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. Abstract

2 With the advent of high-throughput phenotyping platforms, plant breeders have a means
s to assess many traits for large breeding populations. However, understanding the genetic
% interdependencies among high-dimensional traits in a statistically robust manner remains
o7 a major challenge. Since multiple phenotypes likely share mutual relationships, elucidating
s the interdependencies among economically important traits can better inform breeding de-
2 cisions and accelerate the genetic improvement of plants. The objective of this study was to
s leverage confirmatory factor analysis and graphical modeling to elucidate the genetic interde-
a1 pendencies among a diverse agronomic traits in rice. We used a Bayesian network to depict
3 conditional dependencies among phenotypes, which can not be obtained by standard multi-
;3 trait analysis. We utilized Bayesian confirmatory factor analysis which hypothesized that 48
s observed phenotypes resulted from six latent variables including grain morphology, morphol-
s ogy, flowering time, physiology, yield, and morphological salt response. This was followed
s by studying the genetics of each latent variable, which is also known as factor, using single
;7 nucleotide polymorphisms. Bayesian network structures involving the genomic component
1 of six latent variables were established by fitting four algorithms (i.e., Hill Climbing, Tabu,
3  Max-Min Hill Climbing, and General 2-Phase Restricted Maximization algorithms). Phys-
w0 iological components influenced the flowering time and grain morphology, and morphology
s and grain morphology influenced yield. In summary, we show the Bayesian network coupled
»2  with factor analysis can provide an effective approach to understand the interdependence
i patterns among phenotypes and to predict the potential influence of external interventions

s or selection related to target traits in the interrelated complex traits systems.
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- Introduction

s A primary objective in plant breeding is the develop high yielding varieties with specific
s grain qualities, resilience to pests and abiotic stresses, and superior adaption to the target
s environment. As a result, plant breeders devote considerable resources to extensive pheno-
s typic evaluation of germplasm and select on multiple traits. These traits are often correlated
o at a genetic level through common genetic effects (e.g. pleiotropy) or linkage disequilibrium
si between quantitative trait locus (QTL). Since multiple phenotypes may exhibit mutual re-
s lationships, knowledge of the interdependence among agronomically important traits can
53 improve the efficacy of selection and rate of genetic improvement in systems with complex
se traits.

55 In a standard quantitative genetic analysis, multivariate phenotypes can be modeled
ss through multi-trait models (MTM) of Henderson and Quaas (1976) or some genomic coun-
57 terparts (e.g., Calus and Veerkamp, 2011; Jia and Jannink, 2012) by leveraging genetic or
ss environmental correlations among traits. In particular, MTM has been useful in deriving
so genetic correlations and enhancing the prediction accuracy of breeding values for traits with
s low heritability or scarce records via joint modeling with one or more genetically correlated,
s highly heritable traits (Mrode, 2014). Conventional MTM strategies may provide impor-
&2 tant insight into the genetic relations between agronomically important traits, but they fail
63 to explain how these traits are related. For instance, consider a case where we have three
s« genetically correlated traits: yi, y2, and y3. With MTM, we cannot address whether the
es relationship between y; and y3 is due to direct effects, or if the relationship is driven by
e indirect effects mediated by ys. Bayesian Networks (BN) offer an effective approach to elu-
&7 cidate the underlying network structure in multivariate data and infer network relationships
¢ between correlated variables. A BN is a probabilistic graphical model that represents condi-
s tional dependencies among a set of variables via a directed acyclic graph (DAG) (Neapolitan

2 et al.,, 2004). In the DAG, the variables are represented by nodes, while their conditional
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n dependencies between nodes are indicated with directed edges. In the context of plant
22 breeding, BN can used to elucidate the interdependencies among traits and inform selection
73 decisions for simultaneously improving multiple traits. For instance in the latter case above
7 (y1 = y2 = y3), selection directly on y, will affect the quantity of y3 without an effect on ;.
7 With the advent high throughput phenotyping platforms, plant breeders have been pro-
7 vided with a suite of tools for phenotypic evaluation of large populations (Shakoor et al.,
77 2017). These platforms leverage robotics, precise environmental control, and remote sensing
7 techniques to provide accurate, repeatable and high resolution phenotypes for large breed-
7o ing populations throughout the growing season (Araus and Cairns, 2014; Shakoor et al.,
so 2017; Araus et al., 2018). These data can be used to redefine characteristics underlying
&1 superior agronomic performance by quantifying secondary traits associated with seedling
&2 vigor, plant architecture, photosynthesis, transpiration, disease resistance, and stress toler-
g3 ance (Cabrera-Bosquet et al., 2016; Sun et al., 2017; Crain et al., 2018). However given these
s new approaches, breeders are faced with the new challenge of efficiently utilizing these large
ss  multidimesional data sets to improve selection efficiency. The primary challenges associated
s with multivariate analysis and BN approaches using HTP data is that robust parameter
s estimates can be untenable because the number of estimated parameters within the model
s increases with the increasing number of phenotypes. Moreover even in cases where MTM or
o BN can be applied, interpreting of interrelationships among a large number of phenotypes
o can be difficult.

o1 One approach to characterize high-dimensional phenotypes is by using factor analysis
2 (FA). The central idea of FA approaches is to reduce the dimensions of multivariate data
a3 sets by constructing unobserved, latent factors, or modules, from correlated phenotypes
u (de los Campos and Gianola, 2007). The biological importance of these latent factors can be
o interpreted by inspecting the phenotypes that contribute to each factor. Thus, the advantage
o of FA for large, multivariate data sets is two fold. First, FA provides a means to reduce

ov the dimensions of multivariate data sets thereby providing statistically sound parameter
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e estimates, and easing visualization and interpretation. Secondly, the latent variables/factors
o themselves may be representative of underlying biological processes that cannot be observed
wo or measured in the population. For instance, several studies have highlighted the effects
11 of plant hormones such as GA on multiple morphological attributes (Wang and Li, 2006;
102 Lo et al., 2008; Umehara et al., 2008; Bhattacharya et al., 2010; Brewer et al., 2013; Zhou
03 et al., 2013). Thus, a latent factor constructed from these morphological traits may provide
s information on the biosynthesis or sensitivity of these hormones for individuals within the
s population. If a certain amount of knowledge regarding the biological role of the variables is
s already known, a varaint of FA, confirmatory factor analysis (CFA), can be used to estimate
107 latent variables based on predetermined biological classes of observed traits (Joreskog, 1969).
s These latent variables underlie observed phenotypes and can be evaluated for how well the
0o data support the hypothesis. For instance, Penagaricano et al. (2015) performed CFA in
o swine to derive five latent variables from 19 phenotypic traits and inferred BN structures
m among those latent variables, thereby demonstrating the potential of this approach.

112 This study aimed to leverage CFA and graphical modeling to elucidate the genetic inter-
us dependencies among traits typically recorded in breeding programs (e.g., yield, plant mor-
s phology, phenology, and stress resilience). First, we constructed latent variables, using prior
us  biological knowledge obtained from the literature. Then we connected the observed high-
ue dimensional phenotypes with these to establish latent variables via Bayesian confirmatory
u7 factor analysis (BCFA) to reduce the dimensions of the dataset. Further, factor scores com-
us puted from BCFA were considered new phenotypes for a Bayesian multivariate analysis to
ne separate breeding values from noise. This was followed by adjustment of breeding values via
120 Cholesky decomposition to eliminate the dependencies introduced by genomic relationships.
21 Finally, the adjusted breeding values were considered inputs to assess the causal network
122 structure between latent variables by conducting a Gaussian BN analysis. This study is the

123 first, to our knowledge, in rice to characterize various phenotypes with graphical modeling

122 such as BCFA and BN.


https://doi.org/10.1101/435792
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/435792; this version posted March 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

= Materials and Methods

» Phenotypic and genotypic data

12z The rice dataset comprised n = 374 accessions sampled from six subpopulations: temperate
123 japonica (92), tropical japonica (85), indica (77), aus (52), aromatic (12), and admixture
120 of japonica and indica (56) (Zhao et al., 2011). The improvement status of each accession
130 was obtained from the USDA-ARS Germplasm Resources Information Network. We used
1 t = 48 phenotypes and data regarding 44,000 single-nucleotide polymorphisms (SNP). After
12 removing SNP markers with minor allele frequency less than 0.05, 374 accessions and 33,584
133 markers were used for further analysis. Of those, 27 phenotypes were reported in Zhao et al.
13« (2011) and McCouch et al. (2016). These phenotypes can be classified into four categories:
135 flowering time (flowering time at three locations, photoperiod sensitivity), grain morphology
136 (seed length, seed width, seed surface area, seed length to width ratio, seed volume), plant
137 morphology (culm habit/angle, flag leaf length and width, plant height at maturity), and
133 yield traits (panicle fertility, seed number per panicle, number of primary branches on the
130 main panicle, panicle length, and the number of panicles on each plant). Zhao et al. (2011)
uo evaluated flowering time-related traits using data from three locations, while the remaining
11 traits were evaluated at one location (Arkansas). The remaining phenotypes were assessed
12 from the salinity stress experiments conducted in Campbell et al. (2017a). These traits were
3 classified into three categories: morphological salt response, ionic components of salt stress,
s and plant morphology. The class morphological salt response represents how plant growth is
us affected by salinity stress and is composed of the ratio of shoot biomass of salt stressed plants
us to control, the ratio of root biomass of salt stressed plants to control, the ratio of the number
w7 of tillers for salt stressed plants to control, and two metrics that represent the ratio of shoot
us height of salt stressed plants to control. Tonic components of salt stress is composed of traits

1o that quantify ions important for salinity tolerance (Na* and K*) in both root and shoot
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tissues. Morphology traits are those that describe the growth of the plant in both control
and saline conditions (e.g. shoot biomass, root biomass, shoot height, and tiller number).
The data used from Campbell et al. (2017a) were derived from three to six independent
greenhouse experiments performed between July and October 2013. Information for all
experiments were combined and best linear unbiased estimators were calculated for each line
as described in Campbell et al. (2017a). The detailed descriptions of the phenotypes are

summarized in Supplementary Table S1.

Bayesian confirmatory factor analysis

A CFA under the Bayesian framework was performed to model 48 phenotypes. The number of
factors and the pattern of phenotype-factor relationships need to be specified in BCFA prior
to model fitting. We constructed six latent variables (¢ = 6) from previous reports (Acquaah,
2009; Zhao et al., 2011; Campbell et al., 2017a). The six latent variables derived from our
analysis represent the grain morphology, morphology, flowering time, ionic components of
salt stress, yield, and morphological salt response (Table S1). Each latent variable captures
common signals spanning genetic and environmental effects across all its phenotypes. The

latent variables, which determine the observed phenotypes can be modeled as
T = AF +s,

where T is the ¢t x n matrix of observed phenotypes, A is the t x ¢ factor loading matrix,
F is the ¢ x n latent variables matrix, and s is the ¢ x n matrix of specific effects. Here,
A maps latent variables to the observed variables and can be interpreted as the extent of
contribution each latent variable to phenotype. This can be derived by solving the following

variance-covariance model.

var(T) = A®PA' + ¥,
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155 where ® is the variance of latent variables, and W is the variance of specific effects (Brown,
159 2014). Six latent variables were assumed to account for the covariance in the observed
1o phenotypes. Moreover, latent variables were assumed to be correlated with each other. Prior
11 distributions were assigned to all unknown parameters. The non-zero coefficients within
12 factor loading matrix A were assumed to follow a Gaussian distribution with mean of 0
13 and variance of 0.01. The variance-covariance matrix ® was assigned an inverse Wishart
16s distribution with a 6 x 6 identity scale matrix Iss and a degree freedom of 7, & ~ W1 (Ig6, 7)
s and an inverse Gamma distribution with scale parameter 1 and shape parameter 0.5 was
e assigned to ¥ ~ I'"1(1,0.5).

167 We employed the blavaan R package (Merkle and Rosseel, 2018) jointly with JAGS
s (Hornik et al., 2003) to fit the above BCFA. The blavaan runs the runjags R package (Den-
10 wood, 2016) to summarize the Markov chain Monte Carlo (MCMC) and samples unknown
o parameters from the posterior distributions. Three MCMC chains, each of 5,000 samples
i with 2,000 burn-in, were used to infer the unknown model parameters. The convergence of
12 the parameters was investigated with trace plots and potential scale reduction factor (PSRF)
113 less than 1.2 (Brooks and Gelman, 1998). The PSRF computes the difference between es-
s timated variances among multiple Markov chains and estimated variances within the chain.
s A large difference indicates non-convergence and may require additional Gibbs sampling.
176 Subsequently, the posterior means of factor scores (F), which reflect the contribution of
77 latent variables to each accession were estimated. Within each draw of Gibbs sampling, F
s was sampled from the conditional distribution of p(F|@,T), where 0 refers to the unknown
9 parameters in A, ®, and ¥. This conditional distribution was derived with data augmenta-

180 tion (Tanner and Wong, 1987) assuming F as missing data (Lee and Song, 2012).
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Multivariate genomic best linear unbiased prediction

We fitted a Bayesian multivariate genomic best linear unbiased prediction to separate breed-

ing values from population structure and noise in the six factor scores computed previously.
F=p+Xb+Zu+e,

where p is the vector of intercept, X is the incidence matrix of covariates, b is the vector of
covariate effects, Z is the incidence matrix relating accessions with additive genetic effects, u
is the vector of additive genetic effects, and € is the vector of residuals. The incident matrix
X included subpopulation information (temperate japonica, tropical japonica, indica, aus,
aromatic, and admixture), as the rice diversity panel used herein shows a clear substructure
(Zhao et al., 2011).

A flat prior was assigned to p and b, and the joint distribution of u and e follows

multivariate normal

u 0 Yu®G 0
€ 0 0 Ye®I1

where G represents the second genomic relationship matrix of VanRaden (2008), I is the
identity matrix, 3, and X, refer to 6 X6 dimensional genetic and residual variance-covariance
matrices, respectively. An inverse Wishart distribution with a 6 x 6 identity scale matrix
of Igs and a degree of freedom 6 was assigned as prior for 3., ¥, ~ W™ (Ig,6). These
parameters were selected so that relatively uninformative priors were used. The Bayesian
multivariate genomic best linear unbiased prediction model was implemented using the MTM
R package (https://github.com/QuantGen/MTM). Posterior mean estimates of genomic cor-
relation between latent variables and predicted breeding values (1) were then obtained. The

convergence of the estimated parameters was verified by trace plots.

10
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« Sample independence in the Bayesian network

Theoretically, BN learning algorithms assume sample independence. In the multivariate
genomic best linear unbiased prediction, the residuals between phenotypes were assumed
independent through Is74.374. However, phenotypic dependencies were introduced by the G
matrix for the additive genetic effects, thereby potentially serving as a confounder. Thus, a
transformation of @1 was carried out to derive an adjusted G* by eliminating the dependencies
in G. For a single trait model, the adjusted G* can be computed by premultiplying G by
L~!, where L is a lower triangular matrix derived from the Choleskey decompostion of G
matrix (G = LL'). Since u ~ N(0, Go?), the distribution of @* follows N(0,Io?) (Callanan
and Harville, 1989; Vazquez et al., 2010)

Var(u*) = Var(L ')
=L War(u)(L™Y)
—L'G(LY) o2

=LLL (L)) 02

1.2
=Io;.

106 This transformation can be extended to a multi-traits model by defining u* = M~1u, where
w M = I,, ® L™ (Topner et al., 2017). Under the multivariate framework, u follows

20 N(0,X, ® G) and the variance of u* is

Var(u*) = Var(M 'u)
= (Iqq ® L_l)(zu ® G)(Iqq ® L_l),
- (Iqq ® L_l)(zu & LLI)(Iqq & L_l),

- Z:u X Inna

11


https://doi.org/10.1101/435792
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/435792; this version posted March 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

a1 where L™'LL (L) = I,,,. This adjusted @* was used to learn BN structures between

22 predicted breeding values.

»» Bayesian network

A BN depicts the joint probabilistic distribution of random variables through their condi-

tional independencies (Scutari and Denis, 2014)
BN = (G, Xv),

where G represents a DAG = (V, F) with nodes (V') connected by one or more edges (F)
conveying the probabilistic relationships and the random vector Xy = (Xi,..., Xk) is K

random variables. The joint probability distribution can be factorized as

K
P(Xy) = P(X1,.., Xx) = [[ P(X.|Pa(X,)),
v=1

20 where Pa(X,) denotes a set of parent nodes of child node X,,. The DAG and joint prob-
205 ability distribution are governed by the Markov condition, which states that every random
206 variable is independent of its non-descendants conditioned on its parents. A BN is known
27 as a Gaussian BN, when all variables or phenotypes are defined as marginal or conditional
28 Gaussian distribution as in the present study.

200 The adjusted breeding values G* were used to infer a genomic network structure among
a0 the aforementioned six latent variables. There are three types of structure-learning algo-
an rithms for BN: constraint-based algorithms, score-based algorithms, and a hybrid of these
22 two (Scutari and Denis, 2014). The constraint-based algorithms can be originally traced
23 to the inductive causation algorithm (Verma and Pearl, 1991), which uses conditional in-
2 dependence tests for network inference. Briefly, the first step is to identify a d-separation

a5 set for each pair of nodes and confer an undirected edge between the two if they are not

12
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a6 d-separated. The second step is to identify a v-structure for each pair of non-adjacent nodes,
217 where a common neighbor is the outcome of two non-adjacent nodes. In the last step, com-
a8 pelled edges were identified and oriented, where neither cyclic graph nor new v-structures
210 are permitted. The score-based algorithms are based on heuristic approaches, which first
20 assign a goodness-of-fit score for an initial graph structure and then maximize this score by
21 updating the structure (i.e., add, delete, or reverse the edges of initial graph). The hybrid
222 algorithm includes two steps, restrict and maximize, which harness both constrain-based and
23 score-based algorithms to construct a reliable network. In this study, the two score-based
24 (Hill Climbing and Tabu) and two hybrid algorithms (Max-Min Hill Climbing and General
»s 2-Phase Restricted Maximization) were used to perform structure learning.

226 We quantified the strength of edges and uncertainty regarding the direction of networks,
27 using 500 bootstrapping replicates with a size equal to the number of accessions and per-
2 formed structure learning for each replicate in accordance with Scutari and Denis (2014).
20 Non-parametric bootstrap resampling aimed at reducing the impact of the local optimal
230 structures by computing the probability of the arcs and directions. Subsequently, 500 learned
2 structures were averaged with a strength threshold of 85% or higher to produce a more robust
22 network structure. This process, known as model averaging, returns the final network with
2313 arcs present in at least 85% among all 500 networks. Candidate networks were compared
24 on the basis of the Bayesian information criterion (BIC) and Bayesian Gaussian equivalent
25 score (BGe). The BIC accounts for the goodness-of-fit and model complexity, and BGe aims
236 at maximizing the posterior probability of networks per the data. All BN were learned via
27 the bnlearn R package (Scutari, 2010). In bnlearn, the BIC score is rescaled by -2, which

238 indicates that the larger BIC refers to a preferred model.

= Data availability

20  Genotypic data regarding the rice accessions can be downloaded from the rice diversity panel

21 website (http://www.ricediversity.org/). Phenotypic data used herein are available in

13
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22 Zhao et al. (2011), Campbell et al. (2017b), and Supplementary File S3.

14
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.~ Results

a4 To elucidate the genetic interdependencies among traits typically recorded in breeding pro-
25 grams, we utilized a collection of 48 publicly available phenotypes recorded on a panel of
26 diverse rice accessions (Zhao et al., 2011; Campbell et al., 2017a). The phenotypic data
27 was derived from two independent studies. The first set of phenotypes was recorded from
us materials grown in two field environments in Arkansas and Faridpur Bangladesh, and in
29 a greenhouse in Aberdeen, UK (Zhao et al., 2011). The 34 phenotypes were recorded at
250 maturity and were largely associated with yield (panicle characteristics flowering time, plant
1 morphology (e.g. height and growth habits), and seed morphological traits. The second
2 study consisted of 14 phenotypes were recorded in a greenhouse environment on plants in
»3 the active tillering stage (e.g. 30 day-old plants) under control and saline (14 days of 9.5
256 dS m—2 NaCl stress). The phenotypes from this study can be classified into three cate-
255 gories: morphological traits (e.g. shoot and root biomass, and plant height), morphological
26 Tesponses to salinity (e.g. the ratio of morphological traits in saline conditions to control),
27 and the ionic components of salinity stress (e.g. Na®, K™, and Na™:K* in both root and
s shoot tissues) (Campbell et al., 2017a). The complete data set provides an in-depth char-
0 acterization of phenotypic performance at vegetative and reproductive stages in rice using

20 several classes of traits.

« Latent variable modeling

%2 The BCFA model grouped the observed phenotypes into the underlying latent variables
%3 on the basis of prior biological knowledge, assuming these latent variables determine the
sa  Observed phenotypes. This allowed us to study the genetics of each latent variable. A
s measurement model derived from BCFA evaluating the six latent variables is shown in Figure

x6 1. Forty-eight observed phenotypes were hypothesized to result from the six latent variables:

15
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27 7 for flowering time, 14 for morphology, 5 for yield, 11 for grain morphology, 6 for physiology,
s and 5 for salt response. The convergence of the parameters was confirmed graphically with
20 the trace plots and a PSRF value less than 1.2 (Brooks and Gelman, 1998; Merkle and
20 Rosseel, 2018).

o The six latent factors showed strong contributions to the 48 observed phenotypes, with
o2 standardized regression coefficients ranging from -0.668 to 0.980 for flowering time, -0.112 to
a3 0.903 for morphology, -0.113 to 0.977 for yield, -0.501 to 0.986 for grain morphology, -0.016
aa t0 0.829 for physiology, and 0.011 to 0.929 for salt response. The latent factor flowering time
25 showed a strong positive contribution to flowering time in Arkansas (Fla) and Flowering
26 time in Arkansas in 2007 (Fla7) (0.99 and 0.926, respectively; Table 1, indicating that larger
o7 values for the latent factor can be interpreted as a greater number of days from sowing to
as emergence of the inflorescence. The latent factor morphology showed the largest positive
29 contributions to traits describing height during the vegetative stage (e.g. height to newest
20 ligule in salt (Hls), 0.920; height to newest ligule in control (Hlc), 0.899; height to the tip of
201 first fully expanded leaf in salt (Hfs), 0.907; and height to tip of first fully expanded leaf in
22 control (Hfc)), 0.925; suggesting that this latent factor is an overall representation of plant
23 size. Yield showed large positive contributions to the observed phenotypes primary panicle
2 branch number (Ppn) and seed number per panicle (Snpp) (0.790 and 0.780, respectively),
25 suggesting that larger values for yield indicate a higher degree of branching and seed number.
2 Observed phenotypes describing seed size (e.g. seed volume (Sv) and brown rice volume
27 (Bvl) (0.990 and 0.986, respectively)) were most strongly associated with grain morphology.
28 'The latent factor ionic components of salt stress showed strong positive contributions to two
20 observed phenotypes that quantify the ionic components of salt stress (shoot Na™:K* (Kslm)
20 and shoot Na™ (Nas) (0.983 and 0.975, respectively), indicating that higher values for the
21 latent factor result in greater shoot Nat and Nat:K*. Finally, the latent factor describing
22 morphological salt response showed strong positive contributions to the observed phenotype

203 describing the effect of salt treatment on plant height (ratio of height to tip of newest fully
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20 expanded leaf in salt to that of control plants (Hfr) (0.939), thus larger values for the latent

205 factor may indicate a more tolerant growth response to salinity.

» (Genomic correlation among latent variables

27 To understand the genetic relationships between latent variables, genomic correlation analy-
208 sis was performed. Genomic correlation is due to pleiotropy or linkage disequilibrium between
200 QTL. The genomic correlations among latent variables are shown in Figure 2. Negative cor-
30 relations were observed between salt response (Slr) and all other five latent variables. In
;1 particular, flowering time (-0.5), yield (-0.54), and grain morphology (-0.74) were negatively
sz correlated with morphological salt response 2. These results suggest that accessions that
33 harbor alleles for more tolerant morphological salt responses may also have alleles associated
54 with longer flowering times, smaller seeds, and low yield. Similarly, a negative correlation
205 was observed between morphology and yield (-0.56) and between morphology and grain mor-
26 phology (-0.31). Thus, accessions with alleles associated with large plant size may also have
507 alleles that result in low yield, small grain volume, and lower shoot Nat and Na™:K*. In
w8 contrast, a positive correlation was observed between grain morphology and yield (0.49) and
10 between grain morphology and ionic components of salt stress (0.4). Thus, selection for large

s grain may result in improved yield, and higher shoot Na™ and Nat:K™.

. Bayesian network

;12 To infer the possible causal structure between latent variables, BN was performed. Prior
a3 to BN, the normality of latent variables was assessed using histogram plots combined with
s density curves as shown in Figure S2. Overall, all the six latent variables approximately
a5 followed a Gaussian distribution.

316 The Bayesian networks learned with the score-based and hybrid algorithms are shown

siz in Figures 3, 4, 5, and 6. The structures of BN were refined by model averaging with 500
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a1 networks from bootstrap resampling to reduce the impact of local optimal structures. The
a9 labels of the arcs measure the uncertainty of the arcs, corresponding to strength and direc-
2o tion (in parenthesis). The former measures the frequency of the arc presented among all 500
a1 networks from the bootstrapping replicates and the latter is the frequency of the direction
322 shown conditional on the presence of the arc. We observed minor differences in the structures
13 presented within and across the two types of algorithms used. In general, small differences
324 were observed within algorithm types compared to those across algorithms. The two score-
15 based algorithms produced a greater number of edges than two hybrid algorithms. In Figure
w6 3, the Hill Climbing algorithm produced seven directed connections among the six latent
s variables. Three connections were indicated towards flowering time from morphological salt
»s response, ionic components of salt stress, and morphology, and two edges to yield from mor-
29 phology and from grain morphology. Other two edges were observed from ionic components
;0 of salt stress to grain morphology and from grain morphology to morphological salt response.
1 A similar structure was generated by the Tabu algorithm, except that the connection be-
12 tween salt response and grain morphology presented an opposite direction (Figure 4). The
;3. Max-Min Hill Climbing hybrid algorithm yielded six directed edges from morphological salt
s response to grain morphology, from ionic components of salt stress to grain morphology, from
135 ionic components of salt stress to flowering time, from flowering time to morphology, from
16 morphology to yield, and from grain morphology to yield (Figure 5). An analogous structure
;37 with the only difference observed in the directed edge from morphology to flowering time was
138 inferred with the General 2-Phase Restricted Maximization algorithm as shown in Figure 6.
130 Across all four algorithms, there were four common directed edges: from ionic components
s of salt stress to flowering time and to grain morphology, and from morphology and grain
sa - morphology to yield. The most favorable network was considered the one from the Tabu
2 algorithm, which returned the largest network score in terms of BIC (1086.61) and BGe
13 (1080.88). Collectively, these results suggest that there may be a direct genetic influence of

s morphology and grain morphology on yield, and physiological components of salt tolerance
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us on grain morphology and flowering time.
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« 1Discussion

a7 This study is based on the premise that most phenotypes interact to greater or lesser de-
us  grees with each other through underlying physiological and molecular pathways. While these
s physiological pathways are important for the development of agronomically important char-
0 acteristics, they are often unknown or difficult to assess in large populations. The approach
1 utilized here leverages phenotypes that can be readily assessed in large populations to quan-
;2 tify these underlying unobserved phenotypes, and elucidates the relationships between these
33 variables.

s« Understanding the behaviors among phenotypes in the complex traits is critical for genetic
35 improvement of agricultural species (Hickey et al., 2017). Graphical modeling offers an av-
16 enue to decipher bi-directional associations or probabilistic dependencies among variables of
37 interest in plant and animal breeding. For instance, BN and L1-regularized undirected net-
3 work can be used to model interrelationships of linkage disequilibrium (LD) (Morota et al.,
10 2012; Morota and Gianola, 2013) or phenotypic, genetic, and environmental interactions
;0 (Xavier et al., 2017) in a systematic manner. Importantly, MTM elucidates both direct and
1 indirect relationships among phenotypes. Inaccurate interpretation of these relationships
32 may substantially bias selection decisions (Valente et al., 2015; Gianola et al., 2015). Thus,
i3 we applied BCFA to reduce the dimension of the responses by hypothesizing 48 manifest
s phenotypes originated from the underlying six constructed latent variables as shown in Fig-
s ure 1 assuming that these latent traits are most important, followed by application of BN to
36 infer the structures among the six biologically relevant latent variables (Figures 3,4, 5, and
37 6). The BN represents the conditional dependencies between variables. Care must be taken
e in interpreting these relationships as a causal effect. Although a good BN is expected to
w0 describe the underlying causal structure per the data, when the structure is learned solely
s on the basis of the observed data, it may return multiple equivalent networks that describe

sn the data well. In practice, searching such a causal structure with observed data needs three
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w2 additional assumptions (Scutari and Denis, 2014): 1) each variable is independent of its
w3 non-effects (i.e., direct and indirect) conditioned on its direct causes, 2) the probability dis-
sa tribution of variables is supported by a DAG, where the d-separation in DAG provides all
ws dependencies in the probability distribution, and 3) no additional variables influence the
se  variables within the network. Although it may be difficult to meet these assumptions in the
s observed data, a BN is equipped with suggesting potential causal relationships among la-
srs tent variables, which can assist in exploring data, making breeding decisions, and improving

w management strategies in breeding programs (Rosa et al., 2011).

= Biological meaning of latent variables and their relation-

381 ShipS

;22 We performed BCFA to summarize the original 48 phenotypes with the six latent variables.
;3 The number of latent variables and which latent variables load onto phenotypes were deter-
3« mined from the literature. The latent variable morphological salt response (Slr) contributed
5 strongly to salt indices for shoot biomass, root biomass, and two indices for plant height (Ta-
s ble 1). Thus, morphological salt response can be interpreted as the morphological responses
ss7 to salinity stress, with higher values indicating a more tolerant growth response. The la-
;s tent variable yield is a representation of overall grain productivity, and contributed strongly
;0 to the observed phenotypes primary panicle branch number, seed number per panicle, and
s0 panicle length. The positive loading scores on these observable phenotypes indicates that
;1 more highly branched, productive panicles will have higher values for yield (Table 1). Seed
;2 width, seed volume, and seed surface area contributed significantly to the latent variable
03 grain morphology (Grm) (Table 1). Therefore, these results indicate that the grain mor-
s phology is a summary of the overall shape of the grain, where high values represent large,
ss round grains, while low values represent small, slender grains. Considering the grain char-

306 acteristics of rice subpopulations, temperate japonica accessions are expected to have high
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;07 values for grain morphology, while indica accessions have lower values for grain morphology.
13 Latent variable morphology (Mrp) is a representation of plant biomass during the vegetative
10 stage (28-day-old plants) (Table 1). Shoot biomass, root biomass, and two metrics for plant
wo height contributed largely to morphology, suggesting that accessions with high values for
w1 morphology are tall plants with a large biomass.

402 Genomic correlation analysis among the six latent variables showed meaningful corre-
w03 lations among several pairs. These genetic correlations can either be caused by linkage or
ws pleiotropy. The former is likely to prevail in species with high LD, which is the case in
aws rice where LD ranges from 100 to 200kb (Huang et al., 2010). A negative relationship was
ws observed between morphological salt response and three other latent variables (Figure 2).
w7 For instance, a negative correlation between morphological salt response and yield indicates
ws that accessions of samples harboring alleles for superior morphological salt responses (e.g.
w0 those that are more tolerant) tend to also harbor alleles for poor yield (Figure 2). The
a0 rice diversity panel we used is a representative sample of the total genetic diversity within
s cultivated rice and contains many unimproved traditional varieties (~12% of lines in the
a2 study are landraces and ~33% classified as cultivars; Supplementary File S2) and modern
a3 breeding lines (Eizenga et al., 2014). While traditional varieties exhibit superior adaptation
as to abiotic stresses, they often have very poor agronomic characteristics including low yield,
a5 late flowering, and high photoperiod sensitivity (Thomson et al., 2009, 2010). Moreover,
a6 the indica and japonica subspecies have contrasting salt responses and very different grain
a7 morphology. Japonica accessions tend to have short, round seeds and are more sensitive to
as salt stress, while indica accessions have long, slender grains and often are more salt tolerant
s (Zhao et al., 2011; Campbell et al., 2017a). The negative relationship observed between salt
a0 response and grain morphology suggests that lines that harbor alleles for high grain mor-
a1 phology (e.g., large, round grains) tend to also harbor alleles for a tolerant growth response
a2 to salt stress. However, no studies have yet reported an association between alleles for grain

«3  morphology and morphological salt response. Therefore, it remains to be addressed whether
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a0 this relationship is due to LD or pleitropy.

425 Genetic correlations observed between other latent variables may suggest a pleiotropic
»s effect among loci. For instance, a negative relationship was observed between morphological
w7 salt response and ionic components of salt stress, indicating that accessions harboring alleles
w8 associated with superior morphological salt response also tend to harbor alleles for reduced
29 ion content under salt stress (Figure 2). The relationship between salt tolerance, measured in
a0 terms of growth or yield, and Na™ and Nat:K™ has been a documented for decades (reviewed
s by Munns and Tester (2008)). Moreover, natural variation for Na® transporters has been
a2 utilized to improve growth and yield under saline conditions in rice and other cereals (Ren
a3 et al., 2005; Byrt et al., 2007; Horie et al., 2009; Munns et al., 2012; Campbell et al., 2017a).
ssa Therefore, the negative genetic relationships observed between morphological salt response
ss  and ion content may be due to the pleiotropic effects of some loci.

436 The genomic relationships among latent variables including morphology, yield, and grain
.37 morphology may have resulted from the selection of alleles associated with good agronomic
ss  characteristics. A positive relationship was observed between yield and grain morphology,
a0 suggesting that alleles that positively contribute to productive panicles also may contribute
wmo  to large, round grains. Furthermore, the negative genomic correlation observed between
a1 morphology and yield indicates that alleles negatively influencing total plant biomass also
a2 have a positive contribution to traits for productive panicles. This genomic relationship may
us reflect the genetics of harvest index, which is defined as the ratio of grain yield to total
aa biomass. Over the past 50 years, rice breeders have selected high harvest index, resulting
ws in plants with short compact morphology and many highly productive panicles (Hay, 1995;
us Peng et al., 2008).

aa7 Although BCFA may yield biologically meaningful results, a potential limitation of BCFA
ws 18 that we assumed each phenotype does not measure more than one latent variable. This
wo assumption may not always strictly concur with the observational data. Therefore, further

o studies are required to allow each phenotype to potentially load onto multiple factors in
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i1 the BCFA framework. An alternative approach is to derive the number of latent variables
2 and determine which latent variables load onto phenotypes directly from observed data,
»s3 using exploratory FA. This approach was not pursued here because accurate estimation of
s unknown parameters in the exploratory FA requires a large sample size, which was not the

w5 case herein (Brown, 2014).

= Bayesian network of latent variables

7 The BN is a probabilistic DAG, which represents the conditional dependencies among phe-
w3 notypes. The genomic correlation among latent variables described in Figure 2 does not
ss0 inform the flow of genetic signals nor distinguish direct and indirect associations, whereas
w0 BN displays directions between latent variables and separate direct and indirect associations.
w1 Therefore, the BN describes the possibility that other phenotypes will change if one pheno-
w2 type is intervened (i.e., selection). However, caution is required to interpret this network as
w3 a causal effect, as the causal BN requires more assumptions, which are usually difficult to
ss  meet in observational data (Pearl, 2009).

465 Four common edges or consensus subnetworks across the four BN may be the most
a6 reliable substructure of latent variables and may describe the dependence between agronomic
w7 traits (Figures 3, 4, 5, and 6). For example, edges from grain morphology to yield and
w8 morphology to yield can be interpreted as final grain productivity is dependant on specific
w0 vegetative characteristics as well grain traits. This is because yield, which represents the
a0 overall grain productivity of a plant, depends on morphological characteristics such as the
a degree of tillering, an architecture that allows the plant to efficiently capture light and
a2 carbon, and a stature that is resistant to lodging, the degree of panicle branching, as well
a3 as specific grain characteristics such as seed volume and shape. Moreover, there is a direct
s biological linkage between specific vegetative architectural traits such as tillering and plant
a5 height, and yield related traits such as panicle branching and number of seeds per panicle.

a6 'The degree of branching during both vegetative and reproductive development is dependant
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a7 on the development and initiation of auxiliary meristems. Several genes have been identified
as  in this pathway and have shown to have pleiotropic effects on tillering and panicle branching
a9 (reviewed by Liang et al. (2014)). For instance, OsSPL14 has been shown to be an important
w0 regulator of auxiliary branching in both vegetative and reproductive stages in rice (Jiao
s et al., 2010; Miura et al., 2010). Moreover, other genes such as OsGhd8 have been reported
2 to regulate other morphological traits such as plant height and yield through increase panicle
83 branching (Yan et al., 2011). The biological importance of these dependencies can also be
ssa illustrated by viewing them in the context of genetic improvement, as selection for specific
w5 architectural traits (represented by the latent variable morphology) and grain characteristics
ss  have traditionally been used as traits to improve rice productivity in many conventional
w7 breeding programs (Redona and Mackill, 1998; Huang et al., 2013).

s While the above example provides a plausible network structure between latent variables,
s0  edges from ionic components of salt stress to flowering time and to grain morphology are an
w0 example of instances where caution should be used to infer causation. As mentioned above,
s there is an inherent difference in salt tolerance and grain morphological traits between the
w2 indica and japonica subspecies. The edges observed for these two latent variables (ionic
w93 components of salt stress and grain morphology) in BN may be driven by LD between alleles
ss  associated with grain morphology and alleles for salt tolerance rather than pleitropy. Thus,
w5 given the current data set, genetic effects for grain morphology may still be conditionally
ws dependant on ionic components of salt stress and the BN may be true, even if there is no
w7 direct overlap in the genetic mechanisms for the two traits.

498 We found that there are some uncertain edges among BN. For instance, direction from
a9 salt response to grain morphology is supported by 65% (Figure 4), 58% (Figure 5 ), and 58%
s0  (Figure 6) bootstrap sampling, whereas the opposite direction is supported by 56% bootstrap
s sampling (Figure 3). An analogous uncertainty was also observed between morphology and
s2 flowering time, i.e., the path from morphology to flowering time was supported 60% (Figure

3 3), H1% (Figure 4), and 52% (Figure 6), while the reverse direction was supported 51%
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soe  (Figure 6) upon bootstrapping. In addition, the two score-based algorithms captured edges
sos  between morphological salt response and flowering time with 70% and 76% bootstrapping
so6 evidence. However, this connection was not detected in the two hybrid algorithms. In
sor general, inferring the direction of edges was harder than inferring the presence or absence of
sos  undirected edges. Finally, the whole structures of BN were evaluated in terms of the BIC
so0  score and BGe. Ranking of the networks was consistent across BIC and BGe and the two
s score-based algorithms produced networks with greater goodness-of-fit than the two hybrid
su  algorithms. The optimal network was produced by the Tabu algorithm. This is consistent
s with the previous study reporting that the score-based algorithm produced a better fit of
si3 networks in data on maize (Tépner et al., 2017).

514 In conclusion, the present results show the utility of CFA and network analysis to char-
sis  acterize various phenotypes in rice. We showed that the joint use of BCFA and BN can be
si6 - applied to predict the potential influence of external interventions or selection associated with
si7 target traits such as yield in the high-dimensional interrelated complex traits system. We
sis  contend that the approaches used herein provide greater insights than pairwise-association
si9 measures of multiple phenotypes and can be used to analyze the massive amount of di-
s20 verse image-based phenomics dataset being generated by the automated plant phenomics
sn platforms (e.g., Furbank and Tester, 2011). With a large volume of complex traits being
s22 collected through phenomics, numerous opportunities to forge new research directions are

523 generated by using network analysis for the growing number of phenotypes.
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« Tlables

Table 1: Standardized factor loadings obtained from the Bayesian confirmatory factor anal-
ysis. PSD refers to the posterior standard deviation of standardized factor loadings.

Latent variable Observed phenotype Loading | PSD
Flowering time Flowering time at Arkansas (Fla) 0.990 | 0.002
Flowering time Flowering time at Faridpur (FIf) 0.500 | 0.045
Flowering time Flowering time at Aberdeen (FIb) 0.578 | 0.038
Flowering time FT ratio of Arkansas/Aberdeen (Flaa) -0.212 | 0.053
Flowering time FT ratio of Faridpur/Aberdeen (Flfa) -0.549 | 0.041
Flowering time YearQ7 Flowering time at Arkansas (Fla7) | 0.926 | 0.008
Flowering time Year06 Flowering time at Arkansas (Fla6) | 0.886 | 0.013
Morphology Culm habit (Cuh) 0.227 | 0.027
Morphology Flag leaf length (F11) 0.116 | 0.057
Morphology Flag leaf width (Flw) -0.044 | 0.058
Morphology Plant height (Plh) 0.440 | 0.047
Morphology Shoot BM Control (Sbe) 0.534 | 0.042
Morphology Shoot BM Salt (Sbs) 0.456 | 0.048
Morphology Root BM Control (Rbc) 0.418 | 0.048
Morphology Root BM Salt (Rbs) 0.280 | 0.054
Morphology Tiller No Salt (Tns) -0.349 | 0.051
Morphology Tiller No Control (Thc) -0.318 | 0.052
Morphology Ht Lig Salt (Hls) 0.920 | 0.011
Morphology Ht Lig Control (Hlc) 0.899 | 0.014
Morphology Ht FE Salt (Hfs) 0.907 | 0.013
Morphology Ht FE Control (Hfc) 0.925 | 0.011
Yield Panicle number per plant (Pnu) 0.190 | 0.020
Yield Panicle length (Pal) 0.455 | 0.057
Yield Primary panicle branch number (Ppn) 0.790 | 0.041
Yield Seed number per panicle (Snpp) 0.780 | 0.043
Yield Panicle fertility (Paf) -0.085 | 0.081
Grain Morphology Seed length (SI) 0.251 | 0.029
Grain Morphology Seed width (Sw) 0.876 | 0.015
Grain Morphology Seed volume (Sv) 0.990 | 0.002
Grain Morphology Seed surface area (Ssa) 0.901 | 0.012
Grain Morphology Brown rice seed length (Bsl) 0.158 | 0.055
Grain Morphology Brown rice seed width (Bsw) 0.837 | 0.019
Grain Morphology Brown rice surface area (Bsa) 0.902 | 0.012
Grain Morphology Brown rice volume (Bvl) 0.986 | 0.002
Grain Morphology Seed length/width ratio (Slwr) -0.476 | 0.045
Grain Morphology Brown rice length/width ratio (Blwr) -0.432 | 0.047
Grain Morphology Grain length McCouch2016 (Glmc) 0.047 | 0.064
Tonic components of salt stress | Na K Shoot (Ks) 0.983 | 0.003
Tonic components of salt stress | Na Shoot (Nas) 0.975 | 0.004
Tonic components of salt stress | K Shoot Salt (Kss) -0.265 | 0.051
Tonic components of salt stress | Na K Root (Kr) 0.061 | 0.052
Tonic components of salt stress | Na Root (Nar) 0.000 | 0.053
Tonic components of salt stress | K Root Salt (Krs) -0.095 | 0.052
Morphological salt response Shoot BM Ratio (Sbr) 0.410 | 0.047
Morphological salt response Root BM Ratio (Rbr) 0.395 | 0.051
Morphological salt response Tiller No Ratio (Thr) -0.022 | 0.057
Morphological salt response Ht Lig Ratio (Hlr) 0.665 | 0.036
Morphological salt response Ht FE Ratio (Hfr) 0.939 | 0.019
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Figure 1: Relationship between six latent variables and observed phenotypes. Msr: mor-
phological salt response; Iss: ionic components of salt stress; Grm: grain morphology; Yid:
yield; Mrp: morphology; Flt: flowering time. Abbreviations of observed phenotypes are
shown in Table S1.
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Figure 2: Genomic correlation of six latent variables. The size of each circle, degree of
shading, and value reported correspond to the correlation between each pair of latent vari-
ables. Msr: morphological salt response; Iss: ionic components of salt stress; Grm: grain
morphology; Yid: yield; Mrp: morphology; Flt: flowering time.
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Figure 3: Bayesian network between six latent variables based on the Hill Climbing al-
gorithm. The quality of the structure was evaluated by bootstrap resampling and model
averaging across 500 replications. Labels of the edges refer to the strength and direction
(parenthesis) which measure the confidence of the directed edge. The strength indicates
the frequency of the edge is present and the direction measures the frequency of the direc-
tion conditioned on the presence of edge. BIC: Bayesian information criterion score. BGe:
Bayesian Gaussian equivalent score. Msr: morphological salt response; Iss: ionic components
of salt stress; Grm: grain morphology; Yid: yield; Mrp: morphology; Flt: flowering time.
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Figure 4: Bayesian network between six latent variables based on the Tabu algorithm. The
quality of the structure was evaluated by bootstrap resampling and model averaging across
500 replications. Labels of the edges refer to the strength and direction (parenthesis) which
measure the confidence of the directed edge. The strength indicates the frequency of the
edge is present and the direction measures the frequency of the direction conditioned on
the presence of edge. BIC: Bayesian information criterion score. BGe: Bayesian Gaussian
equivalent score. Msr: morphological salt response; Iss: ionic components of salt stress;
Grm: grain morphology; Yid: yield; Mrp: morphology; Flt: flowering time.
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Figure 5: Bayesian network between six latent variables based on the Max-Min Hill Climbing
algorithm. The quality of the structure was evaluated by bootstrap resampling and model
averaging across 500 replications. Labels of the edges refer to the strength and direction
(parenthesis) which measure the confidence of the directed edge. The strength indicates
the frequency of the edge is present and the direction measures the frequency of the direc-
tion conditioned on the presence of edge. BIC: Bayesian information criterion score. BGe:
Bayesian Gaussian equivalent score. Msr: morphological salt response; Iss: ionic components
of salt stress; Grm: grain morphology; Yid: yield; Mrp: morphology; Flt: flowering time.
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Figure 6: Bayesian network between six latent variables based on the General 2-Phase Re-
stricted Maximization algorithm. The quality of the structure was evaluated by bootstrap
resampling and model averaging across 500 replications. Labels of the edges refer to the
strength and direction (parenthesis) which measure the confidence of the directed edge.
The strength indicates the frequency of the edge is present and the direction measures the
frequency of the direction conditioned on the presence of edge. BIC: Bayesian information
criterion score. BGe: Bayesian Gaussian equivalent score. Msr: morphological salt response;
Iss: ionic components of salt stress; Grm: grain morphology; Yid: yield; Mrp: morphology;
Flt: flowering time.
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