bioRxiv preprint doi: https://doi.org/10.1101/436220; this version posted October 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Pre-operarative Multivariate Connectome
Analysis for Glioma Patients

Alessandro Crimi, PhD"*, Benedikt Wiestler, MD?*, Jan S. Kirschke, MD?
and Sandro M. Krieg, MD?

!University Hospital of Zurich
2University Hospital of TU Munich
*AC and BW contributed equally

Abstract. Recent advances in neuroimaging have allowed the use of net-
work analysis to study the brain in a system-based approach. A system-
based analysis of gliomas can shed light on mechanisms underlying neu-
ronal connectivity and plasticity and the recovery process, and it could
support surgical decision-making. Surgery has been shifting from image-
guided surgery to a functional mapping-guided resection where several
structural and functional modalities are used. However, reliable identi-
fication of eloquent areas during planning of surgical resection is still a
challenge. Pre-operative language mapping performed by navigated tran-
scranial magnetic stimulation (nTMS) is of great value as it elucidates
functional cortical organization, which might be different from patient
to patient due to the heterogeneity of the lesions and individual plastic-
ity. In this paper we propose the construction of an ”effective” speech
network used for surgical decision making. This is achieved by mapping
functionally relevant areas identified by nTMS on tractography-based
connectomics. Subsequently we compute graph metrics on the identified
speech networks of patients who show preoperative aphasia aiming to
identify relevant differences between graph metrics in patients with and
without preoperative aphasia. Lastly, the validity of the speech networks
is examined by checking the involved graph communities.

1 Introduction

Glioma, which is thought to arise from glial cells, is the most common type of pri-
mary brain tumor. Gliomas are considered responsible for approximately 13000
deaths in the United States and more than 14000 deaths in Europe each year
[18]. Higher-grade gliomas, in particular glioblastoma (WHO grade IV), is con-
sidered one of the most aggressive types of cancer, with a prominently invasive
nature, growing along white-matter tracts. Maximum safe resection is consid-
ered a mainstay of modern glioma therapy, generally followed by chemo- and/or
radiotherapy [17]. Owing to the infiltrative nature of these tumors, resection of
gliomas involving relevant cortical areas is still a challenging task, and preser-
vation of neurological function after surgery remains the goal [17]. Therefore, a
deep understanding of functional and structural anatomy is crucial. Moreover,
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understanding of mechanisms related to plasticity, connection re-wiring, alterna-
tive and redundant routing needs to be taken into account [8]. Methods reliably
visualizing neuronal connectivity are therefore highly desirable.

A connectome is a graph representation of the brain through areas (nodes)
and connections. These connections can be structural, derived from tractography
or functional, given by functional activations. Studies using functional connectiv-
ity observed that glioma patients have reduced connectivity in language-related
areas [2] and in default mode network compared to healthy control subjects [11,
13]. Whole connectomes have also been used as discriminating signature between
glioma and healthy subjects [5].

Despite advances in the new science of connectomics, techniques to directly
study the function of white matter tracts in vivo have proved ambiguous. Cor-
tical stimulation [7] and functional magnetic resonance imaging (fMRI) [12] are
useful but constrained to identifying a focus of maximal activation. A purely
anatomy-based approach such as tractography is challenging due to the defini-
tion of region of interest (ROI) and distortion of anatomical landmarks caused
by lesions and brain plasticity [20]. A recent method employs navigated transcra-
nial magnetic stimulation (n'TMS) to identify seeds regions, which are followed
via tractography. This has already been shown to be valuable for pre-surgical
planning, both improving resection and reducing deficits in patients [14].

The arcuate fascicle is considered the most important pathway in language.
It connects anterior and posterior areas, and its damage has a great impact
in the language functions [19]. Nevertheless, there is a growing consensus that
language is actually more distributed into large-scale cortical and subcortical
networks that go beyond the arcuate fascicle, including uncinate fascicle, extreme
capsule, longitudinal fascicle, and inferior fronto-occipital fascicle and related
subcortical connections [6]. Moreover, glioma has traditionally been considered
as a focal disease, but it is now known to in fact be a widespread, ”systemic”
disease across the brain [5]. Therefore, there is an increased interest from the
neurological community into analysis of those networks and their pathways. A
connectomic study on those pathways can shed a light on why some patients
with a lesion at the same location show different deficit.

In this context we propose the definition of an ”effective” or multivariate
connectome, given by the fusion of functional data from nTMS and structural
diffusion tensor imaging (DTI) tractography. Multivariate because it uses dif-
ferent modality, effective because it builds connetomes from structural data but
keeping only the nodes which are truly used according to a task-based nTMS
investigation. We investigated the resulting effective task-based networks in a
discriminant experiment distinguishing patients presenting with pre-operative
aphasia from those without aphasia in left-hemispheric tumors. The proposed
method has been tested for speech tasks but it could be applied to other tasks
and brain functions. The networks were compared using well known network
metrics, and a novel manner to test validity of communities within the networks
is also used.
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2 Methods

2.1 Task-based networks construction

With the aim of combining functional and structural data, we define task-based
networks. In practice, for each patient a structural connectivity matrix A was
constructed from tractography data. Initially tractographies for all subjects have
been generated by processing DTI data with the Python library Dipy [9], stem-
ming from 2,000,000 seed-points and stopping when the fractional anisotropy
was smaller than < 0.1. Tracts shorter than 30 mm or in which a sharp angle
occurred have been discarded. Then the structural connectome was constructed
using the 90 regions in the Automated Anatomical Labeling (AAL) atlas [21],
by counting the number of tracts connecting two regions, for any pair of regions.

The functional data are obtained by using nTMS. ”Navigating” the brain and
locating the functional areas related to a task - in our case speech - specific points
in the gray matter related to the task are detected. Given the atlas registered to
the volume comprising the the n'TMS points, those are used as a mask leaving
only the atlas ROIs where nTMS points are present. The output will be a matrix
B constructed as follows:

B _ 1 if either the atlas ROI u or v contains nTMS points
u 0  otherwise.

Such a matrix is used to maintain in the structural connectivity matrix A only
the connections which are meaningful in the functional task during the nTMS,
generating therefore a task-based connectivity matrix

A=A0B, (1)

where ® denotes the Hadamard or element-wise product. In our case, each A
is the pre-operative speech network for each patient. These steps are depicted
in Figure 1 where a resulting speech graph defined by the matrix A is shown
together with the components needed to obtain it.

2.2 Metrics

Graph metrics are important tools to analyze networks because they allow to
represent the topology and efficiency of a network with only a few scalar values.
Those might represent the segregation, integration, centrality, and resilience of a
network [16]. Our rationale is that even in patients presenting with a similar type
of tumor, individual pathways are different. To obtain this difference between
sub-groups of patients graph metrics are used. Statistically significant differences
are quantified by using two-tail t-tests and relative p-values. In our experiments
metrics were computed at three levels:

— Globally, using the entire structural connectivity matrix A.
— Globally, using the speech network given by A.
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— Locally, using the ROIs comprised in the speech network A.

We used only the most common metrics to be in line with previous studies on
glioma [5,11,2]. In particular, as global metrics Louvain modularity, character-
istic path length, global efficiency and transitivity were used. As local metrics
clustering coefficient, betweenness centrality and local efficiency were used.

The Louvain modularity of a network gives the degree to which the network
may be subdivided into non-overlapping groups as Q = >, -, [euu — (ZveM euv)z} ,
where M is the set of non-overlapping modules, and e, is the proportion of all
links that connect nodes in the module v and the nodes in module v.

The characteristic path length d;; is the average shortest path length in the
network between each node i and j. The efficiency measure is given by the
average inverse shortest path length. It can be computed globally or limited to
the neighborhood of a node defining the local efficiency.

-1
Global efficiency is defined as E = % Y ieN Z’efl’fﬁf’d”
Transitivity is a variation of the clustering coefficient computed directly on

the global network, and it reflects the prevalence of clustered connectivity around
w

. W Z 2t; . w . .
its nodes. It can be defined as T" = W, with t;” being the weighted
geometric mean of triangles around nodLeEJ; and k; its degree.

Clustering coefficient is the fraction of triangles around a node, and it can
be defined as C = m Y ieN %, where ¢; and k; is respectively the
number of triangles around a node ¢, and the degree of the node i.

Betweenness centrality is the fraction of all shortest paths in the network
that passes through a given node i as b = m > %, where pp; is the
number of shortest paths between h and j, and pp; is the number of shortest
paths between h and j that pass through i.

Local efficiency is the global efficiency computed on node neighborhoods.

For the local metrics, only ROIs which were common across all A\, matrices
were considered. A further challenge was given by the fact that 2 subjects had
tumor and stimulation on the opposite hemisphere of the remaining cohort.
Nevertheless, they were included and these ROIS were considered as well in the
analysis even if in the opposite hemisphere.

2.3 Community testing

Brain functions such as language involve several brain-network communities. De-
spite the abundance of contributions related to community detection there is no
widespread consensus defining what communities are and how to test their sig-
nificance. This has emerged as a need since recent neuroscience studies suggests
that conscience and brain functions emerge from community interactions, but
care should be made on existing tools for community detection [1].

Using Markov random walk, Piccardi introduced the persistence probability
as a measure of the strength of a community in a graph with salient community
structure [15]. From an adjacency matrix A an N-state Markov chain can be
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defined 1327 a transition matrix P by performing a row-normalization on A, as
L expressing the transition probability from node i and j. Then,

L = V]
bij = D, Ais
it is possible to define a K-state Markov chain with transition probability as
Q = [diag(mH)] " *HT diag(7)PH, where H is the matrix coding the partition
obtained by Louvain modularity or other methods, and 7 is defining the rule
m = 7P which represents the equilibrium distribution of a random walk [15].
The diagonal of the matrix Q gives the persistence probability, which is the
level of significance of the partitioning. Therefore we compute the persistence
probability of the partitioning detected by the Louvain modularity described
in the previous section to see if there is a difference within the communities
detected for the sub-groups and towards a random scale free network with the
same nodes of the used atlas.

3 Data and Experimental Settings

The cohort comprised 17 patients from the TUM University Hospital, being in
average 57.3 + 8.8 years old, and with tumor of different grades and locations. All
patients underwent MRI scanning before surgery, and pre-operative aphasia was
evaluated looking for speech and impairment of verbal communication according
to an established grading [19]. In this manner the cohort was subdivided into
subjects with aphasia (WA) n=8, and subjects without aphasia (NA) n=9. DTI,
T1-weighted volumes and positions of n"TMS were acquired and co-registered
onto an atlas by using an affine linear registration with 12 degrees of freedom.
The diffusion brain volumes were acquired with a Philips Achieva 3 Tesla with
the following imaging parameters: TR = 8500 ms, TE = 60 ms, flip angle 90°
using 32 gradient directions. The T1-weighted brain volumes were acquired with
the following imaging parameters: TR = 9 ms, TE = 4 ms, and 1 mm? isovoxel
covering the whole head. Performing an object-namimg task according to the
most recent protocol was used for nTMS [14], the magnetic stimulation coil
was manually moved in steps of approximately 10 mm covering most of the
hemisphere where the lesion was present. The coordinates of relevant points for
the speech task were exported through the Nexstim eXimia software (Nexstim
Oy, Helsinki, Finland).

4 Results and Discussions

None of the global metrics applied to the whole brain were significant in discrim-
inating the two groups of patients, with (WA) and without (NA) pre-operative
aphasia.

The results of the network analysis for the speech networks are reported in 1
and for the common areas are reported in Table 2 and 3. Given the heterogeneity
of lesions and the individual mapping only two regions resulted common across
all subjects: The inferior parietal gyrus and superior parietal gyrus. Those are
regions in the brain known to be related to speech processing and understanding
[3].
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Fig. 1. The used pipeline. Given nTMS points used to locate function and tractography,
an "effective” task-based network is found.

Table 1. Global graph metrics for the speech network.

Features WA sub-group NA sub-group p-value
Louvain modularity ~ 0.518 (4 0.020) 0.511 (£ 0.015) 0.444
Char. path length 2.787 (£ 0.215) 0.222 (£ 0.123) 0.041
Global efficiency 0.334 (£ 0.040) 0.375 (£ 0.025) 0.056
Transitivity 0.013 (& 0.002) 0.012 (& 0.002) 0.990

Table 2. Local graph metrics for the inferior parietal gyrus across the dataset.

Features WA sub-group NA sub-group p-value
Betweenness centr. 0.268 (+ 0.063) 0.390 (£ 0.071) 0.015
Clustering coef. 2.22 (£ 0.070) 0.170 (£ 0.003) 0.170
Local efficiency 0.742 (£ 0.13) 0.483 (£ 0.12) 0.024

The processes supporting speech production and comprehension within the
brain take advantage of widespread networks and region. Tumor lesions can de-
stroy gray matter region that serves as a node of the network ultimately disrupt-
ing certain communication within the brain. During the analysis of the speech
networks, it was noted that the characteristic path length and global efficiency
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Table 3. Local graph metrics for the superior parietal gyrus across the dataset.

Features WA sub-group NA sub-group p-value
Betweenness centr.  0.354 (£ 0.120) 0.363 (£ 0.210) 0.380
Clustering coef. 2.179 (£ 0.017) 2.170 (£ 0.003) 0.230
Local efficiency 0.340 (£ 0.13) 0.343 (£ 0.15) 0.388

were statistically significantly different between the two sub-groups. In particular
the characteristic path length was larger for the group with aphasia implying that
given the neuronal pathways to relate local communities or distant regions are
more cumbersome or suggesting the lack of redundancy and plasticity ultimately
leading to aphasia. Lastly, the communities detected by using the Louvain mod-
ularity showed similar persistence probabilities comparing the two sub-groups
but superior to the persistence on the random scale free network. Namely, the
mean ¢ values for the communities of the WA sub-group, NA sub-group and
random network were respectively 0.652, 0.631 and 0.3, showing that detected
have higher probability of being valid compare to random scale free networks.

The AAL atlas is known to have limitations as a rather coarse parcellation
[10]. However, initial experiments conducted with more refined atlas were not
satisfactory after visual inspection due to failed registrations even using more
advanced non-rigid methods. Registration of brain with large lesions to atlas
is still an open issue given the heterogeneity of shape and location of lesions
which cannot comprehensively be managed by existing methods [4]. Therefore
we preferred to use the AAL which despite the coarse parcellation was prop-
erly registered to the data even using standard linear registration. Future works
comprises the visualization and navigation of the networks detected with the
proposed approach.

5 Conclusions

A method to map functional detected areas on a connectome is proposed and
the validity of the produced networks are analyzed. Speech production and com-
prehension requires a complex, and plastic network within the brain, and it
is therefore the application used for the approach. Although larger studies are
needed, the comparison between detected speech networks of patients presenting
aphasia and those without were significant while a whole-brain metrics compar-
ison was not significant, proving the usefulness of the method during surgical
planning and potentially to predict eventual post-operative deficits.
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