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Abstract 
We sequenced the Yoruban NA19240 genome on the long read sequencing platform Oxford 

Nanopore PromethION for benchmarking and evaluation of recently published aligners and 

structural variant calling tools. In this work, we determined the precision and recall, present high 

confidence and high sensitivity call sets of variants and discuss optimal parameters. The aligner 

Minimap2 and structural variant caller Sniffles are both the most accurate and the most 

computationally efficient tools in our study. We describe our scalable workflow for identification, 

annotation, and characterization of tens of thousands of structural variants from long read 

genome sequencing of an individual or population. By discussing the results of this genome we 

provide an approximation of what can be expected in future long read sequencing studies 

aiming for structural variant identification.  
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Introduction 

Structural variants (SVs) are defined as regions of DNA larger than 50 bp showing a change in 
copy number or location in the genome, including copy number variants (CNVs, deletions and 
duplications), insertions, inversions, translocations, mobile element insertions, expansion of 

repetitive sequences and complex combinations of the aforementioned (Escaramís et al. 2015; 

Sudmant et al. 2015). SVs account for a higher number of variable nucleotides between human 
genomes, even though single nucleotide variants (SNVs) are far more numerous (Conrad et al. 
2010). However, the majority of SVs are poorly assayed using currently dominant short read 
sequencing technologies but can be detected using long read sequencing technologies from 
Pacific Biosciences and Oxford Nanopore Technologies (ONT) (Chaisson et al. 2015, 2018). 
Long read sequencing technologies have a lower raw accuracy of approximately 85% but have 
the advantage of a better mappability in repetitive regions, further extending the part of the 
genome in which variation can be called reliably (Li and Freudenberg 2014). 

Sequencing DNA fragments using a protein nanopore is a relatively old concept, which got 
commercialized by ONT with the release of the MinION sequencer five years ago (Deamer et al. 
2016). A MinION flow cell has 512 sensors collecting measurements from 2048 pores. This 
device's minimal initial investment, long reads and rapid results has enabled many applications 
for smaller genomes (Loman et al. 2015; Quick et al. 2015; Jansen et al. 2017; Bainomugisa et 
al. 2018; Miller et al. 2018). Recent runs routinely reach 8 Gbase and currently up to 30 Gbase, 
with a big in-field variability and incremental improvements over the years (Schalamun et al. 
2018). Applications for human genomics could only be achieved by combining multiple flow cells, 
which is cumbersome and costly. Early adopters investigated structural variants in two  
genomes from patients with a congenital disorder due to chromothripsis by combining data from 
135 flow cells (Cretu Stancu et al. 2017), and a consortium of MinION users sequenced and 
released data from the human reference sample NA12878 generated on 39 flow cells reaching 
91.2 Gbase or ~30x coverage (Jain et al. 2018).  

Routine human genome sequencing applications have become possible on the recently 
commercially available PromethION sequencer. A PromethION flow cell has 3000 sensors and 
12000 pores, which generates on average 70 Gbase of data in our hands (De Roeck et al. 
2018), allowing for the sequencing of a 20x covered human genome per flow cell. At the 
moment up to 24 flow cells can be run simultaneously on the machine, with a future upgrade to 
48 planned. Here, we present the characteristics of such PromethION runs, and a bioinformatic 
workflow for identification and characterization of structural variants. Finally, we provide a 
detailed description of the Yoruba NA19240 reference sample compared with publicly available 
variant data and discuss implications for future structural variant detection projects from long 
read sequencing. 

Results 

Human genome sequencing on PromethION 

We generated a 59x median genome coverage of NA19240 on PromethION by combining data 

from five flow cells, which we compared with MinION data from the same sample. The run 

metrics and ENA accession IDs are summarized in Table 1 and Supplementary Figure S2. The 

longest read we obtained was 177 kb on PromethION and 219 kb on MinION. Overall, our 
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results are suggestive of an inverse relationship between yield and read lengths, as higher 

yields were obtained for libraries which included shearing to 20 kb fragments.  

Table 1: library characteristics and accession ids 

Library 
identifier 

Yield 
[Gbase] 

Number of reads 
[millions] 

Median read 
length [kb] 

N50 
[kb] 

ENA 
accession id 

P1-N 48.3 3.5 12.4 20.0 ERR2631600 

P2-S 58.4 4.9 11.9 14.1 ERR2631601 

P3-N 22.2 1.4 13.7 29.1 ERR2631602 

P4-N 19.6 1.2 13.8 28.4 ERR2631603 

P5-S 59.1 6.2 9.8 11.8 ERR2631604 

M1-N 4.7 0.4 11.6 19.6 ERR2683660 

M2-N 7.7 0.3 20.4 32.8 ERR2683661 

N: non-sheared/native; S: sheared before library preparation 

Comparing MinION and PromethION 

The obtained read lengths were similar between matched library preps sequenced on MinION 

and PromethION (respectively P1-N and M1-N, P3-N and M2-N) (Figure 1 A, B). We observed a 

higher average quality score and corresponding percent identity after alignment to the human 

reference genome GRCh38 for the MinION data (p<0.0001, Mann-Whitney U test) (Figure 1 C, 

D). 
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Figure 1: Comparison of PromethION and MinION libraries. 
A: read lengths; B: log-transformed read lengths; C: per read average base call quality scores; D: 
percent identity after alignment to the reference genome 
P: PromethION; M: MinION; N: non-sheared/native; S: sheared before library preparation 

Plots were made using NanoPack (De Coster et al. 2018). 

Comparing aligners 

The characteristics of the alignments using ngmlr (Sedlazeck et al. 2018), LAST (Kiełbasa et al. 

2011) and two parameter settings of minimap2 (H. Li 2018) are shown in Table 2 and Figure 2 

and S3. LAST generates many split alignments leading to more, shorter aligned reads. ngmlr 

favors aligning short exact fragments for a subset of the reads (Figure 2). Percent identity 

comparisons are roughly equivalent, with a slightly lower median for LAST. Minimap2 is the 
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fastest and LAST by far the slowest of the three aligners. Median alignment coverage is 

approximately equal, with the highest coverage by ngmlr and the lowest by LAST. 90% of the 

genome is covered at 40x (Figure S3). 

Table 2: metrics of aligners 

Aligner Gigabases 
aligned 

Median length Median 
coverage 

Runtime*  
[seconds] 

ngmlr 178.3 11573 59 306 

LAST 169.2 1240 56 4470 

minimap2 187.1 11165 58 46 

minimap2-last-like 179.5 7506 57 59 

* Average of three measurements on 10 000 reads, aligned using 12 threads. 

A 

 

B 

 

Figure 2: Comparison of aligners 
A: log-transformed aligned read lengths; B: read percent identity compared to the reference genome. 

Plots were made using NanoPack (De Coster et al. 2018). 

Structural variant calling 

Structural variants were called using Sniffles (Sedlazeck et al. 2018) and NanoSV (Cretu Stancu 

et al. 2017), and inversions additionally with npInv (Shao et al. 2018). The number of variants 

identified and the runtime per dataset are summarized in Table 3. A detailed overview of the 

number of variants split by variant type can be found in Supplementary Table 2. The truth set of 

SVs from NA19240 contains 29436 variants, of which 10607 deletions, 16337 insertions and 

2503 variants of other types, such as repeat expansions. NanoSV consistently identifies more 
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variants, with a strikingly high number after LAST alignment. LAST alignment turned out to be 

incompatible with calling variants using Sniffles and npInv. 

Sniffles is by far the fastest of the evaluated SV callers. In contrast, we stopped NanoSV after 

one month when using the full dataset, which also required > 100 Gbytes of RAM per sample, 

presumably since it is not yet adapted to this volume of data. To circumvent this issue in our 

workflow alignments are split by chromosomes and processed in parallel.  

Table 3: metrics of SV callers 

Aligner SV caller Number of variants Relative run time* 

minimap2 

Sniffles 28305 1.18 

NanoSV 64761 94.07 

npInv 167 2.04 

minimap2-last-like 

Sniffles 15821 1 

NanoSV 38182 80.36 

npInv 419 2.71 

ngmlr 

Sniffles 29159 1.02 

NanoSV 47431 60.25 

npInv 461 2.27 

LAST NanoSV 123729 257.98 

*Relatively to the fastest, tested using 12 threads, on a subset of the data using an average 
of three measurements 

Precision-recall and combined SV sets 

We evaluated the precision and recall of identified SVs for combinations of the described 

aligners and SV callers (Figure 3A and Supplementary Table 3). All combinations perform 

approximately in the same range, with the exception of Sniffles after minimap2 alignment with 

last-like parameters and NanoSV after LAST alignment, which respectively showed a mediocre 

recall and precision. Of note, Sniffles performed at a higher precision with similar accuracy after 

minimap2 alignment compared with ngmlr alignment. For this reason, further parameter 

evaluations will be performed using the combination of Sniffles after minimap2 alignment. For 

the ngmlr alignment NanoSV performed better than Sniffles. There is also a considerable 

number of SV calls overlapping between Sniffles and NanoSV after alignment using minimap2, 

which are not part of the truth set (Supplementary Figure S4). A similar analysis using manta 

(Chen et al. 2016) and lumpy (Layer et al. 2014) after bwa mem alignment (H. Li 2013) of 

Illumina reads was performed. Manta performed the best, with a precision of 55% and recall of 

28% with 15122 identified SVs, while lumpy only reached 18% precision and 4% recall with 

6100 identified SVs. 
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Figure 3: Precision-recall comparison 

A: Precision and recall of individual callsets; B: including combined call sets 
Aligners are tagged with symbols, variant callers and combined sets are tagged with colors. 

We separately evaluated inversions called by Sniffles, NanoSV and the specifically tailored tool 

npInv. As breakpoints of inversions are typically associated with long repetitive sequences, 

leading to inaccurate alignments, we allowed a larger distance between pairs of breakpoints up 

to 5kb to be considered concordant. The accuracy is generally poor and the best results were 

obtained using npInv, with precision between 17.8% and 33.8% and recall between 19.9% and 

25.4% (Supplementary Table 3). 

High-confidence and high sensitivity variant sets based on respectively the intersection and 

union of Sniffles and NanoSV were generated for the aligners used in this comparison. Their 

precision and recall compared with the truth set are shown in Figure 3B. No combined call sets 

were made for LAST alignment since no variants can be called using Sniffles. Alignments 

performed with minimap2 consistently outperform those with ngmlr in both sensitivity and 

confidence. A remarkable outlier was again alignment with last-like parameters for minimap2, 

which showed a high precision but low recall.  

We also evaluated the accuracy of the zygosity determination of Sniffles and NanoSV after 

minimap2 alignment (Table 4), showing that these are often inaccurate. For NanoSV these 

results did not change notably when limiting to those SVs for which divergent sequencing depth 

was available to support the variant type classification (data not shown). When evaluating 

precision-recall separately for either insertions or deletions we observed no remarkable 

difference for NanoSV, but it turned out that Sniffles has a lower precision and higher recall for a 

loss of sequence and conversely for gains of sequence a higher precision but lower recall 

(Supplementary Table 3). As such insertions turned out to be more often correct than deletions, 

while proportionally more deletions from the truth set were identified. 
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Table 4: Accuracy of zygosity 

 Sniffles NanoSV 

nocall het hom nocall het hom 

Truth 

nocall 0 3295 5828 236 11972 1433 

het 4535 4151 5837 4064 9807 652 

hom 4544 321 2947 4894 2464 3454 

A parameter of Sniffles determines the minimum number of reads supporting an SV before it 

gets reported, with 10 as the default. Testing multiple values for this demonstrated a clear trade-

off between precision and recall, as shown in Figure 4A. When allowing less support for a 

candidate SV the recall was the highest, but precision was low and vice versa. An appropriate 

middle ground appeared to be around ¼ or ⅓ of the median genome coverage to maximize 

precision and recall. 

By randomly down-sampling the alignment from minimap2 to various fractions of the original 

dataset we evaluated the influence of the median genome coverage on the precision and recall 

(Figure 4B). Sniffles was used with default parameters (minimal_support = 10). We concluded 

that increasing the coverage above 40x did not substantially increase the recall. The reduction 

in precision above that value originated in a sub-optimal selection of the minimal support 

parameter as described above. 

A 

 

B 

 

Figure 4: precision and recall with parameter variation 

A: Specifying minimally supporting reads; B: influence of the median genome coverage after down-
sampling to various fractions. Both sets use Sniffles SV calling and minimap2 alignment. 

We also evaluated the length of SVs and their accuracy (Figure 5 and Supplementary Figure 

S5). A substantial proportion of variants <100 bp, the largest group, turned out to be either 

missed or false positive by both Sniffles and NanoSV. Most of the variants correctly identified by 

Manta were <300 bp and compared to the long read SV callers more variants were missed in 

each length category (Supplementary Figure S6). 
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Figure 5: SV validation status per length 
SVs identified using Sniffles after minimap2 alignment, compared to truth set 

Description of detected variants 

Sniffles after minimap2 alignment detected 28305 SVs. Of those 11822 overlapped with genes, 

of which 695 were in coding sequences. 3780 variants overlap with segmental duplications. The 

profile of lengths of SVs in the truth set and after SV calling with Sniffles and NanoSV (Figure 6 

and Supplementary Figure S5) were comparable, showing a peak around 300 bp corresponding 

to SVs involving Alu elements and around 6 kb corresponding to L1 elements, an observation 

also reported in other studies (Huddleston et al. 2017; Cretu Stancu et al. 2017).  
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Figure 6: length profile of SV calls 

SV calls made by Sniffles after minimap2 alignment. The upper panel has SVs up to 2 kb, the lower up 
to 20 kb with a log-transformed number of variants.  

Discussion 
For benchmarking and characterization we sequenced a well-characterized reference genome 
on the Oxford Nanopore PromethION. We observed a substantial variability in the yield of the 
PromethION which can partially be attributed to using sheared or unsheared DNA and 
differences in concentration of the final library. Further optimizations of the library preparation 
will point to the optimal balance between yield and read length. While much longer reads have 

been reported by other users on MinION (Payne et al. 2018), this was not our primary aim. 

Based on the higher quality scores and percent identity it seems that the MinION system is 
currently better understood, yielding slightly more accurate results. However, we assume similar 
improvements can be made to the PromethION base calling models when more data becomes 
available and the system has matured to the level of the MinION. In fact, an updated version of 
the basecaller is available, modestly improving the nucleotide-level accuracy. However, we do 
not anticipate a large impact on SV detection. Further improvements in base call quality might 
increase the accuracy of breakpoint detection. 

In this work, we evaluated the precision (positive predictive value) and recall (sensitivity) for 
multiple long read aligners and SV callers. While the truth set in our comparison was based on 
multiple integrated technologies (Chaisson et al. 2018), we cannot exclude that any variants 
were missed. However, with the combination of short read, long reads, linked reads and strand-
seq both shorter and longer SVs, and more challenging inversions have been characterized. For 
this application, we anticipated this set was sufficiently complete. Follow-up of high-confidence, 
but presumably false positive variants using orthogonal methods could be valuable. 
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Ngmlr uses a convex gap cost allowing alignment across SVs, while simultaneously accounting 
for small indels, the dominant errors in long read sequencing. Alignments are split in the case of 
larger SVs. This aligner is co-developed with the SV caller Sniffles (Sedlazeck et al. 2018). 
Minimap2 is an accurate and ultra-fast aligner for reads from (paired) short and long DNA 
sequencing, long RNA sequencing or assembled contigs and genomes. SVs between reference 
and individual are taken into account using a concave gap cost (Li 2018). LAST was not 
developed recently but was suggested to be the most accurate for e.g. NanoSV (Cretu Stancu 
et al. 2017). LAST is developed for sensitive comparison of long sequences and is based on 
BLAST but reduces alignment time by eliminating seeds in repetitive elements (Kiełbasa et al. 
2011). However, we demonstrated that it is clearly not optimal for this volume of data and takes 
too long to be used on a larger scale. 

Sniffles calls indels, duplications, inversions, translocations, and nested SVs and takes read 
support, SV size and breakpoint consistency into account (Sedlazeck et al. 2018). Unexpectedly, 
we observed that Sniffles, while developed for ngmlr alignment, performed better after 
minimap2 alignment, yielding a higher precision at a similar recall compared to ngmlr. Even 
higher precision was obtained using the 'last-like' parameter settings of minimap2, but this came 
at a considerable trade-off of lower recall and is therefore not recommended. NanoSV uses 
clustering of split and gapped alignments for identification of breakpoint junctions, (Cretu Stancu 
et al. 2017). While Sniffles is very fast, NanoSV requires further software optimizations to 
handle these large volumes of data and limit runtime and memory usage. We had to execute 
NanoSV per chromosome in parallel to keep the runtime reasonable, with the limitation that 
interchromosomal variants cannot be detected. However, for our application of germline 
structural variants in a healthy individual, we expected these to be less relevant. While LAST is 
the recommended aligner by the authors of NanoSV the number of variants identified was 
excessive, with a high number of false positives. NanoSV, too, obtained the best results after 
minimap2 alignment. In our comparison with SVs called from short read sequencing data using 
Manta and Lumpy a clear advantage for long reads was demonstrated, with substantially higher 
recall values. However, our evaluation of the accuracy of the zygosity of the identified SVs 
showed that these are highly unreliable, owing to the complexity of a diploid genome. We also 
observed that both SV callers performed poorly in the largest group of variants, those with a 
length below 100 bp. Thousands of variants in this group were either missed (not identified) or 
false positively called as SV. Improvements in this size range, or more specialized SV callers, 
are definitely welcome here. 

Inversions are generally challenging or impossible to identify, especially using traditional 
methods such as comparative genome hybridization, PCR-based approaches or short read 
sequencing, because those variants are copy-neutral with breakpoints often in (long) highly 
repetitive sequences. For a comprehensive detection Strand-Seq is currently the only applicable 
protocol (Chaisson et al. 2018). Long read sequencing could offer an advantage, as these might 
provide more accurate alignments in repetitive sequences. However, we observe here a 
generally low precision and recall for the callers identified, with precision and recall between 
around 15 and 30%, with much lower precision for NanoSV. We hypothesize that even longer 
read lengths might be beneficial here, together with algorithmic improvements. 

Due to its speed, we could evaluate relevant parameters for Sniffles, and concluded that adding 
more than 40x coverage did contribute little to the identification of novel variants. Presumably 
longer reads might reveal more hidden variation in highly repetitive sequences. We suggest 
using a minimal supporting number of reads of one-fourth to one-third of the median genome 
coverage to optimize precision and recall. Ultimately, setting stringency filters is a trade-off 
between sensitivity and specificity, for which the applications at hand determine if it's 
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appropriate to tolerate false positives, or rather accept that some genuine calls can be missed. It 
is worth noting that Sniffles can be used in a two-pass mode, in which variants identified in the 
first stage can be used to force genotyping in a second stage. As such this shifts the burden of 
'discovery' of SVs to 'genotyping' known SVs, potentially increasing the sensitivity in larger 
cohorts and at lower coverage.  

After the identification of SVs, we also annotated these with information about overlapping 
genes, segmental duplications and known variants in DGV. Obviously overlapping genes are 
relevant to judge the potential pathogenicity of the identified variants, while the impact of SVs in 
non-coding regions is currently less well understood. The annotation of SVs localized in a 
segmental duplication plays a double role, as these regions are both known to be a hotspot for 
SV formation, but simultaneously are troublesome for alignments and as such can give rise to 
false positive variant calls (Stankiewicz et al. 2003; Sharp et al. 2005; Bailey and Eichler 2006). 

Here we provided an estimate of what can be expected in future long read whole genome 
sequencing data. While SVs can contribute to disease, it was clear that, just as with the better 
understood SNVs, the majority will be mostly harmless. To distinguish pathogenic SVs from 
polymorphisms we will need comprehensive catalogs across multiple populations. 

Methods 

Sample preparation 

The lymphoblastic cell line (LCL) GM19240 was ordered from the Coriell Cell Repository and 

cultured as specified by the Coriell Institute for Medical Research (Camden, NJ USA). DNA from 

GM19240 (NA19240) was extracted using both manual QIAmp DNA Blood mini kit (Qiagen, 

USA) and a robotic extraction platform (Magtration system 8LX, PSS, Japan), as specified by 

the suppliers. As specified in the QIAamp protocol RNase A treatment was performed during the 

extraction, while robotically extracted DNA was treated additionally with RNase A (RNase A, 

10mg/ml, using 1µl RNase A per 100µl template, Thermo Fisher Scientific, USA) to remove 

RNA.  

Extractions of 5 million LCL cells, resuspended in 200 µl of PBS, as well as extraction with 8LX 

(PSS, JP), yielded between 15 to 17 µg of gDNA per extraction, with average A260/280 of 1.86, 

A260/230 of 2.50 and average gDNA size between 38 and 41 kb. Information on the five 

aliquots used for library preparation is supplied in the Supplementary Table 1. The fifth aliquot 

(P5) was a pool from DNA of automated PSS and manual QIAmp extraction. 

As we wanted to evaluate the efficiency of different library preparations, two out of five aliquots 

were sheared using Megaruptor (Diagenode, BE) to an average size of 20 kb and three aliquots 

were non-fragmented. All aliquots were purified and size selected using a high pass protocol 

and the S1 external marker on the BluePippin (on 0.75% agarose gel, loading 5 µg sample per 

lane) (Sage Science, MA, USA). The size selection cutoff differed between fragmented and 

unfragmented samples (Supplementary Table 1). The average recovery of the size-selected 

DNA aliquot was between 40-70% of the initial input. After size selection, all aliquots were 

purified using AMPure XP beads (Beckman Coulter, USA) using ratio 1:1 (v:v) with DNA mass 

recoveries between 88-99%. All fragment analyses were performed on Fragment Analyzer with 
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DNF-464 High Sensitivity Large fragment 50 kb kit, as specified by the manufacturer (Advanced 

Analytical, Agilent, USA).  

Library preparation 

The recommended protocol for library preparation on PromethION was followed with minor 

adaptations. In short, potential nicks in DNA and DNA ends were repaired in a combined step 

using NEBNext FFPE DNA Repair Mix and NEBNext Ultra II ER/dAT Module (New England 

Biolabs, USA) followed by AMPure bead purification and ligation of sequencing adaptors onto 

prepared ends. Four libraries were constructed using 1D DNA Ligation Sequencing kit SQK-

LSK109 following the PromethION protocol (GDLE_9056_v109_rev E_02Feb2018) and one 

(P4) was made using Ligation Sequencing kit SQK-LSK108 following the SQK-LSK108- 

PromethION protocol (GDLE_9002_V108_revO_28Mar2018) since LSK109 consumables were 

depleted at that time. The main differences between SQK-LSK109 and SQK-LSK108 protocols 

are increased ligation efficiency, a different clean-up step, the combined FFPE repair and end-

repair. These modifications, making sequencing of long reads more efficient, were used for both 

protocols.  

Additionally to consumables supplied with the sequencing kit, several steps were performed 

using NEB enzymes (NEBNext FFPE DNA Repair Mix, NEBNext Ultra II ER/dAT Module and 

NEBNext Quick Ligation Module, all New England Biolabs, USA) as recommended in 1D 

genomic ligation protocols (SQK-LSK 109 and SQK-LSK108). Overall, ONT protocols were 

followed, with slight increases in incubation times during DNA template end-preparation, 

purification, and final elution. The final mass loaded on the flow cells was determined based on 

the molarity, depended on average fragment size and was chosen based on our prior 

experience and communication with specialists at Oxford Nanopore Technologies. 

Two aliquots of the unfragmented NA19240 were used for library preparation and sequencing 

on MinION using R9.4.1 flow cells as a quality control for library preparation (Oxford Nanopore 

Technologies, UK) (Supplementary Table 1). The MinION libraries M1-N and M2-N were 

prepared identically to PromethION libraries 'P1-N' and 'P3-N', respectively. 

Data processing 

Base calling of the raw reads from MinION and PromethION was performed using the Oxford 

Nanopore basecaller Guppy (v1.4.0) on the PromethION compute device. Run metrics were 

calculated, summarized and compared to each other using NanoPack (De Coster et al. 2018). 

Reads were aligned to GRCh38 from NCBI, without alternative contigs and including a decoy 

chromosome for the Epstein–Barr virus (H. Li 2017)1. Reads were aligned with ngmlr (v0.2.6) 

(Sedlazeck et al. 2018), LAST (v876) (Kiełbasa et al. 2011) and two parameter settings of 

minimap2 (v2.11-r797), of which one was supposed to mimic alignments by LAST (H. Li 2018) 

                                                
1 ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignm
ent_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz 
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(see Supplementary data for commands and parameters). The substitution matrix for alignment 

with LAST was determined using LAST-TRAIN with a subset of 5000 reads (Hamada et al. 

2017). Coverage was assessed using mosdepth (Pedersen and Quinlan 2018). Processes were 

parallelized using gnu parallel (Tange 2011). 

Comparison of structural variant calls 

Structural variant calling was performed using Sniffles (v1.0.8) (Sedlazeck et al. 2018) and 

NanoSV (v1.2.0) (Cretu Stancu et al. 2017) with default parameters. Inversions were called with 

the specific tool npInv (Shao et al. 2018). Alignment with LAST turned out to be incompatible 

with Sniffles and npInv. We were unsuccessful at using Picky (Gong et al. 2018) and reported 

several issues to the authors, which remained unanswered and unresolved. For reference, we 

also evaluated the short read SV callers Manta (Chen et al. 2016) and Lumpy (Layer et al. 

2014) after bwa mem alignment (H. Li 2013) from Illumina data generated by Chaisson et al 

(Chaisson et al. 2018). 

As a gold standard truth set of SVs in NA19240, we used haplotype-resolved SVs which were 

identified by combining PacBio long read sequencing, Bionano Genomics optical mapping, 

Strand-Seq, 10x genomics, Illumina synthetic long reads, Hi-C and Illumina sequencing libraries 

(Chaisson et al. 2018). This set of variants will be called the "truth set" from here on. It is worthy 

of note that both Sniffles and NanoSV report SVs from at least 30 bp, while the formal definition 

and the truth set use 50 bp as the lower limit. Therefore all accuracy calculations are performed 

for variants ≥ 50 bp. Obtained variant call sets were combined SURVIVOR (v1.0.2) (Jeffares et 

al. 2017) and precision-recall metrics were calculated after parsing with cyvcf2 (Pedersen and 

Quinlan 2017) and plotted using matplotlib (Hunter 2007). For combining SVs a distance of 500 

bp between pairs of start and end coordinates was allowed to take inaccurate breakpoint 

inferences into account. Furthermore, we normalized duplications to insertions since not all 

variant callers identify the same types of variants. 

By default, Sniffles requires 10 supporting reads to call a structural variant. We also tested 

alternative minimum numbers of supporting reads to see the effect on accuracy. In addition, we 

performed a downsampling experiment of the alignment to see how it affects the performance of 

Sniffles. No parameter variation experiments were performed for NanoSV due to its long 

running times. We also evaluated the accuracy of the zygosity determination and investigated 

the difference in accuracy between "gain" and "loss" CNVs. All scripts for evaluation and plotting 

of our results are available on https://github.com/wdecoster/nano-snakemake/ 

Structural variant analysis workflow 

We generated a workflow for structural variant analysis based on the snakemake engine (Koster 

and Rahmann 2012), combining minimap2 (H. Li 2018) and ngmlr (Sedlazeck et al. 2018) for 

alignment followed by sorting and indexing bam files using samtools (H. Li et al. 2009) and 

structural variant calling using Sniffles (Sedlazeck et al. 2018) and NanoSV (Cretu Stancu et al. 

2017). Per aligner, we took the union of the SV calls from Sniffles and NanoSV to form a high 

sensitivity set, and the intersection of both callers to form a high confidence set. Resulting 
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variant files are processed using vcftools and bcftools (H. Li 2011; Danecek et al. 2011), 

combined using SURVIVOR (Jeffares et al. 2017) and annotated with information of segmental 

duplications, overlapping genes and known variants in the Database of Genomic Variants 

(DGV) (MacDonald et al. 2014) using vcfanno (Pedersen, Layer, and Quinlan 2016). Read 

depth is calculated using Mosdepth (Pedersen and Quinlan 2018). Plots were generated using 

Python scripts with the modules matplotlib (Hunter 2007), pandas (McKinney 2011), seaborn 

(Waskom et al. 2017) and cyvcf2 (Pedersen and Quinlan 2017). The snakemake workflow is 

available on https://github.com/wdecoster/nano-snakemake/.  A graphical representation of the 

workflow can be found in Supplementary figure S1. 
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