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Abstract23

With the advent of high-throughput phenotyping platforms, plant breeders have a means24

to assess many traits for large breeding populations. However, understanding the genetic25

interdependencies among high-dimensional traits in a statistically robust manner remains26

a major challenge. Since multiple phenotypes likely share mutual relationships, elucidating27

the interdependencies among economically important traits can better inform breeding de-28

cisions and accelerate the genetic improvement of plants. The objective of this study was to29

leverage confirmatory factor analysis and graphical modeling to elucidate the genetic interde-30

pendencies among a diverse agronomic traits in rice. We used a Bayesian network to depict31

conditional dependencies among phenotypes, which can not be obtained by standard multi-32

trait analysis. We utilized Bayesian confirmatory factor analysis which hypothesized that 4833

observed phenotypes resulted from six latent variables including grain morphology, morphol-34

ogy, flowering time, physiology, yield, and morphological salt response. This was followed35

by studying the genetics of each latent variable, which is also known as factor, using single36

nucleotide polymorphisms. Bayesian network structures involving the genomic component37

of six latent variables were established by fitting four algorithms (i.e., Hill Climbing, Tabu,38

Max-Min Hill Climbing, and General 2-Phase Restricted Maximization algorithms). Phys-39

iological components influenced the flowering time and grain morphology, and morphology40

and grain morphology influenced yield. In summary, we show the Bayesian network coupled41

with factor analysis can provide an effective approach to understand the interdependence42

patterns among phenotypes and to predict the potential influence of external interventions43

or selection related to target traits in the interrelated complex traits systems.44
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Introduction45

A primary objective in plant breeding is the develop high yielding varieties with specific46

grain qualities, resilience to pests and abiotic stresses, and superior adaption to the target47

environment. As a result, plant breeders devote considerable resources to extensive pheno-48

typic evaluation of germplasm and select on multiple traits. These traits are often correlated49

at a genetic level through common genetic effects (e.g. pleiotropy) or linkage disequilibrium50

between quantitative trait locus (QTL). Since multiple phenotypes may exhibit mutual re-51

lationships, knowledge of the interdependence among agronomically important traits can52

improve the efficacy of selection and rate of genetic improvement in systems with complex53

traits.54

In a standard quantitative genetic analysis, multivariate phenotypes can be modeled55

through multi-trait models (MTM) of Henderson and Quaas (1976) or some genomic coun-56

terparts (e.g., Calus and Veerkamp, 2011; Jia and Jannink, 2012) by leveraging genetic or57

environmental correlations among traits. In particular, MTM has been useful in deriving58

genetic correlations and enhancing the prediction accuracy of breeding values for traits with59

low heritability or scarce records via joint modeling with one or more genetically correlated,60

highly heritable traits (Mrode, 2014). Conventional MTM strategies may provide impor-61

tant insight into the genetic relations between agronomically important traits, but they fail62

to explain how these traits are related. For instance, consider a case where we have three63

genetically correlated traits: y1, y2, and y3. With MTM, we cannot address whether the64

relationship between y1 and y3 is due to direct effects, or if the relationship is driven by65

indirect effects mediated by y2. Bayesian Networks (BN) offer an effective approach to elu-66

cidate the underlying network structure in multivariate data and infer network relationships67

between correlated variables. A BN is a probabilistic graphical model that represents condi-68

tional dependencies among a set of variables via a directed acyclic graph (DAG) (Neapolitan69

et al., 2004). In the DAG, the variables are represented by nodes, while their conditional70
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dependencies between nodes are indicated with directed edges. In the context of plant71

breeding, BN can used to elucidate the interdependencies among traits and inform selection72

decisions for simultaneously improving multiple traits. For instance in the latter case above73

(y1 → y2 → y3), selection directly on y2 will affect the quantity of y3 without an effect on y1.74

With the advent high throughput phenotyping platforms, plant breeders have been pro-75

vided with a suite of tools for phenotypic evaluation of large populations (Shakoor et al.,76

2017). These platforms leverage robotics, precise environmental control, and remote sensing77

techniques to provide accurate, repeatable and high resolution phenotypes for large breed-78

ing populations throughout the growing season (Araus and Cairns, 2014; Shakoor et al.,79

2017; Araus et al., 2018). These data can be used to redefine characteristics underlying80

superior agronomic performance by quantifying secondary traits associated with seedling81

vigor, plant architecture, photosynthesis, transpiration, disease resistance, and stress toler-82

ance (Cabrera-Bosquet et al., 2016; Sun et al., 2017; Crain et al., 2018). However given these83

new approaches, breeders are faced with the new challenge of efficiently utilizing these large84

multidimesional data sets to improve selection efficiency. The primary challenges associated85

with multivariate analysis and BN approaches using HTP data is that robust parameter86

estimates can be untenable because the number of estimated parameters within the model87

increases with the increasing number of phenotypes. Moreover even in cases where MTM or88

BN can be applied, interpreting of interrelationships among a large number of phenotypes89

can be difficult.90

One approach to characterize high-dimensional phenotypes is by using factor analysis91

(FA). The central idea of FA approaches is to reduce the dimensions of multivariate data92

sets by constructing unobserved, latent factors, or modules, from correlated phenotypes93

(de los Campos and Gianola, 2007). The biological importance of these latent factors can be94

interpreted by inspecting the phenotypes that contribute to each factor. Thus, the advantage95

of FA for large, multivariate data sets is two fold. First, FA provides a means to reduce96

the dimensions of multivariate data sets thereby providing statistically sound parameter97
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estimates, and easing visualization and interpretation. Secondly, the latent variables/factors98

themselves may be representative of underlying biological processes that cannot be observed99

or measured in the population. For instance, several studies have highlighted the effects100

of plant hormones such as GA on multiple morphological attributes (Wang and Li, 2006;101

Lo et al., 2008; Umehara et al., 2008; Bhattacharya et al., 2010; Brewer et al., 2013; Zhou102

et al., 2013). Thus, a latent factor constructed from these morphological traits may provide103

information on the biosynthesis or sensitivity of these hormones for individuals within the104

population. If a certain amount of knowledge regarding the biological role of the variables is105

already known, a varaint of FA, confirmatory factor analysis (CFA), can be used to estimate106

latent variables based on predetermined biological classes of observed traits (Jöreskog, 1969).107

These latent variables underlie observed phenotypes and can be evaluated for how well the108

data support the hypothesis. For instance, Peñagaricano et al. (2015) performed CFA in109

swine to derive five latent variables from 19 phenotypic traits and inferred BN structures110

among those latent variables, thereby demonstrating the potential of this approach.111

This study aimed to leverage CFA and graphical modeling to elucidate the genetic inter-112

dependencies among traits typically recorded in breeding programs (e.g., yield, plant mor-113

phology, phenology, and stress resilience). First, we constructed latent variables, using prior114

biological knowledge obtained from the literature. Then we connected the observed high-115

dimensional phenotypes with these to establish latent variables via Bayesian confirmatory116

factor analysis (BCFA) to reduce the dimensions of the dataset. Further, factor scores com-117

puted from BCFA were considered new phenotypes for a Bayesian multivariate analysis to118

separate breeding values from noise. This was followed by adjustment of breeding values via119

Cholesky decomposition to eliminate the dependencies introduced by genomic relationships.120

Finally, the adjusted breeding values were considered inputs to assess the causal network121

structure between latent variables by conducting a Gaussian BN analysis. This study is the122

first, to our knowledge, in rice to characterize various phenotypes with graphical modeling123

such as BCFA and BN.124
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Materials and Methods125

Phenotypic and genotypic data126

The rice dataset comprised n = 374 accessions sampled from six subpopulations: temperate127

japonica (92), tropical japonica (85), indica (77), aus (52), aromatic (12), and admixture128

of japonica and indica (56) (Zhao et al., 2011). The improvement status of each accession129

was obtained from the USDA-ARS Germplasm Resources Information Network. We used130

t = 48 phenotypes and data regarding 44,000 single-nucleotide polymorphisms (SNP). After131

removing SNP markers with minor allele frequency less than 0.05, 374 accessions and 33,584132

markers were used for further analysis. Of those, 27 phenotypes were reported in Zhao et al.133

(2011) and McCouch et al. (2016). These phenotypes can be classified into four categories:134

flowering time (flowering time at three locations, photoperiod sensitivity), grain morphology135

(seed length, seed width, seed surface area, seed length to width ratio, seed volume), plant136

morphology (culm habit/angle, flag leaf length and width, plant height at maturity), and137

yield traits (panicle fertility, seed number per panicle, number of primary branches on the138

main panicle, panicle length, and the number of panicles on each plant). Zhao et al. (2011)139

evaluated flowering time-related traits using data from three locations, while the remaining140

traits were evaluated at one location (Arkansas). The remaining phenotypes were assessed141

from the salinity stress experiments conducted in Campbell et al. (2017a). These traits were142

classified into three categories: morphological salt response, ionic components of salt stress,143

and plant morphology. The class morphological salt response represents how plant growth is144

affected by salinity stress and is composed of the ratio of shoot biomass of salt stressed plants145

to control, the ratio of root biomass of salt stressed plants to control, the ratio of the number146

of tillers for salt stressed plants to control, and two metrics that represent the ratio of shoot147

height of salt stressed plants to control. Ionic components of salt stress is composed of traits148

that quantify ions important for salinity tolerance (Na+ and K+) in both root and shoot149
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tissues. Morphology traits are those that describe the growth of the plant in both control150

and saline conditions (e.g. shoot biomass, root biomass, shoot height, and tiller number).151

The data used from Campbell et al. (2017a) were derived from three to six independent152

greenhouse experiments performed between July and October 2013. Information for all153

experiments were combined and best linear unbiased estimators were calculated for each line154

as described in Campbell et al. (2017a). The detailed descriptions of the phenotypes are155

summarized in Supplementary Table S1.156

Bayesian confirmatory factor analysis157

A CFA under the Bayesian framework was performed to model 48 phenotypes. The number of

factors and the pattern of phenotype-factor relationships need to be specified in BCFA prior

to model fitting. We constructed six latent variables (q = 6) from previous reports (Acquaah,

2009; Zhao et al., 2011; Campbell et al., 2017a). The six latent variables derived from our

analysis represent the grain morphology, morphology, flowering time, ionic components of

salt stress, yield, and morphological salt response (Table S1). Each latent variable captures

common signals spanning genetic and environmental effects across all its phenotypes. The

latent variables, which determine the observed phenotypes can be modeled as

T = ΛF + s,

where T is the t × n matrix of observed phenotypes, Λ is the t × q factor loading matrix,

F is the q × n latent variables matrix, and s is the t × n matrix of specific effects. Here,

Λ maps latent variables to the observed variables and can be interpreted as the extent of

contribution each latent variable to phenotype. This can be derived by solving the following

variance-covariance model.

var(T) = ΛΦΛ′ + Ψ,
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where Φ is the variance of latent variables, and Ψ is the variance of specific effects (Brown,158

2014). Six latent variables were assumed to account for the covariance in the observed159

phenotypes. Moreover, latent variables were assumed to be correlated with each other. Prior160

distributions were assigned to all unknown parameters. The non-zero coefficients within161

factor loading matrix Λ were assumed to follow a Gaussian distribution with mean of 0162

and variance of 0.01. The variance-covariance matrix Φ was assigned an inverse Wishart163

distribution with a 6 × 6 identity scale matrix I66 and a degree freedom of 7, Φ ∼ W−1(I66, 7)164

and an inverse Gamma distribution with scale parameter 1 and shape parameter 0.5 was165

assigned to Ψ ∼ Γ−1(1, 0.5).166

We employed the blavaan R package (Merkle and Rosseel, 2018) jointly with JAGS167

(Hornik et al., 2003) to fit the above BCFA. The blavaan runs the runjags R package (Den-168

wood, 2016) to summarize the Markov chain Monte Carlo (MCMC) and samples unknown169

parameters from the posterior distributions. Three MCMC chains, each of 5,000 samples170

with 2,000 burn-in, were used to infer the unknown model parameters. The convergence of171

the parameters was investigated with trace plots and potential scale reduction factor (PSRF)172

less than 1.2 (Brooks and Gelman, 1998). The PSRF computes the difference between es-173

timated variances among multiple Markov chains and estimated variances within the chain.174

A large difference indicates non-convergence and may require additional Gibbs sampling.175

Subsequently, the posterior means of factor scores (F), which reflect the contribution of176

latent variables to each accession were estimated. Within each draw of Gibbs sampling, F177

was sampled from the conditional distribution of p(F|θ,T), where θ refers to the unknown178

parameters in Λ, Φ, and Ψ. This conditional distribution was derived with data augmenta-179

tion (Tanner and Wong, 1987) assuming F as missing data (Lee and Song, 2012).180

9

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2019. ; https://doi.org/10.1101/435792doi: bioRxiv preprint 

https://doi.org/10.1101/435792
http://creativecommons.org/licenses/by-nd/4.0/


Multivariate genomic best linear unbiased prediction181

We fitted a Bayesian multivariate genomic best linear unbiased prediction to separate breed-

ing values from population structure and noise in the six factor scores computed previously.

F = µ + Xb + Zu + ε,

where µ is the vector of intercept, X is the incidence matrix of covariates, b is the vector of182

covariate effects, Z is the incidence matrix relating accessions with additive genetic effects, u183

is the vector of additive genetic effects, and ε is the vector of residuals. The incident matrix184

X included subpopulation information (temperate japonica, tropical japonica, indica, aus,185

aromatic, and admixture), as the rice diversity panel used herein shows a clear substructure186

(Zhao et al., 2011).187

A flat prior was assigned to µ and b, and the joint distribution of u and ε follows

multivariate normal u

ε

 ∼ N


0

0

 ,

Σu ⊗G 0

0 Σε ⊗ I


 ,

where G represents the second genomic relationship matrix of VanRaden (2008), I is the188

identity matrix, Σu and Σε refer to 6×6 dimensional genetic and residual variance-covariance189

matrices, respectively. An inverse Wishart distribution with a 6 × 6 identity scale matrix190

of I66 and a degree of freedom 6 was assigned as prior for Σu,Σe ∼ W−1(I66, 6). These191

parameters were selected so that relatively uninformative priors were used. The Bayesian192

multivariate genomic best linear unbiased prediction model was implemented using the MTM193

R package (https://github.com/QuantGen/MTM). Posterior mean estimates of genomic cor-194

relation between latent variables and predicted breeding values (û) were then obtained. The195

convergence of the estimated parameters was verified by trace plots.196
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Sample independence in the Bayesian network197

Theoretically, BN learning algorithms assume sample independence. In the multivariate

genomic best linear unbiased prediction, the residuals between phenotypes were assumed

independent through I374x374. However, phenotypic dependencies were introduced by the G

matrix for the additive genetic effects, thereby potentially serving as a confounder. Thus, a

transformation of û was carried out to derive an adjusted û∗ by eliminating the dependencies

in G. For a single trait model, the adjusted û∗ can be computed by premultiplying û by

L−1, where L is a lower triangular matrix derived from the Choleskey decompostion of G

matrix (G = LL
′
). Since u ∼ N (0,Gσ2

u), the distribution of û∗ follows N (0, Iσ2
u) (Callanan

and Harville, 1989; Vazquez et al., 2010)

V ar(u∗) = V ar(L−1u)

= L−1V ar(u)(L−1)
′

= L−1G(L−1)
′
σ2
u

= L−1LL
′
(L′)−1σ2

u

= Iσ2
u.

This transformation can be extended to a multi-traits model by defining u∗ = M−1u, where198

M−1 = Iqq ⊗ L−1 (Töpner et al., 2017). Under the multivariate framework, u follows199

N (0,Σu ⊗G) and the variance of u∗ is200

V ar(u∗) = V ar(M−1u)

= (Iqq ⊗ L−1)(Σu ⊗G)(Iqq ⊗ L−1)
′

= (Iqq ⊗ L−1)(Σu ⊗ LL
′
)(Iqq ⊗ L−1)

′

= Σu ⊗ Inn,
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where L−1LL
′
(L−1)

′
= Inn. This adjusted û∗ was used to learn BN structures between201

predicted breeding values.202

Bayesian network203

A BN depicts the joint probabilistic distribution of random variables through their condi-

tional independencies (Scutari and Denis, 2014)

BN = (G,XV ),

where G represents a DAG = (V , E ) with nodes (V ) connected by one or more edges (E )

conveying the probabilistic relationships and the random vector XV = (X1, ..., XK) is K

random variables. The joint probability distribution can be factorized as

P (XV ) = P (X1, ..., XK) =
K∏
v=1

P (Xv|Pa(Xv)),

where Pa(Xv) denotes a set of parent nodes of child node Xv. The DAG and joint prob-204

ability distribution are governed by the Markov condition, which states that every random205

variable is independent of its non-descendants conditioned on its parents. A BN is known206

as a Gaussian BN, when all variables or phenotypes are defined as marginal or conditional207

Gaussian distribution as in the present study.208

The adjusted breeding values û∗ were used to infer a genomic network structure among209

the aforementioned six latent variables. There are three types of structure-learning algo-210

rithms for BN: constraint-based algorithms, score-based algorithms, and a hybrid of these211

two (Scutari and Denis, 2014). The constraint-based algorithms can be originally traced212

to the inductive causation algorithm (Verma and Pearl, 1991), which uses conditional in-213

dependence tests for network inference. Briefly, the first step is to identify a d-separation214

set for each pair of nodes and confer an undirected edge between the two if they are not215
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d-separated. The second step is to identify a v-structure for each pair of non-adjacent nodes,216

where a common neighbor is the outcome of two non-adjacent nodes. In the last step, com-217

pelled edges were identified and oriented, where neither cyclic graph nor new v-structures218

are permitted. The score-based algorithms are based on heuristic approaches, which first219

assign a goodness-of-fit score for an initial graph structure and then maximize this score by220

updating the structure (i.e., add, delete, or reverse the edges of initial graph). The hybrid221

algorithm includes two steps, restrict and maximize, which harness both constrain-based and222

score-based algorithms to construct a reliable network. In this study, the two score-based223

(Hill Climbing and Tabu) and two hybrid algorithms (Max-Min Hill Climbing and General224

2-Phase Restricted Maximization) were used to perform structure learning.225

We quantified the strength of edges and uncertainty regarding the direction of networks,226

using 500 bootstrapping replicates with a size equal to the number of accessions and per-227

formed structure learning for each replicate in accordance with Scutari and Denis (2014).228

Non-parametric bootstrap resampling aimed at reducing the impact of the local optimal229

structures by computing the probability of the arcs and directions. Subsequently, 500 learned230

structures were averaged with a strength threshold of 85% or higher to produce a more robust231

network structure. This process, known as model averaging, returns the final network with232

arcs present in at least 85% among all 500 networks. Candidate networks were compared233

on the basis of the Bayesian information criterion (BIC) and Bayesian Gaussian equivalent234

score (BGe). The BIC accounts for the goodness-of-fit and model complexity, and BGe aims235

at maximizing the posterior probability of networks per the data. All BN were learned via236

the bnlearn R package (Scutari, 2010). In bnlearn, the BIC score is rescaled by -2, which237

indicates that the larger BIC refers to a preferred model.238

Data availability239

Genotypic data regarding the rice accessions can be downloaded from the rice diversity panel240

website (http://www.ricediversity.org/). Phenotypic data used herein are available in241
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Zhao et al. (2011), Campbell et al. (2017b), and Supplementary File S3.242

14

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2019. ; https://doi.org/10.1101/435792doi: bioRxiv preprint 

https://doi.org/10.1101/435792
http://creativecommons.org/licenses/by-nd/4.0/


Results243

To elucidate the genetic interdependencies among traits typically recorded in breeding pro-244

grams, we utilized a collection of 48 publicly available phenotypes recorded on a panel of245

diverse rice accessions (Zhao et al., 2011; Campbell et al., 2017a). The phenotypic data246

was derived from two independent studies. The first set of phenotypes was recorded from247

materials grown in two field environments in Arkansas and Faridpur Bangladesh, and in248

a greenhouse in Aberdeen, UK (Zhao et al., 2011). The 34 phenotypes were recorded at249

maturity and were largely associated with yield (panicle characteristics flowering time, plant250

morphology (e.g. height and growth habits), and seed morphological traits. The second251

study consisted of 14 phenotypes were recorded in a greenhouse environment on plants in252

the active tillering stage (e.g. 30 day-old plants) under control and saline (14 days of 9.5253

dS m−2 NaCl stress). The phenotypes from this study can be classified into three cate-254

gories: morphological traits (e.g. shoot and root biomass, and plant height), morphological255

responses to salinity (e.g. the ratio of morphological traits in saline conditions to control),256

and the ionic components of salinity stress (e.g. Na+, K+, and Na+:K+ in both root and257

shoot tissues) (Campbell et al., 2017a). The complete data set provides an in-depth char-258

acterization of phenotypic performance at vegetative and reproductive stages in rice using259

several classes of traits.260

Latent variable modeling261

The BCFA model grouped the observed phenotypes into the underlying latent variables262

on the basis of prior biological knowledge, assuming these latent variables determine the263

observed phenotypes. This allowed us to study the genetics of each latent variable. A264

measurement model derived from BCFA evaluating the six latent variables is shown in Figure265

1. Forty-eight observed phenotypes were hypothesized to result from the six latent variables:266
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7 for flowering time, 14 for morphology, 5 for yield, 11 for grain morphology, 6 for physiology,267

and 5 for salt response. The convergence of the parameters was confirmed graphically with268

the trace plots and a PSRF value less than 1.2 (Brooks and Gelman, 1998; Merkle and269

Rosseel, 2018).270

The six latent factors showed strong contributions to the 48 observed phenotypes, with271

standardized regression coefficients ranging from -0.668 to 0.980 for flowering time, -0.112 to272

0.903 for morphology, -0.113 to 0.977 for yield, -0.501 to 0.986 for grain morphology, -0.016273

to 0.829 for physiology, and 0.011 to 0.929 for salt response. The latent factor flowering time274

showed a strong positive contribution to flowering time in Arkansas (Fla) and Flowering275

time in Arkansas in 2007 (Fla7) (0.99 and 0.926, respectively; Table 1, indicating that larger276

values for the latent factor can be interpreted as a greater number of days from sowing to277

emergence of the inflorescence. The latent factor morphology showed the largest positive278

contributions to traits describing height during the vegetative stage (e.g. height to newest279

ligule in salt (Hls), 0.920; height to newest ligule in control (Hlc), 0.899; height to the tip of280

first fully expanded leaf in salt (Hfs), 0.907; and height to tip of first fully expanded leaf in281

control (Hfc)), 0.925; suggesting that this latent factor is an overall representation of plant282

size. Yield showed large positive contributions to the observed phenotypes primary panicle283

branch number (Ppn) and seed number per panicle (Snpp) (0.790 and 0.780, respectively),284

suggesting that larger values for yield indicate a higher degree of branching and seed number.285

Observed phenotypes describing seed size (e.g. seed volume (Sv) and brown rice volume286

(Bvl) (0.990 and 0.986, respectively)) were most strongly associated with grain morphology.287

The latent factor ionic components of salt stress showed strong positive contributions to two288

observed phenotypes that quantify the ionic components of salt stress (shoot Na+:K+ (Kslm)289

and shoot Na+ (Nas) (0.983 and 0.975, respectively), indicating that higher values for the290

latent factor result in greater shoot Na+ and Na+:K+. Finally, the latent factor describing291

morphological salt response showed strong positive contributions to the observed phenotype292

describing the effect of salt treatment on plant height (ratio of height to tip of newest fully293
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expanded leaf in salt to that of control plants (Hfr) (0.939), thus larger values for the latent294

factor may indicate a more tolerant growth response to salinity.295

Genomic correlation among latent variables296

To understand the genetic relationships between latent variables, genomic correlation analy-297

sis was performed. Genomic correlation is due to pleiotropy or linkage disequilibrium between298

QTL. The genomic correlations among latent variables are shown in Figure 2. Negative cor-299

relations were observed between salt response (Slr) and all other five latent variables. In300

particular, flowering time (-0.5), yield (-0.54), and grain morphology (-0.74) were negatively301

correlated with morphological salt response 2. These results suggest that accessions that302

harbor alleles for more tolerant morphological salt responses may also have alleles associated303

with longer flowering times, smaller seeds, and low yield. Similarly, a negative correlation304

was observed between morphology and yield (-0.56) and between morphology and grain mor-305

phology (-0.31). Thus, accessions with alleles associated with large plant size may also have306

alleles that result in low yield, small grain volume, and lower shoot Na+ and Na+:K+. In307

contrast, a positive correlation was observed between grain morphology and yield (0.49) and308

between grain morphology and ionic components of salt stress (0.4). Thus, selection for large309

grain may result in improved yield, and higher shoot Na+ and Na+:K+.310

Bayesian network311

To infer the possible causal structure between latent variables, BN was performed. Prior312

to BN, the normality of latent variables was assessed using histogram plots combined with313

density curves as shown in Figure S2. Overall, all the six latent variables approximately314

followed a Gaussian distribution.315

The Bayesian networks learned with the score-based and hybrid algorithms are shown316

in Figures 3, 4, 5, and 6. The structures of BN were refined by model averaging with 500317
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networks from bootstrap resampling to reduce the impact of local optimal structures. The318

labels of the arcs measure the uncertainty of the arcs, corresponding to strength and direc-319

tion (in parenthesis). The former measures the frequency of the arc presented among all 500320

networks from the bootstrapping replicates and the latter is the frequency of the direction321

shown conditional on the presence of the arc. We observed minor differences in the structures322

presented within and across the two types of algorithms used. In general, small differences323

were observed within algorithm types compared to those across algorithms. The two score-324

based algorithms produced a greater number of edges than two hybrid algorithms. In Figure325

3, the Hill Climbing algorithm produced seven directed connections among the six latent326

variables. Three connections were indicated towards flowering time from morphological salt327

response, ionic components of salt stress, and morphology, and two edges to yield from mor-328

phology and from grain morphology. Other two edges were observed from ionic components329

of salt stress to grain morphology and from grain morphology to morphological salt response.330

A similar structure was generated by the Tabu algorithm, except that the connection be-331

tween salt response and grain morphology presented an opposite direction (Figure 4). The332

Max-Min Hill Climbing hybrid algorithm yielded six directed edges from morphological salt333

response to grain morphology, from ionic components of salt stress to grain morphology, from334

ionic components of salt stress to flowering time, from flowering time to morphology, from335

morphology to yield, and from grain morphology to yield (Figure 5). An analogous structure336

with the only difference observed in the directed edge from morphology to flowering time was337

inferred with the General 2-Phase Restricted Maximization algorithm as shown in Figure 6.338

Across all four algorithms, there were four common directed edges: from ionic components339

of salt stress to flowering time and to grain morphology, and from morphology and grain340

morphology to yield. The most favorable network was considered the one from the Tabu341

algorithm, which returned the largest network score in terms of BIC (1086.61) and BGe342

(1080.88). Collectively, these results suggest that there may be a direct genetic influence of343

morphology and grain morphology on yield, and physiological components of salt tolerance344
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on grain morphology and flowering time.345
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Discussion346

This study is based on the premise that most phenotypes interact to greater or lesser de-347

grees with each other through underlying physiological and molecular pathways. While these348

physiological pathways are important for the development of agronomically important char-349

acteristics, they are often unknown or difficult to assess in large populations. The approach350

utilized here leverages phenotypes that can be readily assessed in large populations to quan-351

tify these underlying unobserved phenotypes, and elucidates the relationships between these352

variables.353

Understanding the behaviors among phenotypes in the complex traits is critical for genetic354

improvement of agricultural species (Hickey et al., 2017). Graphical modeling offers an av-355

enue to decipher bi-directional associations or probabilistic dependencies among variables of356

interest in plant and animal breeding. For instance, BN and L1-regularized undirected net-357

work can be used to model interrelationships of linkage disequilibrium (LD) (Morota et al.,358

2012; Morota and Gianola, 2013) or phenotypic, genetic, and environmental interactions359

(Xavier et al., 2017) in a systematic manner. Importantly, MTM elucidates both direct and360

indirect relationships among phenotypes. Inaccurate interpretation of these relationships361

may substantially bias selection decisions (Valente et al., 2015; Gianola et al., 2015). Thus,362

we applied BCFA to reduce the dimension of the responses by hypothesizing 48 manifest363

phenotypes originated from the underlying six constructed latent variables as shown in Fig-364

ure 1 assuming that these latent traits are most important, followed by application of BN to365

infer the structures among the six biologically relevant latent variables (Figures 3,4, 5, and366

6). The BN represents the conditional dependencies between variables. Care must be taken367

in interpreting these relationships as a causal effect. Although a good BN is expected to368

describe the underlying causal structure per the data, when the structure is learned solely369

on the basis of the observed data, it may return multiple equivalent networks that describe370

the data well. In practice, searching such a causal structure with observed data needs three371
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additional assumptions (Scutari and Denis, 2014): 1) each variable is independent of its372

non-effects (i.e., direct and indirect) conditioned on its direct causes, 2) the probability dis-373

tribution of variables is supported by a DAG, where the d-separation in DAG provides all374

dependencies in the probability distribution, and 3) no additional variables influence the375

variables within the network. Although it may be difficult to meet these assumptions in the376

observed data, a BN is equipped with suggesting potential causal relationships among la-377

tent variables, which can assist in exploring data, making breeding decisions, and improving378

management strategies in breeding programs (Rosa et al., 2011).379

Biological meaning of latent variables and their relation-380

ships381

We performed BCFA to summarize the original 48 phenotypes with the six latent variables.382

The number of latent variables and which latent variables load onto phenotypes were deter-383

mined from the literature. The latent variable morphological salt response (Slr) contributed384

strongly to salt indices for shoot biomass, root biomass, and two indices for plant height (Ta-385

ble 1). Thus, morphological salt response can be interpreted as the morphological responses386

to salinity stress, with higher values indicating a more tolerant growth response. The la-387

tent variable yield is a representation of overall grain productivity, and contributed strongly388

to the observed phenotypes primary panicle branch number, seed number per panicle, and389

panicle length. The positive loading scores on these observable phenotypes indicates that390

more highly branched, productive panicles will have higher values for yield (Table 1). Seed391

width, seed volume, and seed surface area contributed significantly to the latent variable392

grain morphology (Grm) (Table 1). Therefore, these results indicate that the grain mor-393

phology is a summary of the overall shape of the grain, where high values represent large,394

round grains, while low values represent small, slender grains. Considering the grain char-395

acteristics of rice subpopulations, temperate japonica accessions are expected to have high396
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values for grain morphology, while indica accessions have lower values for grain morphology.397

Latent variable morphology (Mrp) is a representation of plant biomass during the vegetative398

stage (28-day-old plants) (Table 1). Shoot biomass, root biomass, and two metrics for plant399

height contributed largely to morphology, suggesting that accessions with high values for400

morphology are tall plants with a large biomass.401

Genomic correlation analysis among the six latent variables showed meaningful corre-402

lations among several pairs. These genetic correlations can either be caused by linkage or403

pleiotropy. The former is likely to prevail in species with high LD, which is the case in404

rice where LD ranges from 100 to 200kb (Huang et al., 2010). A negative relationship was405

observed between morphological salt response and three other latent variables (Figure 2).406

For instance, a negative correlation between morphological salt response and yield indicates407

that accessions of samples harboring alleles for superior morphological salt responses (e.g.408

those that are more tolerant) tend to also harbor alleles for poor yield (Figure 2). The409

rice diversity panel we used is a representative sample of the total genetic diversity within410

cultivated rice and contains many unimproved traditional varieties (∼12% of lines in the411

study are landraces and ∼33% classified as cultivars; Supplementary File S2) and modern412

breeding lines (Eizenga et al., 2014). While traditional varieties exhibit superior adaptation413

to abiotic stresses, they often have very poor agronomic characteristics including low yield,414

late flowering, and high photoperiod sensitivity (Thomson et al., 2009, 2010). Moreover,415

the indica and japonica subspecies have contrasting salt responses and very different grain416

morphology. Japonica accessions tend to have short, round seeds and are more sensitive to417

salt stress, while indica accessions have long, slender grains and often are more salt tolerant418

(Zhao et al., 2011; Campbell et al., 2017a). The negative relationship observed between salt419

response and grain morphology suggests that lines that harbor alleles for high grain mor-420

phology (e.g., large, round grains) tend to also harbor alleles for a tolerant growth response421

to salt stress. However, no studies have yet reported an association between alleles for grain422

morphology and morphological salt response. Therefore, it remains to be addressed whether423
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this relationship is due to LD or pleitropy.424

Genetic correlations observed between other latent variables may suggest a pleiotropic425

effect among loci. For instance, a negative relationship was observed between morphological426

salt response and ionic components of salt stress, indicating that accessions harboring alleles427

associated with superior morphological salt response also tend to harbor alleles for reduced428

ion content under salt stress (Figure 2). The relationship between salt tolerance, measured in429

terms of growth or yield, and Na+ and Na+:K+ has been a documented for decades (reviewed430

by Munns and Tester (2008)). Moreover, natural variation for Na+ transporters has been431

utilized to improve growth and yield under saline conditions in rice and other cereals (Ren432

et al., 2005; Byrt et al., 2007; Horie et al., 2009; Munns et al., 2012; Campbell et al., 2017a).433

Therefore, the negative genetic relationships observed between morphological salt response434

and ion content may be due to the pleiotropic effects of some loci.435

The genomic relationships among latent variables including morphology, yield, and grain436

morphology may have resulted from the selection of alleles associated with good agronomic437

characteristics. A positive relationship was observed between yield and grain morphology,438

suggesting that alleles that positively contribute to productive panicles also may contribute439

to large, round grains. Furthermore, the negative genomic correlation observed between440

morphology and yield indicates that alleles negatively influencing total plant biomass also441

have a positive contribution to traits for productive panicles. This genomic relationship may442

reflect the genetics of harvest index, which is defined as the ratio of grain yield to total443

biomass. Over the past 50 years, rice breeders have selected high harvest index, resulting444

in plants with short compact morphology and many highly productive panicles (Hay, 1995;445

Peng et al., 2008).446

Although BCFA may yield biologically meaningful results, a potential limitation of BCFA447

is that we assumed each phenotype does not measure more than one latent variable. This448

assumption may not always strictly concur with the observational data. Therefore, further449

studies are required to allow each phenotype to potentially load onto multiple factors in450
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the BCFA framework. An alternative approach is to derive the number of latent variables451

and determine which latent variables load onto phenotypes directly from observed data,452

using exploratory FA. This approach was not pursued here because accurate estimation of453

unknown parameters in the exploratory FA requires a large sample size, which was not the454

case herein (Brown, 2014).455

Bayesian network of latent variables456

The BN is a probabilistic DAG, which represents the conditional dependencies among phe-457

notypes. The genomic correlation among latent variables described in Figure 2 does not458

inform the flow of genetic signals nor distinguish direct and indirect associations, whereas459

BN displays directions between latent variables and separate direct and indirect associations.460

Therefore, the BN describes the possibility that other phenotypes will change if one pheno-461

type is intervened (i.e., selection). However, caution is required to interpret this network as462

a causal effect, as the causal BN requires more assumptions, which are usually difficult to463

meet in observational data (Pearl, 2009).464

Four common edges or consensus subnetworks across the four BN may be the most465

reliable substructure of latent variables and may describe the dependence between agronomic466

traits (Figures 3, 4, 5, and 6). For example, edges from grain morphology to yield and467

morphology to yield can be interpreted as final grain productivity is dependant on specific468

vegetative characteristics as well grain traits. This is because yield, which represents the469

overall grain productivity of a plant, depends on morphological characteristics such as the470

degree of tillering, an architecture that allows the plant to efficiently capture light and471

carbon, and a stature that is resistant to lodging, the degree of panicle branching, as well472

as specific grain characteristics such as seed volume and shape. Moreover, there is a direct473

biological linkage between specific vegetative architectural traits such as tillering and plant474

height, and yield related traits such as panicle branching and number of seeds per panicle.475

The degree of branching during both vegetative and reproductive development is dependant476
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on the development and initiation of auxiliary meristems. Several genes have been identified477

in this pathway and have shown to have pleiotropic effects on tillering and panicle branching478

(reviewed by Liang et al. (2014)). For instance, OsSPL14 has been shown to be an important479

regulator of auxiliary branching in both vegetative and reproductive stages in rice (Jiao480

et al., 2010; Miura et al., 2010). Moreover, other genes such as OsGhd8 have been reported481

to regulate other morphological traits such as plant height and yield through increase panicle482

branching (Yan et al., 2011). The biological importance of these dependencies can also be483

illustrated by viewing them in the context of genetic improvement, as selection for specific484

architectural traits (represented by the latent variable morphology) and grain characteristics485

have traditionally been used as traits to improve rice productivity in many conventional486

breeding programs (Redona and Mackill, 1998; Huang et al., 2013).487

While the above example provides a plausible network structure between latent variables,488

edges from ionic components of salt stress to flowering time and to grain morphology are an489

example of instances where caution should be used to infer causation. As mentioned above,490

there is an inherent difference in salt tolerance and grain morphological traits between the491

indica and japonica subspecies. The edges observed for these two latent variables (ionic492

components of salt stress and grain morphology) in BN may be driven by LD between alleles493

associated with grain morphology and alleles for salt tolerance rather than pleitropy. Thus,494

given the current data set, genetic effects for grain morphology may still be conditionally495

dependant on ionic components of salt stress and the BN may be true, even if there is no496

direct overlap in the genetic mechanisms for the two traits.497

We found that there are some uncertain edges among BN. For instance, direction from498

salt response to grain morphology is supported by 65% (Figure 4), 58% (Figure 5 ), and 58%499

(Figure 6) bootstrap sampling, whereas the opposite direction is supported by 56% bootstrap500

sampling (Figure 3). An analogous uncertainty was also observed between morphology and501

flowering time, i.e., the path from morphology to flowering time was supported 60% (Figure502

3), 51% (Figure 4), and 52% (Figure 6), while the reverse direction was supported 51%503
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(Figure 6) upon bootstrapping. In addition, the two score-based algorithms captured edges504

between morphological salt response and flowering time with 70% and 76% bootstrapping505

evidence. However, this connection was not detected in the two hybrid algorithms. In506

general, inferring the direction of edges was harder than inferring the presence or absence of507

undirected edges. Finally, the whole structures of BN were evaluated in terms of the BIC508

score and BGe. Ranking of the networks was consistent across BIC and BGe and the two509

score-based algorithms produced networks with greater goodness-of-fit than the two hybrid510

algorithms. The optimal network was produced by the Tabu algorithm. This is consistent511

with the previous study reporting that the score-based algorithm produced a better fit of512

networks in data on maize (Töpner et al., 2017).513

In conclusion, the present results show the utility of CFA and network analysis to char-514

acterize various phenotypes in rice. We showed that the joint use of BCFA and BN can be515

applied to predict the potential influence of external interventions or selection associated with516

target traits such as yield in the high-dimensional interrelated complex traits system. We517

contend that the approaches used herein provide greater insights than pairwise-association518

measures of multiple phenotypes and can be used to analyze the massive amount of di-519

verse image-based phenomics dataset being generated by the automated plant phenomics520

platforms (e.g., Furbank and Tester, 2011). With a large volume of complex traits being521

collected through phenomics, numerous opportunities to forge new research directions are522

generated by using network analysis for the growing number of phenotypes.523
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Tables694

Table 1: Standardized factor loadings obtained from the Bayesian confirmatory factor anal-
ysis. PSD refers to the posterior standard deviation of standardized factor loadings.

Latent variable Observed phenotype Loading PSD
Flowering time Flowering time at Arkansas (Fla) 0.990 0.002
Flowering time Flowering time at Faridpur (Flf) 0.500 0.045
Flowering time Flowering time at Aberdeen (Flb) 0.578 0.038
Flowering time FT ratio of Arkansas/Aberdeen (Flaa) -0.212 0.053
Flowering time FT ratio of Faridpur/Aberdeen (Flfa) -0.549 0.041
Flowering time Year07 Flowering time at Arkansas (Fla7) 0.926 0.008
Flowering time Year06 Flowering time at Arkansas (Fla6) 0.886 0.013
Morphology Culm habit (Cuh) 0.227 0.027
Morphology Flag leaf length (Fll) 0.116 0.057
Morphology Flag leaf width (Flw) -0.044 0.058
Morphology Plant height (Plh) 0.440 0.047
Morphology Shoot BM Control (Sbc) 0.534 0.042
Morphology Shoot BM Salt (Sbs) 0.456 0.048
Morphology Root BM Control (Rbc) 0.418 0.048
Morphology Root BM Salt (Rbs) 0.280 0.054
Morphology Tiller No Salt (Tns) -0.349 0.051
Morphology Tiller No Control (Tbc) -0.318 0.052
Morphology Ht Lig Salt (Hls) 0.920 0.011
Morphology Ht Lig Control (Hlc) 0.899 0.014
Morphology Ht FE Salt (Hfs) 0.907 0.013
Morphology Ht FE Control (Hfc) 0.925 0.011
Yield Panicle number per plant (Pnu) 0.190 0.020
Yield Panicle length (Pal) 0.455 0.057
Yield Primary panicle branch number (Ppn) 0.790 0.041
Yield Seed number per panicle (Snpp) 0.780 0.043
Yield Panicle fertility (Paf) -0.085 0.081
Grain Morphology Seed length (Sl) 0.251 0.029
Grain Morphology Seed width (Sw) 0.876 0.015
Grain Morphology Seed volume (Sv) 0.990 0.002
Grain Morphology Seed surface area (Ssa) 0.901 0.012
Grain Morphology Brown rice seed length (Bsl) 0.158 0.055
Grain Morphology Brown rice seed width (Bsw) 0.837 0.019
Grain Morphology Brown rice surface area (Bsa) 0.902 0.012
Grain Morphology Brown rice volume (Bvl) 0.986 0.002
Grain Morphology Seed length/width ratio (Slwr) -0.476 0.045
Grain Morphology Brown rice length/width ratio (Blwr) -0.432 0.047
Grain Morphology Grain length McCouch2016 (Glmc) 0.047 0.064
Ionic components of salt stress Na K Shoot (Ks) 0.983 0.003
Ionic components of salt stress Na Shoot (Nas) 0.975 0.004
Ionic components of salt stress K Shoot Salt (Kss) -0.265 0.051
Ionic components of salt stress Na K Root (Kr) 0.061 0.052
Ionic components of salt stress Na Root (Nar) 0.000 0.053
Ionic components of salt stress K Root Salt (Krs) -0.095 0.052
Morphological salt response Shoot BM Ratio (Sbr) 0.410 0.047
Morphological salt response Root BM Ratio (Rbr) 0.395 0.051
Morphological salt response Tiller No Ratio (Tbr) -0.022 0.057
Morphological salt response Ht Lig Ratio (Hlr) 0.665 0.036
Morphological salt response Ht FE Ratio (Hfr) 0.939 0.019
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Figure 1: Relationship between six latent variables and observed phenotypes. Msr: mor-
phological salt response; Iss: ionic components of salt stress; Grm: grain morphology; Yid:
yield; Mrp: morphology; Flt: flowering time. Abbreviations of observed phenotypes are
shown in Table S1.
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Figure 2: Genomic correlation of six latent variables. The size of each circle, degree of
shading, and value reported correspond to the correlation between each pair of latent vari-
ables. Msr: morphological salt response; Iss: ionic components of salt stress; Grm: grain
morphology; Yid: yield; Mrp: morphology; Flt: flowering time.
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Figure 3: Bayesian network between six latent variables based on the Hill Climbing al-
gorithm. The quality of the structure was evaluated by bootstrap resampling and model
averaging across 500 replications. Labels of the edges refer to the strength and direction
(parenthesis) which measure the confidence of the directed edge. The strength indicates
the frequency of the edge is present and the direction measures the frequency of the direc-
tion conditioned on the presence of edge. BIC: Bayesian information criterion score. BGe:
Bayesian Gaussian equivalent score. Msr: morphological salt response; Iss: ionic components
of salt stress; Grm: grain morphology; Yid: yield; Mrp: morphology; Flt: flowering time.
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Figure 4: Bayesian network between six latent variables based on the Tabu algorithm. The
quality of the structure was evaluated by bootstrap resampling and model averaging across
500 replications. Labels of the edges refer to the strength and direction (parenthesis) which
measure the confidence of the directed edge. The strength indicates the frequency of the
edge is present and the direction measures the frequency of the direction conditioned on
the presence of edge. BIC: Bayesian information criterion score. BGe: Bayesian Gaussian
equivalent score. Msr: morphological salt response; Iss: ionic components of salt stress;
Grm: grain morphology; Yid: yield; Mrp: morphology; Flt: flowering time.
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Figure 5: Bayesian network between six latent variables based on the Max-Min Hill Climbing
algorithm. The quality of the structure was evaluated by bootstrap resampling and model
averaging across 500 replications. Labels of the edges refer to the strength and direction
(parenthesis) which measure the confidence of the directed edge. The strength indicates
the frequency of the edge is present and the direction measures the frequency of the direc-
tion conditioned on the presence of edge. BIC: Bayesian information criterion score. BGe:
Bayesian Gaussian equivalent score. Msr: morphological salt response; Iss: ionic components
of salt stress; Grm: grain morphology; Yid: yield; Mrp: morphology; Flt: flowering time.

40

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2019. ; https://doi.org/10.1101/435792doi: bioRxiv preprint 

https://doi.org/10.1101/435792
http://creativecommons.org/licenses/by-nd/4.0/


Mrp

Flt

Msr

Grm

Iss

Yid

BIC = 1068.23
BGe = 1062.04

100%(52%)

100%(55%) 100%(74%)

100%(61%)

100%(72%)

100%(58%)

Figure 6: Bayesian network between six latent variables based on the General 2-Phase Re-
stricted Maximization algorithm. The quality of the structure was evaluated by bootstrap
resampling and model averaging across 500 replications. Labels of the edges refer to the
strength and direction (parenthesis) which measure the confidence of the directed edge.
The strength indicates the frequency of the edge is present and the direction measures the
frequency of the direction conditioned on the presence of edge. BIC: Bayesian information
criterion score. BGe: Bayesian Gaussian equivalent score. Msr: morphological salt response;
Iss: ionic components of salt stress; Grm: grain morphology; Yid: yield; Mrp: morphology;
Flt: flowering time.
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