlation 385 
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is related to CSF biomarkers and CSF metabolomics being analyzed from the same sample and 386 

thus, not having time-related variation.  387 

Our network analysis revealed that 38 CSF metabolites were highly predictive of CSF T-388 

tau and P-tau, collectively explaining 60.7% and 64.0% of the variance of T-tau and P-tau, 389 

respectively. Further investigations of these CSF metabolites could lead to a better understanding 390 

of mechanisms and pathways that influence the development of tau tangles. In contrast, no CSF 391 

metabolites were correlated with CSF amyloid biomarkers, which could have implications about 392 

the biological function of amyloid versus tau. It is possible that we did not capture the small 393 

molecules that amyloid may be associated with, or that amyloid is generally not associated with 394 

small molecules. Although our CSF findings were limited by their small sample size, they offer 395 

potentially novel information regarding the interface between CSF biomarkers and CSF 396 

metabolites, as we have not identified previous studies investigating these relationships. 397 

One advantage of using imputed gene expression data is that it only represents the 398 

genetically regulated component of gene expression, reducing the risk of confounding due to 399 

environmental factors and reverse causality in mediation analyses. We found that glycine 400 

mediated the relationship between CPS1 and BMI, WHR, IL-6, and HOMA-IR, such that lower 401 

CPS1 expression was associated with higher levels of glycine, which were associated with lower 402 

BMI, WHR, IL-6, and HOMA-IR. Relationships between CPS1, glycine, and cardiovascular risk 403 

factors have been hypothesized recently, but not clearly defined(43, 60). The CPS1 (Carbamoyl-404 

Phosphate Synthase 1) gene encodes for a mitochondrial enzyme that catalyzes the first step of 405 

the hepatic urea cycle by synthesizing carbamoyl phosphate from ammonia, bicarbonate, and two 406 

molecules of ATP, and is important for removal of urea from cells(61). Notably, all genes 407 

encoding enzymes involved in the urea cycle are expressed in the brain, including CPS1(62), and 408 
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levels of enzymes and metabolic intermediates involved in the urea cycle are altered in AD 409 

patients(63). CPS1 variants have been linked to CPS1 deficiency(61), neonatal pulmonary 410 

hypertension(64), vascular function(65), traits related to blood clotting, such as fibrinogen levels 411 

and platelet count(66-69), homocysteine levels(70-73), HDL cholesterol(74), kidney function 412 

and disease(75-78), AD(79), and BMI(80, 81). Higher adipose tissue expression of CPS1 has 413 

been associated with detrimental traits, including weight gain(60). At least nine studies have 414 

reported associations between CPS1 variants and glycine(15, 16, 41-47) and others have reported 415 

associations with betaine, a derivative of glycine(15, 16, 82). Glycine is a common amino acid 416 

involved in the production of DNA, phospholipids, and collagen, and in the release of energy. 417 

Previous studies have identified negative correlations between glycine and cardiovascular and 418 

diabetes risk factors such as BMI, waist circumference, HOMA-IR, obesity and visceral obesity, 419 

subcutaneous and visceral fat area, hypertension, and acute myocardial infarction(45, 48-55). 420 

These previous findings are in the same direction as our findings and are highly supportive of the 421 

biological relevance of our results, which lead us to hypothesize that the CPS1-cardiovascular 422 

risk pathway is linked through the mediation of glycine. 423 

One particular CPS1 variant, rs715, has been linked to urine and blood glycine levels(15, 424 

16, 43-45), blood levels of betaine(15, 16, 82), blood levels of fibrinogen(66, 67), and BMI(80). 425 

This is a common variant, with a MAF=0.27 based on 62,784 whole genome sequences from 426 

Trans-Omics for Precision Medicine (TOPMed)(83). The minor C allele of rs715 decreases 427 

CPS1 expression(82). To further test our findings, we conducted additional mediation analyses 428 

using this variant and found highly consistent results, suggesting that having one or two minor 429 

alleles of rs715 (which decreases CPS1 expression) increases levels of the three glycine plasma 430 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/436923doi: bioRxiv preprint 

https://doi.org/10.1101/436923
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20

metabolites, which decreases BMI, WHR, IL-6, and HOMA-IR (Figures S9-S11). Thus, the 431 

minor C allele of rs715 may have a protective role in cardiovascular risk.  432 

 One of the primary strengths of this analysis is that it shows the feasibility of performing 433 

integrated omics analyses and the potential utility of such approaches. It is becoming more 434 

common for cohorts to collect such datasets; for example, the National Institutes of Health is 435 

sponsoring the new TOPMed nation-wide consortium that aims to deeply phenotype its 436 

participants utilizing omics technologies (www.nhlbiwgs.org). It is anticipated that initiatives 437 

such as TOPMed will greatly advance our knowledge of many complex diseases and traits. 438 

However, to fully utilize these rich data, it will be crucial to identify effective means of 439 

integrating them and maximize their potential to provide a more holistic understanding of the 440 

disease process. While there is still a great need for such methods, our inter-omic network 441 

analysis and subsequent targeted follow-up analyses outlines one approach to effectively 442 

integrate omics data.  443 

This study was not without limitations. Due to computational burdens, our network 444 

analysis did not fully utilize the longitudinal aspect of our data. Further, our sample sizes for 445 

CSF biomarkers and metabolites were limited, which is likely why we had few CSF findings in 446 

our network analysis. Plasma and CSF samples typically were not collected on the same day, 447 

which could influence our correlation results. However, this may not have influenced our 448 

network analysis to a large extent because we averaged the residuals of longitudinal traits. We 449 

were unable to include smoking behavior in our network analysis due to the prohibitive number 450 

of smokers in our cohort (n=48). Despite these limitations, we were encouraged to find that 451 

many of our results had been previously reported, thereby strengthening confidence in our novel 452 

findings. 453 
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Opponents of the “big data” era have criticized omics approaches because they are not 454 

hypothesis driven and do not follow the standard scientific method(84, 85). However, we know 455 

biology to be complex far beyond our current understanding. To believe that we currently have 456 

the ability to generate valid biological hypotheses to understand complex conditions without data 457 

would be a fallacy. This was a lesson learned in the years preceding the completion of the human 458 

genome sequence in 2001 when research efforts were heavily invested into targeted genetic loci 459 

and genome-wide linkage screens of ~500 loci(86). This approach was successful for genes that 460 

follow Mendelian patterns, such as highly penetrant variants in the BRCA1 and BRCA2 genes 461 

that are responsible for inherited forms of breast cancer and the APP, PSEN1, and PSEN2 genes 462 

that cause the inherited early onset form of AD. However, it had limited success for traits that 463 

follow complex inheritance patterns(86). The utility of omics data, and particularly integrated 464 

omics approaches, is the ability to generate data driven hypotheses. Our knowledge of biology 465 

has been evolving for centuries; however, with the data we are able to generate due to recent 466 

biotechnological advances, we now have the opportunity to advance our knowledge of biology at 467 

an unprecedented rate. Such data could lead to dramatic improvements in the state of 468 

preventative and therapeutic medicine, particularly for complex diseases such as AD, for which 469 

few such preventative or therapeutic methods exist and little is known about the underlying 470 

biological mechanisms. 471 

By integrating genomics, metabolomics, and clinical risk factors for AD, we were able to 472 

identify complex relationships that offer insight into the onset of AD and risk factors associated 473 

with its onset. Our research has generated many promising hypotheses that could drive 474 

subsequent experimental investigations and potentially offer clinicians and researchers new 475 

insights regarding the development of tau tangles. As the generation of omics data accelerates 476 
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across investigations of a variety of research fields, continued efforts to navigate statistical and 477 

computational issues will be critical. The work presented here represents early efforts to integrate 478 

omics data, but much more research is needed to identify the most effective means of doing so 479 

and thereby maximize the utility of such rich sources of data. The success of precision medicine 480 

is heavily reliant on the advancement of computational biology and the ability to translate 481 

millions of biological data points into individual clinical implications. 482 
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Figure Legends 772 

Figure 1. Correlations between plasma and CSF metabolites by super pathway. Vertical bars 773 

represent median correlations; box width represents the first and third quartiles; horizontal bars 774 

(whiskers) represent the range of correlations that are within 1.5 times the interquartile range; 775 

and dots represent outlier correlations that exceed 1.5 times the interquartile range. 776 

Figure 2. Inter-omic network. This network has 1,224 edges and 635 nodes, which included 171 777 

metabolite-gene edges, 833 metabolite-AD risk factor edges. Of these, 73 were CSF metabolite-778 

AD risk factor edges (CSF T-tau and P-tau, exclusively) and 4 were CSF metabolite-gene edges. 779 

Red edges indicate negative correlations and blue edges indicate positive correlations.  780 

Figure 3. CPS1, glycine, and cardiovascular and diabetes sub-network. Relationships within this 781 

pathway are highly cited; however, the pathway as a whole is not understood as well. Red edges 782 

indicate negative correlations and blue edges indicate positive correlations. 783 

Figure 4. CSF biomarker community. This network has 73 edges among 38 CSF metabolites and 784 

CSF biomarkers T-tau and P-tau. Red edges indicate negative correlations and blue edges 785 

indicate positive correlations. 786 

Figure 5. Mediation analyses to assess whether plasma glycine mediates the relationships 787 

between imputed CPS1 expression, BMI, WHR, IL-6, and HOMA-IR. A. Total effect of CPS1 788 

on BMI. B. Direct and indirect effects of CPS1 on BMI. C.  Total effect of CPS1 on WHR. D. 789 

Direct and indirect effects of CPS1 on WHR. E. Total effect of CPS1 on IL-6. F. Direct and 790 

indirect effects of CPS1 on IL-6. F. Total effect of CPS1 on HOMA-IR. G. Direct and indirect 791 

effects of CPS1 on HOMA-IR. All models adjusted for age and sex; models including CPS1 792 

additionally adjusted for the first four PCs; models that included glycine additionally adjusted for 793 

cholesterol lowering medication use and sample storage time. 794 
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Tables  795 

Table 1. Seventeen AD Risk Factors Included in Network Analysis 

Category of Risk Factor Risk Factor N 

Cognitive 

Executive function Composite Score 1,096 

Delayed Recall Composite Score 1,107 

Education 1,111 

Mom’s age at memory loss 608 

Dad’s age at memory loss 340 

Cerebral Spinal Fluid 

Aβ42
 141 

T-tau 141 

P-tau 141 

Aβ42/Aβ40 141 

Cardiovascular/Diabetic 

BMI 1,111 

WHR 1,111 

METs 1,108 

Alcohol use 1,104 

IL-6 1,088 

Cardiovascular 
SBP 1,111 

DBP 1,111 

Diabetic HOMA-IR 1,107 

AD: Alzheimer’s disease, Aβ42: β-Amyloid42, T-tau: Total-tau, P-tau: Phosphorylated-tau, Aβ40: 796 

β-Amyloid40, BMI: Body-mass index, WHR: Waist-hip ratio, METs: Metabolic equivalents, IL-797 
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6: Interleukin 6, SBP: Systolic blood pressure, DBP: Diastolic blood pressure, HOMA-IR: 798 

Homeostatic model assessment of insulin resistance 799 

Alcohol use=(#drinks/day)*(#days/week) 800 

 801 

 802 

Table 2. WRAP Participant Characteristics at Baseline Sample. Mean (SD) or N (%). 

Characteristic 
Overall 

(N=1,111, obs=2,191) 

CSF Metabolomics 

(N=155, obs=346) 

Age (years) 61.0 (6.7) 61.2 (6.6) 

Female 766 (68.9) 103 (66.5) 

Years of education 16.4 (2.8) 16.7 (2.9) 

Parental history of 

AD 

803 (72.3) 112 (72.3) 

Use of cholesterol-

lowering medication 

354 (31.9) 45 (29.0) 

Number of Visits 2.0 (0.6) 2.2 (1.0) 

obs: observations, CSF: cerebral spinal fluid, AD: Alzheimer’s disease 803 
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