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Abstract

Over the past few years, the field of visual social cognition and face processing has been
dramatically impacted by a series of data-driven studies employing computer-graphics
tools to synthesize arbitrary meaningful facial expressions. In the auditory modality,
reverse correlation is traditionally used to characterize sensory processing at the level of
spectral or spectro-temporal stimulus properties, but not higher-level cognitive
processing of e.g. words, sentences or music, by lack of tools able to manipulate the
stimulus dimensions that are relevant for these processes. Here, we present an
open-source audio-transformation toolbox, called CLEESE, able to systematically
randomize the prosody/melody of existing speech and music recordings. CLEESE works
by cutting recordings in small successive time segments (e.g. every successive 100
milliseconds in a spoken utterance), and applying a random parametric transformation
of each segment’s pitch, duration or amplitude, using a new Python-language
implementation of the phase-vocoder digital audio technique. We present here two
applications of the tool to generate stimuli for studying intonation processing of
interrogative vs declarative speech, and rhythm processing of sung melodies.

Introduction

The field of high-level visual and auditory research is concerned with the sensory and
cognitive processes involved in the recognition of objects or words, faces or speakers and,
increasingly, of social expressions of emotions or attitudes in faces, speech and music. In
traditional psychological methodology, the signal features that drive judgments (e.g.
facial metrics such as width-to-height ratio, acoustical features such as mean pitch) are
posited by the experimenter before being controlled or tested experimentally, which may
create a variety of confirmation biases or experimental demands. For instance, stimuli
constructed to display western facial expressions of happiness or sadness may well be
recognized as such by non-western observers [1], but yet may not be the way these
emotions are spontaneously produced, or internally represented, in such cultures [2].
Similarly in auditory cognition, musical stimuli recorded by experts pressed to express
emotions in music may do so by mimicking expressive cues used in speech, but these
cues may not exhaust the many other ways in which arbitrary music can express
emotions [3]. For all these reasons, in recent years, a series of powerful data-driven
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[Figure 1]
Fig 1. Low- and high-level subspace noise for the reverse-correlation of
visual and audio stimuli. Reverse-correlation paradigms aim to isolate the subspace
of feature dimensions that maximizes participant responses, and as such, need to search
a stimulus generative space e.g. of all possible images or sounds relevant for a task. In a
majority of studies, noise masks operate on low-level, frequency-based representations of
the signal, e.g. at different scales and orientations for image stimuli (top-left) or
different frequencies of an auditory spectrogram (top-right). More recent models in the
vision modality are able to explore the subspace of facial expressions through the
systematic manipulation of facial action units (bottom-left). The present work
represents a conceptually-similar development for the auditory modality.

paradigms (built on techniques such as reverse-correlation, classification image or
bubbles; see [4] for a review) were introduced in the field of visual cognition to discover
relevant signal features empirically, by analyzing participant responses to large sets of
systematically-varied stimuli [5].

The reverse correlation technique was first introduced in neurophysiology to
characterize neuronal receptive fields of biological systems with so-called “white noise
analysis” [6-9]. In psychophysics, the technique was then adapted to characterize
human sensory processes, taking behavioral choices (e.g., yes/no responses) instead of
neuronal spikes as the systems’ output variables to study, e.g. in the auditory domain,
detection of tones in noise [10] or loudness weighting in tones and noise ( [11]; see [4] for
a review of similar applications in vision). In the visual domain, these techniques have
been extended in recent years to address not only low-level sensory processes, but
higher-level cognitive mechanisms in humans: facial recognition [12], emotional
expressions [2,13], social traits [14], as well as their associated individual and cultural
variations ( [15]; for a review, see [5]). In speech, even more recently, reverse correlation
and the associated “bubbles” technique were used to study spectro-temporal regions
underlying speech intelligibility [16,17] or phoneme discrimination in noise [18,19] and,
in music, timbre recognition of musical instruments [20, 21].

All of these techniques aim to isolate the subspace of feature dimensions that
maximizes participant responses, and as such, need to search the stimulus generative
space e.g. of all possible images or sounds relevant for a given task. A typical way to
define and search such a space is to consider a single target stimulus (e.g. a neutral face,
or the recording of a spoken phoneme), apply a great number of noise masks that
modify the low- or high-level physical properties of that target, and then regress the
(random) physical properties of the masks on participant judgements. Techniques differ
in how such noise masks are generated, and on what stimulus subspace they operate
(Figure 1). At the lowest possible level, early proposals have applied simple pixel-level
noise masks [13], and sometimes even no stimulus at all, akin to white noise “static” on
a TV screen in which participants were forced to confabulate the presence of a visual
target [22] or a vowel sound [19]. More consistently, noise masks generally operate on
low-level, frequency-based representations of the signal, e.g. at different scales and
orientations for image stimuli [12,14], different frequencies of an auditory
spectrogram [17,23] or different rates and scales of a modulation spectrum
(MPS) [16,21].

While low-level subspace noise has the advantage of providing a physical description
of the stimuli driving participant responses, it is often a suboptimal search space for
high-level cognitive tasks. First, all stimulus features that are driving participant
judgements may not be efficiently encoded in low-level representations: the auditory
modulation spectrum, for instance, is sparse for a sound’s harmonic regularities, coded
for by a single MPS pixel, but not for features localized in time, such as attack time or
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transitions between phonemes [23]. As a consequence, local mask fluctuations will
create continuous variations for the former, but not the latter features which will be
difficult to regress on. Second, low-level variations in stimuli typically create highly
distorted faces or sounds (Figure 1-top), for which one may question the ecological
relevance of participant judgements. Finally, and perhaps most critically, many of the
most expressive, cognitively-meaningful features of a face or voice signal are coordinated
action-units (e.g. a contraction of a facial muscle, the rise of pitch at the end of a spoken
utterance) that have distributed representations in low-level search spaces, and will
never be consistently explored by a finite amount of random activations at that level.

Consequently, the face research community has recently developed a number of
higher-level generative models able to synthesize facial expressions through the
systematic manipulation of facial action units [24,25]. These tools are based on
morphological models that simulate the ’amplitude vs time’ effect of individual muscles
and then reconstruct realistic facial textures that account for the modified underlying
morphology, as well as head pose and lighting. Searching such high-level subspaces with
reverse-correlation is akin to searching the space of all possible facial expressions (Figure
1-bottom), while leaving out the myriad of other possible facial stimuli that are not
directly interpretable as human-made expressions - a highly efficient strategy that has
been applied to characterize subtle aspects of social and emotional face perception
processes, such as cultural variations in emotional expressions [2], physical differences
between different kinds of smiles [26] or in the way these features are processed in
time [27]. In auditory research, however, similarly efficient data-driven strategies have
not yet been common practice, by lack of tools able to manipulate the high-level
stimulus dimensions that are relevant for similar judgement tasks when they apply on,
e.g., voice or music.

Here, we present an open-source audio-transformation toolbox, called CLEESE
(Combinatorial Expressive Speech Engine) !, able to systematically randomize the
prosody/melody of existing speech and music recordings. CLEESE works by cutting
recordings in small successive time segments (e.g. every successive 100 milliseconds in a
spoken utterance), and applying a random parametric transformation of each segment’s
pitch, duration, amplitude or frequency content, using a new Python-language
implementation of the phase-vocoder digital audio technique. Transformations made
with CLEESE explore the space of speech intonation and expressive speech prosody by
allowing to create random time-profiles of pitch (e.g. rising pitch at the end of an
utterance, as in interrogative sentences [28]), of duration (e.g. word-final vowel
lengthening, as used as a cue for word segmentation [29]) or amplitude (e.g. louder on
prominent words or phonemes [30]). In music, the same transformations can be
described as melodic, manipulating the pitch/tuning of successive notes in a sequence

(e.g. b, dor Jﬁ), their duration (e.g. J, Jor ﬁ) or amplitude (e.g. p, mf or f). All
transformations are parametric, thus allowing to generate thousands of random variants
drawn e.g. from a gaussian distribution ; and realistic (within appropriate parameter
ranges), such that the resulting audio stimuli do not typically appear

artificial /transformed, but rather plausible as ecological speech or music recordings.

In recent work, we have used CLEESE with a reverse-correlation paradigm to
uncover what mental representations of pitch profiles underlie judgements of speaker
dominance and trustworthiness in short utterances like the word ’hello’ [31]. We
recorded a single utterance of the word ’hello’ by one male and one female speaker.
CLEESE was first used to flatten the pitch of the recordings (by transforming it with a
pitch profile that alters its original prosody to constant pitch), and then to generate
random pitch variations, by manipulating the pitch over 6-time points on Gaussian
distributions of SD = 70 cents clipped at £2.2 SD. Pairs of these randomly-manipulated

Inamed after British actor John Cleese, with reference to the ” Ministry of Silly Talks”

PLOS

3/17

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120


https://doi.org/10.1101/436477
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/436477; this version posted October 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

@PLOS | susmission

aCC-BY 4.0 International license.

voices were then presented to observers who were asked, on each trial, to judge which of
the two versions appeared most dominant/trustworthy. The participants’ mental
representations were then computed by computing the mean pitch contour (a 6-point
vector) of the voices they classified as dominant (resp. trustworthy) minus the mean
pitch contour of the voices classified as non-dominant (resp. non-trustworthy).

In this article, we describe the functionality of the CLEESE toolbox, the algorithms
that underlie it as well as how to deploy it in psychophysical reverse-correlation
experiments such as those above. We then present two case-studies in which we use
CLEESE to generate pitch-shifted speech stimuli to study the perception of
interrogative vs declarative speech prosody, and time-stretched musical stimuli to study
the rhythm processing of sung melodies.

Functionality, algorithms, usage

Functionality

CLEESE is an open-source Python toolbox? used to create random or fixed pitch, time
and amplitude transformations on any input sound®. The transformations can be both
static or time-varying. Besides its purpose of generating many stimuli for
reverse-correlation experiments, the toolbox can also be used for producing individual,
user-determined transformations.

CLEESE operates by generating a set of random breakpoint functions (BPFs) for
each transformation, which are then passed to a spectral processing engine (based on
the phase vocoder algorithm, see below) for the transformation to occur. BPFs
determine how the sound transformations vary over the duration of the stimulus.
CLEESE can randomly generate BPFs of two types: ramps, where the corresponding
sound parameter is interpolated linearly between breakpoints (Figure 2-top) and square,
where the BPF is a square signal with sloped transitions (Figure 2-bottom). BPF
segments can be defined either by forcing all of them to have a fixed duration (i.e., their
number will depend on the whole sound’s duration, see Figure 2-left), or by forcing a
fixed number of segments along the total sound duration (i.e., their duration will
depend on the whole sound’s duration, see Figure 2-right). Alternatively, the user can
pass custom breakpoint positions, which can be defined manually e.g. to correspond to
each syllable or note in given a recording.

[Figure 2]
Fig 2. CLEESE operates by generating a set of random breakpoint
functions (BPFs) which control the dynamically-changing parameters of
the sound transformations. In ramp BPFs (top), transformation parameters are
interpolated linearly between breakpoints. In square BPFs, they are constant in each
segment. BPFs can be specified either in terms of fixed duration (left: 80ms segments)
or fixed number of segments (right: 6 segments).

BPF's can be defined to transform sounds along three signal dimensions:

Pitch: The BPF is used to transpose up and down the pitch of each segment in the
sound, while maintaining its amplitude and duration constant. Each breakpoint in
the BPF corresponds to a pitch shift value p in cents or percents of a semitone,
with 0 cents corresponding to no change with respect to original pitch.

2 Available upon free registration at http://forumnet.ircam.fr/product/cleese
3Note that CLEESE can also be used to create spectral transformations, a technique not described
here - see [32]
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Time: The BPF is used to stretch or compress the duration of each segment in the
sound, while maintaining its amplitude and pitch constant. Each breakpoint
corresponds to a time stretch factor ¢ in ratio to original duration, with 0 <t < 1
corresponding to compression/faster speed, ¢t > 1 stretched/slower speed, and
t = 1 no change with respect to segment’s original duration.

Amplitude: The BPF is used to amplify or decrease the signal’s instantaneous
amplitude in each segment, while maintaining its pitch and duration constant.
Each breakpoint corresponds to a gain value g in dBs (thus, in base-10 logarithm
ratio to original signal amplitude), with g = 0 corresponding to no change with
respect to original amplitude.

The default mode is for CLEESE to generate p,t or g values at each breakpoint by
sampling from a Gaussian distribution centered on p =0, t = 1 or ¢ = 0 (no change)
and whose standard deviation (in cents, duration or amplitude ratio) allows to
statistically control the intensity of the transformations. For instance, with a pitch SD
of 100cents, CLEESE will assign random shift values at every breakpoint, 68% of which
are within + 1 semitone of the segment’s original pitch (Figure 3A-B). The
transformations can be chained, e.g. manipulating pitch, then duration, then amplitude,
all with separate transformation parameters. For each type of transformation,
distributions can be truncated (at given multiples of SD) to avoid extreme
transformation values which may be behaviorally unrealistic. Alternatively,
transformation parameters at each breakpoint can be provided manually by the user.
For instance, this allows to flatten the pitch contour of an original recording, by
constructing a custom breakpoint function that passes through the pitch shift values
needed to shift the contour to a constant pitch value (Figure 3C-D).

[Figure 3]
Fig 3. Examples of pitch manipulations created with CLEESE.A: pitch of an
original male speech recording (a 400ms utterance of the word ’hello’). B: Random
pitch transformations of the original, where pitch shift values at each breakpoint are
drawn from a Gaussian distribution. C: Manually-specified BPF created to flatten the
pitch contour of the original recording. D: Resulting flat-pitch transformation,
compared to original.

Algorithm

The phase vocoder is a sound processing technique based on the short-term Fourier
Transform (STFT, [33]). The STFT decomposes each successive parts (or frames) of an
incoming audio signal into a set of coefficients that allow to perfectly reconstruct the
original frame as a weighted sum of modulated sinusoidal components (eq.(1)). The
phase vocoder algorithm operates on each frame’s STFT coefficients, modifying them
either in their content (e.g. displacing frequency components to higher frequency
positions to simulate a higher pitch) or their position in time (e.g. displacing frames to
subsequent time points to simulate a slower sound). It then reconstructs the original
signal from the manipulated frames with a variety of techniques meant to ensure the
continuity (or phase coherence) of the resulting sinusoidal components [34, 35].
Depending on how individual frames are manipulated, the technique can be used e.g. to
change a sound’s duration without affecting its pitch (a process known as time
stretching), or to change a sound’s pitch without changing its duration (pitch shifting,
see [36] for a review).

In more detail, the phase vocoder procedure considers a (digital) sound z as a
real-valued discrete signal, and h a symmetric real-valued discrete signal composed of N
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samples, usually called window, that is used to cut the input sound into successive
frames. In the analysis stage, frames are extracted with a time step (or hop size) R,,
corresponding to successive time positions t¥ = R,u, where v is the index of the u-th
frame. The discrete STFT of x with window h is given by the discrete FFT of the time
frames of  multiplied by h,

X(te, ) = > h(n) x(ty +n)e %" (1)

where X (%, Q) is the STFT coefficient corresponding to frequency Q = %,

k=0,....,N — 1 in the u-th frame of the signal. X is a two-dimensional complex-valued
representation, which can be expressed in terms of real and imaginary parts or,
equivalently, amplitude and phase. The amplitude of the coefficient at time index u and

frequency bin k is given by | X (t¥, Q)|, while its phase is ZX (t¥, Q) = arg(X (t%, Q).

A given transformation T(X) =Y can then be performed by altering the amplitudes
and/or phases of selected coefficients, leading to a complex-valued representation Y of
the same dimension as X. For instance, if one wishes to shift the frequency content of
the sound by a fixed frequency p, then one can take Y (t%, Q) = X (t¥, Q — p) (i.e. the
k-th frequency component of the u-th input frame is copied at the k + p frequency
position in the u-th output frame). Alternatively, if we wish to temporally
stretch/compress the sound by a given factor ¢, then we take Y (¢t%¢, Q) = X (¢%, Q)
(i.e. the k-th frequency component of the u-th input frame is copied at the k-th
frequency component of the ¢ x u-th output frame, i.e. at a later time position if ¢ > 1
or earlier position if ¢ < 1). Finally, amplitude manipulations by a time-frequency mask
G composed of scalar gain factors g,, ; can be generated by taking
Y (t%, Q)| = guk - | X (4, Q)| for the amplitudes, and leaving phases unchanged®.

The transformed coefficients in Y are then used to synthesize a new sound y, using
the inverse procedure to eq.(1). As done for analysis, let the scalar Rs be the synthesis
hop size, and t¥ = Rsu the position of the u-th output frame. Then, using the same
window function h, the output signal is given by

y(n) = h(n—t2) yu(n —t) (2)

N-1

>Vt Q) (3)

k=1

1

Yu(n) = N

When STFT frames are time-shifted as part of the phase-vocoder transformation,
the position of the u-th output frame is different from ¢ and the phases of the STFT
coefficients have to be adapted to ensure the continuity of the reconstructed sinusoidal
components and the perceptual preservation of the original sound’s timbre properties.
Phase vocoder implementations offer several methods to this end [36]. In one classic
procedure (horizontal phase synchronization), phases are adjusted independently in all
frequency positions, with phases at position t¥ extrapolated from phases at position
t“=1 [34]. In an improved procedure (vertical phase synchronization, or phase-locking),
each frame is first analysed to identify prominent peaks of amplitude along the
frequency axis, and phases are only extrapolated in the peak frequency positions; phases
of the frequency positions around each peak are locked to the phase of the peak
frequency position [35]. It is this second procedure that is implemented in CLEESE.

4In more details, CLEESE implements variants of these procedures: time-stretching is implemented
by taking a time-varying hop size at the analysis stage before the STFT and a constant hop size at the
synthesis stage, and pitch-shifting is implemented as time stretching followed by resampling
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Usage

CLEESE is implemented as module for the Python (versions 2 and 3) programming
language, and distributed under an open-source MIT License. It provides its own
implementation of the phase vocoder algorithm, with its only dependencies being the
numpy and scipy libraries.

In its default ’batch’ mode, CLEESE generates many random modifications from a
single input sound file, called the base sound. It can be launched as follows:

import cleese

inputFile = 'path_to_input_sound.wav'

configFile = 'path_to_config file.py'
cleese.process(soundData=inputFile,configFile=configFile)

where inputFile is the path to the base sound (a mono sound in WAV format) and
configFile is the path to a user-generated configuration script containing generation
parameters for all transformations. For each run in batch mode, the toolbox generates
an arbitrary number of random BPFs for each transformation, applies them to the base
sound, and saves the resulting files and their parameters.

The main parameters of the configuration file include how many files should be
generated, where the transformed files should be saved, and what transformation (or
combinations thereof) should be applied. For instance, the following configuration file
generates 10 audio files which result from a random stretch, followed by a random pitch
transformation of the base sound.

# main parameters
main_pars = {
'numFiles': 10, # number of output files to generate

'outPath': '/path_to_output_folder/', # output root folder

'chain': True, # apply transformations in series (True)

# or parallel (False)

"transf': ['stretch','pitch'] # modifications to apply
}

In addition, the configuration file includes parameters that specify how BPFs should
be generated for each transformation, including the number or duration of BPF
windows, their type (ramp or square) and the standard deviation of the gaussian
distribution used to sample breakpoints. As an example, the following parameters
correspond to pitch BPFs consisting of 6 ramp windows, each with a normally
distributed pitch shift between -300 and 300 cents.

# pitch transformation parameters
pitch_pars = {
'winlLen': 0.11, # BPF window (sec)
# 1f 0 : static transformation
'numWin': 6, # number of BPF windows.
# 2f O : static transformation
'winUnit': 'n', # 's': force winLen in seconds,
# 'n': force number of windows
'std': 300, # standard deviation for each breakpoint
"trunc': 1, # truncate distribution (factor of std)
'BPFtype': 'ramp', # type of breakpoint function:
# 'ramp': linear interpolation between breakpoints
# 'square': square BPF
'trTime': 0.02 # transition time for square BPF (sec)
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The CLEESE module is distributed with a Jupyter notebook tutorial, showing
further examples of using the toolbox for sound manipulation. In addition, all
experimental data and analysis scripts (also in the form of Jupyter notebooks) from the
following two case-studies are made available as supplementary material.

Case-study (1): speech intonation

To illustrate the use of CLEESE with speech stimuli and pitch shifting, we describe here
a short reverse-correlation experiment about the perception of speech intonation.
Speech intonation, and notably the temporal pattern of pitch in a given utterance, can
be used to convey syntactic or sentence mode information (e.g. whether a sentence is
interrogative or declarative), stress (e.g. on what word is the sentence’s focus),
emotional expression (e.g. whether a speaker is happy or sad) or attitudinal content
(e.g. whether a speaker is confident or doubtful) [37]. For instance, patterns of rising
pitch are associated with social traits such as submissiveness, doubt or questioning, and
falling pitch with dominance or assertiveness [38—40]. In addition, recent
neurophysiological evidence suggests that intonation processing is rooted at early
processing stages in the auditory cortex [41]. However, it has remained difficult to attest
of the generality of such intonation patterns and of their causality in cognitive
mechanisms. Even for information as seemingly simple as the question/statement
contrast, which is conventionally associated with the “final Rise” intonation, empirical
studies show that, while frequent, this pattern is not as simple nor common as usually
believed [42]. For instance, in one analysis of a corpus of 216 questions, the most
frequent tone for polar questions (e.g. ”Is this a question?”) was a Fall [43]. In addition,
in English, interrogative pitch contours do not consistently rise on the final part of the
utterance, but rather after the first syllable of the content word [44] (e.g. "Is this a
question you’re asking 7 vs ”Is this a question you're asking 7).

We give here a proof of concept of how to use CLEESE in a reverse-correlation
experiment to uncover what exact pitch contour drives participants’ categorization of an
utterance as interrogative or declarative. Data come from the first experiment presented
in [31].

Methods

Stimuli

One male speaker recorded a 426ms utterance of the French word “vraiment” (“really”),
which can be experienced either as a one-word statement or question. We used CLEESE
to artificially manipulate the pitch contour of the recording. First, the original pitch
contour (mean pitch = 105Hz) was artificially flattened to constant pitch, using the
procedure shown in Figure 3C-D. Then, we added/subtracted a constant pitch gain (+
20 cents, equating to & 1 fifth of a semitone) to create the "high-’" or "low-pitch’ versions
presented in each trial °. Finally, we added Gaussian “pitch noise” (i.e. pitch-shifting)
to the contour by sampling pitch values at 6 successive time-points, using a normal
distribution (SD = 70 cents; clipped at + 2.2 SD), linearly interpolated between
time-points, using the procedure shown in Figure 3A-B.

Procedure

700 pairs of randomly-manipulated voices were presented to each of N=>5 observers
(male: 3, M=22.5y0), all native French speakers with self-reported normal hearing.

Swe created these "high” and ”low” pitch categories to facilitate participants’ task, but they are not

necessary
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Participants listened to a pair of two randomly-modulated voices and were asked which
of the two versions was most interrogative. Inter-stimulus interval in each trial was 500
ms, and inter-trial interval was 1s.

Apparatus

The stimuli were mono sound files generated at sampling rate 44.1 kHz in 16-bit
resolution by Matlab. They were presented diotically through headphones
(Beyerdynamic DT 770 PRO; 80 ohms) at a comfortable sound level.

Analysis

A first-order temporal kernel [45] (i.e., a 7-points vector) was computed for each
participant, as the mean pitch contour of the voices classified as interrogative minus the
mean pitch contour of the voices classified as non-interrogative. Kernels were then
normalized by dividing them by the absolute sum of their values and then averaged over
all participants for visualization. A one-way repeated-measures ANOVA was conducted
on the temporal kernels to test for an effect of segment on pitch shift, and posthocs
were computed using Bonferroni-corrected Tukey tests.

[Figure 4]
Fig 4. Mental representation of interrogative prosody. Left: Average first-order
kernel derived by reverse-correlation on N=5 participants, showing an increase of pitch
at the end of the second syllable. Right: individual kernel from each of the participants.

Results

Observers’ responses revealed mental representations of interrogative prosody showing a
consistent increase of pitch at the end of the second syllable of the stimulus word (Fig.
4-left), as reflected by a main effect of segment index : F(6,24)=35.84, p=7.8e-11. Pitch
shift at segment 5 (355ms) was significantly different from all other segment locations
(all ps <0.001). The pattern was remarkably consistent among participants, although all
participants were tested on separate set of random stimuli (Fig. 4-right).

Case-study (2): musical rhythm

To illustrate another use of CLEESE, this time with musical stimuli and the
time-stretching functionality, we describe here a second reverse-correlation experiment
about the perception of musical rhythm and expressive timing.

The study of how participants perceive or accurately reproduce the rhythm of
musical phrases has informed such domain-general questions as how humans represent
sequences of events [46], internally measure speed and tempo [47] and entrain to low-
and high-frequency event trains [48]. For instance, it is often observed that musicians
tend to lengthen notes at the ends of musical phrases [49] and that even non-musicians
anticipate such changes when they perceive music [50]. However, the cognitive
structures that govern a participant’s representation of the rhythm of a given musical
passage are difficult to uncover with experimental methods. In [50], it was accessed
indirectly by measuring the ability to detect timing errors inserted at different positions
in a phrase; in [51], participants were asked to manually advance through a sequence of
musical chords with a key press, and the time dwelt on each successive chord was used
to quantify how fast they internally represented the corresponding musical time. Here,
we give a proof of concept of how to use CLEESE in a reverse-correlation experiment to
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uncover what temporal contour drives participants’ judgement of a rhythmically
competent/accurate rendition of the well-known song Happy birthday.

Methods
Stimuli

One female singer recorded a a capella rendering of the first phrase of the French folk
song “Joyeux anniversaire” (ﬁ ddddd ; translation of English song “Happy birthday
to you” [52]). We used CLEESE to artificially manipulate the timing of the recording
by stretching it between different breakpoints. First, we manually identified the time
onset of each sung note in the phrase, and use these positions as breakpoints. Second,
the original temporal contour was artificially flattened (i.e. all notes were
stretched/compressed to have identical duration Jddddd ), while preserving the
original pitch of each note. The duration of this final stimulus was 3203ms. Then, we
added Gaussian “temporal noise” (i.e. time-stretching) to each note by sampling stretch
values at 6 successive time-points, using a normal distribution centered at 1 (SD = 0.4;
clipped at + 1.6 SD), using a square BPF with a transition time of 0.1 s. The resulting
stimuli were therefore sung variants of the same melody, with the original pitch class,
but random rhythm (and overall duration).

Procedure

Pairs of these randomly-manipulated sung phrases were presented to N=12 observers
(male: 6, M=22yo0), all native French speakers with self-reported normal hearing. Five
participants had previous musical training (more than 12 years of instrumental practice)
and were therefore considered as musicians, the other seven participants had no musical
training and were considered as non-musicians. Participants listened to a pair of two
randomly-modulated phrases and were asked which of the two versions was best
sung/performed. Inter-stimulus interval in each trial was 500 ms, and inter-trial interval
was 1s. Each participant was presented with a total of 313 trials. There were 280
different trials and the last block of 33 trials was repeated twice (in the same order) to
estimate the percentage of agreement. After the test, all participants complete the
rhythm, melody, rythm-melody subtests of the Profile of Music Perception Skills
(PROMS, [53]), in order to quantify their melodic and rhythmic perceptual abilities.

Apparatus

Same as previous section.

Analysis

A first-order temporal kernel [45] (i.e., a 6-points vector) was computed for each
participant, as the mean stretch contour of the phrases classified as ’good performances’
minus the mean stretch contour of the phrases classified as ’bad performances’.
Kernels were then normalized by dividing them by the absolute sum of their values and
then averaged over all participants. A one-way repeated-measures ANOVA was
conducted on the temporal kernels to test for an effect of segment on time-stretch, and
posthocs were computed using Bonferroni-corrected Tukey tests. In addition, the
amount of internal noise for each subject was computed from the double-pass
percentage of agreement, using a signal detection theory model including response bias
and late additive noise [54,55].

6Because stretch factors are ratio, the kernel was in fact computed in the log stretch domain, as
meanlogtt — meanlogt—, where t+ and ¢t~ are the contours of selected and non-selected trials, resp.
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Results

[Figure 5]
Fig 5. Mental representation of the rhythm of a well-known song. Left:
Average first-order kernel derived by reverse-correlation on N=12 participants,
superimposed with the theoretical pattern (dotted line), showing how the internally
represented pattern departed from the theoretical one. Right: log-values of internal
noise estimated from the double-pass technique are negatively correlated with the
participant’s degree of musical skills (average score obtained for the 3 sub-tests of
PROMS); r=-0.65, p=0.02.

Observers’ responses revealed mental representations of note durations that
significantly evolve through time (Fig. 5-left) with a main effect of time index :
F(5,40)=30.7, p=1e-12. The ideal theoretical timing contour (0.75-0.25-1-1-1-2), as
given by the score of this musical phrase, was converted in time-stretch units by taking
the log of these values and was superimposed on Fig. 5. Several deviations from this
theoretical contour are worth noting. First, both musicians and non-musicians had
shortened representations for the first note of the melody (ch d - hd ). Second, in
an unpredicted effect, the analysis revealed a significant interaction of time index and
participant musicianship: F(5,40)=2.5, p=.045. The mental representations of a
well-executed song for the non-musician participants had longer durations on the third
note (“happy BIRTH-day to you”) compared with musicians participants. Needless to
say, this difference between musicians and non-musicians is only provided for illustrative
purposes, because of the small-powered nature of this case-study, and its experimental
confirmation and interpretation remain the object of future work. Finally, both
musicians and non-musicians had similarly shortened representations for the duration of
the last note (J Jdd 5 dddd ), a pattern which may appear at odds with the
phrase-final lengthening usually seen in both musicians and non-musicians [49,51]. It is
possible that smaller time-stretch values for this time point result from the participants
overestimating the duration of the final note, an aspect that remains to be tested in
future studies.

One should note that it is complicated to quantitatively compare the time-stretch
contours obtained with reverse-correlation with an ideal theoretical pattern. First,
time-stretch factors derived by reverse-correlation have arbitrary scale, and the ideal
pattern is therefore be represented at an arbitrary position on the y-axis, and rescaled
to have the same (max-min) stretch range as the one obtained experimentally. Second,
because participants’ task is to infer about the best overall rhythm and not individual
note duration, the time-stretch values at individual time points are not perceptually
independent (e.g., if the first two notes of a stimulus are long, participants may infer a
slower beat and expect even longer values for the following notes). For these reasons,
the ideal rhythmic pattern superimposed on these measured patterns should simply be
taken as an illustration of how note durations theoretically evolve from one note (i) to
the next (i4+1). Further theoretical work will be needed to best analyze and interpret
duration kernels derived from such reverse-correlation experiments.

In addition, internal noise values computed from the repeated block of this
experiment indicate that subjects did not behave at random but rather relied on a
somewhat precise mental representation of the ideal temporal contour (mean internal
noise of 1.1 (SD=1.1) in units of external noise; comparable with the average value of
1.3 obtained in typical low-level sensory psychophysical detection or discrimination
tasks, see [55]). In an exploratory manner, we asked whether these internal noise values
would correlate with the participant’s degree of musical skills (average score obtained
for the 3 sub-tests of PROMS). We found a significant negative correlation (r=-0.65,

)
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p=0.02), suggesting that low musical skills are associated with a more variable
mental/memory representation of the temporal contour of this melody 5-right). Because
this correlation may also be driven by the amount of attention that participants had
both in the PROMS and in the reverse-correlation tasks (which may be similar), further
work is required to determine the exact nature of this observed relationship.

Discussion

By providing the ability to manipulate speech and musical dimensions such as pitch,
duration and amplitude in a parametric, independent manner in the common
environment of the Python programming language, the open-source toolbox CLEESE
brings the power of data-driven / reverse-correlation methods to the vast domain of
speech and music cognition. In two illustrative case-studies, we have used CLEESE to
infer listeners’ mental representations of interrogative intonation (rising pitch at the end
of the utterance) and of the rhythmic structure of a well-known musical melody, and
shown that the methodology had potential to uncover potential individual differences
linked, e.g., to participant’s training or perceptual abilities. As such, the toolbox and
the associated methodology open avenues of research in communicative behavior and
social cognition. As a first application of CLEESE, we have recently used a
reverse-correlation paradigm to uncover what mental representations of pitch profiles
underlie judgements of speaker dominance and trustworthiness in short utterances like
the word ’hello’ [31]. The technique allowed to establish that both constructs
corresponded to robust and distinguishing pitch trajectories, which remained
remarkably stable whether males or female listeners judged male or female speakers.
Other potential questions include, in speech, studies of expressive intonation along all
characteristics of pitch, speed and amplitude, judgements of emotions (e.g. being happy,
angry or sad) or attitudes (e.g. being critical, impressed or ironic); in music, studies of
melodic and rythmic representations in naive and expert listeners, and how these may
differ with training or exposure. Beyond speech and music, CLEESE can also be used
to transform an study non-verbal vocalizations, such a infant cries or animal calls.

By measuring how any given individual’s or population’s mental representations may
differ from the generic code, data-driven paradigms have been especially important in
studying individual or cultural differences in face [2,56] or lexical processing [23]. By
providing a similar paradigm to map mental representations in the vast domain of
speech prosody, the present technique opens avenues to explore e.g. dysprosody and
social-cognitive deficits in autism-spectrum disorder [57], schizophrenia [58] or

congenital amusia [59], as well as cultural differences in social and affective prosody [60].

Because CLEESE allows to create random variations among the different dimensions
of both speech and musical stimuli (pitch, time, level), it also opens possibilities to
measure the amount of internal noise (e.g. using a double-pass technique as in the
case-study 2 here) associated to the processing of these dimensions in many various
high-level cognitive tasks. This is particularly interesting because it provides a
quantitative way to (1) demonstrate that participants are not doing the task at random
(which is always an issue in this type of high-level task where there is no good/bad
answers that would lead to an associated d-prime value) and (2) investigate which
perceptual dimensions are cognitively processed with what amount of noise.

The current implementation of CLEESE, and its application to data-driven
experiments in the auditory modality, leaves several methodological questions open.
First, in the current form, the temporal dynamics of the noise/perturbations is purely
random, and changes of pitch/time or amplitude are independent across segments (a
classical assumption of the reverse-correlation technique [4]). This assumption may
create prosodic patterns that are not necessary realizable by the human voice and thus
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bias the participant responses for those trials. In vision, recent studies have manipulated
facial action units with a restricted family of temporal profiles parametrized in
acceleration, amplitude and relative length [25]. In a similar manner, future versions of
CLEESE could constrain prosodic patterns to correspond more closely to the dynamics
of the human voice or to the underlying production process, e.g. not aligned with
arbitrary segment locations but with the underlying phonemic (or musical) structure.

Another possible direction for improvement is the addition of other high-level
manipulation dimensions. As an example, spectral envelope manipulation (optionally
formant-driven) allows powerful transformations related to timbre, speaker identity and
even gender which all could be manipulated by CLEESE [61]. At an even higher
abstraction level, research could consider more semantically-related features (such as the
mid-level audio descriptors typically used in machine learning methods) or even
feature-learning approaches that would automatically derive the relevant dimensions
prior to randomization [62]. Adding these new dimensions will likely require a trade-off
between their effectiveness for stimuli randomization and their suitability for physical
interpretation.

Finally, on a purely technical level, improvements of the current phase vocoder
implementation in CLEESE may include additional modules such as envelope or
transient preservation to further improve the realism of the transformations.

Supporting information

All experimental data and analysis scripts (in the form of Jupyter notebook) for the two
case-study experiments are made available as supplementary material
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