

1 Within-subject Consistency of Paired Associative Stimulation as 2 Assessed by Linear Mixed Models

3 Myrthe Julia Ottenhoff^{1,2}, Lana Fani^{1,2}, Nicole Stephanie Erler³, Jesminne
4 Castricum^{1,2,4}, Imara Fedora Obdam⁴, Thijs van der Vaart^{1,2,5}, Steven Aaron
5 Kushner^{2,4}, Marie-Claire Yvette de Wit^{2,5}, Ype Elgersma^{1,2*#}, Joke H.M. Tulen^{2,4*#}

6 ¹ Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The
7 Netherlands

8 ² ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University
9 Medical Center – Sophia Children’s Hospital, Rotterdam, The Netherlands

10 ³ Department of Biostatistics, Erasmus MC University Medical Center, Rotterdam, The
11 Netherlands

12 ⁴ Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The
13 Netherlands

14 ⁵ Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The
15 Netherlands

16 *** Correspondence:**

17 Prof. Ype Elgersma

18 y.elgersma@erasmusmc.nl

19 Dr. Joke Tulen

20 j.h.m.tulen@erasmusmc.nl

21 [#] these authors are shared senior authors.

22 **Keywords:** transcranial magnetic stimulation (TMS); paired associative stimulation
23 (PAS); reproducibility; intra-individual variability; linear mixed models; long-term
24 potentiation (LTP); spike-timing dependent plasticity (STDP).

25

26 Abstract

27 Paired associative stimulation (PAS) is a frequently used TMS paradigm that induces long-
28 term potentiation in the human cortex. However, little is known about the within-subject
29 consistency of PAS-induced effects. We determined PAS-induced effects and their
30 consistency in healthy volunteers between two PAS sessions. Additionally, we assessed the
31 benefit of applying linear mixed models (LMMs) to PAS data. Thirty-eight healthy volunteers
32 underwent two identical PAS sessions with a >1 week interval. During each session, motor
33 evoked potentials (MEPs) were assessed once before PAS induction and 3 times after at 30
34 min intervals. We did not detect any significant potentiation of MEP size after PAS induction.
35 However, MEP size during PAS induction showed significant potentiation over time in both
36 sessions ($LR(1)=13.36$, $p<0.001$). Nevertheless, there was poor within-subject consistency of
37 PAS-induced effects both during ($ICC=0.15$) and after induction ($ICC=0.04-0.09$).
38 Additionally, statistical model selection procedures demonstrate that a LMM with an
39 unstructured covariance matrix better estimated PAS-induced effects than one with a
40 conventional compound symmetry matrix ($LR(34)=214.73$, $p<0.001$). While our results are
41 supportive of a high intra-individual variability of PAS-induced effects, the generalizability of
42 our results is unclear, as we were only partially successful in replicating results from previous
43 PAS studies typically showing potentiation of MEPs during and after PAS induction. We do,
44 however, demonstrate that linear mixed models can improve the reliability of PAS-induced
45 effects estimation.

46

47 **1 Introduction**

48 Synaptic plasticity is a fundamental process in our central nervous system, as it is essential for
49 learning and memory (Caroni et al., 2012; Caroni et al., 2014). In addition, plasticity deficits
50 are important in the etiology of many neurocognitive disorders (Klyubin et al., 2014;
51 Srivastava and Schwartz, 2014). Synaptic plasticity is conventionally measured with invasive
52 intraparenchymal electrophysiological techniques, which cannot readily be performed in
53 human subjects. The development of transcranial magnetic stimulation (TMS) paradigms,
54 such as paired associative stimulation (PAS) (Stefan et al., 2000), has enabled measuring
55 plasticity-like effects in human subjects non-invasively, facilitating translation of findings
56 from animal models to humans.

57 PAS is typically applied by pairing median nerve stimulation (MNS) with magnetic
58 stimulation of the contralateral hand area of the primary motor cortex (M1). Consistent with
59 the fundamental properties of spike-timing dependent plasticity (STDP) [7], when MNS
60 precedes magnetic stimulations by 25ms, PAS stimulation induces a long-term increase in
61 excitability of the M1 hand area, observed as an increase of motor-evoked potentials (MEPs)
62 in the contralateral hand. In contrast, if the MNS precedes the magnetic stimulation by 10ms,
63 the result is a long-term depression effect (Wolters et al., 2003). The resemblance to STDP is
64 further strengthened by evidence that PAS-induced effects are dependent on the function of
65 the *N*-methyl-D-aspartate (NMDA) receptor, known to be essential for long-term synaptic
66 plasticity (Stefan et al., 2002).

67 Because of the similarity of PAS results to STDP experiments in rodents, PAS has emerged
68 as a potentially very useful proxy for studying long-term synaptic plasticity in human
69 subjects. However, PAS produces highly variable results between subjects (López-Alonso et
70 al., 2014; Lahr et al., 2016; Wischnewski and Schutter, 2016), which is often attributed to the
71 challenge of achieving similar levels of standardization as for animal experiments:
72 environmental factors, lifestyle, experimental conditions and even genetic determinants have
73 been suggested to influence the magnitude of the PAS-induced plasticity (Müller-Dahlhaus et
74 al., 2008; Ridding and Ziemann, 2010; Wischnewski and Schutter, 2016). However, such
75 factors only explain between-subject variability, whereas to our knowledge only one study
76 examined the within-subject consistency (Fratello et al., 2006). More knowledge on this
77 consistency is obviously important for studies that aim to follow human brain plasticity
78 longitudinally.

79 Besides inter- and intra-individual variability, PAS studies show variable effect sizes between
80 laboratories as well (Lahr et al., 2016; Wischnewski and Schutter, 2016). In addition to
81 optimizing experimental procedures, some types of variability might be possible to account
82 for by appropriate statistical modeling. PAS measurements generate relatively complex data,
83 combining both repeated measures as well as a hierarchical data structure (i.e. multiple MEP
84 size assessments per time point). In the last decades, linear mixed models (LMMs) have
85 emerged as a statistical method that is specifically suited to handle such a data structure,
86 reducing the chance of both false-positive and false-negative results (Aarts et al., 2014; Aarts
87 et al., 2015). Additionally, LMMs are excellent for estimating reproducibility measures in the
88 form of intra-class correlations. To date, however, LMMs remain to be sparingly applied to
89 TMS data (Cash et al., 2015; Pedapati et al., 2015) and PAS-TMS data in particular (Cash et
90 al., 2017).

91 In this study, we therefore assess the within-subject consistency of PAS-induced effects in
92 healthy volunteers using two identical PAS sessions with an interval of at least 1 week, using
93 LMMs.

94 **2 Materials and Methods**

95 **2.1 Subjects**

96 Thirty-eight out of 61 subjects were included in this study (reasons for exclusion are
97 summarized in Table S1), who were recruited by advertising in the local community and on a
98 Dutch research subject-recruitment website. Subjects were included if aged 18-40, right-
99 handed according to the Edinburgh Handedness Inventory (Oldfield, 1971), in good health,
100 medication free (excluding contraceptives) and able and willing to give written informed
101 consent. Subjects were excluded if they were women lactating or pregnant, had a history of
102 psychiatric illness and/or treatment, had a history of neurological illness or did not meet the
103 international safety guidelines considering TMS (Rossi et al., 2009; Rossi et al., 2011). All
104 subjects underwent the Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler, 1999)
105 to determine their intelligence quotient (IQ) (Axelrod, 2002) for descriptive purposes. This
106 study was approved by the Medical Ethical Review Board of the Erasmus MC Rotterdam,
107 requiring study procedures to comply with the latest version of the Declaration of Helsinki.

108 **2.2 Electromyography**

109 Muscle activity was recorded from the left abductor pollicis brevis (ABP) muscle with
110 electromyography (EMG), using Ag-AgCl electrodes in a belly-tendon montage. EMG
111 signals were amplified using a universal amplifier (ANT Neuro, Enschede, The Netherlands)
112 and digitalized at 5kHz for later offline analysis using Visor2 XT software (ANT Neuro,
113 Enschede, The Netherlands). During measurements, a continuous EMG signal and trigger
114 related EMG epochs were plotted at real time for online analysis, while applying a 50Hz
115 notch filter and a 20-2000Hz bandpass filter.

116 **2.3 Transcranial magnetic stimulation**

117 Subjects were invited in the afternoon between 12 and 5.30 PM (Sale et al., 2007), were asked
118 to not perform intense physical activities 24 hours prior to the measurement and to not smoke
119 nicotine cigarettes or drink coffee on the day of the measurement. They were seated in a
120 comfortable chair with their left arm resting on a pillow and were told to maximally relax
121 their left hand during the measurement. Magnetic stimulations were applied using a figure-of-
122 eight coil with an inner diameter of 27mm and outer diameter of 97mm, connected to a
123 MagPro X100 with MagOption TMS device (MagVenture, Farum, Denmark). The coil was
124 held tangentially to the left primary cortex and diverging 45° from midline. The electric field
125 subsequently created in the cortex had a posterior to anterior direction.

126 To find the optimal position of the coil in order to maximally activate the ABP (the hotspot),
127 TMS stimulations were randomly placed around a predefined reference point, defined as the
128 location at 10% of the ear-to-ear span lateral to Cz over the right hemisphere. Data on coil
129 location and position at every stimulation was collected using a neuronavigation system
130 (ANT Neuro, Enschede, The Netherlands), allowing a precise definition of the angle and
131 distance errors of every stimulation relative to the hotspot. All TMS procedures hereafter
132 described are performed at the hotspot.

133 The resting motor threshold (RMT) was determined using a maximum-likelihood threshold
134 hunting procedure (Awiszus, 2003). For this procedure, a MEP was defined as a signal with a
135 peak-to-peak amplitude of $\geq 50\mu\text{V}$. Subsequently, the stimulation intensity 1mV (SI1mV) was
136 determined, which was the stimulation intensity of all subsequent stimulations. The SI1mV
137 was defined as the percentage of maximal stimulation output (%MSO) of the TMS device that
138 resulted in a mean MEP of 0.8 - 1.2 mV. For this purpose, trains of 10 magnetic stimulations
139 at 0.1Hz at a chosen %MSO were performed until the criterion was met.

140 **2.4 Paired associative stimulation**

141 Subjects underwent two identical paired associative stimulation (PAS) sessions at >1 week
142 apart. Baseline cortical excitability was assessed by applying a train of 20 magnetic
143 stimulations at the SI1mV at 0.1Hz. Subsequently, PAS induction was performed by applying
144 200 paired stimulations of electric MNS preceding TMS by 25ms at 0.25Hz. After this
145 plasticity induction phase, the cortical excitability measurement at baseline was repeated at
146 three time points: immediately (Post 1), 30 minutes (Post 2), and 60 minutes (Post 3) (Figure
147 1A). MNS during the PAS-induction was applied at three times the sensory threshold using a
148 bipolar bar electrode connected to a constant current stimulator (Digitimer Ltd., Letchworth
149 Garden City, UK). If MNS surpassed the pain threshold, it was lowered to a painless but
150 clearly noticeable level. The subject's attention level was standardized by applying four
151 randomly timed electric stimuli during PAS induction to the middle phalanx of the left thumb,
152 and instructing participants upfront of PAS induction to focus their attention on their left
153 thumb and report this number after PAS induction (Stefan et al., 2004). These stimulations
154 were administered at two times the sensory threshold using a double ring electrode connected
155 to a constant current stimulator (Micromed S.p.A, Mogliano Veneto, Italy).

156 **2.5 Data analysis**

157 The EMG signal for every magnetic stimulation applied was stored for offline analysis as
158 epochs of -300ms to +300ms surrounding the TMS trigger. Using software programmed in
159 LabVIEW (National Instruments, Austin, TX, US) pre-MEP noise, the maximal peak-to-peak
160 amplitude and MEP onset were determined using a six-step data processing procedure:

- 161 1. Signals were linearly detrended.
- 162 2. The average amplitude value of the -300ms to -20ms before the TMS trigger was
163 subtracted to create a zero-baseline.
- 164 3. To prevent ringing after filtering, the stimulation artefact was removed between -2ms
165 to +4ms surrounding the TMS trigger, which was linearly interpolated. For PAS
166 induction signals, the stimulation artefact of the MNS was removed similarly.
- 167 4. Filtering using both a 20-2000Hz bandpass filter and a 50Hz-notch filter.
- 168 5. Pre-stimulus noise quantification on a -25ms to +15ms time window surrounding the
169 TMS trigger. After subtracting a 2nd-order polynomial fit, noise was defined as a
170 peak-to-peak amplitude of $> 50\mu\text{V}$ or an SD of > 15 . Signals meeting these criteria
171 were discarded for further statistical analysis.
- 172 6. MEP quantification, defined by the maximal peak-to-peak within a 20-48ms time
173 window following the TMS trigger.

174 **2.6 Statistical analysis**

175 Statistical analyses were performed using R version 3.3.3 (R Development Core Team, 2018),
176 supplemented with the nlme package (Pinheiro J, 2017). LMMs were used to estimate PAS-

177 induced changes of MEP size, their correlations with baseline MEP size, and intraclass
178 correlations (ICCs). For these LMMs, the dependent variable was MEP size, which was log2-
179 transformed to better fit the assumption of normally distributed residuals. In addition, these
180 LMMs were adjusted for log2-transformed angle and distance error.

181 We built Model 1 to estimate PAS-induced effects on MEP size *after induction* (Post 1, Post 2
182 and Post 3) within each session. This LMM included time point (categorical), session, and
183 their interaction. The random effects included subject specific random effects for each time
184 point in each session separately. An unstructured covariance matrix for the random effects
185 was used (Model 1a) and was tested against the more restrictive compound symmetry
186 structure (Model 1b).

187 Model 2 was built to estimate PAS-induced effects *during PAS induction*. This LMM
188 included stimulus number (continuous), session and their interaction. Stimulus number was
189 regarded as continuous time variable, as stimulations were equally spaced by 4 seconds in all
190 PAS experiments. The model included subject specific random effects for stimulus number
191 and session interaction and session. The eventual model was selected in three steps. First, we
192 started out with a model using both natural cubic splines for stimulus number with three
193 degrees of freedom and an unstructured covariance matrix (Model 2a). Second, to investigate
194 the correlation structure, we tested Model 2a against a model with a compound symmetry
195 structure (Model 2b). Last, to test whether the relation between MEP size and stimulus
196 number was non-linear, Model 2a was tested against a model with a linear fit (Model 2c).

197 As a measure of within-subject consistency we calculated ICCs from LMMs that included
198 session as an additional nesting level in the random effects. For the ICC of PAS-induced
199 effects after induction, fixed effects and subject specific random effects of time point
200 (categorical) were used (Model 3). For estimating the ICC of PAS-induced effects during
201 PAS-induction over time, fixed effects as well as subject specific slopes for stimulus number
202 (continuous time variable) were included (Model 4). Since the models used to calculate ICCs
203 contained random effects for the respective time variables, the variation partition method was
204 used (Goldstein et al., 2002). 95% confidence intervals (95%CIs) for each ICC were
205 estimated using 500 bootstrap samples.

206 Likelihood-ratio tests were used to compare model fits and main effects of fixed effects.
207 Descriptive statistics were performed using paired t-tests for normally distributed data,
208 Wilcoxon Signed Rank tests for non-normal continuous data, a Chi-square test for categorical
209 data or LMMs for data at the individual MEP level.

210

211 3 Results

212 3.1 Session characteristics

213 Thirty-eight individuals (22 women; median age 23, range 19-38; mean IQ 107 \pm 10SD)
214 underwent two PAS sessions, which were spaced at least 1 week apart (median days between
215 sessions was 14, IQR: 4). As displayed in Table 1, median starting time was significantly
216 earlier in session 1 than in session 2, whereas both sessions did not differ in terms of baseline
217 RMT, SI1mV, the level of attention during PAS induction or the angle and distance error
218 relative to the hotspot.

219 To compare baseline MEP-size between session, we used the estimated means from Model
220 1a, 0.54mV (95%CI [0.43, 0.68]) for session 1 and 0.61mV (95%CI [0.53, 0.71]) for session
221 2, which were not significantly different ($t(51650)=0.91$, $p=0.36$). These model estimates are
222 lower than expected, but it is important to note that the grand means are within the expected
223 range: 0.91mV (± 0.44 SD) for session 1 and 0.96mV (± 0.36 SD) for session 2.

224

225 **3.2 PAS-induced effects post induction**

226 We determined the PAS-induced effect on MEP size at each post-induction measurement in
227 each session. After filtering out MEPs with a noisy baseline, 5212 out of 6080 MEPs recorded
228 (divided over 75 sessions and 38 subjects) could be used for this analysis. We estimated PAS-
229 induced effects with a model with an unstructured covariance matrix that provided a superior
230 fit to a model with a compound symmetry matrix ($LR(34)=214.73$, $p<0.001$). MEP size
231 changed significantly over time ($LR(6)=16.23$; $p=0.013$), which was mainly driven by a
232 negative effect on MEP size in Post 3 in session 2 (Table 2), instead of a positive effect on
233 MEP size as is typically seen in PAS experiments. Additionally, individual trajectories of
234 MEP size after induction were highly variable (Figure 1B). PAS-induced effects did not differ
235 between sessions, as the interaction between time point and session was not significant
236 ($LR(3)=1.93$; $p=0.586$), which is also reflected by the similar time courses in Figure 1C.

237 The absence of significant PAS-induced potentiation is not consistent with most previous
238 PAS reports (Wischniewski and Schutter, 2016). We, therefore, performed a subset analysis of
239 sessions with a median baseline MEP size of ≥ 0.5 mV, as the observed low estimated baseline
240 means could mean that the stimulation intensity during PAS induction was too low to induce
241 robust potentiation. The ≥ 0.5 mV subset contained 49 PAS sessions divided over 31 subjects
242 (17 subjects retaining both sessions). Additionally, we explored a subset with <2 errors in the
243 attention task, which contained 34 sessions divided over 28 subjects (5 subjects retaining both
244 sessions), as subjects that had more errors could have poorer attention control leading to
245 lower PAS-induced effects (Stefan et al., 2004). Both subsets showed similar PAS-induced
246 effects compared to the full sample (Supplementary Figure S1 and Supplementary Table S2).

247 **3.3 Potentiation during PAS induction**

248 Next to the PAS-induced effects after induction, we determined the PAS-induced effect
249 during induction. For this analysis, 9360 out of 15200 recorded MEPs were available due to
250 filtering out MEPs with a noisy baseline, divided over 59 sessions within 34 subjects.
251 Viewing the individual trajectories of MEP size development again indicates that there was
252 high inter-individual variability (Figure 2C), which is reflected by the superior fit of the
253 model with an unstructured covariance matrix to one with a compound symmetry covariance
254 matrix ($LR(8)=525.31$, $p < 0.001$). The development of MEP size over time appeared to be
255 linear (Figure 2D), supported by the fact that a model with a cubic fit was not superior to one
256 with a linear fit ($LR(4)=2.69$, $p=0.612$).

257 Using the selected model with the unstructured covariance matrix and linear fit, we found that
258 the estimated mean of MEP size at the start of PAS induction in session 1 (0.43 mV, 95%CI
259 [0.27, 0.59]) did not differ from that in session 2 (0.44 mV, 95%CI [0.29, 0.66])
260 ($LR(2)=0.967$, $p=0.617$). There was a main effect of time ($LR(1)=13.36$, $p<0.001$), as a result
261 of a significant positive increase of MEP size over time in both session 1 (+132%, 95%CI

262 [+51%, +258%]) and session 2 (+79%, 95%CI [+19%, +169%]). However, there was no
263 evidence of this time effect being different between sessions ($LR(1)=0.87$, $p=0.35$), reflected
264 by the similar slope of the MEP size development in Figure 2D. There was a moderate
265 negative correlation between MEP size at the start of PAS induction and the change in MEP
266 size over time for session 1 ($r=-0.51$) and a weak negative correlation for session 2 ($r=-0.41$).

267 **3.4 Consistency of PAS-induced effects**

268 The within subject consistency of PAS-induced effects between the two sessions was poor:
269 $ICC_{POST1}=0.09$ (95%CI [0.01, 0.24]), $ICC_{POST2}=0.04$ (95%CI [<0.01, 0.17]) and
270 $ICC_{POST3}=0.04$ (95%CI [<0.01, 0.14]) (Fig 3). Furthermore, the PAS-induced effects during
271 induction showed a similarly poor within-subject consistency ($ICC=0.15$; 95%CI [0.05, 0.35])
272 (Fig 3), despite their significant potentiation at group level. The ICC of baseline MEP size
273 before induction was poor ($ICC=0.02$; 95%CI [<0.01, 0.07]), as well as at the start of PAS
274 induction ($ICC=0.24$; 95%CI [0.04, 0.42]). In contrast, the SI1mV did have a good within-
275 subject consistency ($ICC=0.88$; 95%CI [0.83, 0.96]), as did the RMT at different time points
276 ($ICC_{BASELINE}=0.85$, 95%CI [0.77, 0.92]; $ICC_{POST1}=0.83$, 95%CI [0.79, 0.90]; $ICC_{POST2}=0.85$,
277 95%CI = [0.79, 0.92]; $ICC_{POST3}=0.85$, 95%CI [0.78, 0.92]).

278

279 **4 Discussion**

280 We performed two identical PAS sessions in one group of healthy volunteers, resulting in
281 pronounced potentiation over time during PAS induction, which was not consistent within
282 subjects. PAS-effects after induction did not show the expected potentiation, and these effects
283 were not consistent within subjects either. Additionally, we demonstrated that a linear mixed
284 model with an unstructured covariance matrix provides the best model fit for our PAS data.

285 **4.1 PAS-induced effects during and after induction**

286 We found a significant increase of MEP size during PAS induction that shows striking
287 resemblance to the increase in excitatory post synaptic potentials seen in STDP experiments
288 in rodents (Froemke et al., 2010) and is consistent with previous human PAS studies (Dutra et
289 al., 2016; Cash et al., 2017). From the animal studies, we know that the potentiation during
290 plasticity induction correlates with the potentiation after induction. However, whether this
291 increase in MEP size is a true proxy for NMDA-dependent LTP remains to be confirmed by
292 sham-stimulation controlled studies and/or placebo-controlled NMDA-receptor antagonist
293 intervention studies. It is noteworthy, however, that in our study MEP size at the start of PAS
294 induction showed a negative correlation with PAS-induced effects during PAS induction.
295 Namely, MNS during paired stimulations has a known acute inhibitory effect on MEP size,
296 also known as short-latency afferent inhibition (Tokimura et al., 2000; Turco et al., 2018),
297 lower MEP size at the start of induction could indicate more successful paired stimulations
298 and, therefore, be related to a more prominent PAS-induced potentiation.

299 However, the significant potentiation during induction did not warrant significant potentiation
300 after induction, which is not in line with most PAS studies (for review see (Wischnewski and
301 Schutter, 2016)). This urged us to explore what factors could be responsible. First, our
302 baseline MEP size appeared lower than the baseline in most PAS studies. It is, however,
303 important to note that our grand means were within the expected range of MEP size and it is

304 therefore unclear how our study compares to most PAS studies. Namely, many PAS studies
305 solely report grand means without fully reporting whether both summarized and individual
306 data are normally distributed. Nevertheless, due to this uncertainty, we have to consider that
307 the low baselines observed here indicate that our stimulation intensity was possibly lower
308 compared to most PAS studies, as several studies show that there is a positive correlation
309 between this intensity and the PAS-induced effect (Meunier et al., 2012; Cash et al., 2017).
310 Second, subjects that made more errors during the attention control task, could have had a
311 negative effect on PAS-induced effects (Stefan et al., 2004). However, subsets of subjects
312 with either a high baseline or few errors in the attention task did not show more PAS-induced
313 potentiation, indicating that these factors are unlikely the cause of the absence of the
314 potentiation of MEP size in our study.

315 Additionally, it is debatable whether our MNS was optimally performed, as some studies find
316 a much stronger reduction of MEP size (Cash et al., 2015), while others suggest a reduction of
317 similar degree (Elahi et al., 2012; Cash et al., 2017). This could be related to our use of a
318 static 25ms MNS-TMS inter-stimulus interval opposed to adjusting this interval to the
319 individual N20 peak timing (Ziemann et al., 2004). Another factor that could have contributed
320 to the absence of PAS-induced potentiation is the known compromising effect of sleepiness
321 on MEP size (Manganotti et al., 2004). As PAS is a lengthy experiment and subjects were not
322 allowed to perform any type of physical activity or specific types of mental activity between
323 post-induction time points, it is plausible that subjects became increasingly sleepy, masking
324 potentiation effects. Unfortunately, although subjects were monitored to not fall asleep, we
325 cannot support this speculation with actual measures of sleepiness, as there were not assessed.

326 **4.2 Consistency of PAS-induced effects**

327 The low ICCs found in this study seem to suggest that PAS-induced effects have a high intra-
328 individual variability. One could, however, argue that the lack of significant post-induction
329 potentiation compromises the validity of the consistency levels in this study. We did,
330 however, show significant potentiation during induction, which showed similar low
331 consistency consistent with (Fratello et al., 2006). They found equally poor intra-individual
332 consistency of PAS-induced effects over two identical PAS sessions in a group of healthy
333 volunteers (n=18), despite significant potentiation of post-induction MEPs at group level in
334 each session. We, therefore, consider it not a given that the low ICCs are a consequence of the
335 absence of a significant post-induction potentiation of MEP size.

336 Additionally, one could question whether our reported consistency would have been higher if
337 we had eliminated MEPs classified as statistical outliers. As we took effort to eliminate MEPs
338 based on confounding experimental conditions in the first place (pre-stimulus noise) and
339 corrected for coil position errors, we regarded statistical outliers that remained in the dataset
340 to be likely valid MEP measurements. Consequently, we view that retaining statistical outliers
341 in our data set is important to reliably report ICCs.

342 **4.3 Linear mixed models for PAS data**

343 Our results provide insight in the potential advantage of LMMs for analyzing PAS data over
344 conventional analysis methods. Most importantly, we show that using an unstructured
345 covariance matrix provides a better model fit to our data than a compound symmetry matrix,
346 for both estimating the PAS-induction effects during and after induction. This does not justify
347 generalization of these findings for PAS data in general, but it does demonstrate that the

348 estimation of PAS-effects benefits from the flexibility of the LMM in designing the
349 covariance matrix. It is reasonable to suspect that PAS data with a complex multi-level and
350 longitudinal structure inherits particular correlations between time points. Therefore, instead
351 of ignoring the possibility of these correlations by using an analysis method that is restricted
352 to the use of only the compound symmetry matrix (e.g. the RM-ANOVA), consistent
353 implementation of LMMs for analyzing PAS data could improve reliability of results reported
354 in PAS studies.

355 Another advantage of LMMs is that it does not require to summarize data per individual and
356 time point (e.g. by averaging), but instead accounts for this data nesting by specifying random
357 intercepts per nest. Data aggregation is problematic as it implies loss of information and, thus,
358 statistical power. Additionally, if an incorrect data aggregation method is used, such as
359 averaging while some data nests are left-skewed, PAS-induced effects could be
360 overestimated.

361 **4.4 Conclusion**

362 While our results are supportive of a high intra-individual variability of PAS-induced effects,
363 the generalizability of our results is unclear, as we were only partially successful in
364 replicating results from previous PAS studies: we replicated the potentiation during the course
365 of PAS induction, though this did not ensure significant potentiation after induction.
366 Therefore, we cannot conclude to what extent PAS is a suitable outcome of human brain
367 plasticity in longitudinal studies. It is worth emphasizing that our results demonstrate the
368 benefit of linear mixed models for PAS data, as these models can reliably estimate PAS-
369 induced effects despite the complex data structure and the various correlations between time
370 points possible.

371

372 **Acknowledgements**

373 We thank Dr. D. Rizopoulos for his helpful statistical advice, Dr. H.J. Boele for helping with
374 developing the signal analysis software, Dr. H.G. van Steenis for technical support, and T.
375 van Essen and D. Mani for their help preparing the data for signal analysis. This manuscript
376 has been released as a Pre-Print at BioRxiv (Ottenhoff et al., 2018).

377 **Author Contributions**

378 MO, LF, TV, SK, MW, YE and JT designed the study. MO, LF, IO and JC collected the data.
379 MO and NE designed and performed the statistical analyses. MO drafted the manuscript. All
380 authors interpreted the results, critically revised the manuscript for important intellectual
381 content, and approved the final version of the manuscript.

382 **Data Availability Statement**

383 The full dataset and linear mixed model syntax are available as Supplementary Data S1 (data
384 set) and Supplementary Data S2 (syntax).

385 **Conflict of Interest Statement**

386 None of the authors report a conflict of interest.

387 **References**

388 Aarts, E., Dolan, C.V., Verhage, M., and van der Sluis, S. (2015). Multilevel analysis
389 quantifies variation in the experimental effect while optimizing power and preventing
390 false positives. *BMC Neurosci* 16(1), 94-94. doi: 10.1186/s12868-015-0228-5.

391 Aarts, E., Verhage, M., Veenvliet, J.V., Dolan, C.V., and van der Sluis, S. (2014). A solution
392 to dependency: using multilevel analysis to accommodate nested data. *Nature
393 neuroscience* 17(4), 491-496. doi: 10.1038/nn.3648.

394 Awiszus, F. (2003). TMS and threshold hunting. *Suppl Clin Neurophysiol* 56, 13-23.

395 Axelrod, B.N. (2002). Validity of the Wechsler abbreviated scale of intelligence and other
396 very short forms of estimating intellectual functioning. *Assessment* 9(1), 17-23. doi:
397 10.1177/1073191102009001003.

398 Caroni, P., Chowdhury, A., and Lahr, M. (2014). Synapse rearrangements upon learning:
399 from divergent-sparse connectivity to dedicated sub-circuits. *Trends Neurosci* 37(10),
400 604-614. doi: 10.1016/j.tins.2014.08.011.

401 Caroni, P., Donato, F., and Muller, D. (2012). Structural plasticity upon learning: regulation
402 and functions. *Nat Rev Neurosci* 13(7), 478-490. doi: 10.1038/nrn3258.

403 Cash, R.F., Isayama, R., Gunraj, C.A., Ni, Z., and Chen, R. (2015). The influence of sensory
404 afferent input on local motor cortical excitatory circuitry in humans. *J Physiol* 593(7),
405 1667-1684. doi: 10.1113/jphysiol.2014.286245.

406 Cash, R.F.H., Jegatheeswaran, G., Ni, Z., and Chen, R. (2017). Modulation of the Direction
407 and Magnitude of Hebbian Plasticity in Human Motor Cortex by Stimulus Intensity
408 and Concurrent Inhibition. *Brain Stimul* 10(1), 83-90. doi: 10.1016/j.brs.2016.08.007.

409 Dutra, T.G., Baltar, A., and Monte-Silva, K.K. (2016). Motor cortex excitability in attention-
410 deficit hyperactivity disorder (ADHD): A systematic review and meta-analysis.
411 *Research in Developmental Disabilities* 56, 1-9. doi: 10.1016/j.ridd.2016.01.022.

412 Elahi, B., Gunraj, C., and Chen, R. (2012). Short-interval intracortical inhibition blocks long-
413 term potentiation induced by paired associative stimulation. *J Neurophysiol* 107(7),
414 1935-1941. doi: 10.1152/jn.00202.2011.

415 Fratello, F., Veniero, D., Curcio, G., Ferrara, M., Marzano, C., Moroni, F., et al. (2006).
416 Modulation of corticospinal excitability by paired associative stimulation:
417 reproducibility of effects and intraindividual reliability. *Clinical neurophysiology :
418 official journal of the International Federation of Clinical Neurophysiology* 117(12),
419 2667-2674. doi: 10.1016/j.clinph.2006.07.315.

420 Froemke, R.C., Debanne, D., and Bi, G.-Q. (2010). Temporal modulation of spike-timing-
421 dependent plasticity. *Frontiers in synaptic neuroscience* 2(June), 19-19. doi:
422 10.3389/fnsyn.2010.00019.

423 Goldstein, H., Browne, W., and Rasbash, J. (2002). Partitioning Variation in Multilevel
424 Models. *Understanding Statistics* 1(4), 223-231. doi: 10.1207/S15328031US0104_02.

425 Klyubin, I., Ondrejcak, T., Hayes, J., Cullen, W.K., Mably, A.J., Walsh, D.M., et al. (2014).
426 Neurotransmitter receptor and time dependence of the synaptic plasticity disrupting
427 actions of Alzheimer's disease Abeta in vivo. *Philos Trans R Soc Lond B Biol Sci*
428 369(1633), 20130147. doi: 10.1098/rstb.2013.0147.

429 Lahr, J., Passmann, S., List, J., Vach, W., Floel, A., and Kloppel, S. (2016). Effects of
430 Different Analysis Strategies on Paired Associative Stimulation. A Pooled Data
431 Analysis from Three Research Labs. *PLoS One* 11(5), e0154880. doi:
432 10.1371/journal.pone.0154880.

433 López-Alonso, V., Cheeran, B., Río-Rodríguez, D., and Fernández-Del-Olmo, M. (2014).
434 Inter-individual variability in response to non-invasive brain stimulation paradigms.
435 *Brain Stimulation* 7(3), 372-380. doi: 10.1016/j.brs.2014.02.004.

436 Manganotti, P., Fuggetta, G., and Fiaschi, A. (2004). Changes of motor cortical excitability in
437 human subjects from wakefulness to early stages of sleep: A combined transcranial
438 magnetic stimulation and electroencephalographic study. *Neuroscience Letters* 362(1),
439 31-34. doi: 10.1016/j.neulet.2004.01.081.

440 Meunier, S., Russmann, H., Shamim, E., Lamy, J.C., and Hallett, M. (2012). Plasticity of
441 cortical inhibition in dystonia is impaired after motor learning and paired-associative
442 stimulation. *Eur J Neurosci* 35(6), 975-986. doi: 10.1111/j.1460-9568.2012.08034.x.

443 Müller-Dahlhaus, J.F.M., Orekhov, Y., Liu, Y., and Ziemann, U. (2008). Interindividual
444 variability and age-dependency of motor cortical plasticity induced by paired
445 associative stimulation. *Experimental brain research. Experimentelle Hirnforschung.*
446 *Expérimentation cérébrale* 187(3), 467-475. doi: 10.1007/s00221-008-1319-7.

447 Oldfield, R.C. (1971). The assessment and analysis of handedness: the Edinburgh inventory.
448 *Neuropsychologia* 9(1), 97-113.

449 Ottenhoff, M.J., Fani, L., Erler, N.S., Castricum, J., Obdam, I.F., van der Vaart, T., et al.
450 (2018). Within-subject consistency of paired associative stimulation as assessed by
451 linear mixed models. *bioRxiv*, 434431. doi: 10.1101/434431.

452 Pedapati, E.V., Gilbert, D.L., Horn, P.S., Huddleston, D.a., Laue, C.S., Shahana, N., et al.
453 (2015). Effect of 30 Hz theta burst transcranial magnetic stimulation on the primary
454 motor cortex in children and adolescents. *Frontiers in Human Neuroscience*
455 9(February), 1-8. doi: 10.3389/fnhum.2015.00091.

456 Pinheiro J, B.D., DebRoy S, Sarkar D and R Core Team (2017). "nlme: Linear and Nonlinear
457 Mixed Effects Models").

458 R Development Core Team (2018). (Vienna, Austria: R Foundation for Statistical
459 Computing).

460 Ridding, M.C., and Ziemann, U. (2010). Determinants of the induction of cortical plasticity
461 by non-invasive brain stimulation in healthy subjects. *The Journal of physiology*
462 588(Pt 13), 2291-2304. doi: 10.1113/jphysiol.2010.190314.

463 Rossi, S., Hallett, M., Rossini, P.M., and Pascual-Leone, A. (2011). Screening questionnaire
464 before TMS: an update. *Clin Neurophysiol* 122(8), 1686. doi:
465 10.1016/j.clinph.2010.12.037.

466 Rossi, S., Hallett, M., Rossini, P.M., Pascual-Leone, A., and Safety of, T.M.S.C.G. (2009).
467 Safety, ethical considerations, and application guidelines for the use of transcranial
468 magnetic stimulation in clinical practice and research. *Clin Neurophysiol* 120(12),
469 2008-2039. doi: 10.1016/j.clinph.2009.08.016.

470 Sale, M.V., Ridding, M.C., and Nordstrom, M.A. (2007). Factors influencing the magnitude
471 and reproducibility of corticomotor excitability changes induced by paired associative
472 stimulation. *Exp Brain Res* 181(4), 615-626. doi: 10.1007/s00221-007-0960-x.

473 Srivastava, A.K., and Schwartz, C.E. (2014). Intellectual disability and autism spectrum
474 disorders: causal genes and molecular mechanisms. *Neurosci Biobehav Rev* 46 Pt 2,
475 161-174. doi: 10.1016/j.neubiorev.2014.02.015.

476 Stefan, K., Kunesch, E., Benecke, R., Cohen, L.G., and Classen, J. (2002). Mechanisms of
477 enhancement of human motor cortex excitability induced by interventional paired
478 associative stimulation. *J Physiol* 543(Pt 2), 699-708.

479 Stefan, K., Kunesch, E., Cohen, L.G., Benecke, R., and Classen, J. (2000). Induction of
480 plasticity in the human motor cortex by paired associative stimulation. *Brain* 123 Pt 3,
481 572-584.

482 Stefan, K., Wycislo, M., and Classen, J. (2004). Modulation of associative human motor
483 cortical plasticity by attention. *Journal of neurophysiology* 92(1), 66-72. doi:
484 10.1152/jn.00383.2003.

485 Tokimura, H., Di Lazzaro, V., Tokimura, Y., Oliviero, A., Profice, P., Insola, A., et al.
486 (2000). Short latency inhibition of human hand motor cortex by somatosensory input
487 from the hand. *J Physiol* 523 Pt 2, 503-513.

488 Turco, C.V., El-Sayes, J., Savoie, M.J., Fassett, H.J., Locke, M.B., and Nelson, A.J. (2018).
489 Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors.
490 *Brain Stimul* 11(1), 59-74. doi: 10.1016/j.brs.2017.09.009.

491 Wechsler, D. (1999). "Wechsler Abbreviated Scale of Intelligence". (San Antonio, TX:
492 Psychological Corporation).

493 Wischniewski, M., and Schutter, D.J.L.G. (2016). Efficacy and time course of paired
494 associative stimulation in cortical plasticity: Implications for neuropsychiatry. *Clinical
495 Neurophysiology* 127(1), 732-739. doi: 10.1016/j.clinph.2015.04.072.

496 Wolters, A., Sandbrink, F., Schlottmann, A., Kunesch, E., Stefan, K., Cohen, L.G., et al.
497 (2003). A temporally asymmetric Hebbian rule governing plasticity in the human
498 motor cortex. *J Neurophysiol* 89(5), 2339-2345. doi: 10.1152/jn.00900.2002.

499 Ziemann, U., Ilic, T.V., Pauli, C., Meintzschel, F., and Ruge, D. (2004). Learning modifies
500 subsequent induction of long-term potentiation-like and long-term depression-like
501 plasticity in human motor cortex. *J Neurosci* 24(7), 1666-1672. doi:
502 10.1523/JNEUROSCI.5016-03.2004.

503

504 **Figure Legends**

505

506 **Figure 1. PAS-induced effects per session.**

507 Subjects underwent two identical PAS sessions spaced >1 week apart. (A) Schematic of one
508 PAS session, in which the PAS induction is preceded by a baseline measurement consisting of
509 20 TMS stimulations, followed by a PAS induction phase consisting of 200 MNS-TMS
510 paired stimulations, and 3 repeats of the baseline measurement at 30 min intervals. (B) The
511 change in MEP size per session, where red line plots are individual medians of MEP size per
512 time point in session 1 and blue line plots are those of session 2. The black line plots are
513 means of individual median MEP size. (C) The change in MEP size over time for both
514 sessions plotted together, where the connected dots represent means of individual medians
515 and bars represent their standard error. Medians and means of individual medians were
516 chosen as the best representative summary measure in B and C, as MEP size was not
517 normally distributed in every data nest. (D) Linear regression lines through all MEPs during
518 PAS induction per session (black lines) plotted over the linear regression lines through MEPs
519 per individual (colored lines: red lines belong to session 1 and blue lines to session 2). (E)
520 The change of MEP size over time during the PAS induction, with every dot representing the
521 mean MEP size over all participants for that stimulation number. Lines are fitted linear
522 regression lines per session. Note that in D and E the y-axis is log2-spaced.

523

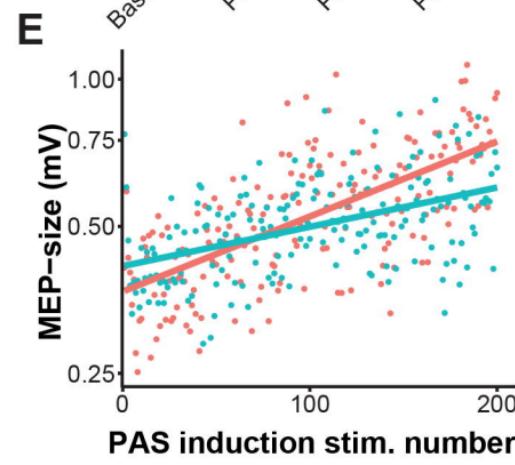
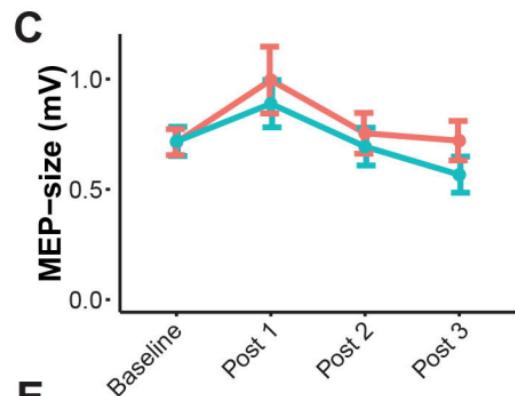
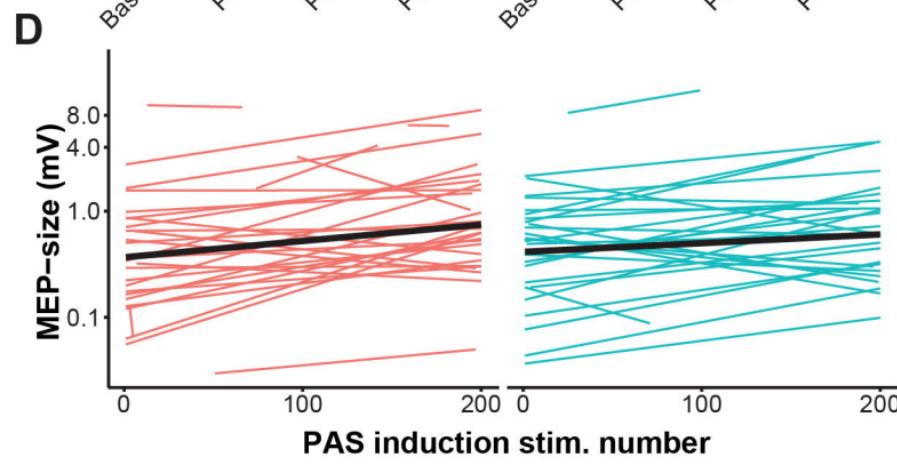
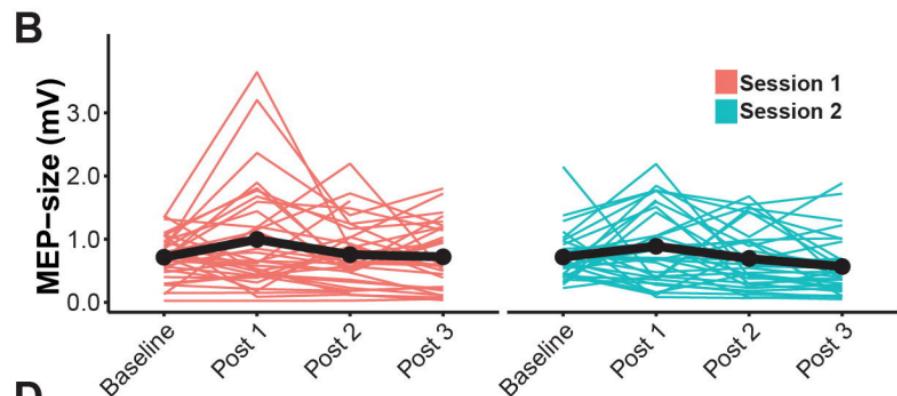
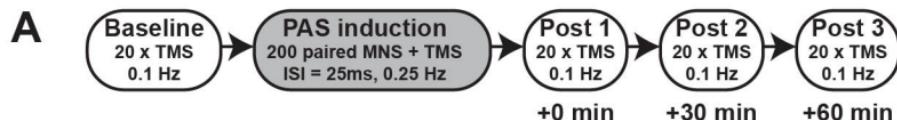
524 **Figure 2. Intra-individual correlation of PAS-induced effects.**

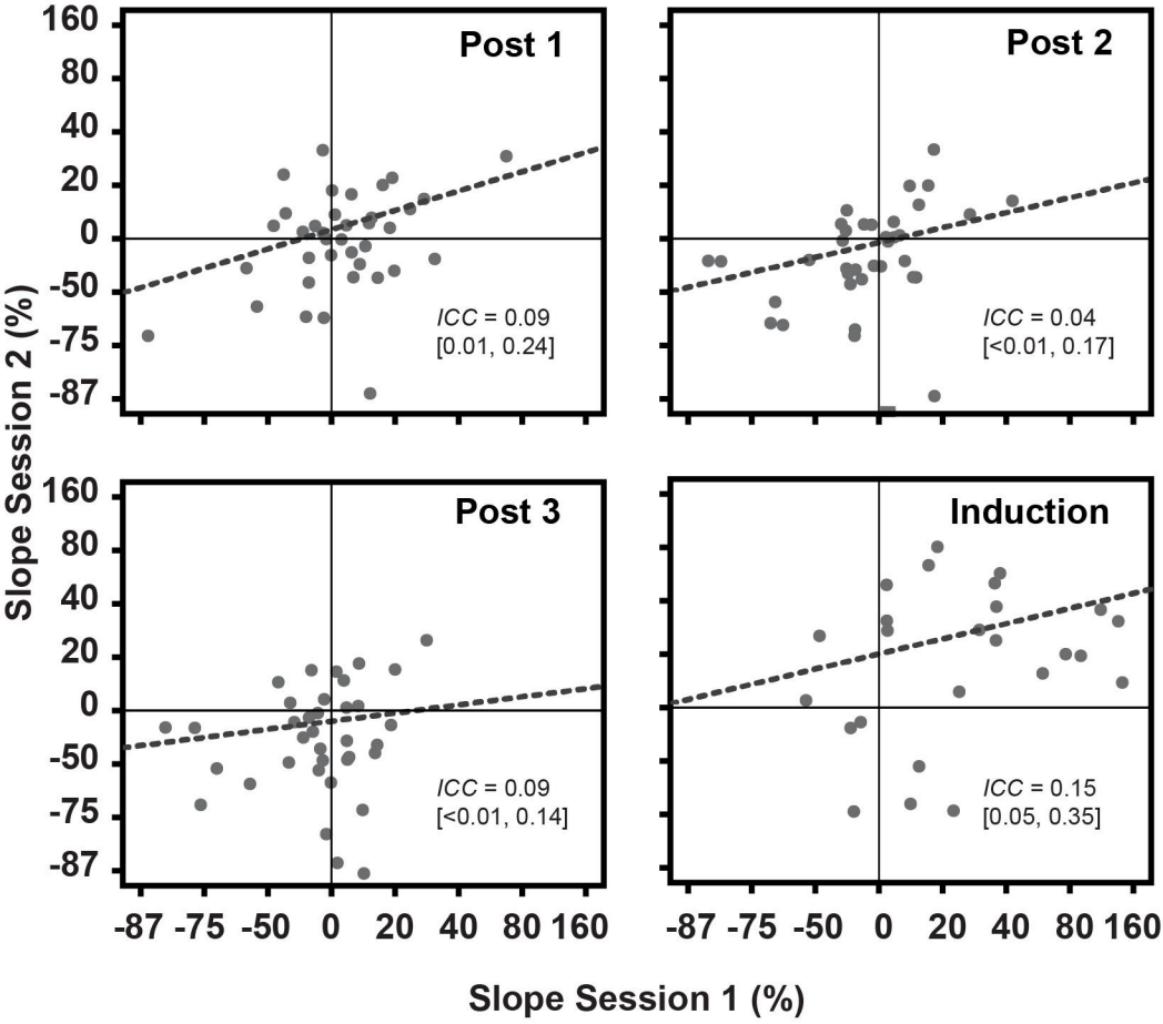
525 Scatterplots of individual PAS-induced effects (grey dots) per measurement time point (Post
526 1-3 and Induction) of session 1 against those of session 2. These individual PAS-induced
527 effects are the individual random slopes calculated by the models that were used to calculate
528 the ICCs of PAS-induced effects reported in the Results section. Dashed lines represent the
529 best linear fit. Note that the axes are log2-spaced.

530 **Tables**

Table 1. Session characteristics and comparisons.

Characteristic	Session 1	Session 2	Statistic	P-value
RMT at baseline, mean (\pm SD), %MSO	48.5 (\pm 10.3)	48.3 (\pm 9.1)	t(37) = 0.17	0.87
SI1mV, %MSO	61.4 (\pm 14.4)	60.1 (\pm 14.7)	t(37) = 1.10	0.28
Start time, median (IQR), hh:mm	12:44 (12:28-13:08)	15:23 (15:00-15:41)	Z = 719	<0.0001
MNS stimulation				
Intensity, median (IQR), mA	1.27 (0.99-1.73)	1.41 (1.15-1.70)	t(37) = 1.23 ^a	0.23
Intensity, median (range), % of ST	300 (209-300)	300 (219-300)	U = 221	0.82
Intensity lowered, n (%)	9 (24)	8 (21)	X ² (1) = 0.08	0.78
Attention - number of errors, median (IQR)	3 (0-9)	1 (0-4)	U = 795	0.09
Angle error, estimated mean [95%CI] ^c , degrees			LR(5) = 5.26 ^b	0.39
Baseline	2.69 [1.75, 4.16]	1.67 [1.11, 2.51]		
Induction	2.95 [1.99, 4.35]	2.11 [1.47, 3.01]		
Post1	2.07 [1.39, 3.08]	1.86 [1.12, 3.08]		
Post2	2.23 [1.41, 3.54]	1.29 [0.89, 1.87]		
Post3	1.83 [1.15, 2.91]	1.09 [0.81, 1.46]		
Distance error, estimated mean [95%CI] ^c , mm			LR(5) = 3.85 ^b	0.57
Baseline	1.01 [0.84, 1.23]	0.87 [0.68, 1.12]		
Induction	1.11 [0.95, 1.29]	0.91 [0.79, 1.04]		
Post1	1.10 [0.97, 1.26]	0.91 [0.79, 1.06]		
Post2	1.20 [0.96, 1.50]	1.30 [1.02, 1.65]		
Post3	1.31 [1.02, 1.68]	1.34 [1.03, 1.74]		






^a Paired t-test performed on square root transformed variable.


^b Main effect of session estimated by comparing LMMs using a likelihood-ratio test

^c Estimated using a LMM with the log2 transformed error as dependent variable and time point, session and their interaction as fixed effects.

Table 2. Fixed effects of PAS induction on MEP size per post-induction time point and session estimated by linear mixed effect modelling.

Variable	Session 1				Session 2			
	B, %	95%CI, %	t (5165)	P-value	B, %	95%CI, %	t (5165)	P-value
All sessions								
Post 1	+16.83	[-9.05, 50.07]	1.22	0.22	-3.99	[-26.58, 25.55]	-0.30	0.77
Post 2	-10.00	[-30.92, 17.24]	-0.78	0.43	-23.92	[-42.44, 0.55]	-1.92	0.05
Post 3	-14.84	[-35.65, 12.69]	-1.12	0.26	-31.65	[-47.92, -10.30]	-2.74	0.006

