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Abstract

We investigated the metabolomics of early cognitive changes related to Alzheimer’ s disease
(AD) in order to better understand mechanisms that could contribute to early stages and
progression of thisdisease. Thisinvestigation used longitudinal plasma samples from the
Wisconsin Registry for Alzheimer’s Prevention (WRAP), a cohort of participants who were
dementia free at enrollment and enriched with a parental history of AD. Metabolomic profiles
were quantified for 2,338 fasting plasma samples among 1,206 partici pants, each with up to three
study visits. Of 1,097 metabolites tested, levels of seven were associated with executive function
trajectories, including an amino acid and three fatty acids, but none were associated with delayed
recall trajectories. Our time-varying metabolomic results suggest potential mechanisms that
could contribute to the earliest signs of cognitive decline. In particular, fatty acids may be
associated with cognition in a manner that is more complex than previously suspected.
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1. Introduction

Recent technological advances have made metabolomic studies increasingly favorable
among Alzheimer’s disease (AD) researchers (Enche Ady et a., 2017; Gonzalez-Dominguez et
a., 2017; Trushinaand Mielke, 2014); however, most of these studies have been limited to
cross-sectional approaches comparing patients with either AD or mild cognitive impai rment
(MCI) to controls. In these early stages of AD metabolomics research, few metabolites have been
found to be associated with AD in more than one study (Enche Ady et al., 2017). Because
neuropathological changes that lead to the development of AD occur decades before its clinical
presentation (Jack et a., 2010; Serrano-Pozo et a., 2011), longitudinal investigations preceding
its diagnosis could add to our current knowledge. In particular, understanding how biomarkers
correlate with subtle changes in cognition prior to AD diagnosis could help identify causal
mechanisms contributing to its onset.

Executive function and memory deficits occur in the very early stages of AD, prior to
deficits of language and visuospatial functions (Albert, 1996; Baudic et al., 2006; Lafleche and
Albert, 1995), and are associated with AD pathology and subsequent global cognitive decline
(Clark et al., 2016; Clark et al., 2012). Metabolite levels associated with these early changesin
cognition could be indicative of underlying biological mechanisms and pathways contributing to
the pathology of AD and could ultimately inform stronger predictive models for this disease.

Using longitudinal plasma samples from the Wisconsin Registry for Alzheimer’s
Prevention (WRAP), we investigated whether time-varying metabolite levels predicted age-
related cognitive changes (i.e., trgjectories) for executive function and memory, specifically,
delayed recall. Results from each of these association analyses were further explored using

Mendelian randomization (MR) and in a metabolite pathway analysis.
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2. Methods
2.1. Participants

Study participants were from WRAP, alongitudinal study of initially dementiafree
middle-aged adults that allows for the enrollment of siblings and is enriched for a parental
history of AD. Further details of the study design and methods used have been previously
described (Johnson et al., 2018; Sager et a., 2005). Analyses did not include the baseline WRAP
visit due to subsequent protocol changes regarding sample collection procedures and tests
included in the neuropsychological battery. Study visits included in the current analyses occurred
every two years, with plasma samples and cognitive measures collected concurrently within the
same study visit. This study was conducted with the approval of the University of Wisconsin
Institutional Review Board, and all participants provided signed informed consent before
participation.
2.2. Biological Samples
2.2.1. Plasma collection and sample handling

Fasting blood samples for this study were drawn the morning of each study visit, which
was also the day cognitive testing was completed. Blood was collected in 10 mL
ethylenediaminetetraacetic acid (EDTA) vacutainer tubes. They were immediately placed onice,
and then centrifuged at 3000 revolutions per minute for 15 minutes at room temperature. Plasma
was pipetted off within one hour of collection. Plasma samples were aliquoted into 1.0 mL
polypropylene cryovials and placed in -80°C freezers within 30 minutes of separation. Samples
were never thawed before being shipped overnight on dry ice to Metabolon, Inc. (Durham, NC),

where they were again stored in -80°C freezers and thawed once before testing.
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2.2.2. Metabolomic profiling and quality control

An untargeted plasma metabolomics analysis was performed by Metabolon, Inc. using
Ultrahigh Performance Liquid Chromatography-Tandom Mass Spectrometry (UPLC-MS/MYS).
Quantification was performed as previously described (Evans et al., 2014); details are outlined in
the Supplemental Note. M etabolites within nine super pathways were identified: amino acids,
carbohydrates, cofactors and vitamins, energy, lipids, nucleotides, partially characterized
molecules, peptides, and xenobiotics.

Up to three longitudinal plasma samples were available for each participant. Metabolites
with an interquartile range of zero (i.e., those with very low or no variability due to individuals
having aimost identical levels of the given metabolite) were excluded from analyses (n=178
metabolites). After removing these metabolites, samples were missing a median of 11.7%
metabolites, while metabolites were missing in a median of 1.2% of samples. Missing metabolite
values were imputed to the lowest level of detection for each metabolite. Metabolite values were
median-scaled and log-transformed to normalize metabolite distributions (van den Berg et al.,
2006). If a participant reported that they did not fast or withhold medications and caffeine for at
least eight hours, the sample was excluded from analyses (n=159 samples). A total of 1,097
metabolites among 2,338 samples remained for analyses.

2.2.3. DNA collection and genomics quality control

DNA was extracted from whole blood samples using the PUREGENE® DNA Isolation
Kit (Gentra Systems, Inc., Minneapolis, MN). DNA concentrations were quantified using the
Invitrogen™ Quant-iT™ PicoGreen™ dsDNA Assay Kit (Thermo Fisher Scientific, Inc.,
Hampton, NH) analyzed on the Synergy 2 Multi-Detection Microplate Reader (Biotek

Instruments, Inc., Winooski, VT). Samples were diluted to 50 ng/ul following quantification.
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A total of 1,340 samples were genotyped using the Illumina Multi-Ethnic Genotyping
Array at the University of Wisconsin Biotechnology Center (Figure S1). Thirty-six blinded
duplicate samples were used to calculate a concordance rate of 99.99%, and discordant
genotypes were set to missing. Sixteen samples missing >5% of variants were excluded, while
35,105 variants missing in >5% of individuals were excluded. No samples were removed due to
outlying heterozygosity. Six samples were excluded due to inconsi stencies between self-reported
and genetic sex.

Dueto sibling relationshipsin the WRAP cohort, genetic ancestry was assessed using
Principal Components Analysisin Related Samples (PC-AiR), a method that makes robust
inferences about population structure in the presence of relatedness (Conomos et al., 2015). This
approach included several iterative steps and was based on 63,503 linkage disequilibrium (LD)
pruned (r’<0.10) and common (MAF>0.05) variants, using the 1000 Genomes data as reference
populations (Genomes Project et al., 2015). First, kinship coefficients (KCs) were calculated
between all pairs of individuals using genomic data with the Kinship-based Inference for Gwas
(KING)-robust method (Manichaikul et al., 2010). PC-AiR was used to perform principal
components analysis (PCA) on the reference populations along with a subset of unrelated
individuals identified by the KCs. Resulting principal components (PCs) were used to project PC
values onto the remaining related individuals. All PCs were then used to recalculate the KCs
taking ancestry into account using the PC-Relate method, which estimates KCs robust to
population structure (Conomos et al., 2016). PCA was performed again using the updated KCs,
and KCs were also estimated again using updated PCs. The resulting PCs identified 1,198
WRAP participants whose genetic ancestry was primarily of European descent. This procedure

was repeated within this subset of participants (excluding 1000 Genomes individuals) to obtain
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PC estimates used to adjust for population stratification in subsequent genomic analyses. Among
European descendants, 160 variants were not in Hardy-Weinberg equilibrium (HWE) and
327,064 were monomorphic and thus, removed.

A total of 1,294,660 bi-allelic autosomal variants among 1,198 European descendants
remained for imputation, which was performed with the Michigan Imputation Server v1.0.3 (Das
et a., 2016), using the Haplotype Reference Consortium (HRC) v. r1.1 2016 (McCarthy et al.,
2016) asthe reference pandl and Eagle? v2.3 (Loh et al., 2016) for phasing. Prior to imputation,
the HRC Imputation Checking Tool (Rayner et al., 2016) was used to identify variants that did
not match those in HRC, were palindromic, differed in MAF>0.20, or that had non-matching
alleles when compared to the same variant in HRC, leaving 898,220 for imputation. A total of
39,131,578 variants were imputed. Variants with a quality score R°<0.80, MAF<0.001, or that
were out of HWE were excluded, leaving 10,400,394 imputed variants. These were combined
with the genotyped variants, leading to 10,499,994 imputed and genotyped variants for analyses.
Data cleaning and file preparation were completed using PLINK v1.9 (Chang et al., 2015) and
VCFtoolsv0.1.14 (Danecek et al., 2011). Coordinates are based on GRCh37 assembly hg19.
2.3. Cognitive phenotypes

Composite scores were calculated for executive function and delayed recall based on a
previous analysis (Clark et al., 2016). Each composite score was calculated from three
neuropsychological tests, which were each converted to z-scores using baseline means and
standard deviations. The executive function composite score included the Trails Making Test
Part B (TMTB) (Reitan and Wolfson, 1985) total time to completion, Stroop Neuropsychological
Screen Test (Trenerry et al., 1989) color-word interference total items completed in 120 second,

and Wechsler Abbreviated Intelligence Scale-Revised (WAIS-R) digit symbol coding subtest
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total items completed in 90 seconds (Wechdler, 1981). The delayed recall composite score
included the Rey Auditory Verbal Learning Test (RAVLT) (Schmidt, 1996) long-delay free
recall, Wechsler Memory Scale-Revised Logical Memory (WMS-R LM) (Wechsler, 1987)
delayed recall, and Brief Visuospatial Memory Test (BVMT-R) (Benedict, 1997) delayed recall.
The TMTB was multiplied by negative one prior to being converted to z-scores, so that higher z-
scores indicated better performance. These z-scores were then averaged to derive executive
function and delayed recall composite scores at each visit for each individual.
2.4. Statistical analyses
2.4.1. Metabolome-wide association studies

All associations were tested using linear mixed effects regression models implemented in
the SAS MIXED procedure. To assess whether metabolite levels were associated with age-
related cognitive trajectories, an interaction term between metabolite level and age was used to
predict cognitive composite scores (i.e., executive function and delayed recall). Models included
fixed effects for centered age, sex, self-reported race, cholesterol-lowering medication use (the
most commonly used class of medicationsin our sample), sample storage time, education, a
genetic risk score for APOE (Darst et al., 2017), and practice effects (using visit number).
Random intercepts were included for within-subject correlations due to repeated measures and
within-family correlations due to the enrollment of siblings. The two sets of P-values resulting
from testing executive function and delayed recall trajectories were separately corrected for
multiple testing using the Benjamini-Hochberg (Benjamini and Hochberg, 1995) adjustment with
an alpha of 0.05.

2.4.2. Menddian randomization
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MR (Smith and Ebrahim, 2003) was used to assess whether levels of any individual
metabolite identified in our association analyses (i.e., metabolites associated with either
executive function or delayed recall trgjectories) could causally influence cognition. Metabolic
quantitative trait loci (mQTL) were identified as genomic variants influencing metabolite levels
with a P<0.001 using genome-wide association study (GWAS) summary statistics provided by
the authors of arecent publication by Long et al., 2017 (Long et al., 2017). A polygenic score
(PS) was created for each metabolite identified in our association analyses that also had GWAS
summary statistics available. PSs were defined as the sum of an individual’ s metabolite-
increasing alleles weighted by the effect sizes from GWAS summary statistics. PSs were created
using the additive allelic scoring function in PLINK 1.9 (Chang et al., 2015) after LD pruning
variants within each PS (R*>0.50). To be consistent with our discovery models, interactions
between each PS and age were tested for association with cognition using linear mixed effects
regression models. Models included fixed effects for age, sex, education, practice effects, and the
first four PCsto account for population stratification. They also included random intercepts for
repeated measures and sibling relationships.

2.4.3. Metabolite pathway analysis

Results from association analyses were further investigated using a metabolite pathway
analysis. Metabolites included in this analysis were those associated with either executive
function or delayed recall tragjectories with an unadjusted P<0.05 and that had a Kyoto
Encyclopedia of Genes and Genomics (KEGG) compound 1D (Kanehisa and Goto, 2000).
Metabolites on our panel with KEGG compound IDs were used as the reference pand for this
analysis. The pathway analysis was conducted using MetaboAnalyst 4.0 and included both an

overrepresentation analysis, which was assessed using a hypergeometric test, and a pathway
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topology analysis, which was assessed using relative-betweenness centrality (Xia and Wishart,
2016). The overrepresentation analysi s tests whether a user-defined list of metabolites represents
a particular pathway of metabolites more than expected by chance. The pathway topology
analysis considers the structure of a pathway by assessing how connected metabolites are within
a pathway. If a pathway contains metabolites that connect dense clusters of other metabolites, the
pathway would have a high impact score, as changes to its metabolites would likely have a
strong impact on other metabolites within the pathway.

2.5. Data Availability

Data are available on request made to the WRAP Science Executive Committee. Details and
application instructions can be found using the following website:

http://www.wai .wisc.edu/research/wrapdatareguests.htmil .

3. Results
3.1. Participants

A total of 1,206 WRAP participants with 2,338 longitudinal plasma samples were
available for analyses. At basdline for the current study, 69.2% of participants were female,
93.7% were Caucasian, and participants were 60.9 years old with abachelor’s degree, on average
(Table 1). Participants each had 1,097 plasma metabolites available for analyses, 347 (31.6%) of
which were of unknown chemical structure. Properties of each metabolite, such as biochemical
name, super pathway, and sub pathway are described in Table S1.
3.2. Metabolome-wide association studies

3.2.1. Executive Function
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All metabolome-wide association results are detailed in Table S1. Seven metabolite-by-
age interactions were associated with executive function (Figures 1A and 2). Levels of cysteine
S-sulfate, an amino acid, had the strongest association (unadjusted P=5.2e-05), with lower levels
associated with better executive function in midlife and poorer executive function later in life.
The six other significant metabolites showed the opposite relationship with age and executive
function, such that lower metabolite levels were associated with poorer executive function in
midlife and better executive function later in late. These metabolites included erucate (22:1n9) (a
monosaturated omega-9 fatty acid), four partialy characterized molecules (glycine conjugate of
Ci10H120,, fatty acid 8:1 acyl glutamine conjugate, fatty acid 6:1 acyl glutamine conjugate, and
C12H15805), and one unknown metabolite (X-18887).

3.2.2. Delayed Recall

No metabolite-by-age interactions were associated with delayed recall after adjusting for
multiple comparisons. The three strongest interactions included henei cosapentaenoate (21:5n3)
(apolysaturated fatty acid, unadjusted P=0.00009), X — 02269 (an unknown metabolite,
P=0.0004), and erucate (22:1n9) (unadjusted P=0.0005) (Figure 1B). Four of the seven
metabolites associated with executive function showed a similar relationship with delayed recall,
although none were statistically significant (erucate (22:1n9), X — 13866, X — 12104, and
cysteine S-sulfate, all unadjusted P-values <0.20) (Figure S2).

3.3. Mendelian randomization

GWAS summary statistics were available for three of the seven metabolites associated
with executive function (cysteine S-sulfate, erucate (22:1n9), and X-13866, an unknown
metabolite) and used to create a PS for each metabolite. The three PSs were fairly weak

instruments, with correlations with corresponding metabolites ranging from r=-0.04 to 0.004 and
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the largest F-statistic=1.71, well below the commonly used F-statistic threshold of 10 (Stock et
al., 2002) (Table S2). Not surprisingly, associations between executive function and the PSs-by-
age were not significant (each P>0.54). Thus, MR analyses were insufficient to draw conclusions
about the nature of the relationship between the metabolites and executive function.
3.4. Metabolite pathway analysis

Of the 1,097 metabolites tested, only 291 had KEGG compound IDs that were recognized
by MetaboAnalyst and could be used as the reference panel for the pathway analysis. A total of
254 metabolites met the inclusion threshold of an unadjusted P<0.05 for the cognitive metabolite
pathway analysis;, however, only 82 of these were identified metabolites with KEGG compound
IDs. These metabolites most strongly represented pathways involved in inositol phosphate, ether
lipid, and amino sugar and nucleotide metabolism, although none of the pathways identified

were statistically significant (Figure S3 and Table S3).

4. Discussion

We analyzed the metabolomics of cognitive trgectories using time-varying plasma
metabolomic samples and alarge panel of metabolites. Our findings suggest that specific
metabolite levels, particularly cysteine s-sulfate and fatty acid lipids, correspond with executive
function trajectoriesin late middle-aged adults at increased risk for AD. However, metabolite
levels were not statistically associated with delayed recall trajectories.

The associations we observed between metabolite levels and executive function
trajectories could provide insight to mechanisms contributing to cognitive decline. In particular,
lower levels of the amino acid cysteine S-sulfate were associated with better executive function

in midlife, but poorer executive function later in life. The involvement of cysteine metabolismin
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AD has been implicated in a pathway analysis of previous AD metabolomics studies (Enche Ady
et al., 2017). Our results further suggest that such a relationship could depend on age. Cysteine
S-sulfate is a glutamate receptor agonist that can lead to calcium influx in nerve cells and
neurotoxicity when present in high levels (Olney et al., 1975; Snowden et al., 2017). It has been
shown to drive excitotoxic neurodegeneration in individuals with molybdenum cofactor
deficiency, an autosomal recessive inborn error of metabolism characterized by early childhood
death (Kumar et al., 2017). This supports our finding that high levels of cysteine S-sulfate may
be detrimental to cognitive function in midlife. However, further investigations using
longitudinal cohorts, and perhaps experiments using model organisms, will be crucial to validate
our findings and determine whether high levels could have protective effects later in life.

The opposite pattern was seen for the six other metabolites associated with executive
function, which included three fatty acids, where higher metabolite levelsin younger years, but
lower levelsin older years, were associated with better executive function. One of these fatty
acids was erucate (22:1n9), an omega-9 fatty acid that readily crosses the blood brain barrier
(Golovko and Murphy, 2006) and has been shown to enhance memory performance in mice
(Kim et al., 2016). Fatty acids have long been suspected to influence cognitive performance, but
studies have had mixed findings regarding their role, particularly of omega-3 fatty acids
(Cederholm et al., 2013; Mazereeuw et al., 2012). Our results suggest that this role may be
difficult to define because the implications of these metabolite levels change as individuals age.
Thisisfurther supported by similar relationships we found for two partially characterized fatty
acids (fatty acid 8:1 acyl glutamine conjugate and fatty acid 6:1 acyl glutamine conjugate). More
information about these two particular metabolites could prove useful in understanding the

relationship between fatty acids and cognitive function. Beyond cognitive performance, omega
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fatty acids have also been shown to be dysregulated in certain brain regions of patients with AD
pathology (Snowden et al., 2017), further strengthening the potential relevance of fatty acids.
Further, a recent study reported higher levels of docosapentaenoate (22:5 n-6), along-chain
polyunsaturated fatty acid, to be associated with less decline of information-processing speed in
asample of midlife African Americans (Bressler et al., 2017), supporting the association
between higher fatty acids levels and better cognition function in midlife.

This study had several limitations. The pathway analysis we performed was highly
limited due to the large number of metabolitesin our panel that did not have KEGG compound
IDs. This greatly underscores the importance of continued efforts to identify and characterize
metabolites. The PSs we developed for our MR assessment were weak instrumental variables
and did not allow us to determine whether levels of the metabolites we identified are causally
related to executive function. Our cohort may not have experienced sufficient cognitive decline
at this point to identify metabolite levels associated with delayed recall trajectories. Because our
analyses are based on an average of two and up to three longitudinal samples per participant, we
are somewhat limited in our ability to assess cognitive and metabolite tragjectories. Although our
metabolite panel is large relative to previous investigations, it is possible that a different panel of
metabolites could produce different results; however, quantifying and identifying metabolitesisa
challenging task that is highly dependent on technological advances. It will be critical to
replicate findings presented here with an independent cohort. To assist with replication of
metabolomics findings, as the field of metabolomics rapidly develops, it will be crucial to
devel op standard methods of measuring and analyzing metabolites.

Using alarge panel of longitudinal metabolomics data, we found that levels of certain

plasma metabolites, including cysteine S-sulfate and erucate, were associated with age-related
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change in executive function, one of the earliest aspects of cognitive function to change in the
course of AD development. Replication in cohorts with longitudinal metabolomics datawill be
necessary to confirm whether these metabolites contribute to the development of AD. If these
metabolites are shown to have causal influences on cognition through future longitudinal and
experimental research studies, subsequent investigations of their nutritional influences could
further elucidate the mechanisms influencing early stages of AD and perhaps inform preventative

measures.
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Figure Titles and Legends

Figure 1. Manhattan plot of metabolome-wide association results for cognitive composite scores.
A. Seven metabolite* age interactions were significantly associated with executive function. B.
No metabolite* age interactions were significantly associated with delayed recall. Both sets of
results used a Benjamini-Hochberg adjusted P-value threshold (red horizontal line).

Figure 2. Contour plots showing executive function trajectories by seven time-varying metabolite
levels. The x-axis represents age, y-axis represents standardized metabolite levels, and z-axis
represents the executive function composite score. In younger ages, higher levels of most
metabolites are associated with above average cognition (indicated by the darker red regions),
whereas in older ages, higher levels are associated with below average cognition (indicated by
the darker blue regions), with the exception of cysteine s-sulfate, where there oppositeis true.

Unadjusted P-values are indicated for each test.


https://doi.org/10.1101/436667
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/436667; this version posted October 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Tables
Table 1. WRAP Participant Characteristics at Baseline. Mean (SD) or N (%).

Overall

Characteristic
(N=1,206, obs=2,338)

Age (years) 60.9 (6.7)
Female 834 (69.2)
Y ears of education 16.3(2.9)
Caucasian 1,130 (93.7)
APOE ¢4 carrier 462 (38.3)
Cholesterol lowering medication 385 (31.9)
Sample storage (days) 1,517.3 (405.1)
# Visits 1.9 (0.6)

obs=observations
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Table 2. Top ten metabolite* age interactions on executive function

Metabolite Super Pathway Sub Pathway P-value

Methionine, Cysteine, SAM
Cysteine S-sulfate Amino acid 5.2e-05
and Taurine Metabolism

Partially Characterized Partially Characterized
X —13866 (Cle 1805) 7.3e-05
Molecules Molecules

X —12839 (fatty acid 8:1 acyl | Partially Characterized Partially Characterized

7.9e-05
glutamine conjugate) Molecules Molecules
Erucate (22:1n9) Lipid Long Chain Fatty Acid 1.5e-04
Partially Characterized Partialy Characterized
Glycine conjugate of C10H120, 1.8e-04
Molecules Molecules
X —18887 Unknown Unknown 2.2e-04
X —12104 (fatty acid 6:1 acyl | Partially Characterized Partially Characterized
5.4e-04

glutamine conjugate) Molecules Molecules

Fatty Acid Metabolism
Dihomo-linolenoyl-choline Lipid 5.4e-04
(Acyl Chaline)

N6-acetyllysine Amino acid Lysine Metabolism 5.5e-04

Heptenedioate (C7:1-DC) Lipid Fatty Acid, Dicarboxylate | 5.9e-04

P-values are unadjusted.
Bold values are statistically significant using a Benjamini-Hochberg adjustment for multiple

comparisons.
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