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Abstract

Over the past few years, the field of visual social cognition and face processing has been 1

dramatically impacted by a series of data-driven studies employing computer-graphics 2

tools to synthesize arbitrary meaningful facial expressions. In the auditory modality, 3

reverse correlation is traditionally used to characterize sensory processing at the level of 4

spectral or spectro-temporal stimulus properties, but not higher-level cognitive 5

processing of e.g. words, sentences or music, by lack of tools able to manipulate the 6

stimulus dimensions that are relevant for these processes. Here, we present an 7

open-source audio-transformation toolbox, called CLEESE, able to systematically 8

randomize the prosody/melody of existing speech and music recordings. CLEESE works 9

by cutting recordings in small successive time segments (e.g. every successive 100 10

milliseconds in a spoken utterance), and applying a random parametric transformation 11

of each segment’s pitch, duration or amplitude, using a new Python-language 12

implementation of the phase-vocoder digital audio technique. We present here two 13

applications of the tool to generate stimuli for studying intonation processing of 14

interrogative vs declarative speech, and rhythm processing of sung melodies. 15

Introduction 16

The field of high-level visual and auditory research is concerned with the sensory and 17

cognitive processes involved in the recognition of objects or words, faces or speakers and, 18

increasingly, of social expressions of emotions or attitudes in faces, speech and music. In 19

traditional psychological methodology, the signal features that drive judgments (e.g. 20

facial metrics such as width-to-height ratio, acoustical features such as mean pitch) are 21

posited by the experimenter before being controlled or tested experimentally, which may 22

create a variety of confirmation biases or experimental demands. For instance, stimuli 23

constructed to display western facial expressions of happiness or sadness may well be 24

recognized as such by non-western observers [1], but yet may not be the way these 25

emotions are spontaneously produced, or internally represented, in such cultures [2]. 26

Similarly in auditory cognition, musical stimuli recorded by experts pressed to express 27

emotions in music may do so by mimicking expressive cues used in speech, but these 28

cues may not exhaust the many other ways in which arbitrary music can express 29

emotions [3]. For all these reasons, in recent years, a series of powerful data-driven 30
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[Figure 1]
Fig 1. Low- and high-level subspace noise for the reverse-correlation of
visual and audio stimuli. Reverse-correlation paradigms aim to isolate the subspace
of feature dimensions that maximizes participant responses, and as such, need to search
a stimulus generative space e.g. of all possible images or sounds relevant for a task. In a
majority of studies, noise masks operate on low-level, frequency-based representations of
the signal, e.g. at different scales and orientations for image stimuli (top-left) or
different frequencies of an auditory spectrogram (top-right). More recent models in the
vision modality are able to explore the subspace of facial expressions through the
systematic manipulation of facial action units (bottom-left). The present work
represents a conceptually-similar development for the auditory modality.

paradigms (built on techniques such as reverse-correlation, classification image or 31

bubbles; see [4] for a review) were introduced in the field of visual cognition to discover 32

relevant signal features empirically, by analyzing participant responses to large sets of 33

systematically-varied stimuli [5]. 34

The reverse correlation technique was first introduced in neurophysiology to 35

characterize neuronal receptive fields of biological systems with so-called “white noise 36

analysis” [6–9]. In psychophysics, the technique was then adapted to characterize 37

human sensory processes, taking behavioral choices (e.g., yes/no responses) instead of 38

neuronal spikes as the systems’ output variables to study, e.g. in the auditory domain, 39

detection of tones in noise [10] or loudness weighting in tones and noise ( [11]; see [4] for 40

a review of similar applications in vision). In the visual domain, these techniques have 41

been extended in recent years to address not only low-level sensory processes, but 42

higher-level cognitive mechanisms in humans: facial recognition [12], emotional 43

expressions [2, 13], social traits [14], as well as their associated individual and cultural 44

variations ( [15]; for a review, see [5]). In speech, even more recently, reverse correlation 45

and the associated “bubbles” technique were used to study spectro-temporal regions 46

underlying speech intelligibility [16,17] or phoneme discrimination in noise [18, 19] and, 47

in music, timbre recognition of musical instruments [20,21]. 48

All of these techniques aim to isolate the subspace of feature dimensions that 49

maximizes participant responses, and as such, need to search the stimulus generative 50

space e.g. of all possible images or sounds relevant for a given task. A typical way to 51

define and search such a space is to consider a single target stimulus (e.g. a neutral face, 52

or the recording of a spoken phoneme), apply a great number of noise masks that 53

modify the low- or high-level physical properties of that target, and then regress the 54

(random) physical properties of the masks on participant judgements. Techniques differ 55

in how such noise masks are generated, and on what stimulus subspace they operate 56

(Figure 1). At the lowest possible level, early proposals have applied simple pixel-level 57

noise masks [13], and sometimes even no stimulus at all, akin to white noise “static” on 58

a TV screen in which participants were forced to confabulate the presence of a visual 59

target [22] or a vowel sound [19]. More consistently, noise masks generally operate on 60

low-level, frequency-based representations of the signal, e.g. at different scales and 61

orientations for image stimuli [12, 14], different frequencies of an auditory 62

spectrogram [17,23] or different rates and scales of a modulation spectrum 63

(MPS) [16,21]. 64

While low-level subspace noise has the advantage of providing a physical description 65

of the stimuli driving participant responses, it is often a suboptimal search space for 66

high-level cognitive tasks. First, all stimulus features that are driving participant 67

judgements may not be efficiently encoded in low-level representations: the auditory 68

modulation spectrum, for instance, is sparse for a sound’s harmonic regularities, coded 69

for by a single MPS pixel, but not for features localized in time, such as attack time or 70
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transitions between phonemes [23]. As a consequence, local mask fluctuations will 71

create continuous variations for the former, but not the latter features which will be 72

difficult to regress on. Second, low-level variations in stimuli typically create highly 73

distorted faces or sounds (Figure 1-top), for which one may question the ecological 74

relevance of participant judgements. Finally, and perhaps most critically, many of the 75

most expressive, cognitively-meaningful features of a face or voice signal are coordinated 76

action-units (e.g. a contraction of a facial muscle, the rise of pitch at the end of a spoken 77

utterance) that have distributed representations in low-level search spaces, and will 78

never be consistently explored by a finite amount of random activations at that level. 79

Consequently, the face research community has recently developed a number of 80

higher-level generative models able to synthesize facial expressions through the 81

systematic manipulation of facial action units [24,25]. These tools are based on 82

morphological models that simulate the ’amplitude vs time’ effect of individual muscles 83

and then reconstruct realistic facial textures that account for the modified underlying 84

morphology, as well as head pose and lighting. Searching such high-level subspaces with 85

reverse-correlation is akin to searching the space of all possible facial expressions (Figure 86

1-bottom), while leaving out the myriad of other possible facial stimuli that are not 87

directly interpretable as human-made expressions - a highly efficient strategy that has 88

been applied to characterize subtle aspects of social and emotional face perception 89

processes, such as cultural variations in emotional expressions [2], physical differences 90

between different kinds of smiles [26] or in the way these features are processed in 91

time [27]. In auditory research, however, similarly efficient data-driven strategies have 92

not yet been common practice, by lack of tools able to manipulate the high-level 93

stimulus dimensions that are relevant for similar judgement tasks when they apply on, 94

e.g., voice or music. 95

Here, we present an open-source audio-transformation toolbox, called CLEESE 96

(Combinatorial Expressive Speech Engine) 1, able to systematically randomize the 97

prosody/melody of existing speech and music recordings. CLEESE works by cutting 98

recordings in small successive time segments (e.g. every successive 100 milliseconds in a 99

spoken utterance), and applying a random parametric transformation of each segment’s 100

pitch, duration, amplitude or frequency content, using a new Python-language 101

implementation of the phase-vocoder digital audio technique. Transformations made 102

with CLEESE explore the space of speech intonation and expressive speech prosody by 103

allowing to create random time-profiles of pitch (e.g. rising pitch at the end of an 104

utterance, as in interrogative sentences [28]), of duration (e.g. word-final vowel 105

lengthening, as used as a cue for word segmentation [29]) or amplitude (e.g. louder on 106

prominent words or phonemes [30]). In music, the same transformations can be 107

described as melodic, manipulating the pitch/tuning of successive notes in a sequence 108

(e.g. ˇ “[, ˇ “ or ˇ “]), their duration (e.g. ˘ “, ˇ “ or ˇ “( ) or amplitude (e.g. p, mf or f). All 109

transformations are parametric, thus allowing to generate thousands of random variants 110

drawn e.g. from a gaussian distribution ; and realistic (within appropriate parameter 111

ranges), such that the resulting audio stimuli do not typically appear 112

artificial/transformed, but rather plausible as ecological speech or music recordings. 113

In recent work, we have used CLEESE with a reverse-correlation paradigm to 114

uncover what mental representations of pitch profiles underlie judgements of speaker 115

dominance and trustworthiness in short utterances like the word ’hello’ [31]. We 116

recorded a single utterance of the word ’hello’ by one male and one female speaker. 117

CLEESE was first used to flatten the pitch of the recordings (by transforming it with a 118

pitch profile that alters its original prosody to constant pitch), and then to generate 119

random pitch variations, by manipulating the pitch over 6-time points on Gaussian 120

distributions of SD = 70 cents clipped at ±2.2 SD. Pairs of these randomly-manipulated 121

1named after British actor John Cleese, with reference to the ”Ministry of Silly Talks”
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voices were then presented to observers who were asked, on each trial, to judge which of 122

the two versions appeared most dominant/trustworthy. The participants’ mental 123

representations were then computed by computing the mean pitch contour (a 6-point 124

vector) of the voices they classified as dominant (resp. trustworthy) minus the mean 125

pitch contour of the voices classified as non-dominant (resp. non-trustworthy). 126

In this article, we describe the functionality of the CLEESE toolbox, the algorithms 127

that underlie it as well as how to deploy it in psychophysical reverse-correlation 128

experiments such as those above. We then present two case-studies in which we use 129

CLEESE to generate pitch-shifted speech stimuli to study the perception of 130

interrogative vs declarative speech prosody, and time-stretched musical stimuli to study 131

the rhythm processing of sung melodies. 132

Functionality, algorithms, usage 133

Functionality 134

CLEESE is an open-source Python toolbox2 used to create random or fixed pitch, time 135

and amplitude transformations on any input sound3. The transformations can be both 136

static or time-varying. Besides its purpose of generating many stimuli for 137

reverse-correlation experiments, the toolbox can also be used for producing individual, 138

user-determined transformations. 139

CLEESE operates by generating a set of random breakpoint functions (BPFs) for 140

each transformation, which are then passed to a spectral processing engine (based on 141

the phase vocoder algorithm, see below) for the transformation to occur. BPFs 142

determine how the sound transformations vary over the duration of the stimulus. 143

CLEESE can randomly generate BPFs of two types: ramps, where the corresponding 144

sound parameter is interpolated linearly between breakpoints (Figure 2-top) and square, 145

where the BPF is a square signal with sloped transitions (Figure 2-bottom). BPF 146

segments can be defined either by forcing all of them to have a fixed duration (i.e., their 147

number will depend on the whole sound’s duration, see Figure 2-left), or by forcing a 148

fixed number of segments along the total sound duration (i.e., their duration will 149

depend on the whole sound’s duration, see Figure 2-right). Alternatively, the user can 150

pass custom breakpoint positions, which can be defined manually e.g. to correspond to 151

each syllable or note in given a recording. 152

[Figure 2]
Fig 2. CLEESE operates by generating a set of random breakpoint
functions (BPFs) which control the dynamically-changing parameters of
the sound transformations. In ramp BPFs (top), transformation parameters are
interpolated linearly between breakpoints. In square BPFs, they are constant in each
segment. BPFs can be specified either in terms of fixed duration (left: 80ms segments)
or fixed number of segments (right: 6 segments).

BPFs can be defined to transform sounds along three signal dimensions: 153

Pitch: The BPF is used to transpose up and down the pitch of each segment in the 154

sound, while maintaining its amplitude and duration constant. Each breakpoint in 155

the BPF corresponds to a pitch shift value p in cents or percents of a semitone, 156

with 0 cents corresponding to no change with respect to original pitch. 157

2Available upon free registration at http://forumnet.ircam.fr/product/cleese
3Note that CLEESE can also be used to create spectral transformations, a technique not described

here - see [32]

PLOS 4/17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/436477doi: bioRxiv preprint 

https://doi.org/10.1101/436477
http://creativecommons.org/licenses/by/4.0/


Time: The BPF is used to stretch or compress the duration of each segment in the 158

sound, while maintaining its amplitude and pitch constant. Each breakpoint 159

corresponds to a time stretch factor t in ratio to original duration, with 0 < t < 1 160

corresponding to compression/faster speed, t > 1 stretched/slower speed, and 161

t = 1 no change with respect to segment’s original duration. 162

Amplitude: The BPF is used to amplify or decrease the signal’s instantaneous 163

amplitude in each segment, while maintaining its pitch and duration constant. 164

Each breakpoint corresponds to a gain value g in dBs (thus, in base-10 logarithm 165

ratio to original signal amplitude), with g = 0 corresponding to no change with 166

respect to original amplitude. 167

The default mode is for CLEESE to generate p,t or g values at each breakpoint by 168

sampling from a Gaussian distribution centered on p = 0, t = 1 or g = 0 (no change) 169

and whose standard deviation (in cents, duration or amplitude ratio) allows to 170

statistically control the intensity of the transformations. For instance, with a pitch SD 171

of 100cents, CLEESE will assign random shift values at every breakpoint, 68% of which 172

are within ± 1 semitone of the segment’s original pitch (Figure 3A-B). The 173

transformations can be chained, e.g. manipulating pitch, then duration, then amplitude, 174

all with separate transformation parameters. For each type of transformation, 175

distributions can be truncated (at given multiples of SD) to avoid extreme 176

transformation values which may be behaviorally unrealistic. Alternatively, 177

transformation parameters at each breakpoint can be provided manually by the user. 178

For instance, this allows to flatten the pitch contour of an original recording, by 179

constructing a custom breakpoint function that passes through the pitch shift values 180

needed to shift the contour to a constant pitch value (Figure 3C-D). 181

[Figure 3]
Fig 3. Examples of pitch manipulations created with CLEESE.A: pitch of an
original male speech recording (a 400ms utterance of the word ’hello’). B: Random
pitch transformations of the original, where pitch shift values at each breakpoint are
drawn from a Gaussian distribution. C: Manually-specified BPF created to flatten the
pitch contour of the original recording. D: Resulting flat-pitch transformation,
compared to original.

Algorithm 182

The phase vocoder is a sound processing technique based on the short-term Fourier 183

Transform (STFT, [33]). The STFT decomposes each successive parts (or frames) of an 184

incoming audio signal into a set of coefficients that allow to perfectly reconstruct the 185

original frame as a weighted sum of modulated sinusoidal components (eq.(1)). The 186

phase vocoder algorithm operates on each frame’s STFT coefficients, modifying them 187

either in their content (e.g. displacing frequency components to higher frequency 188

positions to simulate a higher pitch) or their position in time (e.g. displacing frames to 189

subsequent time points to simulate a slower sound). It then reconstructs the original 190

signal from the manipulated frames with a variety of techniques meant to ensure the 191

continuity (or phase coherence) of the resulting sinusoidal components [34,35]. 192

Depending on how individual frames are manipulated, the technique can be used e.g. to 193

change a sound’s duration without affecting its pitch (a process known as time 194

stretching), or to change a sound’s pitch without changing its duration (pitch shifting, 195

see [36] for a review). 196

In more detail, the phase vocoder procedure considers a (digital) sound x as a 197

real-valued discrete signal, and h a symmetric real-valued discrete signal composed of N 198
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samples, usually called window, that is used to cut the input sound into successive 199

frames. In the analysis stage, frames are extracted with a time step (or hop size) Ra, 200

corresponding to successive time positions tua = Rau, where u is the index of the u-th 201

frame. The discrete STFT of x with window h is given by the discrete FFT of the time 202

frames of x multiplied by h, 203

X(tua ,Ωk) =
∑
n

h(n) x(tua + n) e−jΩkn , (1)

where X(tua ,Ωk) is the STFT coefficient corresponding to frequency Ωk = 2πk
N , 204

k = 0, ..., N − 1 in the u-th frame of the signal. X is a two-dimensional complex-valued 205

representation, which can be expressed in terms of real and imaginary parts or, 206

equivalently, amplitude and phase. The amplitude of the coefficient at time index u and 207

frequency bin k is given by |X(tua ,Ωk)|, while its phase is ∠X(tua ,Ωk) = arg(X(tua ,Ωk)). 208

A given transformation T(X) = Y can then be performed by altering the amplitudes 209

and/or phases of selected coefficients, leading to a complex-valued representation Y of 210

the same dimension as X. For instance, if one wishes to shift the frequency content of 211

the sound by a fixed frequency p, then one can take Y (tua ,Ωk) = X(tua ,Ωk − p) (i.e. the 212

k-th frequency component of the u-th input frame is copied at the k + p frequency 213

position in the u-th output frame). Alternatively, if we wish to temporally 214

stretch/compress the sound by a given factor t, then we take Y (tuat,Ωk) = X(tua ,Ωk) 215

(i.e. the k-th frequency component of the u-th input frame is copied at the k-th 216

frequency component of the t× u-th output frame, i.e. at a later time position if t > 1 217

or earlier position if t < 1). Finally, amplitude manipulations by a time-frequency mask 218

G composed of scalar gain factors gu,k can be generated by taking 219

|Y (tua ,Ωk)| = gu,k · |X(tua ,Ωk)| for the amplitudes, and leaving phases unchanged4. 220

The transformed coefficients in Y are then used to synthesize a new sound y, using 221

the inverse procedure to eq.(1). As done for analysis, let the scalar Rs be the synthesis 222

hop size, and tus = Rsu the position of the u-th output frame. Then, using the same 223

window function h, the output signal is given by 224

y(n) =
∑
u

h(n− tus ) yu(n− tus ) (2)

225

yu(n) =
1

N

N−1∑
k=1

Y (tus ,Ωk) ejΩkn, (3)

When STFT frames are time-shifted as part of the phase-vocoder transformation, 226

the position of the u-th output frame is different from tua and the phases of the STFT 227

coefficients have to be adapted to ensure the continuity of the reconstructed sinusoidal 228

components and the perceptual preservation of the original sound’s timbre properties. 229

Phase vocoder implementations offer several methods to this end [36]. In one classic 230

procedure (horizontal phase synchronization), phases are adjusted independently in all 231

frequency positions, with phases at position tus extrapolated from phases at position 232

tu−1
s [34]. In an improved procedure (vertical phase synchronization, or phase-locking), 233

each frame is first analysed to identify prominent peaks of amplitude along the 234

frequency axis, and phases are only extrapolated in the peak frequency positions; phases 235

of the frequency positions around each peak are locked to the phase of the peak 236

frequency position [35]. It is this second procedure that is implemented in CLEESE. 237

4In more details, CLEESE implements variants of these procedures: time-stretching is implemented
by taking a time-varying hop size at the analysis stage before the STFT and a constant hop size at the
synthesis stage, and pitch-shifting is implemented as time stretching followed by resampling
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Usage 238

CLEESE is implemented as module for the Python (versions 2 and 3) programming 239

language, and distributed under an open-source MIT License. It provides its own 240

implementation of the phase vocoder algorithm, with its only dependencies being the 241

numpy and scipy libraries. 242

In its default ’batch’ mode, CLEESE generates many random modifications from a 243

single input sound file, called the base sound. It can be launched as follows: 244

import cleese

inputFile = 'path_to_input_sound.wav'

configFile = 'path_to_config_file.py'

cleese.process(soundData=inputFile,configFile=configFile)

where inputFile is the path to the base sound (a mono sound in WAV format) and 245

configFile is the path to a user-generated configuration script containing generation 246

parameters for all transformations. For each run in batch mode, the toolbox generates 247

an arbitrary number of random BPFs for each transformation, applies them to the base 248

sound, and saves the resulting files and their parameters. 249

The main parameters of the configuration file include how many files should be 250

generated, where the transformed files should be saved, and what transformation (or 251

combinations thereof) should be applied. For instance, the following configuration file 252

generates 10 audio files which result from a random stretch, followed by a random pitch 253

transformation of the base sound. 254

# main parameters

main_pars = {

'numFiles': 10, # number of output files to generate

'outPath': '/path_to_output_folder/', # output root folder

'chain': True, # apply transformations in series (True)

# or parallel (False)

'transf': ['stretch','pitch'] # modifications to apply

}

In addition, the configuration file includes parameters that specify how BPFs should 255

be generated for each transformation, including the number or duration of BPF 256

windows, their type (ramp or square) and the standard deviation of the gaussian 257

distribution used to sample breakpoints. As an example, the following parameters 258

correspond to pitch BPFs consisting of 6 ramp windows, each with a normally 259

distributed pitch shift between -300 and 300 cents. 260

# pitch transformation parameters

pitch_pars = {

'winLen': 0.11, # BPF window (sec)

# if 0 : static transformation

'numWin': 6, # number of BPF windows.

# if 0 : static transformation

'winUnit': 'n', # 's': force winLen in seconds,

# 'n': force number of windows

'std': 300, # standard deviation for each breakpoint

'trunc': 1, # truncate distribution (factor of std)

'BPFtype': 'ramp', # type of breakpoint function:

# 'ramp': linear interpolation between breakpoints

# 'square': square BPF

'trTime': 0.02 # transition time for square BPF (sec)

}
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The CLEESE module is distributed with a Jupyter notebook tutorial, showing 261

further examples of using the toolbox for sound manipulation. In addition, all 262

experimental data and analysis scripts (also in the form of Jupyter notebooks) from the 263

following two case-studies are made available as supplementary material. 264

Case-study (1): speech intonation 265

To illustrate the use of CLEESE with speech stimuli and pitch shifting, we describe here 266

a short reverse-correlation experiment about the perception of speech intonation. 267

Speech intonation, and notably the temporal pattern of pitch in a given utterance, can 268

be used to convey syntactic or sentence mode information (e.g. whether a sentence is 269

interrogative or declarative), stress (e.g. on what word is the sentence’s focus), 270

emotional expression (e.g. whether a speaker is happy or sad) or attitudinal content 271

(e.g. whether a speaker is confident or doubtful) [37]. For instance, patterns of rising 272

pitch are associated with social traits such as submissiveness, doubt or questioning, and 273

falling pitch with dominance or assertiveness [38–40]. In addition, recent 274

neurophysiological evidence suggests that intonation processing is rooted at early 275

processing stages in the auditory cortex [41]. However, it has remained difficult to attest 276

of the generality of such intonation patterns and of their causality in cognitive 277

mechanisms. Even for information as seemingly simple as the question/statement 278

contrast, which is conventionally associated with the “final Rise” intonation, empirical 279

studies show that, while frequent, this pattern is not as simple nor common as usually 280

believed [42]. For instance, in one analysis of a corpus of 216 questions, the most 281

frequent tone for polar questions (e.g. ”Is this a question?”) was a Fall [43]. In addition, 282

in English, interrogative pitch contours do not consistently rise on the final part of the 283

utterance, but rather after the first syllable of the content word [44] (e.g. ”Is this a 284

question you’re asking ? vs ”Is this a question you’re asking ?”). 285

We give here a proof of concept of how to use CLEESE in a reverse-correlation 286

experiment to uncover what exact pitch contour drives participants’ categorization of an 287

utterance as interrogative or declarative. Data come from the first experiment presented 288

in [31]. 289

Methods 290

Stimuli 291

One male speaker recorded a 426ms utterance of the French word “vraiment” (“really”), 292

which can be experienced either as a one-word statement or question. We used CLEESE 293

to artificially manipulate the pitch contour of the recording. First, the original pitch 294

contour (mean pitch = 105Hz) was artificially flattened to constant pitch, using the 295

procedure shown in Figure 3C-D. Then, we added/subtracted a constant pitch gain (± 296

20 cents, equating to ± 1 fifth of a semitone) to create the ’high-’ or ’low-pitch’ versions 297

presented in each trial 5. Finally, we added Gaussian “pitch noise” (i.e. pitch-shifting) 298

to the contour by sampling pitch values at 6 successive time-points, using a normal 299

distribution (SD = 70 cents; clipped at ± 2.2 SD), linearly interpolated between 300

time-points, using the procedure shown in Figure 3A-B. 301

Procedure 302

700 pairs of randomly-manipulated voices were presented to each of N=5 observers 303

(male: 3, M=22.5yo), all native French speakers with self-reported normal hearing. 304

5we created these ”high” and ”low” pitch categories to facilitate participants’ task, but they are not
necessary
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Participants listened to a pair of two randomly-modulated voices and were asked which 305

of the two versions was most interrogative. Inter-stimulus interval in each trial was 500 306

ms, and inter-trial interval was 1s. 307

Apparatus 308

The stimuli were mono sound files generated at sampling rate 44.1 kHz in 16-bit 309

resolution by Matlab. They were presented diotically through headphones 310

(Beyerdynamic DT 770 PRO; 80 ohms) at a comfortable sound level. 311

Analysis 312

A first-order temporal kernel [45] (i.e., a 7-points vector) was computed for each 313

participant, as the mean pitch contour of the voices classified as interrogative minus the 314

mean pitch contour of the voices classified as non-interrogative. Kernels were then 315

normalized by dividing them by the absolute sum of their values and then averaged over 316

all participants for visualization. A one-way repeated-measures ANOVA was conducted 317

on the temporal kernels to test for an effect of segment on pitch shift, and posthocs 318

were computed using Bonferroni-corrected Tukey tests. 319

[Figure 4]
Fig 4. Mental representation of interrogative prosody. Left: Average first-order
kernel derived by reverse-correlation on N=5 participants, showing an increase of pitch
at the end of the second syllable. Right: individual kernel from each of the participants.

Results 320

Observers’ responses revealed mental representations of interrogative prosody showing a 321

consistent increase of pitch at the end of the second syllable of the stimulus word (Fig. 322

4-left), as reflected by a main effect of segment index : F(6,24)=35.84, p=7.8e-11. Pitch 323

shift at segment 5 (355ms) was significantly different from all other segment locations 324

(all ps <0.001). The pattern was remarkably consistent among participants, although all 325

participants were tested on separate set of random stimuli (Fig. 4-right). 326

Case-study (2): musical rhythm 327

To illustrate another use of CLEESE, this time with musical stimuli and the 328

time-stretching functionality, we describe here a second reverse-correlation experiment 329

about the perception of musical rhythm and expressive timing. 330

The study of how participants perceive or accurately reproduce the rhythm of 331

musical phrases has informed such domain-general questions as how humans represent 332

sequences of events [46], internally measure speed and tempo [47] and entrain to low- 333

and high-frequency event trains [48]. For instance, it is often observed that musicians 334

tend to lengthen notes at the ends of musical phrases [49] and that even non-musicians 335

anticipate such changes when they perceive music [50]. However, the cognitive 336

structures that govern a participant’s representation of the rhythm of a given musical 337

passage are difficult to uncover with experimental methods. In [50], it was accessed 338

indirectly by measuring the ability to detect timing errors inserted at different positions 339

in a phrase; in [51], participants were asked to manually advance through a sequence of 340

musical chords with a key press, and the time dwelt on each successive chord was used 341

to quantify how fast they internally represented the corresponding musical time. Here, 342

we give a proof of concept of how to use CLEESE in a reverse-correlation experiment to 343
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uncover what temporal contour drives participants’ judgement of a rhythmically 344

competent/accurate rendition of the well-known song Happy birthday. 345

Methods 346

Stimuli 347

One female singer recorded a a capella rendering of the first phrase of the French folk 348

song “Joyeux anniversaire” ( ˇ “( ‰ ˇ “) ˇ “ ˇ “ ˇ “ ˘ “ ; translation of English song “Happy birthday 349

to you” [52]). We used CLEESE to artificially manipulate the timing of the recording 350

by stretching it between different breakpoints. First, we manually identified the time 351

onset of each sung note in the phrase, and use these positions as breakpoints. Second, 352

the original temporal contour was artificially flattened (i.e. all notes were 353

stretched/compressed to have identical duration ˇ “ ˇ “ ˇ “ ˇ “ ˇ “ ˇ “ ), while preserving the 354

original pitch of each note. The duration of this final stimulus was 3203ms. Then, we 355

added Gaussian “temporal noise” (i.e. time-stretching) to each note by sampling stretch 356

values at 6 successive time-points, using a normal distribution centered at 1 (SD = 0.4; 357

clipped at ± 1.6 SD), using a square BPF with a transition time of 0.1 s. The resulting 358

stimuli were therefore sung variants of the same melody, with the original pitch class, 359

but random rhythm (and overall duration). 360

Procedure 361

Pairs of these randomly-manipulated sung phrases were presented to N=12 observers 362

(male: 6, M=22yo), all native French speakers with self-reported normal hearing. Five 363

participants had previous musical training (more than 12 years of instrumental practice) 364

and were therefore considered as musicians, the other seven participants had no musical 365

training and were considered as non-musicians. Participants listened to a pair of two 366

randomly-modulated phrases and were asked which of the two versions was best 367

sung/performed. Inter-stimulus interval in each trial was 500 ms, and inter-trial interval 368

was 1s. Each participant was presented with a total of 313 trials. There were 280 369

different trials and the last block of 33 trials was repeated twice (in the same order) to 370

estimate the percentage of agreement. After the test, all participants complete the 371

rhythm, melody, rythm-melody subtests of the Profile of Music Perception Skills 372

(PROMS, [53]), in order to quantify their melodic and rhythmic perceptual abilities. 373

Apparatus 374

Same as previous section. 375

Analysis 376

A first-order temporal kernel [45] (i.e., a 6-points vector) was computed for each 377

participant, as the mean stretch contour of the phrases classified as ’good performances’ 378

minus the mean stretch contour of the phrases classified as ’bad performances’6. 379

Kernels were then normalized by dividing them by the absolute sum of their values and 380

then averaged over all participants. A one-way repeated-measures ANOVA was 381

conducted on the temporal kernels to test for an effect of segment on time-stretch, and 382

posthocs were computed using Bonferroni-corrected Tukey tests. In addition, the 383

amount of internal noise for each subject was computed from the double-pass 384

percentage of agreement, using a signal detection theory model including response bias 385

and late additive noise [54,55]. 386

6Because stretch factors are ratio, the kernel was in fact computed in the log stretch domain, as
mean log t+ −mean log t−, where t+ and t− are the contours of selected and non-selected trials, resp.
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Results 387

[Figure 5]
Fig 5. Mental representation of the rhythm of a well-known song. Left:
Average first-order kernel derived by reverse-correlation on N=12 participants,
superimposed with the theoretical pattern (dotted line), showing how the internally
represented pattern departed from the theoretical one. Right: log-values of internal
noise estimated from the double-pass technique are negatively correlated with the
participant’s degree of musical skills (average score obtained for the 3 sub-tests of
PROMS); r=-0.65, p=0.02.

Observers’ responses revealed mental representations of note durations that 388

significantly evolve through time (Fig. 5-left) with a main effect of time index : 389

F(5,40)=30.7, p=1e-12. The ideal theoretical timing contour (0.75-0.25-1-1-1-2), as 390

given by the score of this musical phrase, was converted in time-stretch units by taking 391

the log of these values and was superimposed on Fig. 5. Several deviations from this 392

theoretical contour are worth noting. First, both musicians and non-musicians had 393

shortened representations for the first note of the melody ( ˇ “( ‰ ˇ “) → ˇ “) ˇ “) ). Second, in 394

an unpredicted effect, the analysis revealed a significant interaction of time index and 395

participant musicianship: F(5,40)=2.5, p=.045. The mental representations of a 396

well-executed song for the non-musician participants had longer durations on the third 397

note (“happy BIRTH-day to you”) compared with musicians participants. Needless to 398

say, this difference between musicians and non-musicians is only provided for illustrative 399

purposes, because of the small-powered nature of this case-study, and its experimental 400

confirmation and interpretation remain the object of future work. Finally, both 401

musicians and non-musicians had similarly shortened representations for the duration of 402

the last note ( ˇ “ ˇ “ ˇ “ ˘ “ → ˇ “ ˇ “ ˇ “ ˇ “( ), a pattern which may appear at odds with the 403

phrase-final lengthening usually seen in both musicians and non-musicians [49, 51]. It is 404

possible that smaller time-stretch values for this time point result from the participants’ 405

overestimating the duration of the final note, an aspect that remains to be tested in 406

future studies. 407

One should note that it is complicated to quantitatively compare the time-stretch 408

contours obtained with reverse-correlation with an ideal theoretical pattern. First, 409

time-stretch factors derived by reverse-correlation have arbitrary scale, and the ideal 410

pattern is therefore be represented at an arbitrary position on the y-axis, and rescaled 411

to have the same (max-min) stretch range as the one obtained experimentally. Second, 412

because participants’ task is to infer about the best overall rhythm and not individual 413

note duration, the time-stretch values at individual time points are not perceptually 414

independent (e.g., if the first two notes of a stimulus are long, participants may infer a 415

slower beat and expect even longer values for the following notes). For these reasons, 416

the ideal rhythmic pattern superimposed on these measured patterns should simply be 417

taken as an illustration of how note durations theoretically evolve from one note (i) to 418

the next (i+1). Further theoretical work will be needed to best analyze and interpret 419

duration kernels derived from such reverse-correlation experiments. 420

In addition, internal noise values computed from the repeated block of this 421

experiment indicate that subjects did not behave at random but rather relied on a 422

somewhat precise mental representation of the ideal temporal contour (mean internal 423

noise of 1.1 (SD=1.1) in units of external noise; comparable with the average value of 424

1.3 obtained in typical low-level sensory psychophysical detection or discrimination 425

tasks, see [55]). In an exploratory manner, we asked whether these internal noise values 426

would correlate with the participant’s degree of musical skills (average score obtained 427

for the 3 sub-tests of PROMS). We found a significant negative correlation (r=-0.65, 428
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p=0.02), suggesting that low musical skills are associated with a more variable 429

mental/memory representation of the temporal contour of this melody 5-right). Because 430

this correlation may also be driven by the amount of attention that participants had 431

both in the PROMS and in the reverse-correlation tasks (which may be similar), further 432

work is required to determine the exact nature of this observed relationship. 433

Discussion 434

By providing the ability to manipulate speech and musical dimensions such as pitch, 435

duration and amplitude in a parametric, independent manner in the common 436

environment of the Python programming language, the open-source toolbox CLEESE 437

brings the power of data-driven / reverse-correlation methods to the vast domain of 438

speech and music cognition. In two illustrative case-studies, we have used CLEESE to 439

infer listeners’ mental representations of interrogative intonation (rising pitch at the end 440

of the utterance) and of the rhythmic structure of a well-known musical melody, and 441

shown that the methodology had potential to uncover potential individual differences 442

linked, e.g., to participant’s training or perceptual abilities. As such, the toolbox and 443

the associated methodology open avenues of research in communicative behavior and 444

social cognition. As a first application of CLEESE, we have recently used a 445

reverse-correlation paradigm to uncover what mental representations of pitch profiles 446

underlie judgements of speaker dominance and trustworthiness in short utterances like 447

the word ’hello’ [31]. The technique allowed to establish that both constructs 448

corresponded to robust and distinguishing pitch trajectories, which remained 449

remarkably stable whether males or female listeners judged male or female speakers. 450

Other potential questions include, in speech, studies of expressive intonation along all 451

characteristics of pitch, speed and amplitude, judgements of emotions (e.g. being happy, 452

angry or sad) or attitudes (e.g. being critical, impressed or ironic); in music, studies of 453

melodic and rythmic representations in naive and expert listeners, and how these may 454

differ with training or exposure. Beyond speech and music, CLEESE can also be used 455

to transform an study non-verbal vocalizations, such a infant cries or animal calls. 456

By measuring how any given individual’s or population’s mental representations may 457

differ from the generic code, data-driven paradigms have been especially important in 458

studying individual or cultural differences in face [2, 56] or lexical processing [23]. By 459

providing a similar paradigm to map mental representations in the vast domain of 460

speech prosody, the present technique opens avenues to explore e.g. dysprosody and 461

social-cognitive deficits in autism-spectrum disorder [57], schizophrenia [58] or 462

congenital amusia [59], as well as cultural differences in social and affective prosody [60]. 463

Because CLEESE allows to create random variations among the different dimensions 464

of both speech and musical stimuli (pitch, time, level), it also opens possibilities to 465

measure the amount of internal noise (e.g. using a double-pass technique as in the 466

case-study 2 here) associated to the processing of these dimensions in many various 467

high-level cognitive tasks. This is particularly interesting because it provides a 468

quantitative way to (1) demonstrate that participants are not doing the task at random 469

(which is always an issue in this type of high-level task where there is no good/bad 470

answers that would lead to an associated d-prime value) and (2) investigate which 471

perceptual dimensions are cognitively processed with what amount of noise. 472

The current implementation of CLEESE, and its application to data-driven 473

experiments in the auditory modality, leaves several methodological questions open. 474

First, in the current form, the temporal dynamics of the noise/perturbations is purely 475

random, and changes of pitch/time or amplitude are independent across segments (a 476

classical assumption of the reverse-correlation technique [4]). This assumption may 477

create prosodic patterns that are not necessary realizable by the human voice and thus 478
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bias the participant responses for those trials. In vision, recent studies have manipulated 479

facial action units with a restricted family of temporal profiles parametrized in 480

acceleration, amplitude and relative length [25]. In a similar manner, future versions of 481

CLEESE could constrain prosodic patterns to correspond more closely to the dynamics 482

of the human voice or to the underlying production process, e.g. not aligned with 483

arbitrary segment locations but with the underlying phonemic (or musical) structure. 484

Another possible direction for improvement is the addition of other high-level 485

manipulation dimensions. As an example, spectral envelope manipulation (optionally 486

formant-driven) allows powerful transformations related to timbre, speaker identity and 487

even gender which all could be manipulated by CLEESE [61]. At an even higher 488

abstraction level, research could consider more semantically-related features (such as the 489

mid-level audio descriptors typically used in machine learning methods) or even 490

feature-learning approaches that would automatically derive the relevant dimensions 491

prior to randomization [62]. Adding these new dimensions will likely require a trade-off 492

between their effectiveness for stimuli randomization and their suitability for physical 493

interpretation. 494

Finally, on a purely technical level, improvements of the current phase vocoder 495

implementation in CLEESE may include additional modules such as envelope or 496

transient preservation to further improve the realism of the transformations. 497

Supporting information 498

All experimental data and analysis scripts (in the form of Jupyter notebook) for the two 499

case-study experiments are made available as supplementary material 500
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