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Abstract 

We investigated the metabolomics of early cognitive changes related to Alzheimer’s disease 

(AD) in order to better understand mechanisms that could contribute to early stages and 

progression of this disease. This investigation used longitudinal plasma samples from the 

Wisconsin Registry for Alzheimer’s Prevention (WRAP), a cohort of participants who were 

dementia free at enrollment and enriched with a parental history of AD. Metabolomic profiles 

were quantified for 2,338 fasting plasma samples among 1,206 participants, each with up to three 

study visits. Of 1,097 metabolites tested, levels of seven were associated with executive function 

trajectories, including an amino acid and three fatty acids, but none were associated with delayed 

recall trajectories. Our time-varying metabolomic results suggest potential mechanisms that 

could contribute to the earliest signs of cognitive decline. In particular, fatty acids may be 

associated with cognition in a manner that is more complex than previously suspected. 

Keywords: Metabolomics, cognition, Alzheimer’s disease, fatty acids, amino acids, longitudinal 

analysis  
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1. Introduction 

Recent technological advances have made metabolomic studies increasingly favorable 

among Alzheimer’s disease (AD) researchers (Enche Ady et al., 2017; Gonzalez-Dominguez et 

al., 2017; Trushina and Mielke, 2014); however, most of these studies have been limited to 

cross-sectional approaches comparing patients with either AD or mild cognitive impairment 

(MCI) to controls. In these early stages of AD metabolomics research, few metabolites have been 

found to be associated with AD in more than one study (Enche Ady et al., 2017). Because 

neuropathological changes that lead to the development of AD occur decades before its clinical 

presentation (Jack et al., 2010; Serrano-Pozo et al., 2011), longitudinal investigations preceding 

its diagnosis could add to our current knowledge. In particular, understanding how biomarkers 

correlate with subtle changes in cognition prior to AD diagnosis could help identify causal 

mechanisms contributing to its onset.  

Executive function and memory deficits occur in the very early stages of AD, prior to 

deficits of language and visuospatial functions (Albert, 1996; Baudic et al., 2006; Lafleche and 

Albert, 1995), and are associated with AD pathology and subsequent global cognitive decline 

(Clark et al., 2016; Clark et al., 2012). Metabolite levels associated with these early changes in 

cognition could be indicative of underlying biological mechanisms and pathways contributing to 

the pathology of AD and could ultimately inform stronger predictive models for this disease.  

Using longitudinal plasma samples from the Wisconsin Registry for Alzheimer’s 

Prevention (WRAP), we investigated whether time-varying metabolite levels predicted age-

related cognitive changes (i.e., trajectories) for executive function and memory, specifically, 

delayed recall. Results from each of these association analyses were further explored using 

Mendelian randomization (MR) and in a metabolite pathway analysis. 
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2. Methods 

2.1. Participants 

Study participants were from WRAP, a longitudinal study of initially dementia free 

middle-aged adults that allows for the enrollment of siblings and is enriched for a parental 

history of AD. Further details of the study design and methods used have been previously 

described (Johnson et al., 2018; Sager et al., 2005). Analyses did not include the baseline WRAP 

visit due to subsequent protocol changes regarding sample collection procedures and tests 

included in the neuropsychological battery. Study visits included in the current analyses occurred 

every two years, with plasma samples and cognitive measures collected concurrently within the 

same study visit. This study was conducted with the approval of the University of Wisconsin 

Institutional Review Board, and all participants provided signed informed consent before 

participation. 

2.2. Biological Samples 

2.2.1. Plasma collection and sample handling 

 Fasting blood samples for this study were drawn the morning of each study visit, which 

was also the day cognitive testing was completed. Blood was collected in 10 mL 

ethylenediaminetetraacetic acid (EDTA) vacutainer tubes. They were immediately placed on ice, 

and then centrifuged at 3000 revolutions per minute for 15 minutes at room temperature. Plasma 

was pipetted off within one hour of collection. Plasma samples were aliquoted into 1.0 mL 

polypropylene cryovials and placed in -80°C freezers within 30 minutes of separation. Samples 

were never thawed before being shipped overnight on dry ice to Metabolon, Inc. (Durham, NC), 

where they were again stored in -80°C freezers and thawed once before testing.  
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2.2.2. Metabolomic profiling and quality control 

 An untargeted plasma metabolomics analysis was performed by Metabolon, Inc. using 

Ultrahigh Performance Liquid Chromatography-Tandom Mass Spectrometry (UPLC-MS/MS). 

Quantification was performed as previously described (Evans et al., 2014); details are outlined in 

the Supplemental Note. Metabolites within nine super pathways were identified: amino acids, 

carbohydrates, cofactors and vitamins, energy, lipids, nucleotides, partially characterized 

molecules, peptides, and xenobiotics. 

 Up to three longitudinal plasma samples were available for each participant. Metabolites 

with an interquartile range of zero (i.e., those with very low or no variability due to individuals 

having almost identical levels of the given metabolite) were excluded from analyses (n=178 

metabolites). After removing these metabolites, samples were missing a median of 11.7% 

metabolites, while metabolites were missing in a median of 1.2% of samples. Missing metabolite 

values were imputed to the lowest level of detection for each metabolite. Metabolite values were 

median-scaled and log-transformed to normalize metabolite distributions (van den Berg et al., 

2006). If a participant reported that they did not fast or withhold medications and caffeine for at 

least eight hours, the sample was excluded from analyses (n=159 samples). A total of 1,097 

metabolites among 2,338 samples remained for analyses. 

2.2.3. DNA collection and genomics quality control 

DNA was extracted from whole blood samples using the PUREGENE® DNA Isolation 

Kit (Gentra Systems, Inc., Minneapolis, MN). DNA concentrations were quantified using the 

Invitrogen™ Quant-iT™ PicoGreen™ dsDNA Assay Kit (Thermo Fisher Scientific, Inc., 

Hampton, NH) analyzed on the Synergy 2 Multi-Detection Microplate Reader (Biotek 

Instruments, Inc., Winooski, VT). Samples were diluted to 50 ng/ul following quantification.  
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A total of 1,340 samples were genotyped using the Illumina Multi-Ethnic Genotyping 

Array at the University of Wisconsin Biotechnology Center (Figure S1). Thirty-six blinded 

duplicate samples were used to calculate a concordance rate of 99.99%, and discordant 

genotypes were set to missing. Sixteen samples missing >5% of variants were excluded, while 

35,105 variants missing in >5% of individuals were excluded. No samples were removed due to 

outlying heterozygosity. Six samples were excluded due to inconsistencies between self-reported 

and genetic sex.  

Due to sibling relationships in the WRAP cohort, genetic ancestry was assessed using 

Principal Components Analysis in Related Samples (PC-AiR), a method that makes robust 

inferences about population structure in the presence of relatedness (Conomos et al., 2015). This 

approach included several iterative steps and was based on 63,503 linkage disequilibrium (LD) 

pruned (r2<0.10) and common (MAF>0.05) variants, using the 1000 Genomes data as reference 

populations (Genomes Project et al., 2015). First, kinship coefficients (KCs) were calculated 

between all pairs of individuals using genomic data with the Kinship-based Inference for Gwas 

(KING)-robust method (Manichaikul et al., 2010). PC-AiR was used to perform principal 

components analysis (PCA) on the reference populations along with a subset of unrelated 

individuals identified by the KCs. Resulting principal components (PCs) were used to project PC 

values onto the remaining related individuals. All PCs were then used to recalculate the KCs 

taking ancestry into account using the PC-Relate method, which estimates KCs robust to 

population structure (Conomos et al., 2016). PCA was performed again using the updated KCs, 

and KCs were also estimated again using updated PCs. The resulting PCs identified 1,198 

WRAP participants whose genetic ancestry was primarily of European descent. This procedure 

was repeated within this subset of participants (excluding 1000 Genomes individuals) to obtain 
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PC estimates used to adjust for population stratification in subsequent genomic analyses. Among 

European descendants, 160 variants were not in Hardy-Weinberg equilibrium (HWE) and 

327,064 were monomorphic and thus, removed.  

A total of 1,294,660 bi-allelic autosomal variants among 1,198 European descendants 

remained for imputation, which was performed with the Michigan Imputation Server v1.0.3 (Das 

et al., 2016), using the Haplotype Reference Consortium (HRC) v. r1.1 2016 (McCarthy et al., 

2016) as the reference panel and Eagle2 v2.3 (Loh et al., 2016) for phasing. Prior to imputation, 

the HRC Imputation Checking Tool (Rayner et al., 2016) was used to identify variants that did 

not match those in HRC, were palindromic, differed in MAF>0.20, or that had non-matching 

alleles when compared to the same variant in HRC, leaving 898,220 for imputation. A total of 

39,131,578 variants were imputed. Variants with a quality score R2<0.80, MAF<0.001, or that 

were out of HWE were excluded, leaving 10,400,394 imputed variants. These were combined 

with the genotyped variants, leading to 10,499,994 imputed and genotyped variants for analyses. 

Data cleaning and file preparation were completed using PLINK v1.9 (Chang et al., 2015) and 

VCFtools v0.1.14 (Danecek et al., 2011). Coordinates are based on GRCh37 assembly hg19. 

2.3. Cognitive phenotypes 

 Composite scores were calculated for executive function and delayed recall based on a 

previous analysis (Clark et al., 2016). Each composite score was calculated from three 

neuropsychological tests, which were each converted to z-scores using baseline means and 

standard deviations. The executive function composite score included the Trails Making Test 

Part B (TMTB) (Reitan and Wolfson, 1985) total time to completion, Stroop Neuropsychological 

Screen Test (Trenerry et al., 1989) color-word interference total items completed in 120 second, 

and Wechsler Abbreviated Intelligence Scale-Revised (WAIS-R) digit symbol coding subtest 
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total items completed in 90 seconds (Wechsler, 1981). The delayed recall composite score 

included the Rey Auditory Verbal Learning Test (RAVLT) (Schmidt, 1996) long-delay free 

recall, Wechsler Memory Scale-Revised Logical Memory (WMS-R LM) (Wechsler, 1987) 

delayed recall, and Brief Visuospatial Memory Test (BVMT-R) (Benedict, 1997) delayed recall. 

The TMTB was multiplied by negative one prior to being converted to z-scores, so that higher z-

scores indicated better performance. These z-scores were then averaged to derive executive 

function and delayed recall composite scores at each visit for each individual.  

2.4. Statistical analyses 

2.4.1. Metabolome-wide association studies 

All associations were tested using linear mixed effects regression models implemented in 

the SAS MIXED procedure. To assess whether metabolite levels were associated with age-

related cognitive trajectories, an interaction term between metabolite level and age was used to 

predict cognitive composite scores (i.e., executive function and delayed recall). Models included 

fixed effects for centered age, sex, self-reported race, cholesterol-lowering medication use (the 

most commonly used class of medications in our sample), sample storage time, education, a 

genetic risk score for APOE (Darst et al., 2017), and practice effects (using visit number). 

Random intercepts were included for within-subject correlations due to repeated measures and 

within-family correlations due to the enrollment of siblings. The two sets of P-values resulting 

from testing executive function and delayed recall trajectories were separately corrected for 

multiple testing using the Benjamini-Hochberg (Benjamini and Hochberg, 1995) adjustment with 

an alpha of 0.05. 

2.4.2. Mendelian randomization  
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MR (Smith and Ebrahim, 2003) was used to assess whether levels of any individual 

metabolite identified in our association analyses (i.e., metabolites associated with either 

executive function or delayed recall trajectories) could causally influence cognition. Metabolic 

quantitative trait loci (mQTL) were identified as genomic variants influencing metabolite levels 

with a P<0.001 using genome-wide association study (GWAS) summary statistics provided by 

the authors of a recent publication by Long et al., 2017 (Long et al., 2017). A polygenic score 

(PS) was created for each metabolite identified in our association analyses that also had GWAS 

summary statistics available. PSs were defined as the sum of an individual’s metabolite-

increasing alleles weighted by the effect sizes from GWAS summary statistics. PSs were created 

using the additive allelic scoring function in PLINK 1.9 (Chang et al., 2015) after LD pruning 

variants within each PS (R2>0.50). To be consistent with our discovery models, interactions 

between each PS and age were tested for association with cognition using linear mixed effects 

regression models. Models included fixed effects for age, sex, education, practice effects, and the 

first four PCs to account for population stratification. They also included random intercepts for 

repeated measures and sibling relationships. 

2.4.3. Metabolite pathway analysis 

Results from association analyses were further investigated using a metabolite pathway 

analysis. Metabolites included in this analysis were those associated with either executive 

function or delayed recall trajectories with an unadjusted P<0.05 and that had a Kyoto 

Encyclopedia of Genes and Genomics (KEGG) compound ID (Kanehisa and Goto, 2000). 

Metabolites on our panel with KEGG compound IDs were used as the reference panel for this 

analysis. The pathway analysis was conducted using MetaboAnalyst 4.0 and included both an 

overrepresentation analysis, which was assessed using a hypergeometric test, and a pathway 
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topology analysis, which was assessed using relative-betweenness centrality (Xia and Wishart, 

2016). The overrepresentation analysis tests whether a user-defined list of metabolites represents 

a particular pathway of metabolites more than expected by chance. The pathway topology 

analysis considers the structure of a pathway by assessing how connected metabolites are within 

a pathway. If a pathway contains metabolites that connect dense clusters of other metabolites, the 

pathway would have a high impact score, as changes to its metabolites would likely have a 

strong impact on other metabolites within the pathway. 

2.5. Data Availability 

Data are available on request made to the WRAP Science Executive Committee. Details and 

application instructions can be found using the following website: 

http://www.wai.wisc.edu/research/wrapdatarequests.html. 

 

3. Results 

3.1. Participants 

A total of 1,206 WRAP participants with 2,338 longitudinal plasma samples were 

available for analyses. At baseline for the current study, 69.2% of participants were female, 

93.7% were Caucasian, and participants were 60.9 years old with a bachelor’s degree, on average 

(Table 1). Participants each had 1,097 plasma metabolites available for analyses, 347 (31.6%) of 

which were of unknown chemical structure. Properties of each metabolite, such as biochemical 

name, super pathway, and sub pathway are described in Table S1. 

3.2. Metabolome-wide association studies 

3.2.1. Executive Function 
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All metabolome-wide association results are detailed in Table S1. Seven metabolite-by-

age interactions were associated with executive function (Figures 1A and 2). Levels of cysteine 

S-sulfate, an amino acid, had the strongest association (unadjusted P=5.2e-05), with lower levels 

associated with better executive function in midlife and poorer executive function later in life. 

The six other significant metabolites showed the opposite relationship with age and executive 

function, such that lower metabolite levels were associated with poorer executive function in 

midlife and better executive function later in late. These metabolites included erucate (22:1n9) (a 

monosaturated omega-9 fatty acid), four partially characterized molecules (glycine conjugate of 

C10H12O2, fatty acid 8:1 acyl glutamine conjugate, fatty acid 6:1 acyl glutamine conjugate, and 

C12H18O5), and one unknown metabolite (X-18887).  

3.2.2. Delayed Recall 

No metabolite-by-age interactions were associated with delayed recall after adjusting for 

multiple comparisons. The three strongest interactions included heneicosapentaenoate (21:5n3) 

(a polysaturated fatty acid, unadjusted P=0.00009), X – 02269 (an unknown metabolite, 

P=0.0004), and erucate (22:1n9) (unadjusted P=0.0005) (Figure 1B). Four of the seven 

metabolites associated with executive function showed a similar relationship with delayed recall, 

although none were statistically significant (erucate (22:1n9), X – 13866, X – 12104, and 

cysteine S-sulfate, all unadjusted P-values <0.20) (Figure S2).  

3.3. Mendelian randomization 

GWAS summary statistics were available for three of the seven metabolites associated 

with executive function (cysteine S-sulfate, erucate (22:1n9), and X-13866, an unknown 

metabolite) and used to create a PS for each metabolite. The three PSs were fairly weak 

instruments, with correlations with corresponding metabolites ranging from r=-0.04 to 0.004 and 
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the largest F-statistic=1.71, well below the commonly used F-statistic threshold of 10 (Stock et 

al., 2002) (Table S2). Not surprisingly, associations between executive function and the PSs-by-

age were not significant (each P≥0.54). Thus, MR analyses were insufficient to draw conclusions 

about the nature of the relationship between the metabolites and executive function. 

3.4. Metabolite pathway analysis 

Of the 1,097 metabolites tested, only 291 had KEGG compound IDs that were recognized 

by MetaboAnalyst and could be used as the reference panel for the pathway analysis. A total of 

254 metabolites met the inclusion threshold of an unadjusted P<0.05 for the cognitive metabolite 

pathway analysis; however, only 82 of these were identified metabolites with KEGG compound 

IDs. These metabolites most strongly represented pathways involved in inositol phosphate, ether 

lipid, and amino sugar and nucleotide metabolism, although none of the pathways identified 

were statistically significant (Figure S3 and Table S3). 

 

4. Discussion 

We analyzed the metabolomics of cognitive trajectories using time-varying plasma 

metabolomic samples and a large panel of metabolites. Our findings suggest that specific 

metabolite levels, particularly cysteine s-sulfate and fatty acid lipids, correspond with executive 

function trajectories in late middle-aged adults at increased risk for AD. However, metabolite 

levels were not statistically associated with delayed recall trajectories. 

The associations we observed between metabolite levels and executive function 

trajectories could provide insight to mechanisms contributing to cognitive decline. In particular, 

lower levels of the amino acid cysteine S-sulfate were associated with better executive function 

in midlife, but poorer executive function later in life. The involvement of cysteine metabolism in 
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AD has been implicated in a pathway analysis of previous AD metabolomics studies (Enche Ady 

et al., 2017). Our results further suggest that such a relationship could depend on age. Cysteine 

S-sulfate is a glutamate receptor agonist that can lead to calcium influx in nerve cells and 

neurotoxicity when present in high levels (Olney et al., 1975; Snowden et al., 2017). It has been 

shown to drive excitotoxic neurodegeneration in individuals with molybdenum cofactor 

deficiency, an autosomal recessive inborn error of metabolism characterized by early childhood 

death (Kumar et al., 2017). This supports our finding that high levels of cysteine S-sulfate may 

be detrimental to cognitive function in midlife. However, further investigations using 

longitudinal cohorts, and perhaps experiments using model organisms, will be crucial to validate 

our findings and determine whether high levels could have protective effects later in life.  

The opposite pattern was seen for the six other metabolites associated with executive 

function, which included three fatty acids, where higher metabolite levels in younger years, but 

lower levels in older years, were associated with better executive function. One of these fatty 

acids was erucate (22:1n9), an omega-9 fatty acid that readily crosses the blood brain barrier 

(Golovko and Murphy, 2006) and has been shown to enhance memory performance in mice 

(Kim et al., 2016). Fatty acids have long been suspected to influence cognitive performance, but 

studies have had mixed findings regarding their role, particularly of omega-3 fatty acids 

(Cederholm et al., 2013; Mazereeuw et al., 2012). Our results suggest that this role may be 

difficult to define because the implications of these metabolite levels change as individuals age. 

This is further supported by similar relationships we found for two partially characterized fatty 

acids (fatty acid 8:1 acyl glutamine conjugate and fatty acid 6:1 acyl glutamine conjugate). More 

information about these two particular metabolites could prove useful in understanding the 

relationship between fatty acids and cognitive function. Beyond cognitive performance, omega 
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fatty acids have also been shown to be dysregulated in certain brain regions of patients with AD 

pathology (Snowden et al., 2017), further strengthening the potential relevance of fatty acids. 

Further, a recent study reported higher levels of docosapentaenoate (22:5 n-6), a long-chain 

polyunsaturated fatty acid, to be associated with less decline of information-processing speed in 

a sample of midlife African Americans (Bressler et al., 2017), supporting the association 

between higher fatty acids levels and better cognition function in midlife. 

This study had several limitations. The pathway analysis we performed was highly 

limited due to the large number of metabolites in our panel that did not have KEGG compound 

IDs. This greatly underscores the importance of continued efforts to identify and characterize 

metabolites. The PSs we developed for our MR assessment were weak instrumental variables 

and did not allow us to determine whether levels of the metabolites we identified are causally 

related to executive function. Our cohort may not have experienced sufficient cognitive decline 

at this point to identify metabolite levels associated with delayed recall trajectories. Because our 

analyses are based on an average of two and up to three longitudinal samples per participant, we 

are somewhat limited in our ability to assess cognitive and metabolite trajectories. Although our 

metabolite panel is large relative to previous investigations, it is possible that a different panel of 

metabolites could produce different results; however, quantifying and identifying metabolites is a 

challenging task that is highly dependent on technological advances. It will be critical to 

replicate findings presented here with an independent cohort. To assist with replication of 

metabolomics findings, as the field of metabolomics rapidly develops, it will be crucial to 

develop standard methods of measuring and analyzing metabolites. 

Using a large panel of longitudinal metabolomics data, we found that levels of certain 

plasma metabolites, including cysteine S-sulfate and erucate, were associated with age-related 
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change in executive function, one of the earliest aspects of cognitive function to change in the 

course of AD development. Replication in cohorts with longitudinal metabolomics data will be 

necessary to confirm whether these metabolites contribute to the development of AD. If these 

metabolites are shown to have causal influences on cognition through future longitudinal and 

experimental research studies, subsequent investigations of their nutritional influences could 

further elucidate the mechanisms influencing early stages of AD and perhaps inform preventative 

measures. 
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Figure Titles and Legends 

Figure 1. Manhattan plot of metabolome-wide association results for cognitive composite scores. 

A. Seven metabolite*age interactions were significantly associated with executive function. B. 

No metabolite*age interactions were significantly associated with delayed recall. Both sets of 

results used a Benjamini-Hochberg adjusted P-value threshold (red horizontal line). 

Figure 2. Contour plots showing executive function trajectories by seven time-varying metabolite 

levels. The x-axis represents age, y-axis represents standardized metabolite levels, and z-axis 

represents the executive function composite score. In younger ages, higher levels of most 

metabolites are associated with above average cognition (indicated by the darker red regions), 

whereas in older ages, higher levels are associated with below average cognition (indicated by 

the darker blue regions), with the exception of cysteine s-sulfate, where there opposite is true. 

Unadjusted P-values are indicated for each test.  
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Tables  

Table 1. WRAP Participant Characteristics at Baseline. Mean (SD) or N (%). 

Characteristic 
Overall 

(N=1,206, obs=2,338) 

Age (years) 60.9 (6.7) 

Female 834 (69.2) 

Years of education 16.3 (2.9) 

Caucasian 1,130 (93.7) 

APOE ε4 carrier 462 (38.3) 

Cholesterol lowering medication 385 (31.9) 

Sample storage (days) 1,517.3 (405.1) 

# Visits 1.9 (0.6) 

obs=observations 
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Table 2. Top ten metabolite*age interactions on executive function 

Metabolite Super Pathway Sub Pathway P-value 

Cysteine S-sulfate Amino acid 
Methionine, Cysteine, SAM 

and Taurine Metabolism 
5.2e-05 

X – 13866 (C12H18O5) 
Partially Characterized 

Molecules 

Partially Characterized 

Molecules 
7.3e-05 

X – 12839 (fatty acid 8:1 acyl 

glutamine conjugate) 

Partially Characterized 

Molecules 

Partially Characterized 

Molecules 
7.9e-05 

Erucate (22:1n9) Lipid Long Chain Fatty Acid 1.5e-04 

Glycine conjugate of C10H12O2 
Partially Characterized 

Molecules 

Partially Characterized 

Molecules 
1.8e-04 

X – 18887 Unknown Unknown 2.2e-04 

X – 12104 (fatty acid 6:1 acyl 

glutamine conjugate) 

Partially Characterized 

Molecules 

Partially Characterized 

Molecules 
5.4e-04 

Dihomo-linolenoyl-choline Lipid 
Fatty Acid Metabolism 

(Acyl Choline) 
5.4e-04 

N6-acetyllysine Amino acid Lysine Metabolism 5.5e-04 

Heptenedioate (C7:1-DC) Lipid Fatty Acid, Dicarboxylate 5.9e-04 

P-values are unadjusted. 

Bold values are statistically significant using a Benjamini-Hochberg adjustment for multiple 

comparisons. 
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