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ABSTRACT 

Hundreds of genes are implicated in autism spectrum disorder (ASD) but the mechanisms through 

which they contribute to ASD pathophysiology remain elusive. Here, we analyzed leukocyte 

transcriptomics from 1-4 year-old male toddlers with ASD or typical development from the general 

population. We discovered a perturbed gene network that includes genes that are highly expressed during 

fetal brain development and which is dysregulated in hiPSC-derived neuron models of ASD. High-

confidence ASD risk genes emerge as upstream regulators of the network, and many risk genes may impact 

the network by modulating RAS/ERK, PI3K/AKT, and WNT/β-catenin signaling pathways. We found that 

the degree of dysregulation in this network correlated with the severity of ASD symptoms in the toddlers. 

These results demonstrate how the heterogeneous genetics of ASD may dysregulate a core network to 

influence brain development at prenatal and very early postnatal ages and, thereby, the severity of later 

ASD symptoms. 

INTRODUCTION 
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with prenatal and early postnatal 

biological onset1-3. Genetic factors contribute to the predisposition and development of ASD with estimated 

heritability rates of 50-83%4,5. Large genetic studies have implicated several hundred ASD risk (rASD) 

genes that could be associated with many different pathways, cellular processes, and neurodevelopmental 

stages6-10. This highly heterogeneous genetic landscape has raised challenges in elucidating the biological 

mechanisms involved in the disorder. While rigorous proof remains lacking, current evidence suggests that 

rASD genes fall into networks and biological processes6,7,9,11 that modulate one or more stages of prenatal 

and early postnatal brain development, including neuron proliferation, migration, neurite growth, and 

synapse formation or function3,8. However, these insights are mostly gained from studies focused on single 

rASD genes3 or transcriptome analyses of neurotypical brains9,11. Thus, we have an incomplete picture of 

the molecular changes at the individual level and their role in the observed heterogeneity in the core clinical 

deficits of socialization and restricted, repetitive behavior. 

To further complicate efforts, rASD genes have been largely identified through de novo loss-of-

function mutations in their coding sequence. Such events contribute to ASD risk in 5-10% of the ASD 

population, and most of heritable genetic risk is thought to reside in common variants that are also found in 

subjects with typical development5,12-15. It remains unclear whether ASD in subjects with known rASD 

gene mutations manifests as ASD subtypes with distinct molecular etiologies, or whether the underlying 

mechanisms are shared with the overall population of subjects with ASD. 

To address these questions, it is important to understand which molecular processes are perturbed in 

prenatal and early postnatal life in individuals with ASD, assess how they vary among subjects, and 

evaluate how these perturbations relate to rASD genes and early-age clinical ASD symptoms. It is expected 
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that the genetic changes in ASD alter gene expression and signaling in the developing brain3,7,10. Therefore, 

capturing dysregulated gene expression at prenatal and early postnatal ages may unravel the molecular 

organization underlying ASD. Unfortunately, doing so is challenging as ASD cannot be clinically 

diagnosed at these early stages based on currently established behavioral symptoms16, and accessible 

postmortem brain tissues are from much older individuals with ASD, well beyond the ages when rASD 

genes are at peak expression and long after ASD diagnosis. In contrast to living neurons, which have a 

limited time window for proliferation and maturation, other cell types constantly regenerate, such as blood 

cells. Given the strong genetic basis of ASD, some dysregulated developmental signals may continually 

reoccur in blood cells and thus be studied postnatally17-20. 

Reinforcing this notion, it was recently demonstrated that genes that are broadly expressed across 

many tissues are major contributors to the overall heritability of complex traits, and it was postulated that 

this could be relevant to ASD21. Lending credence to this, previous studies have reported that differentially 

expressed genes in the blood of subjects with ASD are enriched for regulatory targets of CHD818 and 

FMR122, two well-known rASD genes. Similarly, both lymphoblastoid cells of subjects with ASD and 

hiPSC-derived models of fragile-X syndrome show over-expression of mir-181 with a potential role in the 

disorder23.  Likewise, leukocytes from toddlers with ASD show perturbations in biological processes such 

as cell proliferation, differentiation, and microtubules24-27, and these coincide with dysregulated processes 

seen in hiPSC-derived neural progenitors and neurons from individuals with ASD and brain 

enlargement28,29. Ultimately, establishing the signatures of ASD in other tissues will facilitate the study of 

the molecular basis of the disorder in the first few years of life. 

Here we leverage transcriptomic data from leukocytes, hiPSC-derived neuron models, and the 

neurotypical brain to study the architecture of transcriptional dysregulation in ASD, its connection to rASD 

genes, and its association with prenatal brain development and postnatal socialization symptom severity in 

ASD. We discovered a conserved dysregulated gene network by analyzing leukocyte transcriptomic data 

from 1-4 year-old toddlers with ASD and typical development (TD). The dysregulated network is enriched 

for pathways known to be perturbed in ASD neurons, involves genes that are highly expressed in prenatal 

brain, and is dysregulated in hiPSC-derived neurons from subjects with ASD and brain enlargement. 

Consistent with the postulated structure of complex traits21,30, we show that rASD genes in diverse 

functional groups converge upon and regulate this core network. Importantly, we found the dysregulation 

extent of this core network is correlated with the severity of socialization deficits in toddlers with ASD. 

Thus, our results demonstrate how the heterogeneous rASD genes converge and regulate a biologically 

relevant core network, capturing the possible molecular basis of ASD. 
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RESULTS 

Increased transcriptional activity in leukocytes from toddlers with ASD 

We analyzed leukocyte gene expression profiles obtained from 226 male toddlers (119 ASD and 

107 TD). Robust linear regression modeling of the data identified 1236 differentially expressed (DE) genes 

(437 downregulated and 799 upregulated; FDR <0.05). Jack-knife resampling demonstrated that the 

expression pattern of DE genes was not driven by a small number of cases, but rather shared between the 

vast majority of subjects with ASD (Fig. S1). We further validated the expression patterns in additional 

replicate and independent cohorts (Fig. S1-S4).  

In many disease conditions, transcriptional programs in cells deviate from normal states due to 

dysregulations in signaling pathways, transcription factors and epigenetic marks. Therefore, we employed a 

systems approach to decipher network-level transcriptional perturbations in leukocytes of toddlers with 

ASD (Fig. 1). We reasoned that perturbations to ASD-associated molecular pathways would be reflected in 

the co-expression patterns between DE genes. To identify such ASD-relevant dysregulations, we first 

extracted a static gene network (that is, the network is indifferent to the cell context) composed of all 

known high-confidence physical and regulatory interactions among the DE genes (Methods). We next 

pruned the static network using our leukocyte transcriptome data to obtain context-specific networks of 

each diagnosis group separately (that is, the networks differ in genes and their interactions, based on their 

associated gene expression data). Specifically, context-specific networks were built for each of ASD and 

TD groups by only retaining those interactions from the static network that were significantly co-expressed 

(FDR <0.05) within the group. Both context-specific networks, called DE-ASD and DE-TD, were 

constructed based on the same static network from the same set of genes (i.e., genes that are expressed in 

leukocytes and show differential expression). However, following removal of interactions lacking co-

expression, a proportion of genes become unconnected and these were consequently removed from the DE-

ASD and DE-TD networks. Therefore, DE-ASD and DE-TD exhibited 63% overlap in their gene 

composition, with differences mostly related to genes that were loosely connected in the starting static 

network. To ensure the robustness of our conclusions to the changes in the structure of the static network, 

we replicated all presented results on two other static networks with higher density of interactions that 

resulted in a higher number of overlapping genes between corresponding context-specific networks 

(Methods). 

To test if transcriptional programs were being modulated in ASD, we merged the genes and 

interactions in the DE-ASD and DE-TD networks, and compared the ‘co-expression magnitude’  of 

interactions in the merged network between ASD and TD samples31-33. This proxy for the transcriptional 

activity of gene networks9 demonstrated that co-expression magnitude was higher in the ASD than the TD 

samples (Fig. 2a; p-value <0.01; paired Wilcoxon-Mann-Whitney test). The stronger co-expression in the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2019. ; https://doi.org/10.1101/435917doi: bioRxiv preprint 

https://doi.org/10.1101/435917
http://creativecommons.org/licenses/by-nc-nd/4.0/


DE-ASD network suggests a higher level of concerted activation or suppression of pathways involving DE 

genes among the subjects with ASD. Further analysis confirmed that the changes in the co-expression 

magnitude, rather than the gene composition, is the primary driver of the elevated network transcriptional 

activity. This higher level of concerted co-regulation of the network was also reproducible in two additional 

ASD transcriptomic datasets and across alternative analysis methods (Fig. S1-S4). 

In summary, the leukocyte transcriptional networks of the DE genes show higher than normal co-

expression activity in ASD. Moreover, the dysregulation pattern is present in a large percentage of toddlers 

with ASD, as evidenced by the resampling analyses and the other two ASD datasets.  

 

The leukocyte-based gene network captures transcriptional programs associated with brain 

development 

We next assessed the potential involvement of the leukocyte-based network to gene expression 

patterns during brain development. By overlaying the neurodevelopmental RNA-Seq data from 

BrainSpan34,35 on our DE-ASD network, we found that the DE-ASD network was enriched for highly 

expressed genes in the neocortex at prenatal and early postnatal periods (p-value <4.3x10-30; Fig. 2b). 

To investigate the spatiotemporal activity of the DE-ASD network during brain development, we 

measured the magnitude of gene co-expression within the DE-ASD network at different 

neurodevelopmental time windows across brain regions. We found that the highest levels of co-expression 

of the DE-ASD network temporally coincided with peak neural proliferation in brain development (10-19 

post conception weeks3,8), after which co-expression activity gradually decreased  (Fig. 2c; Fig. S5). 

Expression levels of genes in the DE-ASD network followed a similar pattern (Fig. S6). Further supporting 

the transcriptional activity of the leukocyte-derived DE-ASD network in prenatal brain, we found evidence 

that the network is mostly preserved at the co-expression level between ASD leukocytes and prenatal brain. 

Specifically, the direction of correlations (i.e., positive or negative) in the leukocyte transcriptome of 

subjects with ASD is mostly preserved in prenatal and early postnatal brain (Fig. 2d). Importantly, this 

preservation of co-expression was significantly higher in the DE-ASD network than in the DE-TD network 

(p-value <10-16; Fig. S6). 

 

rASD genes are associated with the DE-ASD network 

We next analyzed the DE-ASD network in the context of other studies to test the relevance of our 

DE-ASD network to ASD. Parikshak et al. previously reported gene co-expression modules associated with 

cortical laminae development during prenatal and early postnatal ages11. A subset of these modules show 

enrichment in rASD genes11. We examined the overlap of our leukocyte-derived network with all modules 

from Parikshak et al11. The DE-ASD network preferentially overlapped with rASD gene-enriched modules 
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from that study (Fig. 2e). This suggests that our DE-ASD network is functionally related to rASD genes 

during neocortical development. Our DE-ASD network also overlapped with the networks of rASD genes 

reported in other studies7,9, indicating the robustness of the results (Fig. 2e). Intriguingly, the prenatal brain 

co-expression network of high-confidence rASD genes was more similar to that of ASD leukocytes than 

TD leukocytes (Fig. 2f), suggesting that neurodevelopmental transcriptional programs related to rASD 

genes might be more active in the leukocyte transcriptome of toddlers with ASD than in that of TD 

toddlers. 

With the observed overlap patterns, we next tested for enrichment of rASD genes in the DE-ASD 

network. For this analysis, we considered different rASD gene lists of different size and varying confidence 

levels (Methods). Surprisingly, this analysis demonstrated that rASD genes are not enriched in the DE-ASD 

network (p-value >0.19). 

 

The DE-ASD network is enriched for regulatory targets of rASD genes 

Many high confidence rASD genes have regulatory functions3,7,10. Although the perturbed DE-ASD 

network is not enriched for rASD genes, it overlaps with brain co-expression modules and networks 

containing known rASD genes. At the mechanistic level, the observed co-expression of rASD and DE 

genes in the prenatal brain could be due to the regulatory influence of rASD genes on the DE-ASD 

network, and thereby genetic alterations in rASD genes could cause the transcriptional perturbation and the 

increase in gene co-expression within the DE-ASD network. 

To elucidate if rASD genes could regulate the DE-ASD network, we examined if the regulatory 

targets of rASD genes are enriched in the DE-ASD network. Indeed, we observed that the DE-ASD 

network is enriched for genes regulated by two high-confidence rASD genes, CHD836-38 and FMR139 (Fig. 

3a). To more systematically identify regulators of the network, we evaluated the overlap of the DE-ASD 

network with the regulatory targets of rASD transcription factors from the ENCODE project40 and 

Chea2016 resource41. Strikingly, the DE-ASD network is significantly enriched for the regulatory targets of 

11 out of 20 high-confidence, strong-candidate and suggestive-evidence rASD genes (SFARI categories 1-

3) (OR: 2.54; p-value: 0.05; Fig. 3b). 

 

The DE-ASD network is preferentially linked to high-confidence rASD genes 

rASD genes were often not differentially expressed in ASD leukocytes, and the DE-ASD network 

was therefore not enriched in rASD genes. To explore if rASD genes may nevertheless regulate the DE-

ASD network, we expanded the DE-ASD network by including rASD genes. Thus, we obtained an 

expanded-ASD (XP-ASD) network. To construct the XP-ASD network, we used a similar approach to that 

used for the DE-ASD network. Briefly, we built a high-confidence static network of DE and 965 candidate 
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rASD genes. The context-specific XP-ASD network was next inferred by retaining only the significantly 

co-expressed interacting pairs in ASD samples. This pruning step removed genes from the static network 

that were not significantly co-expressed with their known physically interacting partners or regulatory 

targets in ASD leukocytes. Accordingly, the XP-ASD network included a total of 316 out of 965 (36%) 

likely rASD genes.  

The 965 rASD genes included both high-confidence rASD genes (e.g., recurrently mutated in 

individuals with ASD) and low-confidence rASD genes (some even found in siblings of individuals with 

ASD, who developed normally). We reasoned that if the XP-ASD network is truly relevant to the prenatal 

etiology of ASD, high-confidence rASD genes would be preferentially incorporated into the XP-ASD 

network. By following different analytical methods, other researchers have independently categorized 

rASD genes into high- and low-confidence7,14,42. Importantly, we found a reproducible enrichment of high-

confidence rASD genes in the XP-ASD network (Fig. 3c). We also observed a significant enrichment for 

strong-candidate rASD genes with de novo protein truncating variants in the XP-ASD network 

(hypergeometric p-value <3.6x10-6). Further corroborating a possible regulatory role of rASD genes on the 

DE-ASD network, rASD genes in the XP-ASD network were significantly enriched for DNA-binding 

activity, compared to the remaining rASD genes (OR: 3.1; p-value <2.1x10-12; Fisher’s exact test; Fig. S7). 

Furthermore, the XP-ASD network was not enriched for rASD genes classified as low-confidence (p-value 

>0.24; SFARI categories 4-6). As negative controls, we constructed two other networks by including genes 

with likely deleterious and synonymous mutations in siblings of individuals with ASD, who developed 

normally13. Consistent with a possible role of the XP-ASD network in ASD, these negative control genes 

were not significantly associated with the DE genes (p-values >0.41; Fig. 3c). The preferential addition of 

high-confidence and regulatory rASD genes supports the relevance of the XP-ASD network for the 

pathobiology of ASD, and the likelihood that the high-confidence rASD genes are regulating the DE-ASD 

network. 

 

rASD genes tend to be repressors of genes in the DE-ASD network   

To explore how rASD genes may regulate DE genes, we analyzed their interaction types (i.e., 

positive or negative correlations, alluding to activator or repressor activity). Comparative analysis of 

interactions between DE and rASD genes in the XP-ASD network indicated a significant enrichment of 

negative correlations between rASD and DE genes (OR: 1.79; p-value <3.1x10-4; Fisher’s exact test), 

suggesting a predominantly inhibitory role of rASD genes on the DE genes (Fig. 4a). 

In line with a role of rASD genes as repressors, the DE-ASD network was enriched for genes that 

were up-regulated by the knock-down of CHD8 in neural progenitor and stem cells, but not for genes that 

were down-regulated36-38 (Fig. 4b). Consistent with this, gene set enrichment analysis demonstrated an 
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overall up-regulation of genes that are also up-regulated in knock-down experiments of the transcriptional 

repressor CHD8 (p-value <0.039 across three different studies36-38), but not for those that are down-

regulated. There was a similar trend towards up-regulation for the binding targets of the FMR1 rASD gene 

in the ASD transcriptome39 (p-value: 0.078; GSEA). 

To further test if rASD genes were predominantly repressors of genes in the DE-ASD network, we 

analyzed an independent transcriptome dataset from the differentiation of primary human neural progenitor 

cells obtained from fetal brains of three donors43. We found that expression of genes in the DE-ASD 

network exhibit a gradual down-regulation during neural progenitor differentiation (p-value 4.4x10-6; Fig. 

4c). However, the genes unique to the XP-ASD network (i.e., rASD genes present in the XP-ASD network, 

but not DE-ASD network) showed an anti-correlated expression pattern with DE-ASD genes with peak 

expression at 12 weeks into differentiation (p-value 1.2x10-3; Fig. 4c). The results of this independent 

dataset provide further evidence of a potential inhibitory role of rASD genes on DE-ASD networks during 

human neuron differentiation.  

 

Signaling pathways are central to the leukocyte-based networks 

We next identified key pathways involved in the XP-ASD and DE-ASD networks. Biological 

process enrichment analysis of the XP-ASD network demonstrated it is highly enriched for signaling 

pathways (Fig. 5a). Moreover, the DE-ASD network was highly enriched for PI3K/AKT, mTOR, and 

related pathways (Fig. 5b). To delineate mechanisms by which rASD genes could dysregulate DE genes, 

we compared enriched biological processes between DE and rASD genes in the XP-ASD network. DE 

genes were more enriched for cell proliferation-related processes, particularly PI3K/AKT and its 

downstream pathways such as mTOR, autophagy, viral translation, and FC receptor signaling (Fig. 5a-b). 

However, the rASD genes were more enriched for processes involved in neuron differentiation and 

maturation, including neurogenesis, dendrite development and synapse assembly (Fig. 5a). 

Our results suggest elevated co-expression activity of PI3K/AKT and its downstream pathways in 

ASD leukocytes (Fig. 5a-b). These processes are involved in brain development and growth during prenatal 

and early postnatal ages3,45,46 and focused studies on rASD genes have implicated them in ASD3,10,44-46. 

Further supporting the increased co-expression activity of the PI3K/AKT and its downstream pathways in 

our cohort of toddlers with ASD, gene set enrichment analysis demonstrated that the PI3K/AKT pathway 

and two of its main downstream processes (upregulation of mTOR pathway and upregulation of genes that 

are regulated by FOXO1) are also dysregulated in ASD leukocytes in directions that are consistent with the 

increased activity of the PI3K/AKT pathway. 

We further investigated the DE-ASD and XP-ASD networks using an integrated hub analysis 

approach (Methods). In the DE-ASD network, hub genes included the key members of the PI3K/AKT 
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pathway including PIK3CD, AKT1 and GSK3B (Fig. 5c; Fig. S8). Genes that were only hubs in the XP-

ASD network included regulators of neuronal proliferation and maturation, including regulatory members 

of the RAS/ERK (e.g., NRAS, ERK2, ERK1, SHC1), PI3K/AKT (e.g., PTEN, PIK3R1, EP300), and 

WNT/β-catenin (e.g., CTNNB1, SMARCC2, CSNK1G2) signaling pathways (Fig. 5c; Fig. S9). While 

PI3K/AKT (a hub in DE-ASD and XP-ASD networks) promotes proliferation and survival, many of the 

genes that are only hub in the XP-ASD network, including NRAS, ERK 1/2, and PTEN, can trigger 

differentiation of neural progenitor cells by mediating PI3K/AKT and its downstream pathways3,44. 

 

rASD genes regulate DE-ASD genes through specific signaling pathways 

We further explored if perturbation to the rASD genes lead to the perturbation of the DE-ASD 

network through changes in the RAS/ERK, PI3K/AKT, and WNT/β-catenin pathways. The activity of these 

three pathways is chiefly mediated through changes in phosphorylation of ERK, AKT, and β-catenin 

proteins. Therefore, to assess the regulatory influence of rASD genes on these signaling pathways, we 

leveraged available genome-wide mutational screening data wherein gene mutations were scored based on 

their effects on the phosphorylation state of ERK, AKT, and β-catenin proteins47. Consistent with the 

functional enrichment and hub analysis results, rASD genes in the XP-ASD network were significantly 

enriched for regulators of the RAS/ERK, PI3K/AKT, and WNT/β-catenin pathways (Fig. 5d; p-value 

<1.9x10-10). Specifically, regulators of these pathways (FDR <0.1) accounted for inclusion of 39% of rASD 

genes in the XP-ASD network. No significant enrichment for regulators of the RAS/ERK, PI3K/AKT, and 

WNT/β-catenin pathways was observed among rASD genes that were not included in the XP-ASD network 

(Fig. 5d). These results support the notion that rASD genes regulate the DE-ASD network through 

perturbation of the RAS/ERK, PI3K/AKT, and WNT/β-catenin pathways. 

In summary, our XP-ASD network decomposition results suggest a modular regulatory structure for 

the XP-ASD network in which diverse rASD genes converge upon and dysregulate activity of the DE genes 

(Fig. 5a). Importantly, for a large percentage of rASD genes, the dysregulation flow to the DE genes is 

channeled through highly inter-connected signaling pathways including RAS/ERK, PI3K/AKT, and 

WNT/β-catenin. 

 

The DE-ASD network is over-active in neuron models of individuals with ASD and brain 

enlargement 

Our results demonstrate increased gene co-expression in the DE-ASD network in leukocytes of 

toddlers with ASD selected from the general population. Furthermore, they implicate the DE-ASD network 

in the prenatal etiology of ASD by demonstrating its higher co-expression during fetal brain development, 

and its connection with high-confidence rASD genes. Also, our results suggest that the increased co-
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expression in the network is present in a large percentage of our ASD toddlers and is associated with the 

processes related to the neural proliferation and maturation. 

To further validate these results, we examined if the DE-ASD network shows increased co-

expression in hiPSC-derived neural progenitors and neurons from toddlers with ASD. Thus, we re-analyzed 

a previously published hiPSCs transcriptome data from 13 individuals with ASD and TD28,48, which were 

differentiated into neural progenitor and neuron stages. The included subjects with ASD capture 

macrocephaly which is an important phenotype common in many subjects with ASD. Importantly, our 

analysis demonstrated that the DE-ASD network is more active in these neuron models of subjects with 

ASD (Fig. 6; Fig. S10). This result suggests the functional relevance of identified leukocyte molecular 

signatures to the abnormal brain development in ASD, particularly for individuals with brain enlargement. 

 

Network dysregulation is associated with ASD severity 

We evaluated the potential role of the DE-ASD network activity on the development of the core clinical 

symptom of socialization deficits in toddlers with ASD. To this end, we first tested if the same pattern of 

gene co-expression dysregulation exists across individuals at different levels of ASD severity as measured 

by Autism Diagnostic Observation Schedule (ADOS) social affect severity score. We observed that the fold 

change patterns of DE genes are almost identical across different ASD severity levels (Fig. S11). The 

implicated RAS/ERK, PI3K/AKT, WNT/β-catenin pathways in our model are well known to have 

pleotropic roles during brain development, from neural proliferation and neurogenesis to neural migration 

and maturation. These signaling pathways and the associated developmental stages have been implicated in 

ASD3, suggesting the DE-ASD network is involved in various neurodevelopmental processes. At the 

mechanistic level, this suggests that the spectrum of autism could reflect the varying extent of dysregulation 

of the DE-ASD network, as it is composed of high-confidence physical and regulatory interactions. Hence, 

we examined whether the magnitude of the co-expression activity of the DE-ASD network correlated with 

clinical severity in toddlers with ASD. Indeed, we found that the extent of gene co-expression activity 

within the DE-ASD network was correlated with ADOS social affect deficit scores of toddlers with ASD 

(Fig. 7). To assess the significance of observed correlation patterns, we repeated the analysis with 10,000 

permutations of the ADOS social affect scores in individuals with ASD. This analysis confirmed the 

significance of the observed correlations (inset boxplots in Fig. 7). Our results suggest the perturbation of 

the same network at different extents can potentially result in a spectrum of postnatal clinical severity levels 

in toddlers with ASD. 
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Discussion 

While ASD has a strong genetic basis, it remains elusive how rASD genes are connected to the 

molecular changes underlying the disorder at prenatal and early postnatal ages. We developed a systems-

biology framework to identify perturbed transcriptional programs in leukocytes, and connect them with the 

rASD genes and early-age symptom severity. Specifically, we found a dysregulated gene network that 

shows elevated gene co-expression activity in leukocytes from toddlers with ASD. This core network was 

robustly associated with high-confidence rASD genes. Although recurrent, high confidence rASD gene 

mutations occur in a small percentage of the ASD population5,14. The connection of the DE-ASD network 

(constructed with data from the general ASD pediatric population) with high-confidence rASD genes 

provides evidence of shared mechanisms underlying ASD in both individuals with highly penetrant rASD 

gene mutations and those with other etiologies (e.g., common variants). We further show that many rASD 

genes may regulate the DE-ASD core network through the RAS/ERK, PI3K/AKT, and WNT/β-catenin 

signaling pathways. This study confirms and substantially expands results from previous reports on blood 

transcriptome of subjects with ASD. 

A key aspect of our signature is that it allows one to investigate the relationship of molecular 

perturbations with early-age ASD symptom severity. Indeed, we found that the magnitude of dysregulation 

of the DE-ASD network is correlated with deficits in ADOS social affect scores in male toddlers of 1-4 

years old. Social and behavioral deficits are also suggested to be linked with the genetic variations in 

subjects with ASD49,50; and previous studies have established the effect of the PI3K/AKT signaling 

pathway (central to the DE-ASD core network) on social behaviors in mouse models45,46. Together, these 

observations suggest that the etiology of ASD converges on gene networks that correlate with ASD 

symptom severity. Moreover, our results reinforce the hypothesis that stronger dysregulation of this core 

network could lead to a higher ASD severity. The DE-ASD core network is enriched for pathways 

implicated in ASD, strongly associated with high-confidence rASD genes, and correlate with the ASD 

symptom severity. However, a direct causal relationship between the co-expression activity of the network 

and ASD remains to be established. Moreover, our co-expression activity measure is a summary score from 

the strongest signal in our dataset (i.e., differentially expressed genes) at a group level (i.e., severity level). 

Therefore, by design, it may not comprehensively capture the heterogeneity that could exist within ASD. 

Future work is needed to explore the causal relationship of the pathways in the DE-ASD network to ASD 

development, symptoms, and the potential existence of other dysregulation mechanisms in individuals with 

ASD. 

Emerging models of complex traits suggest that gene mutations and epigenetic changes often 

propagate their effects through regulatory networks and converge on core pathways relevant to the trait21,30. 

Our findings support the existence of an analogous architecture for ASD, wherein rASD genes with diverse 
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biological roles converge and regulate core downstream pathways. Although the DE-ASD network did not 

significantly overlap with rASD genes, we found that it was significantly co-expressed with rASD genes in 

both leukocyte and brain. We also showed that the DE-ASD network genes are regulated by many rASD 

genes through direct transcriptional regulation or by modulating highly interconnected signaling pathways. 

We postulate that the DE-ASD network is a primary convergence point of ASD etiologies. This predicts 

that the spectrum of autism in such cases reflects degree and mechanism of the perturbation of the DE-ASD 

network. A detailed analysis of hiPSC-derived neurons from subjects with ASD and brain enlargement 

demonstrated the dysregulation of the DE-ASD network in these neuron models of ASD. Furthermore, 

clinical relevance is demonstrated by the high correlation we found between magnitude of dysregulation in 

the DE-ASD core network and ASD symptom severity in the toddlers. 

The vast majority of rASD genes are not fully penetrant to the disorder3,8,14. Our analysis of the XP-

ASD network sheds light on how rASD genes could potentially combine to result in ASD. Although some 

rASD genes could directly modulate the DE-ASD network at the transcriptional level, our results suggest 

that the regulatory consequence of many rASD genes on the DE-ASD network are channeled through the 

PI3K/AKT, RAS/ERK, WNT/β-catenin signaling pathways. The structural and functional interrogation of 

the XP-ASD network localized these pathways to its epicenter and demonstrated enrichment for processes 

downstream of these pathways among DE genes. Moreover, we found that high-confidence rASD genes are 

better connected to the DE-ASD core network, suggesting that the closeness and influence of genes on 

these signaling pathways is correlated with their effect size on the disorder. These results articulate that 

perturbation of the PI3K/AKT, RAS/ERK, WNT/β-catenin signaling pathways through gene regulatory 

networks may be an important etiological route for ASD that could be associated with the disorder severity 

level in a large fraction of the ASD population. Congruent with this hypothesis, cellular and animal models 

of ASD have demonstrated that high-confidence rASD genes are enriched in regulators of the RAS/ERK, 

PI3K/AKT, WNT/β-catenin signaling pathways3,10. These signaling pathways are highly conserved and 

pleiotropic, impacting multiple prenatal and early postnatal neural development stages from 

proliferation/differentiation to synaptic and neural circuit development3. Such multi-functionalities could be 

the reason that we detected the signal in leukocytes of individuals with ASD. 

It is necessary to analyze large subject cohorts from unbiased, general pediatric community settings 

to capture the heterogeneity that underlies ASD at early ages. This study presents the largest transcriptome 

analysis thus far from such settings. However, the analyzed dataset is still of a modest size, and as such our 

analysis focused on the strongest signal that best differentiates ASD and TD diagnosis groups (i.e., 

differentially expressed genes). Here we illustrate that the captured signal is informative about the 

transcriptional organization underlying ASD and shows promise in bridging the gap between genetic and 

clinical outcomes. Future studies with larger datasets are required to not only replicate these results, but 
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also explore other long-standing questions in the field, such as the basis of sex bias that exists in ASD or 

the potential molecular mechanisms that differentiate high-functioning from low-functioning individuals. 

Finally, current ASD diagnostics rely solely on behavioral phenotypes of toddlers, and such 

approaches are limited by age wherein ASD can be reliably diagnosed3,16. Hence, an exciting direction is to 

expand the presented framework to systematically diagnose, classify and prognostically stratify subjects 

with ASD at earlier postnatal ages based on mRNA or other molecular markers. The concept of precision 

molecular medicine for ASD can only be actualized via approaches that illuminate the early-age molecular 

basis of ASD3,19. Emerging evidence represent ASD as a progressive disorder that, at prenatal and early 

postnatal stages, involves a cascade of diverse varying molecular and cellular changes, such as those 

resulting from dysregulation of the pathways and networks described in this paper3,28,29. As such, it will be 

invaluable to develop molecular assays to assess infants and toddlers. The framework presented here could 

facilitate the development of such measures for ASD diagnosis and prognosis, by identifying specific 

molecular dysregulations that we show are observable in leukocytes of a large fraction of toddlers with 

ASD.  
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Data availability 

Leukocyte transcriptome data can be accessed from the NCBI Gene Expression Omnibus (GEO) 

database under the accession codes of GSE42133 and GSE111175. Microarray transcriptome data on the 

differentiation of primary human neural progenitor cells to neural cells were downloaded from the NCBI 

GEO accession GSE57595. Transcriptome data on hiPSC-derived neuron models of ASD and TD were 

downloaded from EMBL-EBI ArrayExpress with the accession code E-MTAB-6018. Human brain 

developmental transcriptome data were downloaded from BrainSpan.org. 

 

Accession codes 

Gene Expression Omnibus database (GSE42133; GSE111175; GSE57595). 

EMBL-EBI ArrayExpress (E-MTAB-6018). 

 

Code availability 

The R code for reproducing the analyses reported in this article is available at 

https://gitlab.com/LewisLabUCSD/ASD_Transcriptional_Organization. 
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Figure Legends 

 

Fig 1. Study overview. 

Transcriptome analysis of 226 toddlers with ASD or typical development identified 1236 DE genes. We 

built a comprehensive “static” network of DE genes from high confidence physical and regulatory 

interactions from the Pathway Commons, BioGrid, and Reactome databases. To identify transcriptional 

programs that are active in each diagnosis group, we retained pairs of interacting genes in the static network 

that are highly co-expressed in each diagnosis group. This yielded context specific DE-ASD and DE-TD 

networks, allowing to compare the activity of transcriptional programs between ASD and TD conditions. 

To connect the DE-ASD network to ASD risk genes, an XP-ASD network was built using DE and ASD 

risk (rASD) genes. The DE-ASD and XP-ASD networks were analyzed in the context of neural 

differentiation, ASD neuron models, and ASD symptom severity. To ensure results were robust to 

variations in the interaction networks, we reproduced the results by replacing the high confidence static 

network (the first step in pipeline) with a functional and a full co-expression network (Methods). 

 

 

Fig 2. Co-expression activity is elevated in the DE-ASD network in ASD leukocytes and preserved in 

prenatal brain. 

a) The DE-ASD network shows stronger co-expression in ASD toddlers compared to TD toddlers, 

suggesting pathways in the DE-ASD network are being modulated in ASD. For an unbiased analysis, the 

union of genes and interactions from DE-ASD and DE-TD networks was considered for this analysis (n= 

119 ASD and 107 TD toddlers; see also Fig. S3). b) Genes in the DE-ASD network are highly expressed in 

the brain between 8 post conception weeks (pcw) to 1 year-old. For each gene, samples strongly expressing 

the gene (RPKM >5) were counted, based on BrainSpan normalized RNA-Seq data34. The background 

genes included all protein coding genes expressed in our microarray experiment and present in BrainSpan 

(n= 187 neocortex samples; see also Fig. S5). c) The activity pattern of the DE-ASD network across brain 

regions during neurodevelopment. At each time window, the distribution of co-expression magnitudes of 

interacting gene pairs in the DE-ASD network was measured using unsigned Pearson’s correlation 

coefficient (n= 121 frontal, 73 temporal, 42 parietal, 27 occipital cortices, and 72 striatum, hippocampus, 

and amygdala samples across time points). The co-expression values were next compared to a background 

distribution using a Wilcoxon-Mann-Whitney test (Methods). The y-axis shows z-transformed p-values of 

this comparison. d) Leukocyte gene co-expression in the DE-ASD network is conserved in the prenatal and 

early postnatal neocortex transcriptome. The Pearson’s correlation coefficient of interacting gene pairs in 

the DE-ASD network was calculated from the neocortex transcriptome (n= 187 neocortex samples; 8 pcw 
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until 1 year-old). The correlations were next paired with those in ASD group (n=119 subjects). A p-value 

was estimated by comparing the observed preservation of DE-ASD with that of DE-TD using a re-sampling 

method (Fig. S6). e) Overlaps of the DE-ASD network with brain developmental modules and networks. 

Modules and networks enriched for rASD genes significantly overlap with the DE-ASD network (FDR 

<0.1; permutation test). rASD networks: networks constructed around high confidence rASD genes7,9; 

rASD modules: co-expression modules enriched for rASD genes11; other modules: modules that are not 

enriched for rASD genes11. f) Similarity of interactions of a brain co-expression network around rASD 

genes9 with ASD and TD samples as measured by Pearson’s correlation coefficient. Boxplots represent the 

similarity based on 100 random sub-samplings (n=75 ASD and 75 TD). The x-axis represents the top 

percentile of positive and negative interactions based on the brain transcriptome interaction correlation 

value. Brain co-expression is based on transcriptome data from 10–19 pcw (see also Fig S5). Boxplots 

represent the median (horizontal line), lower and upper quartile values (box), and the range of values 

(whisker), and outliers (dots). 

 

Fig 3. rASD genes are enriched for the regulators of the DE-ASD network. 

a) Genes identified by ChIP-Seq as regulatory targets of CHD8 (CHD8-1: Sugathan et al.36; CHD8-2: 

Gompers et al.38; CHD8-3: Cotney et al.37) and FMR139, two high confidence rASD genes, are enriched in 

the DE-ASD network. Enrichment was assessed empirically (see also Fig. S7); dashed line shows p-value 

0.05. b) The DE-ASD network significantly overlaps with the regulatory targets of rASD genes based on 

the ENCODE and Chea2016 repositories (FDR <0.1; hypergeometric test); dashed line shows FDR 0.1. c) 

High confidence genes are significantly enriched in the XP-ASD network (hypergeometric test). The lists 

of high confidence rASD genes were extracted from SFARI database42, Kosmicki et al.14, Chang et al.7, and 

Sanders et al.15. List of likely gene damaging (LGD) and synonymous (Syn) mutations in siblings of ASD 

subjects were extracted from Iossifov et al.13 Dashed line indicates p-value 0.05. 

 

Fig 4. rASD genes potentially suppress the DE genes. 

a) Interactions between DE and rASD genes are enriched for negative Pearson’s correlation coefficients in 

the ASD leukocyte transcriptome (n=119 subjects; see Fig. S7 for more details). b) The DE-ASD network 

is significantly enriched for genes that are up-regulated following the knock-down of CHD8 (empirical 

tests). Data were extracted from three studies: Sugathan et al.36 (CHD8 k/d_1), Gompers et al.38 (CHD8 

k/d_2), and Cotney et al.37 (CHD8 k/d_3). See also Fig. S8. c) Expression patterns of DE-ASD genes were 

negatively correlated with rASD genes during in vitro differentiation of human primary neural precursor 

cells43 (n= 77 samples across time points; 3 fetal brain donors). In each panel, black circles represent the 

median expression of associated genes in a sample. Expression levels of each gene were normalized to have 
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mean of zero and standard deviation of one across samples. While genes in the DE-ASD network are 

significantly down-regulated during neuron differentiation (p-value = 4.4 x 10-6; Wilcoxon-Mann-Whitney 

test), XP specific genes are significantly up-regulated (p-value = 1.2x10-3; Wilcoxon-Mann-Whitney test). 

The expression levels of CACNA1E, PRSS12, and CARTPT were considered as the markers of upper layer 

neurons (late stage of neural differentiation). See Fig. S7 for related details. 

 

 

Fig 5. The architecture of the XP-ASD network implicates PI3K/AKT, RAS/ERK, WNT/β-catenin 

pathways as core dysregulated processes in ASD, regulated by rASD genes. 

a) Summary of enriched biological processes in the XP-ASD network. Each node represents a biological 

process that is significantly enriched in the XP-ASD network (two-sided Fisher’s exact test). Nodes that 

preferentially include rASD and DE genes are represented by purple and green colors, respectively. The 

interactions among terms represent the connection patterns of their cognate genes in the XP-ASD network 

with thicker interactions indicating more significant connections (hypergeometric test). Only connections 

with p-value <0.05 are shown. This illustration covers 86% of genes involved in the XP-ASD network.  b) 

Significantly enriched processes in the DE-ASD network (Benjamini-Hochberg corrected FDR <0.1; 

hypergeometric test). These processes are also up-regulated in ASD leukocytes based on GSEA (n=119 

ASD and 107 TD). c) The connected graph of hubs in the XP-ASD network. Green nodes represent hub 

genes in both XP-ASD and DE-ASD networks, while XP-ASD network-only hub genes are in purple. See 

Fig. S9 for the network with all gene labels. d) Significant enrichment of rASD genes in the XP-ASD 

network for the regulators of RAS/ERK, PI3K/AKT, WNT/β-catenin pathways. The x-axis indicates the p-

value that gene mutations would dysregulate the corresponding signaling pathways. The background is 

composed of all genes that were assayed in Brockmann et al.47, excluding rASD and DE genes. The 

significance of enrichment of rASD genes in XP-ASD network for the regulators of signaling pathways 

were examined using Wilcoxon-Mann-Whitney test with background genes (illustrated in black) as control. 

 

Fig 6. The DE-ASD network show increased gene co-expression in differentiating neurons of ASD. 

a) The genes in the DE-ASD network are highly expressed during neural differentiation of hiPSCs from 

ASD and TD cases48 (p-value  7.4 x 10-25; two-sided Wilcoxon-Mann-Whitney test). For each gene, its 

median normalized expression at neural progenitor and neuron stages was considered (n= 65 hiPSC-derived 

neural progenitor and neuron samples from 13 donors). Similar patterns were observed when analyzing 

each stage independently. b) The DE-ASD network shows higher expression level in hiPSC-derived neural 

progenitor and neuron stages of individuals with ASD. Expression data for each gene was normalized to 

have mean zero and variance of one. Boxplots represent the distribution of median expression levels genes 
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involved in the DE-ASD network at each differentiation time point. A mixed linear regression with subjects 

as random effects was used to estimate the significance of the observed pattern (n=65 samples from 13 

donors across 5 time points). This demonstrated the diagnosis group as a significant factor in expression 

level of genes involved in the DE-ASD network (p-value: 0.018; estimate: 0.31; std. err.: 0.13; t-statistics: 

2.36; df: 57). c) The DE-ASD network shows higher co-expression activity in ASD derived neural 

progenitors and neurons. To estimate the co-expression strength of interacting gene pairs in DE-ASD 

network in neural progenitor and neurons of in each diagnosis group, iterating 100 times, we randomly 

selected 4 individuals from a diagnosis group and measured the co-expression strength of the DE-ASD 

network at neural progenitor differentiation time points of day 0, 2, 4, 7, and 14 (n=20 samples). The 

boxplots represent the distribution of z-transformed p-values of co-expression strength as measured by a 

two-sided Wilcoxon-Mann-Whitney test. d)The highest co-expression activity of the DE-ASD network in 

subjects with ASD coincides with the proliferation period (Day 0-to-4) of neural progenitors, and then its 

transcriptional activity gradually decreases.  See Fig. S10 for more details. Boxplots represent the median 

(horizontal line), lower and upper quartile values (box), and the range of values (whisker), and outliers 

(dots). 

 

Fig 7. Co-expression magnitude of the DE-ASD network correlates with ASD severity. 

a) ASD toddlers were sorted by their ADOS social affect scores (ADOS-SA) with higher scores 

representing more severe cases. The network activity was measured in a running window on ADOS-SA 

scores. The overall activity of the DE-ASD network in a set of samples was measured by comparing the co-

expression magnitude of interactions in the network with the background derived from the same set of 

samples (Methods). To ensure robustness of the results, we measured the co-expression activity of the DE-

ASD network at each severity group by randomly selecting n=20 subjects with ASD from that severity 

level, iterating 1000 times. The left inset panel illustrates the distribution of observed correlation values of 

DE-ASD network with the ADOS-SA severity, and compares it with permuted data from10,000 random 

shuffling of ADOS-SA scores of subjects with ASD (two-sided p-value <10-6; permutation test; see Fig. 

S11). b) The relative co-expression magnitude of the DE-ASD networks compared to TD cases. The 

relative activity level was estimated by comparing the co-expression strength of interactions in the DE-ASD 

network between ASD and TD toddlers. For each severity group, n=20 ASD samples in that ADOS-SA 

range were randomly selected and compared to n=20 random TD samples, iterating 1000 times. 

Significance of the trend was evaluated by 10,000 permutations of the ADOS-SA scores in toddlers with 

ASD (two-sided p-value <10-6; permutation test; see Fig. S11-S12). Boxplots represent the median 

(horizontal line), lower and upper quartile values (box), and the range of values (whisker), and outliers 

(dots). 
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Materials and Methods 

Participant recruitment and clinical evaluation 

In this study, we performed transcriptomics analysis of 302 male toddlers with the age range of 1 to 

4 years. The samples were divided into primary discovery and replication datasets, and were assayed by 

either microarray or RNA-Seq platforms. This included previously published transcriptome data (153 

individuals)19 and new samples were collected using a similar methodology for participant recruitment (149 

new cases). Research procedures were approved by the Institutional Review Board of the University of 

California, San Diego. Parents of subjects underwent Informed Consent Procedures with a psychologist or 

study coordinator at the time of their child’s enrollment. 

About 70% of toddlers were recruited from the general population as young as 12 months using an 

early detection strategy called the 1-Year Well-Baby Check-Up Approach51. Using this approach, toddlers 

who failed a broadband screen, the CSBS IT Checklist52, at well-baby visits in the general pediatric 

community settings were referred to our Center for a comprehensive evaluation. The remaining subjects 

were obtained by general community referrals. All toddlers received a battery of standardized psychometric 

tests by highly experienced Ph.D. level psychologists including the Autism Diagnostic Observation 

Schedule (ADOS; Module T, 1 or 2), the Mullen Scales of Early Learning and the Vineland Adaptive 

Behavior Scales. Testing sessions routinely lasted 4 hours and occurred across 2 separate days. Toddlers 

younger than 36 months in age at the time of initial clinical evaluation were followed longitudinally 

approximately every 9 months until a final diagnosis was determined at age 2-4 years. For analysis 

purposes, toddlers (median age, 27 months) were categorized into two groups based on their final diagnosis 

assessment: 1) ASD: subjects with the diagnosis of ASD or ASD features; 2) TD:  toddlers with typical 

developments. 

ADOS scores at each toddler’s final visit were used for correlation analyses with DE-ASD network 

co-expression activity scores. All but 4 toddlers were tracked and diagnosed using the appropriate module 

of the ADOS (i.e., ADOS Module-Toddler, Module-1, or Module-2) between the ages of 24-49 months, an 

age where the diagnosis of ASD is relatively stable16; the remaining 4 toddlers had their final diagnostic 

evaluation between the ages of 18 to 24 months. 

 

Blood sample collection 

Blood samples were usually taken at the end of the clinical evaluation sessions. To monitor health 

status, the temperature of each toddler was monitored using an ear digital thermometer immediately 

preceding the blood draw. The blood draw was scheduled for a different day when the temperature was 
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higher than 99 Fahrenheit. Moreover, blood draw was not taken if a toddler had some illness (e.g., cold or 

flu), as observed by us or stated by parents. We collected four to six milliliters of blood into 

ethylenediaminetetraacetic-coated tubes from all toddlers. Blood leukocytes were captured and stabilized 

by LeukoLOCK filters (Ambion) and were immediately placed in a −20°C freezer. Total RNA was 

extracted following standard procedures and manufacturer’s instructions (Ambion). 

  

Data processing and differential gene expression analysis of the primary dataset 

The primary discovery dataset composed of 275 samples from 240 male toddlers with the diagnosis 

of ASD and TD from the general population. Gene expressions were assayed using Illumina HT-12 

platform. All arrays were scanned with the Illumina BeadArray Reader and read into Illumina 

GenomeStudio software (version 1.1.1). Raw Illumina probe intensities were converted to expression 

values using the lumi package53. We employed a three-step procedure to filter for probes with reliable 

expression levels. First, we only retained probes that met the detection p-value <0.05 cut-off threshold in at 

least 3 samples. Second, we required the probes to have expression levels above 95th percentile of negative 

probes in at least 50% of samples. The probes with detection p-value >0.1 across all samples were selected 

as negative probes and their expression levels were pooled together to estimate the 95th percentile 

expression level. Third, for genes represented by multiple probes, we considered the probe with highest 

mean expression level across our dataset, after quantile normalization of the data. These criteria led to the 

selection of 14,854 protein coding genes as expressed in our leukocyte transcriptome data, which is similar 

to the previously reported estimate of 14,555 protein coding genes (chosen based on unique Entrez IDs) for 

whole blood by GTEx consortium54. To ensure results are not affected by the variations in the procedure of 

selecting expressed genes, we replicated all of our analyses (redoing DE analysis and re-constructing HC 

DE and XP networks) by choosing 13,032 protein coding genes as expressed (Fig. S13). 

Quality control analysis was performed on normalized gene expression data to identify and remove 

22 outlier samples from the dataset. Samples were marked as outlier if they showed low signal intensity in 

the microarray (average signal of two standard deviations lower than the overall mean), deviant pairwise 

correlations, deviant cumulative distributions, deviant multi�dimensional scaling plots, or poor hierarchical 

clustering, as described elsewhere18. After removing low quality samples, the primary dataset had 253 

samples from 226 male toddlers including 27 technical replicates. High reproducibility was observed across 

technical replicates (mean Spearman correlation of 0.917 and median of 0.925). We randomly removed one 

of each of two technical replicates from the dataset.  

The limma package55 was then applied on quantile normalized data for differential expression 

analysis in which moderated t-statistics was calculate by robust empirical Bayes methods56. Sample batch 

was used as a categorical covariate (total of two batches; both Illumina HT-12 platforms). Exploration 
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graphs indicated that linear modeling of batch covariate was effective at removing its influence on 

expression values (Fig. S14). MA-plots of the primary dataset did not show existence of bias in the fold 

change estimates (Fig. S1). DE analysis identified 1236 differentially expressed genes with Benjamini-

Hochberg FDR <0.05. 

 

Reproducibility assessment using additional microarray and RNA-Seq datasets 

We performed six analyses to confirm that fold change patterns of DE genes in the primary dataset 

are robust to alterations in the analysis pipeline, are not affected by the batches, and are present in the vast 

majority of samples. First, we included additional co-variates in our regression models. Second, the 

discovery dataset (253 high quality samples from 226 male toddlers) is an expanded version of a dataset 

that we analyzed and reported in our previous study using a different approach1. Therefore, we compared 

the fold changes from non-overlapping subjects from these two studies. Third, we performed Jack-knife 

resampling to confirm that the observed fold changes were not driven by a small subset of subjects, but 

rather shared by the vast majority of samples (Fig S1). We performed a similar analysis on the network 

activity levels and found that the higher co-transcriptional activity of DE-ASD networks are not driven by a 

small number of subjects (Fig S11). Fourth, we performed additional microarray transcriptome analyses to 

confirm that our results are replicable at technical and biological levels. We conducted transcriptome 

analysis on a second dataset composed of 56 randomly selected male toddlers from the primary dataset (35 

ASD and 21 TD). We also analyzed a third microarray dataset composed of 48 male toddlers with 24 

independent, non-overlapping toddlers with ASD, while 21 out of 24 TD cases overlapped with the primary 

dataset. These two datasets were assayed concurrently, but at a different time than the primary dataset. 

Moreover, in contrast to the primary dataset, the second and third datasets were assayed by Illumina WG-6 

Chips. The pre-processing and downstream analysis of the second and third microarray datasets were 

conducted separately using the same approaches as the primary dataset. 

Fifth, to further assess the reproducibility of the results across experimental platforms, we 

performed RNA-Seq experiments on 56 samples from an independent cohort of 12 (19 samples) TD and 23 

(37 samples) male toddlers with ASD. None of these subjects overlapped with those in the microarray 

datasets. This allowed us to ensure our results are not subject nor platform (i.e., microarray vs. RNA-Seq) 

specific. RNA-Seq libraries were sequenced at the UCSD IGM genomics core on a HiSeq 4000. We 

processed the raw RNA-Seq data with our pipeline that starts with quality control with FastQC57. Low 

quality bases and adapters were removed using trimmomatic58. Reads were aligned to the genome using 

STAR59. STAR results were processed using Samtools60, and transcript quantification is done with HTseq-

count61. Subsequently, low expressed genes were removed and data were log count per million (cpm) 

normalized (with prior read count of 1) using limma55. We performed SVA analysis62 on the normalized 
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expression data and included the first surrogate variable as covariate to account for potential hidden 

confounding variables. Differential expression analysis was performed using the limma package with 

subjects modeled as random effects (Fig S4). 

Finally, we explored the potential impact of variations in cell type composition1 and other hidden 

confounding variables62 on the results. As illustrated in Fig. S2, our results indicated that there is no 

statistically significant difference in the cell type composition between ASD and TD samples. 

 

 

ASD risk genes 

ASD risk genes were extracted from the SFARI database42 on Dec. 7, 2016. We also included the 

reported risk genes from a recent meta-analysis, containing genes mutated in individuals with ASD but not 

present in Exome Aggregation Consortium database (ExAC)14. Together, these two resources provided 965 

likely rASD genes that were used for the construction of the XP-ASD networks. Previously published genes 

with likely gene damaging and synonymous mutations in siblings of subjects with ASD, who developed 

normally were retrieved from Iossifov et al.13. 

ASD high confidence risk genes were extracted from the SFARI database (genes with confidence 

levels of 1 and 2), Kosmicki et al.14 (recurrent gene mutations in individuals with ASD, but not present in 

the ExAC database), Sanders et al.15, and Chang et al.7. Strong evidence genes with de novo protein 

truncating variants in subjects with ASD were extracted from Kosmicki et al.14 and included rASD genes 

that were not in the ExAC database and have a probability of loss-of-function intolerance (pLI) score of 

above 0.9. Gene names in these datasets were converted to Entrez IDs using DAVID tools63. 

To assess the overlap of DE-ASD networks with rASD genes, we considered our list of all rASD 

genes (965 genes), different lists of high confidence rASD genes (varying in size and composition) and 

their combinations, including all SFARI rASD genes, SFARI gene levels 1-to-3, SFARI gene levels 1 and 

2, strong evidence rASD genes from Kosmicki et al.14, and strong evidence rASD genes from Sanders et 

al.15. 

rASD genes with potential gene regulatory role were identified based on the gene ontology 

annotations. We considered an rASD as a potential gene regulator if it was annotated with either DNA-

binding transcription factor activity (GO:0003700), DNA binding (GO:0003677), or DNA-templated 

regulation of transcription (GO:0006355). 

 

Construction of context specific networks 

We first regressed out the interfering co-variate (i.e., batch group) from the quantile normalized 

expression values of the primary dataset (see the Data processing section). The Context Likelihood of 
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Relatedness (CLR) algorithm64 was next applied on the batch corrected transcriptome data from ASD and 

TD diagnosis groups separately to construct two co-expression networks (technical replicates were 

randomly removed from the dataset prior to construction of the networks). The CLR algorithm employs a 

two-step procedure to infer significantly co-expressed gene pairs. First, it estimates the distribution of 

similarity scores for each gene based on the similarity that the gene shows with all other genes in the 

dataset using a mutual information metric. Second, it estimates the significance of the observed similarity 

score for each gene pair by testing how likely it is to have such a similarity score given the co-expression 

similarity score distributions of the two genes from the first step. The separate application of the CLR 

algorithm on ASD and TD samples provided global (i.e., all expressed genes) gene-gene co-expression 

similarity matrices for each diagnosis group. DE and expanded DE-and-rASD (XP) networks were next 

constructed from CLR-derived ASD and TD similarity matrices as detailed below. 

To ensure the robustness of the results, we constructed three variants of the DE networks for each 

diagnosis group (i.e., ASD and TD; total of six networks). These networks varied in the number of nodes 

and edges, providing a tradeoff between sensitivity (number of false negative interactions) and specificity 

(number of false positive interactions) in our downstream analysis. Unless otherwise noted, we reported 

results that were reproducible in all three networks. The three networks include the high confidence 

network (HC; including strong evidence physical and regulatory interactions), the functional network 

(including interactions between previously known functionally related genes), and the full co-expression 

network. The full co-expression network is solely based on co-expression patterns of DE genes (i.e., all 

significantly co-expressed DE gene pairs with FDR <0.05 as judged by the CLR algorithm). To construct 

the HC and functional networks, we first retrieved the static HC and functional networks of the detected 

protein-coding DE genes from databases. The static HC network was obtained from the Pathway Commons 

database65 and was updated to include interactions from the most recent Reactome66 and BioGrid67 

databases. The static functional network was extracted from the GeneMania webserver68 and included 

interactions supported by co-expression, protein-protein interactions, genetic interactions, co-localization, 

shared protein domains, and other predictions68. The backbone, static network of all DE-ASD and DE-TD 

networks composed of at least 96% DE genes. Static HC and functional networks were made context 

specific by retaining those database-derived interactions that were significantly co-expressed in the 

diagnosis group (The static backbone networks were shared between the DE-ASD and DE-TD networks). 

All figures in the main text are based on HC DE-ASD and DE-TD networks, and the results of functional 

and full co-expression networks are represented in the supplement. 

By design, the HC network is smaller, more accurate, but potentially more biased as it includes 

genes that are more actively studied than those in the functional network. Both networks are smaller than 

the full co-expression network. Therefore, on average, the functional DE-ASD and DE-TD networks had 
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15x more interactions and 2.3x more genes than their HC counterparts. Similarly, the full DE-ASD and DE-

TD networks had 6.4x more interactions and 1.05x more genes than their functional counterparts. 

The XP-ASD networks were constructed using a similar approach, but from the union of protein-

coding DE genes and 965 rASD genes. Our list of 965 rASD genes included genes that are ranked either as 

high confidence (supported with multiple studies or direct experimentation) or low confidence (some even 

have been found in healthy siblings of individuals with ASD). To assess the relevance of XP-ASD 

networks to the pathobiology of ASD, we also examined the association of XP-ASD networks with genes 

mutated in siblings of subjects with ASD, who developed normally. For this, we constructed two other 

variants of the XP-ASD networks by adding genes with likely gene damaging mutations (Siblings-LGD) 

and Synonymous (Siblings-Syn) mutations in our list of DE and rASD genes, separately. We next tested if 

these two variants of XP-ASD networks preferentially incorporated mutated genes in siblings of individuals 

with ASD, who developed normally. As the sole purpose of these two network variants were to test the 

relevance of the main XP-ASD network, they were not needed for follow up analyses. Similar to DE 

networks, the main figures represent results based on the HC XP-ASD network and the results for the 

functional and full XP-ASD networks are included in the supplement. 

 

Network and module overlap analysis 

Unless otherwise noted, we used permutation tests to assess the significance of overlap between 

pairs of networks or modules. The background gene list for DE and XP networks were all protein coding 

genes that were expressed in our microarray experiments (see the gene expression preprocessing section for 

more details). DE genes did not show bias in terms of gene mutation rates (p-value=0.36; Wilcoxon-Mann-

Whitney test) and length (p-value: 0.45; two-sided t-test). We extracted the gene mutation rates from a 

previous study5. 

Empirical permutation tests were conducted by 10,000 random draws from background gene lists 

and measuring the overlaps. The actual overlap was then compared to the overlap distribution of random 

draws and an empirical p-value was estimated. In cases where the estimated empirical p-value was zero 

based on 10,000 permutation tests, we performed 90,000 additional random draws to obtain a more accurate 

estimation. If the estimated empirical p-value was still zero, a theoretical, hypergeometric-based p-value 

(non-zero) was considered. Multiple testing was corrected by the Benjamini-Hochberg procedure and FDR 

<0.1 was considered as significant, unless otherwise noted. By design, our functional and full DE and XP 

networks are highly sensitive and therefore include more than 90% of queried genes. Since we required 

replicable significant overlap of gene sets across our networks, this feature renders the overlap analysis 

robust to potential biases due to the network topology. 
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To identify genes that potentially regulate DE-ASD networks, we examined the overlap of DE-ASD 

networks with identified targets of human transcription factors as part of ENCODE40 and the curated 

Chea2016 database41. Overall, targets of 285 unique human transcription factors are assayed in the 

ENCODE and Chea2016 resources, and from these, 20 are currently annotated as high-confidence or 

suggestive evidence rASD genes by the SFARI database (SFARI categories 1 to 3). We performed overlap 

analysis between targets of transcription factors and each of the three DE-ASD networks separately using 

the hypergeometric test through the EnrichR portal72. Some of the transcription factors were assayed 

multiple times, providing partially different sets of target genes for these transcription factors. For such 

transcription factors, we had multiple p-values from the overlap analysis. Therefore, we used Fisher’s 

method to combine the enrichment p-values across assays related to a given transcription factor during the 

analysis of each DE-ASD network. Next, p-values were corrected using the Benjamini-Hochberg 

procedure. Only transcription factors whose targets were significantly enriched in all three DE-ASD 

networks were considered as significantly overlapping (FDR <0.1) with the DE-ASD networks. This 

resulted in the identification of 97 unique transcription factors whose targets are significantly enriched in all 

three DE-ASD networks. From these 97, 11 transcription factors are currently annotated as high confidence 

or suggestive evidence rASD genes. We assessed whether rASD genes are significantly enriched among the 

97 transcription factors using a Fisher’s exact test. 

  

Hub analysis 

The hub analysis of DE-ASD and XP-ASD networks were conducted by an integrated analysis of 

high-confidence (HC) and functional networks. By design, HC and functional networks each have their 

own advantages. Interactions in HC networks are presumably more accurate but potentially biased towards 

specific genes that are better studied. In contrast, hubs in functional networks are less susceptible to bias in 

knowledge on the interactome, but more prone to false positive interactions. Thus, we aimed to combine the 

information provided by the two networks to get a more accurate picture of hub genes. We first counted the 

number of interactions that each gene has in either of HC or functional networks. For the genes that were 

present in only one of the two networks, the interaction count of zero was considered for the other network. 

Then the p-value of hubness for each gene in a network (with the null hypothesis that the gene is not a hub) 

was determined by calculating the empirical probability of identifying a gene with the same number of 

interactions or higher in the network. Next, the hubness p-value score of each gene in HC and functional 

networks were combined together using Fisher’s method: 

�2

2
�  �2 � �ln�	

��
� 
 ln�	

����
�� 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2019. ; https://doi.org/10.1101/435917doi: bioRxiv preprint 

https://doi.org/10.1101/435917
http://creativecommons.org/licenses/by-nc-nd/4.0/


Where 	 refers to the empirical p-value of hubness for a gene in the HC and functional networks. �2

2 

is the chi-squared score with two degrees of freedom. The top 5% and 7% genes with highest �2

2 scores 

were considered as hub in DE-ASD and XP-ASD networks, respectively. 

 

Functional characterization of DE-ASD networks 

We set two criteria to identify biological processes that are differentially expressed between ASD 

and TD diagnosis groups and are enriched in the DE-ASD networks. First, we required the biological 

process to significantly change between ASD and TD transcriptome samples based on GSEA69,70. Second, 

we required the biological process to be significantly enriched in the DE-ASD networks. 

GSEA identified multiple gene sets that were significantly upregulated in subjects with ASD (FDR 

<0.12), using the R version of the GSEA package and the msigdb.v5.1 database (downloaded on Oct. 20, 

2016)69,70. Significantly enriched processes in the DE-ASD networks were identified by examining the 

overlap of GSEA-identified significantly altered gene sets with the DE-ASD networks based on empirical 

permutation tests, and p-values were corrected for multiple testing using the Benjamini-Hochberg 

procedure. We excluded gene sets associated with specific reference datasets in MSigDB since their 

generalizability to our dataset has not been established. 

 

Biological enrichment analysis of XP-ASD networks 

Significantly enriched Gene Ontology biological processes (GO-BP) were identified by Fisher’s 

exact test on terms with the 10-2000 annotated genes. The terms with Benjamini-Hochberg estimated FDR 

<0.1 were deemed as significant. The enriched terms were next clustered based on the GO-BP tree, 

extracted from the Amigo database using RamiGO package in R71. The general terms with more than 1000 

annotated genes that spanned two or more clusters were removed. 

 

Brain developmental gene expression data 

Normalized RNA-Seq transcriptome data during human neurodevelopmental time periods were 

downloaded from the BrainSpan database on Dec. 20, 201634,35. To calculate correlations, normalized 

RPKM gene expression values were log2(x+1) transformed. 

 

Neural progenitor differentiation data 

Microarray transcriptome data from the differentiation of primary human neural progenitor cells to 

neural cells43 were downloaded from the NCBI GEO database (GSE57595). The data were already quantile 

normalized and ComBat batch-corrected73. For genes with multiple probes, we retained the probe with the 

highest mean expression value. 
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To observe the transcriptome response of XP-ASD networks during neuron differentiation, we 

correlated the gene expression patterns with the developmental time points, considering the differentiation 

time as an ordinal variable. 

 

human induced pluripotent stem cells (hiPSC) data 

We obtained hiPSC data28 from subjects with ASD and TD controls from EMBL-EBI ArrayExpress 

(E-MTAB-6018). Gene expression counts were normalized with the TMM method74 and filtered to exclude 

low-expressed genes (genes with count per million greater than 1 were retained). To calculate the 

correlations, normalized RNA-Seq gene expression values were log2(x+1) transformed. 

The subjects from this hiPSC study come from our center. However, none of the subjects overlap with 

those included in the transcriptome datasets in this study. Moreover, the hiPSC cohort includes only 8 

subjects with ASD and macrocephaly, while our primary (i.e., discovery) leukocyte transcriptome is from 

119 toddlers with ASD selected from general pediatric community and were not filtered based on their 

brain size. Moreover, the subjects participating in the two studies did not have the same age range and 

hiPSC cohort is composed of subjects with mean and median age of 167 and 193 months, respectively 

(toddlers in our dataset are between 12 to 48 months old). On the sample collection, our transcriptome data 

are from leukocytes of subjects with ASD, while the hiPSC transcriptome is based on the reprogrammed 

fibroblast cells. 

 

Regulatory effect of gene mutations on phosphorylation state of key signaling proteins 

Data were extracted from a genome-wide mutational study that monitored the regulatory effect of 

gene mutations on phosphorylation status of 10 core genes of different signaling pathways and processes17. 

Genes whose mutations affected the phosphorylation status of the core signaling genes with FDR <0.1 were 

considered as the regulators of the cognate signaling pathway. We observed that 89 out of 316 rASD genes 

included in the HC DE-ASD network are regulators of at least one signaling pathway among RAS/ERK (as 

measured by phosphorylation status of ERKs), PI3K/AKT (as measured by phosphorylation status of 

AKT1), and WNT/β-catenin (as measured by phosphorylation status of β-catenin) (Fisher’s exact test p-

value <1.7 x 10-22; see Fig 5d for more details). Moreover, 34 additional genes were connected to the XP-

ASD network only through these 89 regulator genes. Therefore, as our HC networks are composed of high 

confidence interactions, in total 39% of rASD genes in the HC XP-ASD network are related to these three 

signaling pathways in the high confidence XP-ASD network. In general, signaling pathways are highly 

inter-connected in the cell17. Hence, genes could affect the activity of different pathways concurrently. To 

ensure that the genes included in the XP-ASD networks are specific to the three signaling pathways of 

RAS/ERK, PI3K/AKT, and WNT/β-catenin, we reproduced the results after removing the genes that 
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regulate at least two signaling genes other than ERKs, AKT1, and β-catenin (data not shown). To observe 

the specificity of these results, as negative control, we confirmed that the rASD genes in the XP-ASD 

network are not significantly enriched for the regulators of LAMP1 gene after excluding those genes that 

regulate at least two of three signaling pathways of RAS/ERK, PI3K/AKT, and WNT/β-catenin. 

 

Measuring the co-expression activity of DE-ASD networks 

We measured the co-expression strength of interacting genes in DE-ASD networks based on an 

unsigned Pearson’s correlation coefficient metric. To estimate the significance of the network activity in a 

set of samples, we compared the co-expression distribution of gene pairs in the network to a background 

distribution of co-expression values using the Wilcoxon-Mann-Whitney test in the R coin package. The 

network activity level was defined as z-transformed p-values of this comparison. Significant scores imply 

that at least some interacting gene pairs are co-expressed significantly higher than chance and hence parts 

of the network is potentially active. The background distribution was obtained by selecting genes with 

mean expression values closest to those involved in the relevant network. For each gene in the DE-ASD 

network, 10 non-overlapping genes with closest mean expression were selected. For example, we selected 

3920 unique genes as the background for the HC DE-ASD network that has 392 genes. The unsigned 

correlations among these genes constituted the background distribution. 

Measuring the co-expression activity of DE-ASD network during the neurodevelopmental period: 

To measure the co-expression activity of the DE-networks during brain neurodevelopmental periods from 

the BrainSpan RNA-Seq transcriptome data, we grouped samples from every 5 consequent time periods, 

starting from 8 post conception weeks and ending with 11 years old. The groups did not overlap in 

timespan. 

Measuring the co-expression activity of DE-ASD network in neuron models of ASD: To measure 

DE-ASD network co-expression activity in hiPSC-derived neurons of ASD and TD cases, we analyzed the 

largest available transcriptome dataset including 8 ASD and 5 TD donors6. In this dataset, hiPSC-derived 

neural progenitor cells from each donor is differentiated to neurons and transcripts are measured during 

differentiation at 0, 2, 4, 7, and 14 days into the differentiation. To measure the DE-ASD network activity 

during the differentiation of neural progenitors to neuronal stages, iterating 100 times, we randomly 

selected 4 donors within each diagnosis group and measured the co-expression magnitude of the DE-ASD 

networks across the differentiation time points (n=20 samples). 

Correlation of DE-ASD co-transcriptional activity with ADOS social affect scores: To map the co-

expression activity of the DE-ASD networks on toddlers’ ADOS social affect (ADOS-SA) scores, we only 

considered ASD samples as DE-ASD networks were constructed based on genes that are differentially 

expressed between ASD and TD. toddlers with ASD were grouped based on a moving window on ADOS-
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SA scores with the width of 4 and a step size of 1. The number of toddlers with scores of 5 and 6 were 

relatively few compared to other categories. Therefore, the first window was from ADOS-SA score 5 to 10 

(window size of 6). Moreover, to avoid biases due to number of samples in each window, the network 

activities were measured based on randomly selected sets of 20 samples from each window, iterating 1000 

times. The correlation of ADOS-SA scores with the observed network activity was measured by 

considering the windows as ordinal values. To assess statistical significance, we shuffled the ADOS-SA 

scores of toddlers with ASD 10,000 times and re-calculated the network activity for each permutation (with 

no internal iterations). 

There are some objective differences in measuring network activity during normal brain 

development versus the correlation of the leukocyte network activity with ADOS-SA scores. While in brain 

transcriptome data we hypothesized the DE-ASD networks show greater co-expression than background, 

we already knew that these networks are significantly co-expressed in toddlers with ASD and thus sought to 

test if their change in co-expression activity is dependent on ADOS-SA scores. Hence to map the relative 

activity of the DE-ASD networks in leukocytes of toddlers with ASD, in a second analysis, we based the 

background co-expression on the same network in the TD toddlers (instead of random genes from the same 

samples). The distribution of co-expression scores in each ADOS-SA score window was compared to the 

co-expression distribution (Wilcoxon-Mann-Whitney test) of the same network after randomly selecting the 

same number of samples among the TD toddlers (n=20 ASD samples and 20 TD samples at each iteration). 

We repeated the procedure 1000 times each with a distinct ASD and TD sample combination for all three 

context-specific DE-ASD networks to get the range of the network activity at each window. To assess the 

significance of observed distribution, we performed 10,000 permutations of ADOS-SA scores of toddlers 

with ASD (with no internal iterations at each severity level). 

 

 

Statistics and reproducibility 

Almost all statistical analyses were conducted in the R programing environment (version 3.5.0). For 

microarray data, raw Illumina probe intensities were converted to expression values using the lumi 

package53. We filtered out probes that were not expressed from the dataset. Through quality control 

assessments, we identified and removed 22 outlier samples from the microarray dataset. Data were next 

quantile normalized and differentially expression genes were identified using limma package55 with the 

experimental batch included as a covariate in the regression model. Genes with FDR <0.05 were deemed as 

differentially expressed. Surrogate variable analysis did not support presence of other co-variates in the 

data62. Cibersort was used to examine potential impact of cell types on the differential expression patterns75. 

Technical replicates were used to assess the quality of samples and then were excluded from differential 
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expression analysis and the follow up analyses (e.g., co-expression network construction). RNA-Seq data 

were mapped and quantified using STAR59 and HTSeq61, respectively. Quality of RNA-Seq samples were 

examined using FastQC57. Surrogate variable analysis was performed to identify and remove a covariate 

from RNA-Seq data62. Pearson’s correlation coefficient was used for the comparison of fold changes across 

datasets. We regressed out the covariate (i.e., the experimental batch) before calculating the co-expression. 

Significantly co-expressed genes were identified using the CLR package in MATLAB64, and interactions 

with co-expression FDR <0.05 were considered as significant. For network co-expression activity, we used 

unsigned Pearson’s correlation coefficient to measure the co-expression magnitude of interactions. The co-

expression magnitudes of interactions of two networks were compared using two-sided Wilcoxon-Mann-

Whitney test. When comparing co-expression magnitudes in two different datasets, to ascertain that the 

number of samples do not influence the measurements, a balanced number of samples were selected 

randomly. In most cases we used permutation tests to empirically examine the significance of an observed 

overlap between two gene sets. In cases that required a large number of tests, to increase speed, we used 

either hypergeometric or fisher’s exact tests. Fisher’s exact test was used to examine the overlap of the 

constructed networks with Gene Ontology-biological process (GO-BP) terms. We used the RamiGO 

package71 to cluster significantly enriched GO-BP terms that are similar and overlapping in their gene 

content. If appropriate, all p-values were corrected for multiple testing. The EnrichR portal72 was used to 

systematically examine the enrichment of the DE-ASD networks for the regulatory targets of human 

transcription factors. Fisher’s method was used to combine p-values from multiple assays on the same 

transcription factor. When applicable, we specified the sample sizes (n) within the figure legend or table 

description. Non-parametric tests (e.g., Wilcoxon-Mann-Whitney and permutation tests) were used to avoid 

strong assumptions about the distribution of data in our statistical analyses. No statistical tests were used to 

predetermine sample sizes, but our sample sizes were larger than those reported in previous 

publications18,19,25. No randomization was performed in our cohort assignment. Data collection and analysis 

were not performed blind to the conditions of the experiments. 
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