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Abstract

Neurons in macaque area LIP exhibit gradual ramping in their trial-averaged spike responses
during sensory decision-making. However, recent work has sparked debate over whether single-
trial LIP spike trains are better described by discrete “stepping™ or continuous drift-diffusion
(“ramping”) dynamics. Here we address this controversy using powerful model-based analyses
of LIP spike responses. We extended latent dynamical models of LIP spike trains to incorpo-
rate non-Poisson spiking, baseline firing rates, and various nonlinear relationships between the
latent variable and firing rate. Moreover, we used advanced model-comparison methods, includ-
ing cross-validation and a fully Bayesian information criterion, to evaluate and compare models.
These analyses revealed that when non-Poisson spiking was incorporated into existing stepping
and ramping models, a majority of heurons remained better described by stepping dynamics,
even when conditioning on evidence level or choice. However, an extended ramping model
with a non-zero baseline and a compressive output nonlinearity accounted for roughly as many
neurons as the stepping model. The latent dynamics inferred under this model exhibited high
diffusion variance for many neurons, making them qualitatively different than slowly-evolving
continuous dynamics. These findings generalized to alternative tasks, suggesting that a robust
fraction of LIP neurons are better described by each model class.
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1 Introduction

Perceptual decision-making provides an opportunity to probe the role of different brain regions in cog-
nitive tasks (Gold and Shadlen, 2007; Hanks and Summerfield, 2017). In direction discrimination
tasks with choices conveyed by a saccadic eye movement (Newsome and Pare, 1988; Britten et al.,
1992, 1996), macaque lateral intraparietal area (LIP) responses exhibit positive correlation with choice
(Shadlen and Newsome, 1996, 2001). An important series of papers provided support for the idea
that the firing rates of LIP neurons reflect the accumulation of sensory evidence in favor of a “pre-
ferred” choice target; this hypothesis unified neural responses and behavior under a single theoretical
framework known as the drift-diffusion or accumulation-to-bound model (Roitman and Shadlen, 2002;
Mazurek et al., 2003; Gold and Shadlen, 2007; Shadlen and Kiani, 2013). An extensive literature has
examined this hypothesis in a variety of experimental and theoretical settings (Huk and Shadlen, 2005;
Palmer et al., 2005; Ditterich, 2006a,b; Hanks et al., 2006; Kiani et al., 2008; Churchland et al., 2008;
Kiani and Shadlen, 2009; de Lafuente et al., 2015)

Although the trial-averaged responses in LIP typically resemble ramps, the average responses do not
directly reveal a neuron’s single-trial dynamics. This shortcoming has motivated recent work to de-
termine the single-trial dynamics of LIP responses in direction discrimination tasks (Churchland et al.,
2011; Bollimunta et al., 2012; Latimer et al., 2015). In particular, Latimer et al. (2015) compared a
discrete switching process or “stepping” model and a accumulation-to-bound or “ramping” model of LIP
dynamics, both of which can give rise to ramping trial-averaged activity. They found that the majority
of LIP cells were better explained by the stepping model. However, subsequent literature has sparked
debate over the interpretation of these results (Shadlen et al., 2016; Zylberberg and Shadlen, 2016;
Chandrasekaran et al., 2016; Latimer et al., 2017; Zhao and Kording, 2018).

In this paper, we aim to settle the debate about single-trial LIP dynamics using improved models and
model comparison methods. We have extended the classic ramping and stepping models of LIP dy-
namics in several important ways. First, we incorporated spike-history dependencies into both models
to account for the temporal autocorrelations of spike trains in LIP. Second, we investigated nonlinear
ramping models with a non-zero baseline firing rate and several possible nonlinear relationships be-
tween the latent variable and firing rate. We compared these models using a principled, fully Bayesian
information criterion and Bayesian leave-one-out cross-validation.

In our analyses, the stepping model outperformed the ramping model for a majority of neurons when
both models were extended to incorporate spike-history. This result was robust to partitioning of the
data by choice or sensory evidence level, showing that (in contrast to recent analyses in Zylberberg and
Shadlen (2016)) model selection was not driven by anti-preferred choice or evidence trials. On the other
hand, an extended ramping model with a non-zero baseline firing rate and a decelerating nonlinearity
outperformed the stepping model for slightly more than half the neurons in our population. The latent
firing rates inferred under this model, however, were often governed by high diffusion variability, making
the distinction between continuous and discrete models less concrete. These analyses revealed that
spike responses in LIP are more complex than simple ramping or stepping models, while confirming
that discrete dynamics provide the best account for a substantial fraction of neurons in LIP.
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Figure 1. Latent variable models for LIP spike responses during decision-making. A. Schematics of extended
ramping (above) and stepping (below) models. For the ramping model, the stimulus coherence sets the drift
rate of a latent diffusion-to-bound process; this process is transformed by a rectifying nonlinearity f(-) and
added to a baseline firing rate b. For the stepping model, stimulus coherence determines the distribution over
time and direction of a discrete step to one of two possible latent firing rates. In both models, the latent firing
rate is multiplied by the exponentiated output of a spike history filter, allowing it to capture non-Poisson firing
statistics. B. Output nonlinearities considered for the extended ramping model. The nonlinearity transforms
example latent diffusion paths (left) into different latent firing rate trajectories (right). C. Average firing rates
for different motion coherence levels, aligned to motion onset and averaged across neurons (left), along with
averaged responses simulated from models considered in this paper, where “+b” indicates inclusion of a
non-zero baseline and “linear” and “sqrt” indicate the choice of nonlinearity in the extended ramping model.

2 Results

We formulated explicit statistical models of latent dynamics underlying single-trial spike trains in area
LIP during perceptual decision-making and used two different statistical methods to compare them.
Our analysis builds on Latimer et al. (2015), which formulated the ramping and stepping latent vari-
able models of LIP spike trains. The basic ramping model, often referred to as the drift-diffusion
or accumulation-to-bound model, consists of a continuous latent diffusion process, which is passed
through a soft-rectifying nonlinearity to obtain a Poisson firing rate. The basic stepping model, on the
other hand, consists of a discrete switching process that jumps from an initial firing rate to one of two
levels with a probability that depends on the stimulus. Here we extended these two models in order to
incorporate non-Poisson spike-history effects and to allow additional forms of nonlinearity in the ramp-
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Figure 2. Models with spike-history dependence outperformed classic stepping and ramping models. A.
Spike-history filters for three example neurons, and the average spike-history filter across neurons, for ex-
tended stepping (blue) and extended ramping (red) models. Inferred filters were remarkably similar between
models, implying that spike-history effects did not vary with the choice of latent dynamics model. B. Spike
train autocorrelations of LIP neurons and models with and without spike-history filters, revealing that classic
stepping and ramping models could not account for the temporal statistics of real spike trains. C. Models
with spike-history filters performed better than classic stepping (above) and ramping models (below) for the
majority of LIP neurons, as quantified by WAIC. Positive WAIC differences favor the model with spike-history.

ing model (Figure 1).

To compare these models, we used two different methods: the Watanabe-Akaike information criterion
(WAIC, Section 4; Watanabe, 2010; Gelman et al., 2014) and Bayesian leave-one-out cross-validation
(Vehtari et al., 2017). The WAIC has multiple features that make it robust for model comparison. First, it
uses the full posterior over the parameters for model evaluation, and therefore does not rely on a point
estimate of the parameters (which is the case for other model-selection criteria, e.g., AIC, BIC, or DIC).
Also, the penalty term in the WAIC is stable and guaranteed to be non-negative, in contrast with the
DIC (Gelman et al., 2014; Vehtari et al., 2017). Finally, the WAIC has solid theoretical grounding as it is
asymptotically equivalent to Bayesian leave-one-out cross-validation (Gelman et al., 2014; Vehtari et al.,
2017). We find these benefits are realized empirically, as the WAIC outperforms the DIC at identifying
the true model in simulations (Figure 7B).

2.1 Incorporating spike-history dependencies

The basic ramping and stepping models from Latimer et al. (2015) described spiking as Poisson con-
ditioned on the latent ramping or stepping process, which ignores spike-history effects present in real
spike trains (e.g. refractoriness, bursting, spike-rate adaptation). We therefore extended both mod-
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Figure 3. Stepping model with spike-history outperforms linear ramping model with spike-history for a majority
of cells across conditions. A. Sorted WAIC differences between the stepping and linear ramping models with
spike-history for all neurons (error bars indicate +=1SEM). Blue (red) lines indicate cells for which the stepping
(ramping) model had a better WAIC value. Colored numbers indicate the number of cells where the WAIC
difference favored stepping or ramping by more than the standard error. B. Left: WAIC differences computed
for subsets of trials conditioned on motion coherence and choice. The differences were normalized by the
number of trials in each condition. Positive differences favor the stepping model. Right. WAIC differences for
models fit only to data from zero coherence, positive coherence, or in-RF trials (respectively), normalized by
the number of trials in each condition. Similar results were obtained with cross-validation (Figure 8).

els to include autoregressive spike-history filters, like those in the generalized linear modeling (GLM)
framework (Figure 1, Section 4). These filters capture non-Poisson spike-history dependencies (Truc-
colo et al., 2005; Weber and Pillow, 2017) and allow for a dissociation of latent dynamics from spiking
activity that can be explained more parsimoniously by past spikes.

We fit stepping and ramping models both with and without spike-history to the responses of 40 LIP
cells during a variable-duration random dot motion task (Section 4; Meister et al., 2013). Simulated
data from the fitted models captured the shape of true population PSTHSs for different coherence levels
(Figure 1C). The inferred spike history filters typically exhibited short-timescale inhibition (or refractori-
ness) and longer-timescale self-excitation, although there was substantial variability across neurons
(Figure 2A). These filters conferred a dramatic improvement in the ability to capture temporal auto-
correlations in spiking activity under both models (Figure 2B). Intriguingly, the history filters were nearly
identical between stepping and ramping models for the majority of neurons. This suggests that the
filters captured similar structure across models, and were not strongly influenced by model-specific as-
sumptions about latent dynamics. Spike-history filters substantially improved prediction accuracy under
both models for the vast majority of neurons, giving better WAIC for 38 out of 40 cells (Figure 2C).

2.2 Stepping model robustly outperforms linear ramping model

Model comparison using the WAIC and cross-validation revealed that the stepping model with spike-
history outperformed the linear ramping model with spike-history for 28 out of 40 cells (Figures 3A and
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8A). We quantified uncertainty in the model comparison using the standard error of the WAIC difference
across trials (Section 4). For the 26 cells whose WAIC differences were more than the standard error
from zero, 21 favored the stepping model. This result was not driven by the penalty term in the WAIC,
as the stepping model had higher predictive accuracy for 33 of the 40 cells (higher Ippd, Section 4,
Equation 68).

To examine how different trial conditions contributed to the model comparison across cells, we then
compared the models across subsets of trials partitioned by the motion coherence and choice. For each
coherence and choice, the stepping model with spike-history outperformed the linear ramping model
with spike-history for the majority of cells (Figures 3B and 8B). The negative high coherence trials had
the largest median difference between cells, which reflects concerns about the inability of the ramping
model to handle strong negative drifts in firing rate (Shadlen et al., 2016; Zylberberg and Shadlen,
2016). However, the median difference favored stepping for each coherence level, including those for
weak or strong motion into the RF. Also, with the negative high coherence or all negative coherence
trials excluded, the stepping model still outperformed the ramping model for a majority of cells (26 out
of 40). This suggests that the overall comparison did not depend on the negative coherence trials and
that the dynamics were consistent across stimulus conditions and choice.

We next evaluated the possibility that inference of the model parameters was influenced by subsets of
trials, which would also affect the model comparison. We re-fit the models to three different subsets
of trials (Figures 3C and 8B). The first contained all zero-coherence trials, which putatively have long
integration times (and therefore might be expected to have the slowest or most gradual “ramp-like”
dynamics). The other two re-fits used data from all positive coherence trials and data from all in-
RF choice trials, in which the animal made a saccade to the “preferred” target. These latter two fits
restricted analysis to trials with putatively positive values of accumulated sensory evidence. For all
three analyses, model comparison favored the stepping model with spike-history for more than half the
neurons: 21/40 for zero-coherence trials, 25/40 for positive coherence trials, and 27/40 for in-RF choice
trials.

Recent work has argued that trials with strong initial negative diffusion and termination at non-zero
rates might bias model comparison in favor of the stepping model (Zylberberg and Shadlen, 2016). The
competing accumulators model assumes that these trials occur most prevalently during negative coher-
ence trials or out-RF choice trials (Mazurek et al., 2003). These are trials where either the presented or
perceived evidence is to the target outside the RF of the LIP neuron, and therefore are trials where the
LIP neurons are more likely to decrease their firing rates throughout a trial. Given that assumption and
the analyses performed above, we conclude that the comparison between the ramping and stepping
models with history fit to all trials was not driven by these trials, even though a mechanism such as a
baseline firing rate to stop strongly going negative rates was not included.

2.3 Nonlinearities and non-zero baselines improve the ramping model

Although the ramping model formulated in (Latimer et al., 2015, 2017) was motivated to capture the
hypothesized linear relationship between a biased diffusion-to-bound process and single-neuron firing
rates, neurons might exhibit nonlinear relationships between a putative latent diffusion process and
their firing rates. To investigate this possibility, we fit nonlinear ramping models with a variety of different
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Figure 4. Comparison of extended ramping models. A. Comparison of nonlinear ramping models with
non-zero baseline firing rates and spike-history against the classic (linear) ramping model. Positive values
indicate improvements relative to the classic linear ramping model in terms of WAIC difference. The box color
indicates the choice of nonlinearity and “+b” refers to models with a non-zero baseline. B. The fraction of cells
for which each model (all with non-zero baseline and spike-history) achieved the best WAIC, showing that the
square root nonlinearity performed best for more than half the population. C. WAIC differences between the
stepping model with spike-history and the linear (left) and square root (right) ramping models with baseline
and spike-history. See Fig. 8 for comparable analysis using cross-validation instead of WAIC.

nonlinearities: a soft-rectified square root function (“sqrt”), a soft-rectified quadratic (“quad”), or an
exponential (“exp”) (Section 4). These models can capture varying degrees of nonlinear response
saturation or acceleration as a function of the latent variable (Figure 1B). We also included a non-zero
baseline firing rate parameter b that acts as a (non-absorbing) lower bound on the firing rate (Section 4).
This prevents firing rate from going to zero when the drift term is strongly negative (Shadlen et al., 2016;
Zylberberg and Shadlen, 2016; Latimer et al., 2017).

For each nonlinearity, we fit the ramping model with and without an additive baseline and spike-history
filters. We compared each model to the original linear ramping model without spike-history from Latimer
et al. (2015) (Figure 4A). Including the non-zero baseline improved all models, and models with the
largest median improvements over the linear ramping model included both the non-zero baseline and
spike-history filters. Across all nonlinear ramping models with baseline, the model with square root
nonlinearity performed best, achieving the best WAIC for more than 50% of neurons (Figure 4B).
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Figure 5. Analysis of latent firing rates under different latent dynamical models. A. Coherence-conditional
PSTHs for example cell #1 (left) and simulated latent firing rate paths from fitted nonlinear ramping models
and stepping model (right). The data were simulated using samples from the posterior. The linear and
square root ramping models with non-zero baseline and spike-history can produce latent trajectories with
high variability. The bolded trajectories are simulated trajectories that quickly evolved from the baseline to
the upper boundary. B-D. Scatter plots comparing latent firing rate dynamics under the ramping model with
and without a non-zero baseline. Each point corresponds to a pair of model fits for a single neuron. B. Drift
rates for the highest negative-coherence stimulus are more negative under a ramping model with non-zero
baseline than without. This indicates that adding a non-zero baseline allows the firing rate to ramp downwards
more rapidly for negative-coherence motion (Zylberberg and Shadlen, 2016). C. Diffusion variance increased
with the addition of the non-zero baseline. D. Fraction of time the simulated latent firing rates were equal to
the baseline rate or upper absorbing boundary. See Figure 9 for comparable analyses with the square root
ramping model with non-zero baseline.

As the linear and square root ramping models with non-zero baseline and spike-history were the best-
performing among all models with continuous latents, we performed a direct comparison with the step-
ping model with spike-history. These extended ramping models closely matched the performance of the
stepping model with spike-history (Figures 4C and 8C). The square root ramping model with non-zero
baseline and spike-history achieved better WAIC than the stepping model with spike-history for more
than half of the cells, although they each had an equal number of cells with WAIC differences more than
the standard error from zero.

2.4 Inferred single-trial trajectories of nonlinear ramping models are more discrete

In the previous section, we showed that the linear and square root ramping models with non-zero
baseline outperformed the linear ramping model for the majority of cells. We therefore investigated how
these extensions affected different aspects of the model behavior. First, we observed that including a
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non-zero baseline helped to capture the steep initial decrease in the average firing rate for negative-
coherence trials via steeper negative drift rates, which was missing for the simpler ramping model
(Figure 5A-B and Figure 1C).

Second, we observed that single-trial trajectories sampled from the models with non-zero baseline
looked more discrete, exhibiting more rapid jumps to maximal or minimal firing rate, than trajectories
from the linear ramping model without baseline (Figure 5A). Adding a non-zero baseline led to an
increase in diffusion variability for most of the cells (Figure 5C), which allowed for larger changes in
firing rate between time bins. Simulated trajectories also spent larger fractions of the time at the lower
and upper boundaries compared to the models with a zero baseline (Figure 5D). Because the lower
bound is non-absorbing, the firing rate can hit the lower bound and still evolve to the upper bound during
the course of the trial; examples of these trials are shown in bold in Figure 5A. The effects of increased
variability and increased time at minimal or maximal firing rates were also observed in the model with
square-root nonlinearity and non-zero baseline when compared to the linear model (Figure 9).

Overall, these findings suggest that including a non-zero baseline rate can improve the ramping model
in multiple ways. It does help the ramping model capture strong negative going rates (Zylberberg
and Shadlen, 2016). However, with these modifications, the ramping model produced highly variable
latent trajectories, which transitioned rapidly to minimal or maximal rates, making them qualitatively
less similar to the gradually drifting rates expected from a perfect accumulator. Put simply, inclusion of
a non-zero baseline moved both linear and nonlinear ramping models closer to discrete dynamics.

2.5 Generalization to two additional decision-making tasks

To see if the results for this dataset generalized to recordings from LIP in other direction discrimination
tasks, we repeated a subset of our analyses on recordings during a discrete-pulse accumulation task
(Yates et al., 2017) and a reaction-time (RT) task (Roitman and Shadlen, 2002; Section 4). The ftrial-
averaged responses of neurons in both tasks resembled gradual ramps (Figure 6). However, statistical
comparison of stepping and ramping models yielded results consistent with our findings above (Figures
6 and 10). For both additional datasets, spike-history filters improved the fits of both ramping and
stepping models. The linear ramping model performed better with inclusion of a non-zero baseline, and
the square-root ramping with non-zero baseline model outperformed the linear ramping with non-zero
baseline model (both with history) for the majority of units in both datasets: 65/115 in the discrete-pulse
task and 9/16 in the RT task. The stepping model with spike-history outperformed the linear ramping
and square root ramping models with non-zero baseline and spike-history for a large majority of units in
the discrete-pulse task. In the RT task, the models were evenly split, with models in the ramping class
favored for cells with WAIC differences greater than the standard error from zero.

It is worth summarizing the comparison between the stepping model and the square root ramping
model with non-zero baseline (both with spike-history), as neither model outperformed the other across
all datasets. Between the two models, the stepping model with spike-history was favored for slightly
less than half of cells in the variable duration task (16/40), a majority of cells in the discrete-pulse task
(73/115), and exactly half of cells in the RT task (8/16). However, for cells with WAIC differences greater
than the standard error from zero, the stepping model with spike-history was favored for exactly half of
cells in the variable duration task (13/26), a majority in the discrete-pulse task (46/72), and a minority in
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Figure 6. Analyses of neural data from two additional decision-making tasks. A. Population PSTHs from LIP
neurons and simulated data from fitted models in a discrete-pulse task (Yates et al., 2017). B. Model compar-
ison of extended nonlinear ramping models and classic linear ramping model using WAIC. C. The stepping
model with spike-history achieved higher WAIC differences for the majority of cells. D. The population PSTH
and simulated PSTHs from the fitted models, aligned to motion onset, in a reaction-time (RT) task (Roitman
and Shadlen, 2002). E. Spike-history and non-zero baseline firing rates improved ramping model perfor-
mance, but different nonlinearities performed equally well. F. Comparison of the stepping model and different
ramping models, all with spike-history. See Figure 10 for comparable analyses using cross-validation.

the RT task (2/8). In this view, across datasets these two models achieved relatively equal performance.
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3 Discussion

Our study strengthens the evidence for discrete-state models of the single-trial dynamics of many LIP
cells during decision-making. Importantly, we found that LIP dynamics are heterogeneous, with discrete
stepping and continuous diffusion-to-bound models both accounting for a substantial fraction of neurons
(Meister et al., 2013; Park et al., 2014; Latimer et al., 2015). Our findings are supported by dynamical
models that account for spiking autocorrelation and that allow for nonlinear mappings from diffusion-to-
bound to firing rate in the ramping model. We obtained the same results when using a fully Bayesian
information criterion and leave-one-out cross validation.

Although we have significantly extended the models considered in Latimer et al. (2015), which allowed
for more accurate descriptions of spike trains in LIP, there are a variety of other proposed extensions
that we have not yet explored. For example, the ramping model could use a random start time to the
diffusion process on each trial (Churchland and Kiani, 2016). We speculate that the ramping model
has more flexibility to handle small deviations in the onset of a diffusion-to-bound process because it
has continuous latent states that place mass over all possible trajectories in the latent space, although
we have not performed this comparison explicitly. Next, one could formulate a ramping model in which
negative drifting rates are stopped by a competing accumulator on each trial, rather than a non-zero
baseline that is constant across trials (Mazurek et al., 2003; Zylberberg and Shadlen, 2016; Latimer
et al., 2017). However, this would require a two-dimensional latent diffusion process, which would
be computationally more demanding than the one-dimensional models we have considered here, and
might prove more difficult to identify with single-neuron data. Fitting such a model using multi-neuron
recordings therefore presents one promising direction for future work. Finally, one could extend the
stepping model to a general hidden Markov model, allowing for more than three discrete firing rates,
with more flexible transition dynamics that allow for more than one transition per trial (Bollimunta et al.,
2012). Such a model would have more flexibility than the stepping model we considered, which might
allow better generalization to alternate tasks (Janssen and Shadlen, 2005; Yang and Shadlen, 2007;
Kira et al., 2015; Morcos and Harvey, 2016).

Our findings appear to contradict a recent study from Zhao and Kording (2018), which reported that the
best model of LIP responses, according to a cross-validation analysis, was a model with a constant firing
rate on every trial. Although the specific models differed from those we have considered here in multiple
ways, we believe the discrepancy is likely due to the fact that Zhao and Kording (2018) treated latent
firing rates as parameters to be estimated, instead of marginalized or integrated over. This resulted
in models with one fitted parameter per trial (a step time, ramp slope, or constant firing rate), making
for hundreds of parameters per neuron, which is far more than the models we have considered here.
We suspect that this approach therefore suffered from overfitting, leading to the dubious conclusion
that firing rates are constant over time (a result that is inconsistent with the basic ramping apparent
in trial-averaged activity). We have shown here that WAIC and cross-validation give virtually identical
results when integrating over the unobserved latent firing rates. Nonetheless, the suggestion from
Zhao and Kording (2018) that baseline firing rates may vary stochastically across trials is interesting,
and consistent with recent findings about spike count variability (Goris et al., 2014; Charles et al., 2018).
Incorporating slow changes in gain or excitability over trials therefore represents an additional promising
direction for future work.
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Some authors have raised the concern that animals performing the task are adopting a strategy that
involves integration over a shorter time period than the entire trial, which could produce discrete-looking
neural dynamics even in neurons that are accumulating evidence (Shadlen et al., 2016). Further, al-
ternative strategies without accumulation can also match some behavioral features of evidence accu-
mulation (Ditterich, 2006b; Stine et al., 2018). We recognize the ambiguity in determining behavioral
strategy, and in future work we expect that including the time-varying evidence stream in the models
could help identify the behavioral strategies used by the animals.

The GLM framework we have used to incorporate spike-history effects could naturally be expanded
to include regressors for experimental variables related to the stimulus or behavior of the animal. A
worthwhile future direction would be to fit latent variable models with GLM regressors in tasks with
structured stimuli, to better disentangle latent dynamics from sensorimotor variables that affect neural
activity on single trials (Brunton et al., 2013; Hanks et al., 2015; Morcos and Harvey, 2016; Katz et al.,
2016; Scott et al., 2017; Yates et al., 2017; Huk et al., 2017). As behavioral paradigms become richer,
and as the numbers of recorded neurons increase, we expect that population latent variable models with
regressors and GLM outputs will provide a powerful framework for studying the neural computations
underlying sensory decision-making in a wide variety of tasks and brain areas.
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4 Methods

4.1 Data

We analyzed the responses of LIP cells during three motion-discrimination tasks. Our primary analyses
were performed on the responses of 40 LIP cells (single-units) recorded from two rhesus monkeys
during a variable-duration random dot motion task, originally described in Meister et al. (2013). In the
task, a random dot motion stimulus was presented for durations uniformly drawn in the range 500 to
1000 ms after a variable delay. The dot motion coherence, or the expected percentage of dots moving
in the true direction at each time point, on each trial was taken from the set of values: 0.0, 3.2, 6.4,
12.8, 25.6, or 51.2%. The monkey reported its estimate of the dot motion direction via a saccade to one
of two targets. One saccade target was placed in the response field of the neuron (“in-RF”) while the
other was placed outside of the response field (“out-RF”). The animal had to wait for 500 ms after the
stimulus was extinguished before it could indicate its choice. The original study recorded from 80 LIP
neurons and the 40 LIP cells used in this study were the 40 most choice-selective responses during
the period 200-700 ms after motion onset, determined by the d’ criterion (Latimer et al., 2015). For
analysis, the trials were grouped into five coherence levels: zero included 0% trials, positive/negative
low included 3.2%, 6.4%, and 12.8% trials, and positive/negative high included 25.6% and 51.2% trials,
where positive motion is towards the target in the response field. The coherence-dependent PSTHs
for each unit in the variable duration task were smoothed using a Gaussian filter with 20 ms standard
deviation.

We analyzed two additional datasets. The first consisted of 16 LIP cells (single-units) recorded from
two rhesus monkeys during a reaction-time (RT) version of the random dot motion task (Roitman and
Shadlen, 2002), where the monkey chooses when to respond. The details for the selection of the 16 LIP
cells are in (Latimer et al., 2015). We also divided the trials in this dataset into the five levels described
above. We included spikes starting at 200 ms after stimulus onset and up to 50 ms before the saccade
for analysis. The final spike bin contained the time point 50 ms before the saccade and we included
all spikes that fell into this bin. We only included trials in which we had 100 ms of data in this period
(Latimer et al., 2015).

The second additional dataset consisted of 115 LIP units (single- and multi-units) from two rhesus
monkeys performing a discrete-pulse accumulation task (Yates et al., 2017). In this task, the animal
viewed a set of Gabor patches that either flickered or drifted during seven discrete portions of the trial
(pulses). In each pulse, all of the drifting Gabor patches moved in the same direction. The task of the
animal was to report the net motion direction across the seven pulses with a saccade to one of two
targets. In this task, the net motion levels did not map directly to discrete-coherence levels, as each
trial could have a different amount of net pulses in either direction. Therefore, we partitioned the data
for each experimental session into six levels by sectioning the net pulses in each direction into thirds.
We selected neurons with d’ statistic magnitudes larger than 0.2 for analysis (Yates et al., 2017).
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4.2 Models
4.2.1 Ramping model with history

In the ramping model, the firing rate is linked to a latent diffusion process (Latimer et al., 2015). In the
following, we describe the generative model. Individual trajectories in the latent space are initiated with
a sample from a Gaussian with mean z and variance w?. The trajectory then evolves according to
drift-diffusion dynamics with a diffusion variance w? and drift 3.. The drift 3. depends on the coherence
c of the current trial. The latent trajectory is scaled by a factor of v and passed through a nonlinearity
f(z) to map it to a positive firing rate space. In the linear ramping model, the nonlinearity is the softplus
function f(z) = log(1 + exp(x)). The output of the nonlinearity is multiplied by history dependence ¢,
such that the firing rate in spikes per second is Ay = f(z+y) g+ If the trajectory crosses an absorbing
upper boundary at 1 in the latent space then the firing rate is held fixed for the remainder of the trial at
the boundary rate. The generative model for a trial of length 7" is

1 ~ N (wo,0%) (1)

Tep1 ~ N(wp + Be,w?), t>1 )
Poisson(f(z:v) gt A), t<T

" {Poisson(f(v) gt A), t>T ©)

where 7 is the first time bin that z; > 1 (otherwise 7 = o) and A = 0.01s is the bin size. The bin size
is equal to one frame of the stimulus in Meister et al. (2013).

The history dependence modulates the firing rate through a multiplicative interaction. At time ¢, the
history dependence g, is the exponential of the weighted sum of the previous H bins of spiking activity

of the neuron
H
gt = exp <Z whyth> (4)

h=1
with w = [wy,--- ,wg]T a vector of weights. In the models without history g; = 1 for all t. We used
H = 10 bins for 100 ms of history dependence.

The ramping model parameters are © = {B1.c, zg,w?,v, w} where C is the number of coherence
levels. The latent variables in the ramping model x are the latent diffusion trajectories for each trial.

4.2.2 Nonlinear ramping models

The nonlinear ramping models are linked to the latent diffusion process of the ramping model through
alternative nonlinearities. We used three alternative nonlinearities: a soft square root f(z) = log(1 +
exp(z))'/? (sqrt), a soft quadratic f(z) = log(1 4 exp(z))? (quad), and an exponential f(z) = exp(z)
(exp). The parameters and latent variables of the nonlinear ramping models are unchanged from the
ramping model.
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4.2.3 Non-zero baseline firing rate

In the linear and nonlinear ramping models with non-zero baseline rates, the output of the nonlinearity
is shifted by a positive baseline firing rate parameter b before multiplication with the history term (Zyl-
berberg and Shadlen, 2016; Latimer et al., 2017) such that the firing rate is Ay = (f(z+y) + b) g+. The
generative model is

w1 ~ N (x0,w?) (5)

Tp1 ~ Nz + Be,w?), t>1 (6)
Poisson((f(z¢v) + ) gt A), t<rT

" {Poisson((f(v) +b) gt A), t>r. 7)

The parameters of the ramping and nonlinear ramping models with non-zero baseline are
0 = {B1.c, z0,w?,v,b, w}, where C is the number of coherence levels. The latent variables are x.

4.2.4 Stepping model with history

In the stepping model, the initial firing rate starts at a state ag. During the trial, the state can either
remain constant or it can switch to one of two other states, a down state «; or an up state s (Latimer
et al., 2015). The step direction d is sampled from a Bernoulli distribution such that the probability of a
step to as is ¢. and the probability of a step to a1 is 1 — ¢.. The step time z is drawn from a negative
binomial (NB) distribution with a shape parameter » and coherence-dependent mean step time m..
Both the step direction and step time vary from trial to trial. The stepping model firing rate is the product
of the state and the spike-history dependent gain g;. The generative model for a trial of coherence c is

z ~ NB(me,r) (8)

d ~ Bernoulli(¢,) 9)
Poisson(ag g: A), t<z

Yy ~ { Poisson(ay gt A), t>z,d=1 (10)
Poisson(ag g: A), t>z,d=2.

The stepping model parameters are © = {ap, a1, as, m1.c, 1.0, 7, w}. The bin size is A = 0.01s.
The history-dependence has the same parameterization as the ramping models. The latent variables
in the stepping model are the step times and step directions on each trial. This stepping model is
a reparameterization of the stepping model in (Latimer et al., 2015), which used scale parameters
pe instead of m., where p. = mT—T—T' We used the mean step time parameterization because the

parameters r and m,. are less correlated than r and p., which improved mixing in the MCMC algorithm
described below.
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4.3 Model Inference
4.3.1 Prior Distributions

We used the following priors on the parameters of the ramping and nonlinear ramping models

p(x0) = N (20; pi, 03) (11)
p(Be) = N (Bes g, 03) (12)
p(w?) = Inv-Gamma(w?; o, B (13)
p(7) = Gamma(y; oy, By) (14)
p(b) = Gamma(b; a, 5p) (15)
p(w;) = N (wi; pun, 7). (16)

For all models, the priors on the diffusion drifts and variance were jg3 = 0, o3 = 0.1, o, = 1.1, and
B, = le—3. In models with a zero baseline, we set u,, = 0 and o, = 10. In models with a non-zero
baseline, we set u, = 0.5 and o, = 0.5 and used a3, = 1 and 5, = 0.01 for the prior on the baseline
parameter. The prior on the bound height varied for each nonlinearity. We used o, = 2 and 3, = 0.05
for the softplus, a, = 1 and 8, = le—4 for the soft square root, o, = 3 and 3, = 0.5 for the soft
quadratic, and o, = 3 and 3, = 3 for the exponential. The parameters for the prior on the history
weights were p;, = 0 and o7 = 10.

The priors on the stepping model with history were

p(ap) = Gamma(ag; o, Ba) (17)
plag, ag) o 1(ag > a1) Gamma(ay; oy, fa) Gamma(ag; oy, fa) (18)
p(m.) = Gamma(me; ap, Bm) (19)
p(r) = Gammal(r; o, ;) (20)
p(@c) = Beta(ge; avg, Bp) (21)
p(wi) = N (wi; pn, o7) (22)

where 1(-) is the indicator function. The joint prior on the rates p(ag, a1, a2) = p(ag)p(a1, as) enforces
identifiability and we set o, = 1 and 5, = 0.01. The prior over the mean step times was «,, = 2
and 8,, = 0.02. This prior has a peak at 50, a mean of 100, and it places significant mass over a
broad range of m.The prior over the step direction probabilities was uniform over [0, 1] with o, = 1 and
B¢ = 1. The prior over r used o, = 2 and 3, = 1. The history weights had the same prior as in the
ramping model with p;, = 0 and U}zl = 10. For the stepping model without history, the priors were those
specified in (Latimer et al., 2015).

4.3.2 MCMC Overview

We used Markov chain Monte Carlo (MCMC) methods to obtain approximate samples from the posterior
of the model parameters © given the data y, p(O|y). Specifically, we used MCMC to approximately
sample from the joint posterior of the parameters and the latents p(©, x|y) and ignored the samples of
the latents to obtain samples from p(©ly).
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The following is an overview of the MCMC methods we used to obtain samples from p(©|y) (Latimer
et al., 2015). First, we sampled a value for each latent variable given the parameters and the observed
spike counts from the distribution p(x|©,y). Then, conditioned on the new value of the latent variables
and the data, we sampled new parameter values from p(©|x,y). By repeating this procedure many
times we obtained samples from the distribution p(©,x|y). We marginalized over x to obtain the
posterior distribution over the parameters p(©|y) by simply discarding the values of x.

For each MCMC simulation, we simulated a chain of 60000 samples from p(©|y). We discarded the
first 10000 samples from the chain as a burn in period. We kept every fifth sample afterwards, leaving
S = 10000 samples from the posterior distribution over the parameters. For each posterior sample
{©°}s-1.5, we computed the likelihood of the data given the posterior sample p(y|©°) by marginalizing
over the latent variables. In the ramping models, we used 5000 Monte Carlo samples of the latent
trajectories given ©° to compute the likelihood. In the stepping model, we performed the marginalization
by integrating the step times and step directions on a grid (Latimer et al., 2015).

For the variable duration dataset, we simulated two MCMC chains for the ramping, linear ramping with
non-zero baseline, square root ramping with non-zero baseline, and stepping models (all with spike-
history) to examine convergence in the MCMC chains before comparing these models. We assessed
convergence using the potential scale reduction factor (PSRF) convergence diagnostic (Gelman et al.,
2013) on the trial likelihoods from the two chains. We chose to monitor the convergence of the like-
lihoods because our model comparison is based solely on the likelihoods. If the diagnostic indicated
that the two chains had not converged to the same likelihood distribution (PSRF > 1.1), we simulated
additional chains until we obtained two chains that passed the diagnostic. This required increasing the
number of burn in samples for a few cells.

4.3.3 MCMC for Ramping and Nonlinear Ramping Models

The MCMC sampling procedure for the ramping and nonlinear ramping models proceeded as follows.
We first initialized the parameters to oM, we set B1.c by sampling C values from the distribution
N (B¢;0,0.001) and sorting the values in the order of the coherence levels. We set the initial bound
height ~ to be a sample from a Gaussian distribution with mean equal to the average spike rate in the
final time bin of in-RF choice trials and with unit variance. We sampled the initial =y from a Gaussian
with mean equal to the average spike rate in the first time bin divided by the initial v and with standard
deviation 0.01. We constrained the initial ¢ to be in [0.1,0.9]. We sampled the initial variance w?
uniformly in the range [5e—4,5e—3]. We sampled the initial history weights w,(f) ~ N(wp;0,0.1).
With a non-zero baseline, we sampled the initial baseline parameter b(!) ~ A/(b;0.5,0.01) and also
subtracted the baseline from the mean of the distribution for sampling ~.

After initializing the parameters, we alternated between sampling the latent diffusion paths conditioned
on the current parameters and sampling new values of the parameters conditioned on the previous
latent path. Formally, we obtained the s sample, for s > 1, with

x(*) ~ p(x|0ED y) -
5@0 ~ p(Brc|x®, x(()sfl), w2 (=1) (24)
e -
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WP~ p(w?lx), B, o) (26)
7 5w~ p(y, b, w]x®) y). (27)

For step (23), we used a particle filter to estimate the distribution of latent paths below the boundary
and the distribution of boundary crossing times (Latimer et al., 2015). Given those two distributions,
we used a backwards sampling scheme to sample the latent paths x(*). We modified the firing rate
observation likelihood in this step for each model to include the appropriate nonlinearity, baseline, and
history dependence. We exploited conjugacy in steps (24), (25), and (26) for Gibbs steps, which were
identical to those presented in Latimer et al. (2015).

For the final step (27), we used a manifold Metropolis-adjusted Langevin (MMALA) step to jointly sam-
ple the parameters 8 = [y, b, w|T (Girolami and Calderhead, 2011; Latimer et al., 2015). The vector of
parameters 6 has dimension J = 2 + H, where H is the number of history weights. In the following
derivation, for models with a subset of the parameters 6, the terms unrelated to the subset of param-
eters are disregarded. Each Metropolis step consisted of sampling a new value of the parameters 6*
from a proposal distribution ¢(6*|8°*—1),y,x(®)) and accepting the newly sampled values (that is, set
0(*) = 0*) with probability

* | () (s—1)|p* (s)

Paccept = 11N (1’ p(0G—D|x() y) q(0*]06—1 y, x())

If the proposed values were not accepted then we set 8(*) = 8(*—1), The proposal distribution used the
gradient of the log likelihood plus log prior Vo £(6) and the Fisher information matrix plus Hessian of
the log prior G(0)

q(6*10¢ y, x(*)) = N(e*; ot~ + ezéc;—l(e<s—1>)v,,a(9<s-1>), 62G—1(e<8—1>)) (29)

where VoL(0) = [55-L£(0), 55-L(0),- - , 59-L(6)]". The step size ¢, was initialized to 0.05 and

gradually increased to 1 during the burn in period.

We define the firing rate function
Nz, 0) = (F(af) 7) +b)gis (30)

that is in general a function of ~, the baseline parameter b, the sampled latent path, and the history for
trial © and time ¢. The log likelihood plus log prior is a sum over N trials and T; time points on each trial

L(0) =logp(y|x"*),0) +log p(6) (31)
N T;

_ <Z S yislog Az, 0)A — A, 0)A —log (s + 1)) +log p(6). (32)
i=1 t=1

The gradient of £(8) is defined by the derivatives with respect to each parameter 6;

0 N L ’ (s) Yit 0
%c(e) = (Z > N, (2:7.0) (A() — A)) + 2, log p(6) (33)

()
i=1 t=1 iz, 0
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where )\’gj (x(s) 0) is the derivative of the rate function with respect to ;. The J x J matrix G(8) is

it

; (s) 1 (n(9)
0? 0? NG N, (g, 0N, (27, 6)
G;k(0) = —Ey i) [5(9)} = ~30 59, logp(0) + A——o S (34)
J ylx(s).0 00; 00y, 00; 00y, ZZ; ; /\(xl(’i% 0)
The derivatives %A(xgi), 0) for each parameter are
a S S
5 A 0) = £ ) g (35)
0 s
Ml 0) = aiy (36)
8 S S
5@, 0) = (%) +0) gie i
Wh ’ ’
where f,’y(:cgft), ~v) is the derivative of each nonlinearity with input ngt), ~ with respect to v
33('875) .
m, softplus (linear)
()
1loe(1 ) y))-1/2___ T soft sqrt
f’;(l‘gst)’ ’7) _ 2( Og( + eXP($Z7t 7))) (1;’_exp(_x£st)’y)7 q
2log(1 ) Tud f
og(1 + exp(z;; 7)) Ev———c soft quad
xgst) exp(wz('i)V% exponential.
The derivative and second derivative of the log prior on ~ are
0 0 oy —1
7 logp(v) = o (ow log(By) —logI'(ay) + (ay — 1) logy — Bw) =—1— -8, (37
0? 0 (ay,—1 ay —1
“ - (= — =_0 - 38
Ttospn) = 5 (Tt - 5) = -2 )
Similarly, for the baseline b these quantities are
0 ap — 1
—1 b) = — 39
5y 108 P() 5 B (39)
0? ap—1
2 logp(b) = — b2 (40)
The first two derivatives of the log likelihood of the history weights w;, are
0 0 1 1 1 (wp, — pn)? Wy, — [
—1 =—|( —=log2r — =logo? — -~ ) =" % 41
Jwn og p(wn) Jur ( glog2m = 51080k = 52 p (41)
0? 0 wp, — Up 1
—1 = — =——. 42
8?1)}% ng(wh) 8wh< 0_}21 0_]% ( )

Each of the priors are independent and therefore the prior terms contributing to the off-diagonal ele-
ments of G, (@) are zero.
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4.3.4 MCMC for Stepping Models

In the stepping model we alternated between sampling the latent step times z and directions d and
sampling the parameters of the model ©. We first initialized the parameters to ©(1). We set a(()l) to
the firing rate in the first time bin, a§1> to the firing rate in the final time bin of out-RF choice trials,
and agl) to the firing rate in the final time bin of in- RF choice trials. We then added Gaussian noise
to each o). We sampled r(1) ~ N(r;1,0.0025), m" ~ A (me;30,25), ¢ ~ N (¢:0.5,0.05), and
w}(ll) ~ N (wp;0,0.1).

After initialization, we performed the following sequence of steps to obtain the s > 1 sample

7(5) d(s ~ p(z, d|@ s—1) ¥) (43)
0‘(() e W~ plag., wiz), d¥)y) (44)
~ p(drcld®) (45)

m1 c ~ p(muclz®,r*=Y) (46)

~ p(rlz), m}; )c) (47)

We sampled the step directions and step times (step 43) by sampling from the distribution computed
on a grid, truncated at 1500 time bins (Latimer et al., 2015), with the history dependence included in
the observation likelihood. We employed Beta-Bernoulli conjugacy to directly sample the step direction
probabilities (step 45) using a Gibbs’ step.

Sampling the rates and spike history filters

We used an MMALA step in the stepping model to sample the rates «g.o and history weights w with
proposal distribution

q(6716¢7V,y,2,d") =N (0*; 001 + 22600V, (60Y), eie—lw“—”)) (48)

where 8 = [ag.2, w]T. The step size ¢, was gradually increased from 0.05 to 1 during the burn in period.
The firing rate for trial < and time ¢ is

A(Z§S)7d1(8)707t) = O‘(Zz‘(S)vdl( )7t)gzt (49)
where
Qp, Z(S)
a(z,dP 1) = { o, 29 <, d(s) =1 (50)
a2, Z(S) <t, d(s) =2.

The MMALA step uses £(6), %L(G), and G(6). The log likelihood plus log prior is

L£(8) =logp(y|z®),d™,0) + log p(8) (51)

N T;
= <ZZyi,t log A(#”),d”, 0,6)A = \(#*),d”, 6,)A — log I (y: ¢ + 1>) +logp(8). (52)
i=1 t=1
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The gradient of the log likelihood plus log prior is

i

9 N ) ) Yit 0

s)
=1 t=1 . Y 707t

The elements of the Fisher information matrix plus the Hessian of the log prior are

: (s) 4(s) 1o (8) 4(s)
82 N E )‘/0(21 7di ’07 t))\e (Zz 7dz‘ ’07 t)
G, (0)=— logp(0) + A u : 54
The derivative of the rate function given =) and d*) is
A () 40 1y — (s
i)\(Z,ES), dES), 0’ t) — g%t? O[(ZZ LAt A ) aj (55)
da; 0, otherwise.
The derivative with respect to the history weights is
DA, d,6,1) = a1, d), 1) giayisn (56)
owy, ’

When evaluating the first and second derivatives of the log prior for the proposal distribution in (53) and
(54), we used independent priors on a1 and as

q(a1) = I'(a1; aa, Ba) (57)
Q(OQ) = F(OQ; Oy 6&)- (58)

This simplifies computation of the gradient and Hessian for the proposal distribution. The derivatives of
the log prior for ap.2 and w have the same form as v and w in the ramping model.

We note that if across all trials the cell was never in state a; then %E(G) is zero and the row and
column of G(8) corresponding to «; is zero. This matrix must be nonsingular such that we can use
its inverse in the proposal distribution. Therefore, if this occurred, although rare, we set the diagonal
element of each zero row and column to one.

Sampling step time means and shape

We sampled the mean m.c and shape r parameters of the negative binomial distribution over the step
times using Metropolis steps. The probability of a step time z; on trial ¢ with coherence c; in terms of

me, and r is
B [(z +7) M, - r '
p(zilr, me;) = T(z + 1)I(r) <mci + r) <mci + r> : (59)

We alternated between sampling each m,. conditioned on r and sampling r conditioned on each m..

The proposal distribution for each m. is

Q m* m(s—1)7r(s—1)’z(s) ~N m*; m(s—l) + 2 gt m(s—l)
cllte c c m
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We gradually increased ¢, from 0.05 to 1 during the burn in period. The log likelihood of m. plus log
prior is the sum of the likelihoods of the step time z; for each trial with coherence ¢

L(me) =Y logp(zir,me,) +log p(me) (61)
1€Cc;=cC
= Z z; log Mes +rlog r + log p(m¢) + const. (62)
i€ci=c Me; +7 Me; +7

The derivative of the log likelihood of m,. plus log prior with respect to m. is

0 r r 0
c) = 7 - 1 c)- 3
8m0£(m ) iecZ::c [Z Me; (Me; +7) Mg, + J " ome o8 p(me) (63)

The Fisher information plus the Hessian of the log prior is

0? 0? r
¢) = ~Eamer | 53 c)| = 1 c S E—— 64
G(me) [me, [amgﬁ(m )} “om2 og p(m )4—1'602:C [mq(m% +r)} (64)
where we have used Ezi‘mciﬂ‘[zi] = me,.
The proposal distribution for r is
e (s=1) - (5) _(s) oo (=) L L 20 L o)y 2
Q(r*|r My, 2 ) ~ N + 7€ Eﬁ(r ), € (65)
and the log likelihood of r plus log prior is a sum over all trials
N m,
L(r) = ; [logf(zﬁ—r) —logI'(r) + z; log <mczj-7“> +rlog (mCi n rﬂ +log p(r) + const. (66)

The derivative of the log likelihood plus log prior with respect to r is

3 0 Zi r mci
aﬁ(r) —1ogp +Z [ (zi +71)— (r)—mCi_{_rJrlog (mci+7‘> +mci+7"] (67)

where 9 is the digamma function v (r) = I"(r)/T'(r). The step size e was initialized to 0.075 and was
adjusted throughout the burn in period, after which it was fixed.

4.4 Model Comparison: WAIC

We used the WAIC to compare the models (Watanabe, 2010; Gelman et al., 2014; Vehtari et al., 2017;
Piironen and Vehtari, 2017). The WAIC estimates the expected generalization of a fit model to new
data from the true data generating distribution. This corresponds to an estimate of how well the model
would predict spike trains recorded on new trials. As generally the experimenter neither has access
to unlimited data nor the true data generating distribution, the WAIC and other information criterion
methods estimate the expected generalization using how well the model describes the in-sample data
with a correction factor.
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The WAIC is a function of the probability of the data given each posterior sample, {p(yi|©*)}s=1.5, for
each trial . We used the formula in (Gelman et al., 2014) to compute the WAIC across N ftrials as

N S N
1
WAIC = —2 < > log (s Zp(yi|@s)) —) Var[logp(y:|©)] ) (68)
=1 s=1 i=1
Ippd PwWAIC

The first term is the log pointwise predictive density (Ippd) and it describes how well the model predicts
the data to which it was fit. A strength of the WAIC is the Ippd averages over the posterior rather than
conditioning on a point estimate of the parameters. The second term pwaic is a penalty that corrects
the bias induced by estimating the expected generalization to new data from the Ippd. The penalty
term pwaic is computed for each trial as the variance of the log likelihoods of a trial across the posterior
samples {©°},_1.5, and therefore is guaranteed to be non-negative because it is a sum of variances,
another strength of the WAIC (Gelman et al., 2014). Additional advantages of the WAIC are theoretical
results showing its asymptotic equivalence to Bayesian leave-one-out cross validation, its applicability
to singular statistical models, and its computational efficiency when compared to leave-one-out cross
validation (Watanabe, 2010; Gelman et al., 2014; Piironen and Vehtari, 2017). For all of these reasons
we used it to compare the relative fits of the models.

In model comparison, we computed the WAIC difference between two models

Since lower WAIC values are better, a positive difference favors model two while a negative difference
favors model one. In some cases, we normalized the WAIC by the number of trials to put comparisons
with differing numbers of trials on the same scale. We also considered the WAIC difference on subsets
of trials by only summing across trials of certain conditions. We set the stepping model with spike-
history as model 2 in model comparison with other models. Therefore, positive WAIC differences favor
the stepping with spike-history model over the alternative model in these comparisons.

We quantified uncertainty in the model comparison using standard errors of the WAIC differences
across trials

se(AWAIC) = /N Var(AWAIC;) (70)
where AWAIC; is the WAIC difference computed for trial i.

4.5 Simulated Data

We computed simulated latent trajectories and PSTHs from a fit model using the following procedure.
For 40 random samples from the posterior over the parameters, we simulated a spike train for each
trial conditioned on the pre-trial spiking activity and parameters of the model. For a few cells, simulated
spike trains from the models with spike-history generated unrealistically large numbers of spikes due
to self-excitation. We enforced realistic spike trains in these cases by setting the multiplicative history
gain to unitary whenever the generated spike history effect was larger than the largest inferred history
gain in the data. We averaged the simulated spike trains corresponding to each coherence to compute
the coherence-dependent simulated PSTHs.
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We computed the autocorrelation of the observed and simulated data for each neuron with the normal-

ized autocorrelation function ) .
R(r) = o <Nr zt:ytyt—r> -m (71)

where y; is the spike count at time ¢ and m is the mean spike count. The sum was computed over all
valid time bins and IV, is the number of valid time bins.

For computing the fraction at the boundaries in (Figure 5), we used the following criterion. A time point
t was classified as at a boundary if z; < 0orx; > 1.

24


https://doi.org/10.1101/433458
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/433458; this version posted October 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Acknowledgements

This work was supported by the McKnight Foundation (J.W.P.), NSF CAREER Award 11S-1150186
(J.W.P,), and grants from the NIH (NEI grant EYE017366, to A.C.H., and NIMH grant MH099611, to
A.C.H. & JJW.P). David Zoltowski is supported by NIH grant T32MH065214. Jacob Yates is an Open
Philanthropy Fellow of the Life Sciences Research Foundation. Kenneth Latimer is a Chicago Fellow.

Author Contributions

Conceptualization, D.M.Z., KW.L., A.C.H., and J.W.P.; Methodology, D.M.Z., KW.L., A.C.H., and J.W.P;
Software, D.M.Z.; Formal Analysis, D.M.Z.; Investigation, J.L.Y.; Data Curation, J.L.Y.; Writing - Orig-
inal Draft, D.M.Z. and J.W.P.; Writing - Review & Editing, D.M.Z., KW.L., J.L.Y., A.C.H., and JW.P;
Visualization, D.M.Z.; Supervision, J.W.P.; Funding Acquisition, A.C.H. and JW.P..

Declaration of Interests

The authors declare no competing interests.

References

Bollimunta, A., Totten, D., and Ditterich, J. (2012). Neural dynamics of choice: single-trial analysis of
decision-related activity in parietal cortex. Journal of Neuroscience, 32(37):12684—12701.

Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S., and Movshon, J. A. (1996). A relationship
between behavioral choice and the visual responses of neurons in macaque mt. Visual neuroscience,
13(1):87—-100.

Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A. (1992). The analysis of vi-
sual motion: a comparison of neuronal and psychophysical performance. Journal of Neuroscience,
12(12):4745-4765.

Brunton, B. W., Botvinick, M. M., and Brody, C. D. (2013). Rats and humans can optimally accumulate
evidence for decision-making. Science, 340(6128):95-98.

Chandrasekaran, C., Soldado-Magraner, J., Peixoto, D., Sahani, M., and Shenoy, K. V. (2016). Do
decision-related firing rates of dorsal premotor cortex neurons “ramp” or “step” on single trials? In
Society for Neuroscience Annual Meeting.

Charles, A. S., Park, M., Weller, J. P., Horwitz, G. D., and Pillow, J. W. (2018). Dethroning the fano factor:
A flexible, model-based approach to partitioning neural variability. Neural Computation, 30(4):1012—
1045.

25


https://doi.org/10.1101/433458
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/433458; this version posted October 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Churchland, A. K. and Kiani, R. (2016). Three challenges for connecting model to mechanism in
decision-making. Current opinion in behavioral sciences, 11:74-80.

Churchland, A. K., Kiani, R., Chaudhuri, R., Wang, X.-J., Pouget, A., and Shadlen, M. N. (2011).
Variance as a signature of neural computations during decision making. Neuron, 69(4):818-831.

Churchland, A. K., Kiani, R., and Shadlen, M. N. (2008). Decision-making with multiple alternatives.
Nature neuroscience, 11(6):693.

de Lafuente, V., Jazayeri, M., and Shadlen, M. N. (2015). Representation of accumulating evidence for
a decision in two parietal areas. Journal of Neuroscience, 35(10):4306—4318.

Ditterich, J. (2006a). Evidence for time-variant decision making. European Journal of Neuroscience,
24(12):3628-3641.

Ditterich, J. (2006b). Stochastic models of decisions about motion direction: behavior and physiology.
Neural Networks, 19(8):981-1012.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian
data analysis, 3rd edition.

Gelman, A., Hwang, J., and Vehtari, A. (2014). Understanding predictive information criteria for
bayesian models. Statistics and Computing, 24(6):997—-1016.

Girolami, M. and Calderhead, B. (2011). Riemann manifold langevin and hamiltonian monte carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123-214.

Gold, J. I. and Shadlen, M. N. (2007). The neural basis of decision making. Annu. Rev. Neurosci.,
30:535-574.

Goris, R. L., Movshon, J. A., and Simoncelli, E. P. (2014). Partitioning neuronal variability. Nature
neuroscience, 17(6):858.

Hanks, T. D., Ditterich, J., and Shadlen, M. N. (2006). Microstimulation of macaque area lip affects
decision-making in a motion discrimination task. Nature neuroscience, 9(5):682.

Hanks, T. D., Kopec, C. D., Brunton, B. W., Duan, C. A., Erlich, J. C., and Brody, C. D. (2015). Distinct
relationships of parietal and prefrontal cortices to evidence accumulation. Nature, 520(7546):220—
223.

Hanks, T. D. and Summerfield, C. (2017). Perceptual decision making in rodents, monkeys, and hu-
mans. Neuron, 93(1):15-31.

Huk, A. C., Katz, L. N., and Yates, J. L. (2017). The role of the lateral intraparietal area in (the study of)
decision making. Annual review of neuroscience, 40:349-372.

Huk, A. C. and Shadlen, M. N. (2005). Neural activity in macaque parietal cortex reflects temporal
integration of visual motion signals during perceptual decision making. Journal of Neuroscience,
25(45):10420-10436.

26


https://doi.org/10.1101/433458
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/433458; this version posted October 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Janssen, P. and Shadlen, M. N. (2005). A representation of the hazard rate of elapsed time in macaque
area lip. Nature neuroscience, 8(2):234.

Katz, L. N., Yates, J. L., Pillow, J. W., and Huk, A. C. (2016). Dissociated functional significance of
decision-related activity in the primate dorsal stream. Nature, 535(7611):285-288.

Kiani, R., Hanks, T. D., and Shadlen, M. N. (2008). Bounded integration in parietal cortex underlies
decisions even when viewing duration is dictated by the environment. Journal of Neuroscience,
28(12):3017-3029.

Kiani, R. and Shadlen, M. N. (2009). Representation of confidence associated with a decision by
neurons in the parietal cortex. science, 324(5928):759—-764.

Kira, S., Yang, T., and Shadlen, M. N. (2015). A neural implementation of wald?s sequential probability
ratio test. Neuron, 85(4):861-873.

Latimer, K. W., Huk, A. C., and Pillow, J. W. (2017). No cause for pause: new analyses of ramping and
stepping dynamics in lip (rebuttal to response to reply to comment on latimer et al. 2015). bioRxiv.

Latimer, K. W., Yates, J. L., Meister, M. L., Huk, A. C., and Pillow, J. W. (2015). Single-trial spike trains
in parietal cortex reveal discrete steps during decision-making. Science, 349(6244):184—187.

Mazurek, M. E., Roitman, J. D., Ditterich, J., and Shadlen, M. N. (2003). A role for neural integrators in
perceptual decision making. Cerebral cortex, 13(11):1257—1269.

Meister, M. L., Hennig, J. A., and Huk, A. C. (2013). Signal multiplexing and single-neuron computations
in lateral intraparietal area during decision-making. Journal of Neuroscience, 33(6):2254—2267.

Morcos, A. S. and Harvey, C. D. (2016). History-dependent variability in population dynamics during
evidence accumulation in cortex. Nature neuroscience, 19(12):1672.

Newsome, W. and Pare, E. (1988). A selective impairment of motion perception following lesions of the
middle temporal visual area (mt). Journal of Neuroscience, 8(6):2201-2211.

Palmer, J., Huk, A. C., and Shadlen, M. N. (2005). The effect of stimulus strength on the speed and
accuracy of a perceptual decision. Journal of vision, 5(5):1-1.

Park, I. M., Meister, M. L., Huk, A. C., and Pillow, J. W. (2014). Encoding and decoding in parietal cortex
during sensorimotor decision-making. Nature neuroscience, 17(10):1395-1403.

Piironen, J. and Vehtari, A. (2017). Comparison of bayesian predictive methods for model selection.
Statistics and Computing, 27(3):711-735.

Roitman, J. D. and Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during
a combined visual discrimination reaction time task. Journal of Neuroscience, 22(21):9475-9489.

Scott, B. B., Constantinople, C. M., Akrami, A., Hanks, T. D., Brody, C. D., and Tank, D. W. (2017).
Fronto-parietal cortical circuits encode accumulated evidence with a diversity of timescales. Neuron,
95(2):385-398.

27


https://doi.org/10.1101/433458
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/433458; this version posted October 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Shadlen, M. N. and Kiani, R. (2013). Decision making as a window on cognition. Neuron, 80(3):791—
806.

Shadlen, M. N., Kiani, R., Newsome, W. T., Gold, J. |., Wolpert, D. M., Zylberberg, A., Ditterich, J.,
de Lafuente, V., Yang, T., and Roitman, J. (2016). Comment on "single-trial spike trains in parietal
cortex reveal discrete steps during decision-making". Science, 351(6280):1406—1406.

Shadlen, M. N. and Newsome, W. T. (1996). Motion perception: seeing and deciding. Proceedings of
the national academy of sciences, 93(2):628—633.

Shadlen, M. N. and Newsome, W. T. (2001). Neural basis of a perceptual decision in the parietal cortex
(area lip) of the rhesus monkey. Journal of Neurophysiology, 86(4):1916—1936. PMID: 11600651.

Stine, G. M., Zylberberg, A., and Shadlen, M. N. (2018). Disentangling evidence integration from
memoryless strategies in perceptual decision making. Cosyne.

Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., and Brown, E. N. (2005). A point pro-
cess framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic
covariate effects. Journal of Neurophysiology, 93(2):1074—1089.

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical bayesian model evaluation using leave-one-out
cross-validation and waic. Statistics and Computing, 27(5):1413—-1432.

Watanabe, S. (2010). Asymptotic equivalence of bayes cross validation and widely applicable informa-
tion criterion in singular learning theory. Journal of Machine Learning Research, 11(Dec):3571-3594.

Weber, A. I. and Pillow, J. W. (2017). Capturing the dynamical repertoire of single neurons with gener-
alized linear models. Neural Computation, 29(12):3260-3289.

Yang, T. and Shadlen, M. N. (2007). Probabilistic reasoning by neurons. Nature, 447(7148):1075.

Yates, J. L., Park, I. M., Katz, L. N., Pillow, J. W., and Huk, A. C. (2017). Functional dissection of signal
and noise in mt and lip during decision-making. Nature neuroscience, 20(9):1285.

Zhao, X. and Kording, K. (2018). Rate fluctuations not steps dominate lip activity during decision-
making. bioRxiv, page 249672.

Zylberberg, A. and Shadlen, M. N. (2016). Cause for pause before leaping to conclusions about step-
ping. bioRxiv, page 085886.

28


https://doi.org/10.1101/433458
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/433458; this version posted October 2, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

A Supplementary Figures

A
true ramp +history true step +history
— i — step +histor
100 step +history 500 p y
correct
Q Oy rpmpmmprse= O
= 11 /T i < I
T I I I
3 I I S . I
o) ] HIl 1 1 I, 1
8 8 0 Iz _tﬂtxélk_hi_nt
500 correct. -100 .
— ramp +history — ramp +history

single coherence simulations without history
600 1-

ADIC
+ ADIC __ (26/60 correct)
+ AWAIC
AWAIC
(55/60 correct)
-600/ correbt
0 60

A firing rate I W

Cell AWAIC

true ramp +b, +history true step +history
— step +history — step +history
100 500 correct
0 g e O
I I <
: T3 i1
I T il £ I
| 8 (Rldasxm.
correct 100
— ramp +b, +history — ramp +b, +history
single coherence simulations with history
>100
ADIC
* ADIC __ (45/80 correct)
+ AWAIC

correct

<-100 +—r————

0 100

A firing rate IW

AWAIC
(74/80 correct)

Figure 7. The WAIC correctly identifies simulated data from different models. Related to Figures 3 and 4.
A. The WAIC reliably distinguished data from the ramping and stepping models with spike-history simulated
from the mean parameters of the ramping (left) and stepping (right) models with spike-history for each cell.
The number of simulated trials per motion coherence was matched to the true number for each cell. B.
Same as A, except for simulated data from the ramping with non-zero baseline and history model. C.-D.
Model comparison results from simulated single-coherence ramping data as a function of the change in firing
rate from the beginning to the end of the trial using the DIC and WAIC. The WAIC correctly identifies data
simulated from single-coherence ramping models (Chandrasekaran et al., 2016).
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Figure 8. Model comparison using leave-one-out cross validation. Related to Figures 3 and 4. We used PSIS-
LOO to estimate the Bayesian leave-one-out cross validation performance (LOO) on held out trials (Vehtari
et al,, 2017). In Bayesian LOO, predictive performance on a held-out trial is evaluated by integrating over
the posterior distribution of the parameters conditioned on the rest of the trials. PSIS-LOO uses importance
sampling to estimate this intergral. The proposal distribution is the posterior distribution conditioned on all of
the trials (which we sample from in our MCMC procedure) and the importance weights are stabilized through
regularization. Model comparison using LOO provided nearly identical results to the model comparison using

WAIC.
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Figure 9. Related to Figure 5. Quantitative comparison of simulated trajectories from the square root ramping
model with non-zero baseline and history against the linear ramping model with history and zero baseline.
Left: Diffusion variance increased in the square root ramping model with non-zero baseline. Right: Fraction
of time the simulated latent firing rates were equal to the baseline rate or upper absorbing boundary. Cell 1 is
marked by an (x) in these plots.
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Figure 10. Model comparison using leave-one-out cross validation (LOO) for the discrete-pulse and reaction
time data. Related to Figure 6. LOO was estimated using PSIS-LOO (Vehtari et al., 2017, see Figure 8).
Model comparison using LOO for these datasets provided very similar results to model comparison using
WAIC.
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