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ABSTRACT  

Alignment-free classification of sequences against collections of sequences has enabled high-

throughput processing of sequencing data in many bioinformatics analysis pipelines. Originally hash-

table based, much work has been done to improve and reduce the memory requirement of indexing of 

k-mer sequences with probabilistic indexing strategies. These efforts have led to lower memory highly 

efficient indexes, but often lack sensitivity in the face of sequencing errors or polymorphism because 

they are k-mer based. To address this, we designed a new memory efficient data structure that can 

tolerate mismatches using multiple spaced seeds, called a multi-index Bloom Filter. Implemented as 

part of BioBloom Tools, we demonstrate our algorithm in two applications, read binning for targeted 

assembly and taxonomic read assignment. Our tool shows a higher sensitivity and specificity for read-

binning than BWA MEM at an order of magnitude less time. For taxonomic classification, we show 

higher sensitivity than CLARK-S at an order of magnitude less time while using half the memory. 

INTRODUCTION 

In computational biology, sequence classification is a common task with many applications such as 

contamination screening (1), pathogen detection (2), metagenomics (3), and targeted assembly from 

shotgun sequence data (4,5). Though this problem is addressable via sequence alignment (6), the 

scale of modern datasets (in both the scale of our query and reference sequences), has spurred the 

development of faster alignment-free hashed based similarity methods (3) as exact genomic 

coordinates are often unnecessary and leading to more computation than necessary. We have 

developed a novel probabilistic data structure based on Bloom filters (7) that implicitly stores hashed 

data (to reduce memory usage) yet can better handle sequence polymorphisms and errors with 

multiple spaced seeds, increasing the sensitivity of hashed-based sequence classification. 

Background 

Using any hash-based methods for indexing sequencing data involves creating an incomplete 

representation of the data. The most common alignment-free indexing methods are k-mer (substring 

of length k) based. These methods work by breaking a reference sequence into k-mers and indexing 
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them (often in a hash table). To classify sequences, they are also broken into k-mers and queried 

against the index to check for shared k-mers. If a significant number of k-mers are found within the 

reference set, the read is then classified. The k-mers must be long enough such that they are unlikely 

to be the same between indexed targets, especially if there is substantial sequences similarity. 

However, k-mers cannot compensate for differences between references and queries that occur 

within k base pairs of each other. This limitation of k-mers has motivated us to use spaced seeds (1) 

(also called gapped q-grams (2)).  

Spaced seeds are the current state-of-the-art for approximate sequence matching in 

bioinformatics. They are a modification to the standard k-mer where some positions on the k-mer are 

set to be “don’t care” or wildcard to catch the spaced matches between sequences. They were 

originally proposed in PatternHunter in 2002 (1) and have been increasingly used since then to 

improve the sensitivity and specificity of homology search algorithms (3-7).  Employing multiple 

spaced seeds together can greatly increase the sensitivity of homology searching (8). Spaced seeds 

have been employed in metagenomics studies and successfully performed to improve the sensitivity 

of classification in metagenomic classification (9,10). 

Probabilistic data structures 

Probabilistic data structures (11) are a class of data structures that focus on representing data 

approximately, so query operations can sometimes produce an incorrect result. The use of 

probabilistic data structures in bioinformatics has expanded in recent years, owing to their speed 

(constant hash table-like speed) and low memory usage. However, the use of these data structures is 

a double-edged sword due to the existence of false positives. 

Depending on the application, the permissive rate of false positives is constantly re-evaluated with 

a multitude of different mitigation strategies proposed. No matter the methods, at the core of false 

positive reduction strategies is the use of reduction of base probabilities and the use of conditional 

probability from independent events. For example, from the first probabilistic data structure, the 

humble Bloom filter (12), false positives are reduced by lowering the occupancy of the Bloom filter 

(decreasing the base probability of a false positive) or by increasing the number of hash function used 

(exploiting the conditional probability of multiple independent events). These principles have not 

changed; however, it is important to note that there may be aspects of the data type being indexed 

and variations of the data structure being used that are underutilized when attempting to reduce the 

false positive rate. For instance, methods that utilize probabilistic data structures for key-value 

associations in sequence analysis often consider every inserted key as an independent event (13,14). 

Conceptually, this manifests itself in assigning a false positive rate (FPR) for each key query 

performed. However, in the biological sciences, unlike in many applications of these data structures in 

the computational sciences, each key is actually some kind of decomposition of parts of the same 

sequences (e.g. a k-mer) and thus not independent. This pseudo-redundancy can be exploited in to 

reduce the relative FPR when querying the data structure (15). 

The use of Bloom filters for sequences based classification was originally developed in the tool 

Fast and Accurate Classification of Sequences (16). We later developed BioBloom Tools (BBT) (17), 
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which used heuristics to optimize speed and reduce the effect of false positives. Though BBT proved 

effective when using a small number of filters, determining the specific reference of a queried 

sequence requires multiple Bloom filters, which can lead to an O(n) time complexity where n is the 

number of references. Here, we have extended the functionality of Bloom filters for the classification 

against multiple references (key-value association) in a novel data structure called a multi-index 

Bloom Filter (miBF). While miBF shares similarities with existing data structures, it has properties that 

allow it to synergize with spaced seeds. 

Related data structures and algorithms 

Bloomier filters are first probabilistic data structures that allowed key-value associations, utilizing 

perfect hashing to prevent collisions between values (18), though has seen no prominent use in 

bioinformatics; Marchet et al suspect that this may be that no free implementation exists for this data 

structure as of yet (14). At any rate, Bloomier filters have been superseded for applications in 

bioinformatics by higher performance data structures, such as the quasi-dictionary (14,19) and 

Othello data structure (13,20). 

The quasi-dictionary allows for key-value lookups and was originally proposed for applications in 

metagenomics(19). The quasi-dictionary uses bbHash (21), a minimal perfect hashing scheme that 

only requires 3 bits per element. Though this solves issues for preventing collisions of values, false 

positives are still an issue. To reduce false positives, a small value (in practice 12 bits, derived from 

the key is also stored in the indexed position, a strategy likely derived from quotient filters (22) where 

the key-derived value is referred to as a “quotient”. Assuming 16-values, each values will take 

12+3+16 = 31bits per element. Similar data structures to this include a compact coloured de Bruijn 

graph implemented in Pufferfish (23) (which also uses bbHash) and works on some very similar 

principles. 

The Othello data structure was originally designed for network forwarding lookup optimization (20) 

but has now seen uses in metagenomics (13) and even RNA seq analysis (24). It bears some 

resemblance to another probabilistic data structure called Cuckoo Filter (25). Like Cuckoo filters, it 

works by using 2 hash functions for 2 potential hash locations, however, instead of storing a quotient 

of some sort in 2 possible locations, the value is stored in 2 tables, where the value stored is the 

exclusive-or of 2 hash values. Just like Cuckoo filters, the second hash value used is a way of dealing 

with collisions. When a collision occurs that is unresolvable (both hash locations are use) the element 

cannot be inserted but in practice only results in a few missing elements. The memory usage is O(ln), 

where l is the size of the value type stored and n is the number of elements stored. They require that 

each table be at least 1.33n in size, thus assuming 16-bit values, each value will cost (16+16)×1.33 = 

43 bits per element. They refer to false positives as alien k-mers but use a sliding window approach 

where adjacent k-mers are evaluated, similar to the method presented here to minimize false 

positives. 

Our miBF belong in the same family of these data structures, with similar theoretical performance 

and properties, but is slightly less suitable for k-mers. This is due to our strategy of handling hash 

collisions and dealing with false positives. At suggested parameterization, our miBF requires the least 
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amount of memory per key compared to these methods (less than 20bits, assuming 16bit values and 

that every single spaced seed in a set of multiple spaced seeds is considered its own key), however 

such a statement is somewhat meaningless without an expected FPR. Because the FPR for a single 

key query of miBF is contingent on the value pair it classifies to, a directed comparison to other 

methods is difficult. In short, miBFs are not designed to be used for single queries. To most effectively 

use miBFs, they must be used with multiple queries over the same sequence, effectively amortizing 

the FPR to a small value. Because of this, we consider the FPR to be a function of not only the miBF 

itself but the length of the sequence being queried. 

MATERIAL AND METHODS 

Multi-Index Bloom filters vs Bloom filters 

We developed a novel Bloom filter-based data structure that can perform constant time key-value 

associations called multi-index Bloom Filter (miBF). For standard Bloom filters, elements of a 

sequence, such as k-mers, are queried to determine whether they are or not members of those 

decomposed from the reference set. Like Bloom filters, the memory usage of miBF does not depend 

on the size of the k-mer or the spaced seeds used. With a Bloom filter, querying for the set of origin 

between multiple reference sets requires the construction and use of multiple Bloom filters leading to 

O(n) time complexity when querying, where n is the numbers of reference sets/filters. Unlike Bloom 

filters, querying for the set of origin for an element requires only one data structure and is performed 

in constant time. 

Implementation details 

The miBF data structure is implemented as part of BioBloom Tools (BBT) 

(https://github.com/bcgsc/biobloom), implemented in C++ with components and our BTL Bloom Filter 

(https://github.com/bcgsc/btl_bloomfilter). For space seed hashing we use a modified version of 

ntHash (26) a recursive rolling hash specialized for nucleotide sequences. Finally, we use 

components and algorithms from the C++ Boost libraries (27) and the Succinct Data Structures 

Library (28). 

Spaced seeds 

To better utilize the available memory relative to false positive rate, Bloom filters can use multiple 

hash functions. However, there is no requirement for the hash values to be derived from the same k-

mer. We have adapted our miBF to hash multiple spaced seeds instead of traditional k-mers. Naively, 

one may simply insert each spaced seed as its own element (using multiple hash functions for each 

insertion), yet, since the seeds in the same “frame” of the sequence are dependent we can instead 

use a set of spaced seeds in the place of multiple hash functions. By allowing for some spaced seeds 

in a frame miss, we can better tolerate mismatches when classifying sequences. By default, we will 

accept all but one seed in a frame to miss, but it is possible to change this and to help decrease the 

FPR, at the cost of sensitivity. There is no restriction on length or weight (number of required match 
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positions) for spaced seeds used in our data structure, however, to enable us to store only one 

compliment of the sequence, we use spaced seeds that either share mirrored match positions to 

another seed or is palindromic. This allows us to save memory by storing each sequence only once 

and not both forward and reverse-complement, analogous to only storing one canonical k-mers 

(comparing both the forward and reverse-complement of a k-mer and consistently picking one) . 

miBF Structure 

Conceptually, the miBF can be thought of as three separate arrays. One behaves like a traditional 

Bloom filter bit array, storing the presence or absence of an element in the set (Fig. 1A). The next 

stores the rank information of the bit array at specific intervals; this allows for constant time rank 

information access (29) to positions on the bit array. The third ID array stores integer identifiers for 

each element in the bit array. These integer IDs can be used to represent any arbitrary classification 

category. 

To query a single value, we first look up the hash value in the Bloom filter, if it hits we use the rank 

array in conjunction with the Bloom filter to determine the rank of the value, and finally, we look up the 

corresponding integer identifier in the ID array. To improve cache performance the Bloom filter and 

rank arrays are interleaved into a single data vector (30). 

Data structure construction 

Construction of the miBF consists of multiple passes through the sequence set being indexed. To 

minimize memory usage overhead, all data is streamed, but multiple threads can be used on different 

parts of the data (so long as they are part of different IDs) at a time to improve runtime. This pass 

through the data populates the Bloom Filter, with the rank array is created afterwards, and 

subsequent passes are used in populating the ID array. The number of passes needed to construct a 

miBF is 2 + h where h is the number of hash functions. 

Due to shared sequence or hash collisions, inserted values into the ID array may collide causing a 

loss of key-value association information; however, there are ways to insert values in such a way that 

we minimize any loss of data across sets of sequences. For every colliding ID, we attempt to ensure 

that at least one of the hash values of a frame (i.e. same position of the sequence) will contain that ID. 

This is done by populating the ID array in steps (Figure 2). When populating the ID array, we pass 

through the sequences h times in a stepwise fashion. In the first pass, we only allow 1 value of a 

frame to be inserted, in the second pass 2 values, etc. This way we can ensure that we values are 

fairly distributed in a streaming fashion. 

If the frame has values cannot be inserted (which can only occur in the first pass into the ID array) 

we set the value as saturated by reserving the first bit of the ID integer to denote saturation (Figure 3). 

The saturation bit lets us know if a key-value association information within a frame is lost, without 

destroying key-value pairs that are important for the classification of other sequences. After the first 

pass of insertions, we perform an additional pass to randomize the IDs in the saturated positions to 

minimize bias towards sequences inserted first. We do this by using a temporary array that stores 

occurrence counts per ID whilst streaming in conjunction with reservoir sampling (31). In this vector, 

we also store critical saturated positions needed for non-fully-saturated frames to ensure that we do 
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not lose any information in these frames when randomizing the IDs. Finally, to further help minimize 

bias (Supp. Note S2) towards sequences inserted first, we will insert the next passes in the reverse 

direction, switching back to forward for the pass after that, until fully populated. 

Querying & Classification 

A single lookup of the data structure is performed by hashing a set of spaced seeds in a frame and 

confirming if the value(s) are present and if present, using the rank value to retrieve the ID from the ID 

array. In this scheme, one can end up with multiple IDs for the query, with a high likelihood of one of 

them being a false positive. This may seem to invalidate the purpose of the data structure, however, 

one may observe that although false positive hits are independent, the hits to multiple frames of the 

same sequence will not be. Thus, to query reliably, we use adjacent frames to reinforce and reduce 

the effective FPR. This is similar to other methods is shown to help reduce the effective false positive 

rates in Bloom filters (15), with the difference of multiple indexes being considered. 

Using adjacent sequences to minimize false positives can be generalized to calculate the FPR for 

any length greater than k. When classifying a sequence the FPR for each frame can be thought as a 

series of n independent Bernoulli trials (number of frames) so we can model the overall chance of a 

false positive using a binomial distribution. Conceptually, under this methodology, the data structure 

no longer has a fixed FPR; indeed, the chance of a false positive depends on the length of the 

sequence being queried, the length of the seed used, the FPR of the Bloom filter, and the frequency 

of each ID in the ID array. 

We perform 2 stages in our classification. First, we determine if the matches to a particular ID are 

enough to determine the read is not a false positive match determined by a preset minimum FPR 

(1/1010 by default). Then we rank the significant candidate IDs and try to filter in additional candidates 

that match strongly enough that they can be considered a multi-match. 

Calculating the FPR of sequences of arbitrary length 

As mentioned, we calculated the chance that a read is false positive by considering the entire 

sequence rather than a single lookup. The FPR of a Bloom filter is already well formulated (12), and if 

the occupancy of the Bloom filter, b is known it can be formulated as follows: 

 

Where h is the number of multiple spaced seeds (traditionally number of hash functions) used for a 

single frame in the sequence. However, as we are also allowing some misses due to our use of multi-

spaced seeds, the formulation becomes: 

 

Where a is the number of allowed misses for the set of spaced seeds in a frame. As mentioned when 

classifying a sequence the FPR for each frame can be thought as a series of n independent Bernoulli 

trials so we can model the overall chance of a false discovery using a binomial distribution. That is, for 

a simple Bloom filter the chance of falsely classifying a sequence is easily determined by computing 
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the cumulative density function (CDF) of the number of matches m - 1 and inverting it: 

 

This will help in understanding how classification in a miBF is calculated for a single index. 

Computing the FPR of miBFs has similar formulation but incorporates the fact that you can use 

multiple indexes to help further reduce the FPR, though it should be noted that each index i is an 

additional test that you must consider and be corrected for. Before we compute the overall probability 

on an entire sequence for a given index i, we must first formulate the probability of falsely matching a 

frame of classification: 

 

Where si is the frequency of index i in the data array of the miBF. Thus, the overall probability for false 

classification for index i is: 

 

Out of all our tests for each index i we can take the best candidate (lowest p-value) and perform a 

multiple testing correction. In our implementation, we perform the Bonferroni correction (32,33): 

 

Because we expect a discrete pseudo-uniform distribution of p-values, and because common multiple 

testing correction methods (Supp. Fig. S2) are expecting a uniform distribution of p-values, these 

correction methods seem to overly conservative to the true false positive probability (which may lower 

the statistical power of the method). However, we believe this principled approach of calculating false 

positive rate on sequences can help improve the robustness and reproducibility of the method as 

these formulations ensure a minimum false positive rate to their results. Similar probabilistic 

classification methods in the past tend to use arbitrary scoring functions and thresholding, which can 

reduce the robustness of the method when sequence lengths or single element FPRs change. 

Determining and ranking multi matches 

We filter out only reads that pass a minimum FPR threshold during classification. These reads are 

now considered not false positives, though may be associated with more than one candidate ID. We 

now need to determine if the classified reads are the best hit and if we can confidently say that the 

mapping is not shared between multiple hits ambiguously (due to shared sequence or close sequence 

homology). To rank these candidate hits, we use the following hierarchy: 

1. Non-saturated frame counts: ID counts to frames that do not have any saturated IDs in the 

same frame, only counted once per frame 

2. Non-saturated solid frame counts: ID counts to frames without saturation and only if the frame 

contains all seeds needed for a match, only counted once per frame 

3. Frame counts: ID counts to frames regardless of saturation status, only counted once per 

frame 
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4. Non-saturated frame counts: ID counts that are not saturated, only counted once per frame 

allowing for frames to have some saturated IDs 

5. Total non-saturated counts: all ID counts that do not have any saturated IDs 

6. Total counts: all ID counts regardless of saturation status 

Empirically, we found the non-saturated frame counts to be the best metric as it takes into account 

frames that may be repetitive (not including them into the predictions) yet is still able to tolerate 

mismatches (providing more evidence for classification). The frame counts are used to determine 

false positive hits (using the formulation in the previous section), and is generally a fairly reliable 

metric for ranking multi-matches but can be distorted if the sequence contains repetitive sequences. 

Total non-saturated counts are generally highly accurate but difficult to obtain a high number 

observation for and thus is less reliable in some case. The remaining metrics provide more 

observations to reinforce the confidence of a match, but because we assign ownership of an ID per 

frame and not spaced seed during construction, they are less useful at determining the best match of 

a sequence. All of these metrics should, in an ideal situation, agree with each other (always be higher 

if in the better match) and generally do in our tests. However, we also provide an option (-b) to filter 

classification of these cases where the metrics do not agree, improving the specificity, at the cost of a 

minor loss of sensitivity. 

By default, we consider candidate ID matches to be too close to call if their non-saturated frame 

counts are within a threshold (-m = 2). The remaining candidates are returned, ranked by the 

hierarchy above, though it is likely that all remaining matches are likely homologous to the sequences 

in some capacity. Sources of error for all these counts come from repetitive sequences, homologous 

indexed references, sequencing error, polymorphism and random noise due to hash collisions during 

miBF construction. 

Speed optimization and heuristics 

Because what is commonly classified is of a fixed length (i.e. read sequences), we can simply 

compute a fixed significant match threshold for each index upon seeing the first instance of a 

sequence of a particular length. By applying our Bonferroni-corrected critical p-value on this length for 

each index we compute the minimum number of frame counts needed to not be considered a false 

positive provided by the C++ Boost libraries (27) using the quantile function (34). With this, although 

optimal classification results are not guaranteed, the classification may now terminate early to 

improve throughput in practical situations. This situation occurs if the si values are sufficiently small 

and if the sequences are mostly independent. That is, if the contribution to reducing the FPR is 

dominated by si, we can achieve near-optimal classification when terminating classification early. This 

further increases the utility of the algorithm when one use utilizes many indexes rather than a few as 

this will cause si of each index to decrease accordingly. We terminate early through a parameter (-r  = 

10, by default allowing at least 10 frames of unambiguous significant matches until early termination) 

which we use in all our tests unless otherwise stated. The largest gains will be seen if there is low 

ambiguity (fewer candidate IDs, less sequence sharing) when classifying the sequences. This 

heuristic has no effect on the FPR, and only affects the accuracy of multi-match assignments. 
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RESULTS 

Filtering reads for targeted assembly - Comparison with BWA MEM 

The targeted assembly allows one to improve the throughput and reduce the complexity of assembly 

for applications where quick answers are helpful, such as clinical diagnostics for structural variants or 

other mutations. A typical procedure when performing targeted assembly is the extraction of 

sequencing reads in the target loci, before using these reads in a de novo assembly pipeline. This can 

be done via alignment or sequence classification since exact genomic coordinates are not necessary 

as the reads will be used in a de novo assembly afterwards. For this application, we compared the 

binning of reads with BWA MEM (v0.7.17) (35) with our method on a set of simulated reads. We 

simulated Illumina reads with depth of coverage ranging from 10x (229,800 read pairs) to 100x 

(2,303,019 read pairs) in increments of 10 using pIRS (v1.1.1) (36) from a gene set composed of 580 

COSMIC (v77) genes (37) (targets) and an equal number of non-COSMIC genes randomly selected 

from RefSeq (38). We then indexed the set of 580 genes into a miBF using a set of 4 spaced seeds 

(Supp. Note 1). 

These tests were performed on the same machine Intel Xeon E7-8867 2.5GHz with 64 threads. 

Compared to BWA-MEM, BBT obtained a higher overall sensitivity (99.9% vs 98.7%) and lower 

overall FPR (0.3% vs 0.4%) (Figure 4). We note that any multi-mapping reads are considered as part 

of multiple genes they map to, thus, if a sequence is shared, it will be considered a false positive for 

the shared but non-origin gene. We compared the runtime of each tool, finding that BBT runs 14x 

faster than BWA MEM on default settings with 64 threads. Memory usage of BBT on these set of 580 

genes was 20MB. 

On a per gene basis, BBT outperforms BWA-MEM in terms of F1 score, except for RANBP2, likely 

due to its similarity to RANBP17. This suggests that BWA-MEM in some cases may be better at 

discriminating between similar hits, whereas BBT will instead apply classification to both genes. 

Under default parameterizations, BBT is shown to be more sensitive at detecting homology than 

BWA-MEM but is in some cases less able to confidently assign them to a single target given closely 

related homologous sequences (more multi-mapping classification). This behavior is somewhat 

expected considering the use of minimal exact matches in FM-Index based alignment approaches 

compared to a fixed length spaced seed. 

We also compared the memory and time usage of indexing but because the indexed set of 

COSMIC genes was very small it is difficult to compare the indexing methods. Instead, to compare 

the scalability of indexing we indexed a 3.5G fasta file consisting of ~1000 bacterial sequences. BWA 

took 1.5 hours to index in entire file while BBT took 9 hours to index the same file but only 1.5 hours 

using 16 threads. Normal BWA indexing cannot be multi-threaded. 

Metagenomic classification 

Although BBT is a generic classification tool, when given the proper reference sequences it is 

possible for it to be used as the workhorse for a metagenomics classification pipeline. To demonstrate 

this, we compared BBT with CLARK (39) and CLARK-S (40) (the spaced seed variant of CLARK). We 
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compared CLARK-S because it is the only metagenomic classification tool that we know of that 

supports multiple spaced seeds used to improve classification sensitivity. We also compare the 

method to CLARK because it is the predecessor to CLARK-S and well characterized against other 

tools as seen in other studies (41). Finally, like CLARK/CLARK-S, we can currently only construct 

databases for one taxonomic level at a time (unlike tools like Kraken (42)), thus facilitating more direct 

comparisons. 

We first generated a standard database (bacterial + viral genomes, constructed May 2018) for 

both CLARK-S (using default seed set) and CLARK. To make sure the comparison performed were 

comparable, we used the same references sequences and taxon IDs that CLARK uses to construct 

our miBF (Supp. Note S1). To index the bacterial and viral genomes, CLARK took 24h, CLARK-S 

took 24.5h and BBT took 19 hours to generate an index. We requested 24 threads for each tool but 

CLARK generally did not use more than 1 CPU at a time, while BBT used around 12 CPUs on 

average, suggesting there is still room for optimization and better parallelism to be exploited when 

indexing for both tools. 

There are some differences between our miBF index and CLARK/CLARK-S databases beyond our 

implicit representation of our seeds. First, we note that unlike CLARK-S and CLARK, seed sequences 

shared between different taxa are not removed and are simply distributed between taxa and if 

sufficiently repetitive will be set as saturated (see method section for details). Also, though CLARK-S 

and BBT both use multiple spaced seeds, our miBF did not use the same set of seeds as CLARK-S 

because of our restrictions on seed designs (see methods section). In addition, because our seed 

design does not affect memory usage of the miBF the same way it does in CLARK-S, we were also 

free to use longer seeds (Supp. Note S1).  

Using the same simulated metagenomic datasets in the CLARK-S (40) paper we tried to replicate 

the results found within in addition to comparing CLARK and CLARK-S with BBT. Unfortunately, 

because the bacterial and viral NCBI databases have changed since the original CLARK-S 

publication, we had to omit read simulated from genomes that no longer have a corresponding 

species taxa in the database from the comparison, due to CLARK only selecting “Complete 

Genome[s]” and changes to the NCBI database demoting some genomes to draft status. 

Nevertheless, since we omit the same reads in all runs and use the same reference sequences in 

each index database, our results will yield a fair comparison. There are two sets of simulated reads 

were generated as outlined in the CLARK-S paper; the difference between the “Default” and 

“Unambiguous” sets is the Unambiguous set does not have reads with all 32-mers shared between 

any 2 taxa IDs, but we note that, because reference database used has changed, this distinction may 

no longer hold completely true. 

The default output of CLARK only produces a single best match, but CLARK-S can produce a 

secondary hit. Like CLARK-S, BBT can produce secondary hits in addition to a best hit, with the 

difference being that BBT can produce more than one secondary hits. The multi-matches 

parameterized to be filtered more stringently at the risk of losing the valid hits of a match. To this end, 

we compared the performance of each tool when it came to only the best hit in addition to comparing 

the results when multiple hits were considered. 
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In addition to default parameterizations of BBT (BBT Default), we tested it with parameterizations 

to increase specificity (BBT Specific) (For details on parameterization see Supp. Note S1). As 

expected, CLARK-S has higher sensitivity than CLARK in almost all cases, reproducing the results 

found in the original CLARK-S paper. The general trend shows that BBT Default has the highest 

sensitivity at the cost of precision, though this vast increase in sensitivity yields allows it to also yield 

the highest F1 score in all but one case (where BBT Specific has the highest F1). If considering the 

best hits, it is a toss-up between BBT Specific and CLARK in terms of highest precision, with BBT 

Specific generally yielding slightly higher sensitivity. However, when considering multi-hits, BBT 

Specific performs much better than all methods in terms of precision in all cases and shows 

comparable sensitivity to CLARK-S. For BBT Default and BBT Specific, only 7.5%, 10.14% have 

multi-hits respectively, and of that, a majority (60% and 74% respectively) of them only 2 possible hits 

(Supp. Fig S1). 

Also included as part of the CLARK-S dataset was 3 negative control datasets totalling in 

3,000,000 100 bp reads. Unexpectedly, some of the reads in the negative control datasets had 

mapped reads in both CLARK-S (6 reads) and Default BBT (3 reads). This is in contrast to the original 

CLARK-S paper where no reads were mapped in any of the negative controls. In addition, in BBT, we 

had expected few or no false positives because FPR was specified to be less than 10-10 (default 

parameters). Thus, we hypothesize this may be due to the difference in the databases, adding some 

new reference genomes that happen to have minor sequence similarity to those found in the negative 

control. Overall we feel this is not a cause for concern as this represents a very small minority of 

negative control reads. Finally, both CLARK and BBT Specific did not classify any negative reads. 

On the same set of reads used in these experiments, we tested the runtime of each method at a 

differing number of threads (Fig. 7). We show that CLARK is the fastest tool when using a single 

thread, followed by BBT Default, BBT specific and finally CLARK-S. This trend generally follows when 

more threads are used, with the exception that BBT seems to scale better than CLARK, and will 

outperform CLARK when a least 8 threads within our tests. With the exception of the slow 

performance of CLARK-S, these methods remain within an order of magnitude of each other in 

performance if the same number of threads are used. In terms of memory, CLARK used 87GB, BBT 

used 91GB, and CLARK-S used 175GB. Database loading speed was not considered in this 

comparison but was dependent mostly on I/O and was quite comparable between the methods. 

DISCUSSION 

We have presented the miBF, a probabilistic sequence classification data structure that can classify to 

multiple value-types and synergizes well with multiple spaced seeds. Query operations achieve a time 

complexity on par with a hash table based algorithms, but because it implicitly represents data, 

potentially uses less memory than hash table based algorithms (depending on the seed being 

hashed). Furthermore, seed size and complexity have no impact on memory usage on this data 

structure, expanding the potential for specialized, highly sensitive and specific spaced seed designs. 

In addition, we have formulated a model for calculating the FPR of classification using a probabilistic 

data structure given a sequence (rather than a single element query), which also leverages the 
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frequency of which an ID is retrieved. Interestingly, this means miBFs with more IDs will result in lower 

FPRs. We showcase this highly sensitive generic classification tool implementation in two use cases.  

The first use case was the recruitment of reads for targeted assembly. We show superior 

performance relative to BWA MEM in sensitivity and FPR at an order of magnitude faster time. The 

overall specificity of the matches was higher than BWA MEM but we note that in one target gene 

BWA MEM was better at disambiguating homologous sequences. However, for the purposes of 

targeted assembly, it is generally preferable to assign reads to both targets since missing sequences 

are more difficult to deal with than a few extra sequences. Furthermore, though the specificity of BWA 

MEM may be improved by including more of sequences to align to, to prevent off-target homologous 

alignment in cases where these sequences do not exist (e.g. incomplete or missing reference 

sequences), our results suggest that a spaced seed approach may be superior in terms of overall 

specificity. 

The second use case was the classification of metagenomic sequences to the species level. 

Under default parameterization, we showed higher sensitivity than both CLARK-S and CLARK in 

classification when not only considering the multi-mapping reads but when considering just the best 

hits. To illustrate that the gains to sensitivity were not necessarily at the cost of precision, we also ran 

BBT with parameters to allow for more specific classifications. Under these parameters, we showed 

comparable specificity to CLARK and better specificity than CLARK-S for when only considering best 

hits, and higher specificity and sensitivity when considering multi-mapped reads. Our sensitivity gains 

were likely due to the use of a slightly sparser set of seeds with more seeds total (four vs three), and 

the because we do not filter out seed sequences that are shared between species. Despite the slight 

increase in sparseness, the specificity of the classification was maintained by using longer seeds 

(42bp, longer than what CLARK-S can currently use). 

The runtime of BBT with default setting was comparable to CLARK, despite using multiple spaced 

seeds, and generally scales better than CLARK when more threads are used. When parameterized 

with more specific settings, BBT still remains less than twice the runtime of CLARK. Due to the implicit 

representation of the spaced seeds, BBT used only around half the memory CLARK-S and a similar 

amount of memory to CLARK despite using 4 different spaced seeds. The runtime of CLARK-S was 

expected to be slower than CLARK (10) but was much slower than expected as more threads were 

used. The runtime of CLARK-S more than an order magnitude slower than CLARK and BBT at a 

higher number of threads, suggesting that computation using multiple spaced seeds can be quite 

expensive if not carefully optimized. 

Future work 

We use ntHash (26), a type of rolling hash (43) shown to be effective at computing hash values on 

nucleic acid sequences. ntHash is not yet been completely optimized for spaced seeds and hashing 

currently comprises of roughly 40-50% of our runtime. Currently, our implementation simply masks out 

positions where spaced seed no match positions exist, not effectively exploiting the properties of a 

rolling hash function. To improve performance it should be possible to improve ntHash to effectively 

use spaced seeds by adapting concepts from Girotto et al (44). Another improvement in terms of 
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memory usage could be tuning the Bloom filter size by estimating the total number of distinct items for 

each spaced seed. This can be performed using ntCard (45), a streaming algorithm to estimate the k-

mer abundance profile of large-scale genomics dataset, but with some modifications to adapt with 

spaced seeds rather than regular k-mers.  

There remains a huge opportunity for further research into seed design with our data structure. 

Our data structure allows for unrestricted multiple spaced seed design relative by size or weight of the 

seed used. We investigated many seed designs and found although seed design does matter (Supp. 

Fig S3) according to metrics like overlap complexity (46), yet we still have not yet scratched the 

surface in terms of optimal spaced seed design. Optimal seed sensitivity computation NP-hard (47), 

and although faster approximations exist (48), they are still quite slow and infeasible because our 

seed can be any length. Optimal design for sequence classification is a function of sequencing error 

rate, homology detection tolerance, sequence length, and mutation/error types. Finally, if optimized 

seed hashing is implemented, it has been shown that some multiple spaced seed designs are more 

computationally efficient than others which is also a consideration to be made in seed design (44). In 

the end, we found that even randomly generated spaced seeds tend to perform well compared to k-

mers (Supp. Fig S3) suggesting one can expect gains on sensitivity relative to k-mers without precise 

multiple spaced seed design. Thus, the seed used throughout the paper were randomly generated 

with a script provided as part of BBT after picking a weight and seed length that seems to work well 

for the use case. As seed design improves we expect the performance of our tool to improve. 

Conclusion 

The formulation featured here for FPR reduction/calculation should be widely applicable to any 

probabilistic data structures when classifying sequencing data. Despite the complexity of using a tool 

based on a probabilistic data structure and spaced seeds, we expect this data structure and tool to be 

a valuable addition existing classification tools due to the impressive computational performance of 

the miBF as well as gains to classification sensitivity at a scalable memory usage. We hope that our 

work will invigorate research into spaced seed design because the length and weight of the seeds no 

longer have an impact on memory usage. 

DATA AVAILABILITY 

A classification tool using our data structure is available as part of the BioBloom Tools GitHub 

repository (https://github.com/bcgsc/biobloom). Data structure implementation and library is available 

as part of our Bioinformatics Bloom Filter GitHub repository (https://github.com/bcgsc/btl_bloomfilter). 
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 TABLE AND FIGURES LEGENDS 

 

Figure 1. A multi-index Bloom Filter data structure visualization. A: Visualization of 3 tables used to 

represent the miBF and how they interact. B: Visualization of the true form of the data with an 

interleaved form of the bit vector. The interval for the rank array is much larger than shown here (4 vs 

512 bits) which reduces its overhead to 64/512 = 0.125 bits per position. Under our scheme, hash 

collisions are permissible and the chosen ID to be stored minimizes the number of removed seed 

values per sequence frame. 

 

Figure 2. An example set of stepwise insertions into the ID array of the miBF. When partial collision 

this means a value could not be inserted in the first try within a step and had its next value placed in 
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another location as a recovery insertion. We have highlighted the hash function value in different 

colours to help illustrate what value is being inserted at each step, but we note that there is no 

requirement for hash functions to be inserted in a pre-set order (random order is used in practice). 

 

Figure 3. An example set of insertions causing saturation of some of the key-value association in the 

miBF.  Sequences 1 and 2 can still be reliably be used for their key-value pairings, but sequences 3 

and 4 will return completely saturated IDs such that they cannot be trusted to return all possible 

associated IDs to that sequence if it is queried. 
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Figure 4. Read classification by BBT vs BWA-MEM alignment. 100bp simulated Illumina reads were 

simulated by pIRS (v1.1.1) with coverage depths ranging from 10X to 100X from 580 COSMIC (v77) 

genes and an equal number of non-COSMIC genes randomly selected from RefSeq. Read 

classification performance (right Y-axis) and run-time (green, left Y-axis) of BBT were compared 

against BWA-MEM The classified target of every read was compared against its true gene origin to 

calculate true (blue) and false positive rates (red). 

 

Figure 5. Per-gene comparison of classification performance by BBT vs BWA-MEM. F1 scores for 

both methods using the same simulation dataset described in Fig. 5 is calculated for each gene and 

plotted on the same horizontal line (red=BBT, blue=BWA-MEM).  The scale on the X-axis for BWA-

MEM on the right is reversed for easy visual comparison such that higher scores for both methods 

localize to the middle while lower scores are off-center. 
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Fig 6. Precision and sensitivity comparison of CLARK, CLARK-S, BBT and BBT with 

parameterizations to increase specificity. On the right, only the best hit of a classification is 

considered correct, even if multiple species classifications are returned. On the left, reads are 

consider corrected if it multimaps to a correct species, even if multiple species are reported for the 

same read. 
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Figure 7. A runtime comparison of CLARK, CLARK-S, BBT and BBT with parameterizations to 

increase specificity at 1 to 64 threads. The axes are log scale, and under the situation of perfect 

scaling, the trend should follow a linear slope. Only classification time was considered, which does not 

include time taken to load the database from disk. 
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