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Abstract 

Major depression is a debilitating psychiatric illness that is typically associated with low mood, 

anhedonia and a range of comorbidities. Depression has a heritable component that has remained 

difficult to elucidate with current sample sizes due to the polygenic nature of the disorder. To 

maximise sample size, we meta-analysed data on 807,553 individuals (246,363 cases and 561,190 

controls) from the three largest genome-wide association studies of depression. We identified 102 

independent variants, 269 genes, and 15 gene-sets associated with depression, including both genes 

and gene-pathways associated with synaptic structure and neurotransmission. Further evidence of the 

importance of prefrontal brain regions in depression was provided by an enrichment analysis. In an 

independent replication sample of 1,306,354 individuals (414,055 cases and 892,299 controls), 87 of 

the 102 associated variants were significant following multiple testing correction. Based on the 

putative genes associated with depression this work also highlights several potential drug 

repositioning opportunities. These findings advance our understanding of the complex genetic 

architecture of depression and provide several future avenues for understanding aetiology and 

developing new treatment approaches.  
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Depression is the leading cause of worldwide disability 1 and an estimated 1 in 6 people will develop 

the disorder during their lifetime 2. Twin studies have provided heritability estimates of the disease of 

approximately 30-40% 3, however depression is a polygenic trait influenced by many genetic variants 

each of small effect 4. Therefore, to enable the detection of causal genetic variants associated with 

depression there is a need to study very large numbers of individuals. However, obtaining detailed 

clinical diagnoses of major depressive disorder in larger cohorts is both time consuming and 

expensive. The results of Howard, et al. 5 showed that there is a strong genetic correlation (rG = 0.86, 

s.e. = 0.05) between broader self-declared definitions of depression and clinically diagnosed major 

depressive disorder (MDD) within a hospital setting. Therefore, analysing larger samples, which have 

used different approaches to diagnosis, may provide advances in our understanding of the genetics of 

depression. 

Major efforts to identify genetic variants associated with depression have included a mega-analysis of 

9 cohorts (total n = 18,759; 9240 cases and 9519 controls) for MDD 4 and a meta-analysis of 17 

cohorts (total n = 34,549) using a broader diagnostic scale that includes depressive symptoms 6. 

However, both of these studies failed to find any replicated variants associated with depression. The 

first study to report replicable genetic variants for depression found two significant loci associated 

with severe, recurrent MDD (85% enriched for melancholia) in a sample of Han Chinese women 

(total n = 10,640; 5,303 cases and 5,337 controls) 7. A later study conducted by Hyde, et al. 8, 

examining research participants from the personal genetics company 23andMe, Inc., used a self-

reported clinical diagnosis of depression as the phenotype and identified 15 associated loci (total n = 

459,481; 121,380 cases and 338,101 controls). More recently, a genome-wide association analysis of 

UK Biobank by Howard, et al. 5 identified 17 variants associated across three depression phenotypes 

(maximum total n = 322,580; 113,769 cases and 208,811 controls). These three depression 

phenotypes ranged from self-reported help-seeking for problems with nerves, anxiety, tension or 

depression (termed “broad depression”), probable MDD based on self-reported depressive symptoms 

with associated impairment, and MDD identified from hospital admission records. Finally, a meta-

analysis of 35 cohorts (total n = 461,134; 130,664 cases and 330,470 controls) conducted by Wray, et 
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al. 9 (PGC) found 44 loci that were significantly associated with a spectrum of depression phenotypes, 

some obtained from structured clinical interview and others based on broader criteria. 

To maximise the power of the present study we conducted a genome-wide meta-analysis of 

depression using 807,553 individuals (246,363 cases and 561,190 controls, after excluding 

overlapping samples) from the three largest studies noted above 5, 8, 9. From the Hyde, et al. 8 analysis, 

our meta-analysis included only the 23andMe discovery cohort (termed “23andMe_307k”; 75,607 

cases and 231,747 controls). From the Howard, et al. 5 analysis of UK Biobank, the “broad 

depression” phenotype was included, with 4-means clustering of genomic principal components used 

to derive a larger sample (127,552 cases and 233,763 controls) than studied previously. The PGC 

analysis 9 included the 23andMe_307k discovery cohort and an earlier data release of the UK Biobank 

cohort (n = 29,740, 14,260 cases and 15480 controls); we therefore obtained results from the PGC that 

excluded both of these cohorts (termed “PGC_139k”; 43,204 cases and 95,680 controls). 

We sought replication of the variants associated with depression within a set of 23andMe participants 

independent of the 23andMe_307k cohort included in the meta-analysis (414,055 cases of self-

reported clinical diagnosis of depression and 892,299 controls). The results from the meta-analysis 

were used to calculate genetic correlations and conduct Mendelian randomization to identify 

potentially pleiotropic and causal relationships between depression and other diseases and behavioural 

traits. The meta-analysis results were also used to identify a set of associated genes and gene-

pathways, as well as enrichment of functional annotations associated with depression. Combining 

evidence of enrichment in biological pathways with information on traits correlated with depression 

allows for additional inferences about shared aetiological mechanisms, thereby increasing the utility 

of the standard association analysis approach. Interactions between associated genes and available 

drug treatments were also examined to identify novel drug treatments for depression. 
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Results 

102 independent genetic variants associated with depression 

We conducted a genome-wide association meta-analysis of depression using 807,553 individuals 

(Table 1; 246,363 cases and 561,190 controls) from three previous studies of depression, after 

removing sample overlap; the previous studies were Hyde, et al. 8 Howard, et al. 5, and Wray, et al. 9. 

We tested the effects of 8,098,588 genetic variants on depression and identified 9,744 associated 

variants (P < 5 × 10-8) of which 102 variants in 101 loci were independently segregating 

(Supplementary Table 1). The basepair positions of these loci were identified by clumping all 

associated variants (linkage disequilibrium r2 < 0.1 across a 3 Mb window) and then merging any 

overlapping clumps. Independent variants in each locus were identified through conditional analysis 10 

using all variants in that locus. 

A Manhattan plot of our meta-analysis results is provided in Figure 1 with a quantile-quantile plot 

provided in Supplementary Figure 1. Linkage Disequilibrium Score (LDSC) regression 11 produced a 

genomic inflation factor (λGC) estimate of 1.63 with an intercept of 1.015 (0.011) prior to inflation 

correction, indicating that the inflation was due to polygenic signal and unlikely to be confounded by 

population structure. All of the 102 associated variants had the same direction of effect on depression 

across the three contributing studies and also within an independent replication sample of 1,306,354 

individuals (Table 1; 414,055 cases and 892,299 controls). In the replication sample, 97 out of the 102 

associated variants were nominally significant (P < 0.05) and 87 were significant after Bonferroni 

correction (α�=�0.05 / 102; P < 4.90 × 10-4). Further examination of the general directionality 

agreement of associated variants found in the contributing studies to the meta-analysis is provided in 

Supplementary Table 2 and the Supplementary Information. In summary, the direction of effect of 

depression variants in the previous studies was consistent with the current meta-analysis. 

Polygenic risk scores (PRS) were used to assess the predictive ability of the current genome-wide 

meta-analysis of depression within the clinically diagnosed MDD cohorts of Generation Scotland 

(GS; 975 cases and 5,971 controls) , Münster (960 cases and 834 controls) and BiDirect (811 cases 
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and 469 controls). PRS were also calculated using summary statistics from Wray, et al. 9 (Wray PRS) 

for comparison. Both the meta-analysis PRS and the Wray PRS were significantly associated with 

MDD in each of the three cohorts and the current meta-analysis PRS explained a greater proportion of 

the phenotypic variance in each target cohort compared to Wray PRS (Table 3 and Supplementary 

Figure 2). 

Genetic correlations with depression 

LDSC regression 11 was used to calculate pairwise genetic correlations (rG) to determine the extent of 

overlap in the genetic architectures across the three non-overlapping cohorts that contributed to our 

meta-analysis, i.e. between the UK Biobank, PGC_139k and 23andMe_307k depression analyses. 

There was a strong genetic correlation between each of these cohorts. The rG between PGC_139k and 

23andMe_307k was 0.85 (s.e = 0.03). The UK Biobank had a rG of 0.87 (s.e = 0.04) with PGC_139k. 

A similar rG was also found between UK Biobank and 23andMe_307k (0.85, s.e = 0.03). This was 

despite UK Biobank using a broader phenotype based on self-reported help-seeking behaviour 

compared to the self-declared clinical depression phenotype of 23andMe_307k and the primarily 

clinically obtained MDD phenotype of PGC_139k.  

Depression is known to be comorbid with a wide range of other diseases and disorders12. To assess the 

shared genetic architecture between depression and many other traits, genetic correlations were 

calculated between our meta-analysed summary statistics of all three cohorts for depression and 234 

behavioural and disease traits available via LD Hub 13 which implements LDSC regression. Of these 

behavioural and disease traits, 41 were significantly genetically correlated (PFDR < 0.01) with our 

meta-analysis results after applying false discovery rate correction, see Supplementary Figure 3 and 

Supplementary Table 3. Significant genetic correlations with depression included schizophrenia (rG = 

0.32, s.e = 0.02), bipolar disorder (rG = 0.33, s.e = 0.03), college completion (rG = -0.19, s.e = 0.03), 

coronary artery disease (rG = 0.13, s.e = 0.02), triglycerides (rG = 0.14, s.e = 0.02), body fat (rG = 0.16, 

s.e = 0.03), and waist-to-hip ratio (rG = 0.12, s.e = 0.02). Many of these genetic correlations are 

similar to those reported by Wray, et al. 9 and Howard, et al. 5, including earlier age at menarche (rG = 

-0.12, s.e = 0.02). However, a novel genetic correlation was observed for age at menopause (rG = -
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0.11, s.e. 0.03), potentially indicating a shared genetic architecture between depression and earlier 

female reproductive life events. Additionally, novel genetic correlations were observed between 

depression and Crohn’s disease (rG = 0.09, s.e. 0.03) and depression and an earlier age of smoking 

initiation (rG = -0.21, s.e. 0.06). 

Causal relationships between depression and other traits 

The genetic correlations between depression and other traits/disorders reported in the previous section 

may arise from genes with pleiotropic effects and biological influences across both traits. 

Alternatively, there may be a causal effect of depression on other traits (e.g. depression influencing 

triglyceride level) or from other traits causally influencing depression (e.g. triglyceride level leading 

to depression). To determine whether causal relationships exist between depression and the 41 

genetically correlated traits in Supplementary Table 3, we used a bi-directional, two-sample 

Mendelian randomisation (MR) approach using MR-Base v0.4.9 14 in R and an inverse-variance 

weighted (IVW) regression analysis. Where there was also evidence of variant heterogeneity 

additional sensitivity tests were conducted using an MR Egger test and a weighted median test 

(Supplementary Table 4). 

A number of causal relationships were not tested because of sample overlap, which can lead to biased 

effect size estimates15, or where there were an insufficient number of instrumental genetic variables 

(nvariables < 30). A total of 33 causal effects were tested, of which 24 were for a causal effect of 

depression on another trait, and nine tests for a causal effect of another trait on depression. Directional 

horizontal pleiotropy, where a genetic variant has an effect on both traits but via differing biological 

pathways, can bias the estimates of causal effects between traits16. Using the MR Egger intercept test, 

there was no evidence (P ≥ 0.05) of directional horizontal pleiotropy for any of the 33 causal effects 

examined. 

A putative causal effect of depression on neuroticism17 was detected using the IVW regression 

analysis MR test at the 1% significance threshold after false discovery rate (FDR) correction (beta = 

0.146, s.e. = 0.039; PFDR = 2.29 × 10-3; Supplementary Figure 4). However, there was also evidence of 
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variant heterogeneity (P = 6.01 × 10-3), due to global horizontal pleiotropy, requiring additional 

sensitivity tests to examine the consistency of the effect. The additional sensitivity tests both had 

effects in the same direction as the IVW test (weighted median beta = 0.119, s.e. = 0.047; MR Egger 

beta = 0.050, s.e. = 0.235). There was also evidence of a putative causal effect of depression on ever 

vs. never smoked18 (beta = 0.285, s.e. = 0.077; PFDR = 2.29 × 10-3; Supplementary Figure 5), with no 

evidence of variant heterogeneity (P = 0.14). Both the putative causal effects of depression on 

neuroticism and depression on ever vs. never smoked remained consistent (P < 6.46 × 10-4) in the 

‘leave one variant out’ IVW analysis indicating that the observed effect was not driven by a single 

outlying variant. 

Neuroticism was the only trait with a putative causal effect on depression using the IVW regression 

analysis MR test (beta = 0.366, s.e = 0.037; PFDR = 2.63 × 10-21; Supplementary Figure 6). However, 

there was also evidence of variant heterogeneity (P = 9.62 × 10-21) requiring additional MR sensitivity 

testing. The weighted median test produced similar effect size and P-value to the IVW test (beta = 

0.337, s.e. = 0.038; P = 1.94 × 10-18), but the MR Egger test had a large standard error and was in the 

opposite direction (beta = -0.128, s.e. = 0.271; P = 0.64). This putative causal effect remained 

consistent (P = 1.58 × 10-21) in the ‘leave one variant out’, IVW analysis indicating that the observed 

effect was not driven by a single variant. 

The observed bi-directional relationship between depression and neuroticism could be confounded by 

non-independent instrumental variants across both tests, i.e. a region containing variants associated 

with depression was used to test for a causal effect on neuroticism and then variants in that same 

region were also used to test for a causal effect of neuroticism on depression. To account for any 

overlap, we identified and removed 15 instrumental variants from each bi-directional test where there 

was evidence of linkage disequilibrium (LD r2 > 0.1). The effect size for the IVW regression analysis 

MR test for depression on neuroticism was attenuated from 0.146 (s.e. = 0.039) to 0.112 (s.e. = 0.042) 

and the P-value was no longer significant after false discovery rate correction (PFDR = 0.037). The 

effect size for the IVW regression analysis MR test for neuroticism on depression was attenuated from 
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0.366 (s.e. = 0.037) to 0.289 (s.e. = 0.042) and the P-value remained significant after false discovery 

rate correction (PFDR = 1.34 × 10-10). 

Partitioning of the heritability component of depression  

The estimate of the SNP-based heritability of depression within our meta-analysis was 0.089 (0.003) 

on the liability scale using LDSC regression 11. Heritability was then partitioned by calculating the 

proportion of heritability assigned to 24 functional categories divided by the proportion of variants in 

that category 19. This partitioning showed significant enrichment within conserved, intronic and 

H3K4me1 regions of the genome for the heritable component of depression (Pcorrected < 0.05), see 

Supplementary Figure 7 and Supplementary Table 5. However, the estimates of enrichment for 

intronic (1.16×, s.e. = 0.05) and H3K4me1 (1.41×, s.e. = 0.13) regions were much smaller compared 

to the conserved regions (17.49×, s.e. = 1.68) of the genome. 

Partitioning the heritability estimate by cell type enrichment (Figure 2A, and Supplementary Table 6) 

revealed that central nervous system (CNS) and skeletal muscle tissues were enriched (Pcorrected < 0.05) 

for genetic variants contributing to the heritability of depression. Studies have reported altered histone 

modifications of skeletal muscle in response to exercise20 and suggested roles for skeletal muscle 

PGC-1α121 in depression. The prominence of CNS enrichment led us to examine both brain regions 

(Figure 2B, Figure 2C, Supplementary Figure 8, and Supplementary Table 7) and brain cell types 

(Supplementary Figure 9, and Supplementary Table 8). There was significant enrichment (Pcorrected < 

0.05) of the anterior cingulate cortex, frontal cortex and cortex brain regions and neuron brain cells. 

The pseudo-coloring used in Figure 2C and Supplementary Figure 8 highlight in red the significance 

and effects sizes of the enriched regions of the brain associated with depression, respectively. 

Genes and gene-sets putatively associated with depression 

The MAGMA 22 package was used to assess the aggregated genetic effects from the meta-analysis on 

17,842 genes. This technique identified a total of 269 putative genes that were associated (P < 2.80 × 

10-6) with depression, Supplementary Table 9. The most significant gene (P = 2.27 × 10-19) was 

Sortilin related VPS10 domain containing receptor 3 (SORCS3) on chromosome 10 (Supplementary 
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Figure 10). The Neuronal Growth Regulator 1 (NEGR1) gene was associated with depression (P = 

3.55 × 10-15) and there were two nearby independently-associated variants (rs2568958 and 

rs10890020) located in separate loci (Supplementary Figure 11 A-B). rs10890020 overlapped with the 

Long Intergenic Non-Protein Coding RNA 1360 (LINC01306) coding region which was not available 

for analysis in MAGMA. A further short (1.2 Mb) region along 18q.21.2 contained three 

independently-associated variants across two loci (rs62091461, rs12966052 and rs12967143; 

Supplementary Figure 12 A-C). These variants were close to the Transcription Factor 4 (TCF4) and 

the RAB27B genes which were both putatively associated with depression (P = 4.55 × 10-16 and P = 

1.39 × 10-9, respectively). Further consideration of the genes putatively associated with depression is 

provided in the discussion. 

To identify the biological pathways that are influenced by the putative genes associated with 

depression, gene-set analyses were performed using MAGMA 22. This method identifies the genes 

involved in each biological pathway and assesses whether there is evidence of enrichment for each 

pathway in depression using the P-values of each gene. We identified 14 significant putative gene-sets 

(Pcorrected < 0.05) for depression (Table 3) using data from the Gene Ontology Consortium. Eight of 

these gene-sets were cellular components (areas where the genes were active) and were located in the 

nervous system: GO_POSTSYNAPSE, GO_SYNAPSE, GO_NEURON_SPINE, 

GO_EXCITATORY_SYNAPSE, GO_SYNAPSE_PART, GO_NEURON_PROJECTION, 

GO_NEURON_PART, and GO_DENDRITE. The cellular component gene-sets intimate a role in 

synapse function and excitatory mechanisms. The other six associated gene-sets were biological 

processes: GO_BEHAVIOR, CO_COGNITION, 

GO_MODULATION_OF_SYNAPTIC_TRANSMISSION, 

GO_REGULATION_OF_SYNAPSE_STRUCTURE_OR_ACTIVITY, 

GO_MODULATION_OF_SYNAPTIC_PLASTICITY, and 

GO_SINGLE_ORGANISM_BEHAVIOR. The gene overlap between these gene-sets (Supplementary 

Table 10) suggests that the gene-sets generally fall within two clusters. One gene-set cluster typically 

relates to synaptic structure and activity while the other gene-set cluster relates to the response or 
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behaviour to stimuli. We also identified a significant gene-set (P = 3.87 × 10-5) containing 

somatosensory pyramidal neurons using brain cell-type data from Skene, et al. 23 (Table 3). 

Drug - gene interactions 

The 269 putative genes that were identified as being significantly associated (P < 2.80 × 10-6) with 

depression using MAGMA 22 were examined for known interactions (including agonistic, partial 

agonistic, antagonistic, modulating, binding and blocking interactions) with prescribed medications in 

the Drug Gene Interaction Database (dgidb.genome.wustl.edu) v3.0 24. A total of 560 interactions 

were identified between 57 genes and 514 drugs (see Supplementary Table 11). Anatomical 

Therapeutic Chemical (ATC) classifications were available for 220 of these drugs which belonged to 

54 different second level ATC classes and which interacted with 37 genes, Figure 3. The greatest 

number of drug - gene interactions (ninteractions = 47) were observed between psycholeptics (N05, which 

includes antipsychotics and anxiolytics) and dopamine receptor D2 (DRD2). 

Discussion 

In this study we report a meta-analysis of 807,553 individuals (246,363 cases and 561,190 controls) 

using summary statistics from three independent studies of depression, Hyde, et al. 8 

(23andMe_307k), Howard, et al. 5 (UK Biobank) and Wray, et al. 9 (PGC_139k). The meta-analysis 

examined 8,098,588 variants and identified 102 independently segregating variants associated (P < 5 

× 10-8) with depression. These 102 variants were assessed in an independent replication sample of 

1,306,354 individuals (414,055 cases and 892,299 controls) and 87 variants were significant in that 

sample after multiple testing correction. The estimate of the genome-wide SNP-based heritability on 

the liability scale was 0.089 (s.e. = 0.003), indicating that the analysed depression phenotype had a 

significant genetic component. All of the 102 variants associated with depression had an equivalent 

direction of allelic effect across the three studies5, 8, 9 that contributed to the meta-analysis and the 

replication sample (Supplementary Table 1), suggesting that these variants represent robust 

associations with depression. Our gene-based analyses revealed pathways relating to 

neurotransmission and response to stimuli, with the central nervous system also found to be enriched 
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when performing heritability partitioning. The partitioning of the heritability for depression also 

highlighted the importance of the cortical regions of the brain and further research focussed on the 

regions and biological pathways detected is warranted. We detected 269 genes putatively associated 

with depression and demonstrated the utility of investigating their interaction with pharmacological 

treatments. 

The three studies5, 8, 9 contributing to the meta-analysis were based on different depression 

phenotypes; nevertheless, there were strong genetic correlations (> 0.85) between them. PGC_139k 

used a predominately clinically ascertained diagnosis of major depression and the observed genetic 

correlations indicate that each study was likely to be capturing a similar underlying genetic 

architecture, despite the use of different diagnostic instruments. Therefore, larger population-based 

samples, where the timescales and costs of obtaining a clinically diagnosis would be prohibitive, can 

contribute to our understanding of the genetic architecture of the disease. The meta-analysis also 

provides the opportunity to assess the general directionality agreement of variants that have 

previously been associated with depression (Supplementary Information and Supplementary Table 2). 

The examination of previous findings between studies and the current meta-analysis suggests that 

there is good degree of directionality agreement of causal effects of depression when using studies 

with over 100,000 participants. However, there is likely to be a need to continue to ascertain clinically 

ascertained MDD cohorts to ensure validity of the larger cohorts with broader phenotyping. 

There is an ever growing body of evidence that there are shared genetic components between 

behavioural and psychiatric disorders25-27. Using the meta-analysed results in the current study this 

was evidenced by significant genetic correlations for depression with neuroticism, anorexia nervosa, 

attention deficit hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder. The MR 

analysis also identified a putative bi-directional casual effect between depression and neuroticism. 

Removing regions which were used to test the effect in both directions indicated that a putative effect 

remained only for neuroticism on depression. This uni-directional effect does make more sense 

intuitively as neuroticism is a stable trait whereas depression is a more episodic condition.  
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Examining significant genes that overlap between the current meta-analysis of depression and the 

neuroticism studies of both Luciano, et al. 28 and Okbay, et al. 29 revealed putative associations with 

DRD2, CUGBP Elav-like family member 4 (CELF4) and ELAV like RNA binding protein 2 

(ELAVL2). Dopamine acts as a neurotransmitter in the brain with DRD2 encoding the dopamine 

receptor D2 subtype. Genetic variation around the DRD2 gene has been linked to differences in 

structural connectivity between the basal ganglia structure with the frontal cortices30. Supporting 

evidence of the importance of the cortical brain regions was provided by the heritability partitioning 

of the brain regions (Figures 2B and 2C) with significant enrichment of the anterior cingulate cortex, 

frontal cortex and cortex brain regions. DRD2 is also associated with mood modulation and emotion 

processing31 and is also commonly reported in association studies of schizophrenia32, 33. DRD2 was 

included in all 14 of the putative Gene Ontology Consortium gene-sets identified (but not the 

somatosensory pyramidal neurons gene-set) and has been identified in previous studies of depression5, 

9, 34. CELF4 plays a key role in coordinating the synaptic function in excitatory neurons35 with 

dynamic changes in expression during brain development36 and deletions in the surrounding region 

(18q.12.2) associated with autism spectrum disorder37 and developmental and behavioural disorders38. 

ELAVL2 potentially aids in the regulation of gene expression pathways in human neurodevelopment 39 

and disruption of related pathways may be a factor in neurodevelopmental disorders40. Improving our 

understanding of the genetic similarities and differences between neuroticism and depression may 

provide a route to determining the biological aspects that underpin a more permanent personality trait 

or a depressive state. These genetic similarities and differences also provide opportunities for 

phenotypic stratification and warrants further investigation in future studies. 

The current study further reaffirms the genetic correlation between schizophrenia and depression 

observed by Wray, et al. 9. The current gene-based analysis identified the vaccinia-related kinase 2 

(VRK2) gene as putatively associated with depression. Extensive research has been conducted 

examining the link between VRK2 and schizophrenia, with the association replicated in both European 

41, 42 and Asian 43 populations. Additionally, associations have been found between schizophrenia and 

the arginine and serine rich coiled-coil 1 (RSRC1) 44 and myocyte enhancer factor 2C (MEF2C) 32, 45 
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genes, both of which we found to be putatively associated with depression. Hyde et al. 8 reported that 

RSRC1 and MEF2C were also close to the genetic variants that they detected, and they highlighted 

MEF2C’s role in regulation of synaptic function and central nervous system phenotypes. MEF2C was 

also included in ten of the 15 putative gene-sets identified for depression. The TCF4 gene coding 

region (Supplementary Figure 12) is also noteworthy as it contained two independently-associated 

variants for depression and has been identified in previous studies of depression 5, 9, 46. TCF4 is 

involved in the synaptic plasticity 47 and the excitability of prefrontal neurons 48 and has been 

implicated in other psychiatric disorders49, including schizophrenia 32. 

ADHD is a neurodevelopmental disorder, typically diagnosed during early childhood (age 4 to 6) and 

is associated with an increased risk of depression during adolescence 50. The current study 

demonstrated that there was a significant genetic correlation between ADHD and depression. The 

cadherin 13 (CDH13) gene, which codes for cell adhesion molecules, was found to be putatively 

associated with depression and has also been implicated in ADHD 51, 52 and specifically hyperactive 

and impulsive symptoms 53. CDH13 was included in the putative GO_NEURON_PART and 

GO_NEURON_PROJECTION gene-sets. A further gene involved in cell adhesion, astrotactin 2 

(ASTN2), which we found to be putatively associated with depression is also involved in ADHD 

aetiology 52, 54 and plays a role in neuronal development in the brain 55. Dopamine transmission may 

also underlie ADHD and depression with both the DRD2 and ankyrin repeat and kinase domain 

containing 1 (ANKK1) genes implicated in our analysis of depression and in studies of ADHD 56, 57. 

Age of menarche has been found to be phenotypically and genetically correlated with depression 9, 58, 

59, with a causal effect of earlier age at menarche on depressive symptoms also reported 60. The 

current meta-analysis identified a significant genetic correlation between age of menarche and 

depression, and nominal evidence of a bi-directional causal effect. The lin-28 homolog b (LIN28B) 

gene was significant in our meta-analysis and has frequently been associated with age of menarche 61-

63. The biological mechanisms that underlie the association of LIN28B with both age of menarche and 

depression remain unclear; however, LIN28B has been shown to be involved in regulating cell 

pluripotency 64 and developmental timing 65, and through its mediation of Lethal-7 miRNA has been 
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implicated in inflammation and immune response 66. The current analysis also identified a novel 

genetic correlation between age of menopause and depression which may share a similar biological 

mechanism to that of age of menarche. 

A number of studies, using different methodologies, have examined causal relationships between 

depression and smoking with smoking increasing the risk of depression 67, 68, a bi-directional effect 69 

and no effect 70-73 reported. In the current analysis there was an insufficient number of instrumental 

variants to test the effect of smoking on depression, but there was evidence of a genetic correlation 

between depression and cigarette smoking as well as a causal effect of depression on smoking. 

Smoking has been reported to have an anxiolytic and antidepressant effect 74, 75 and this may explain 

why we observe a causal effect of depression on smoking; however, as reported by Munafò, Hitsman, 

Rende, Metcalfe and Niaura 76 the relationship is likely to be complex and requires further 

investigation. 

Drug - gene interactions 

Examining the number of interactions between the genes associated with depression and the second 

level ATC drug classifications demonstrates that there are currently available pharmaceutical 

treatments that may target the genetic component of depression. Most notable were the large number 

of interactions between the DRD2 gene and the N05 drug classification, which primarily comprises 

typical and atypical antipsychotics. The dopaminergic system has been previously implicated in 

depression, particularly the symptoms of anhedonia and decreased motivation, and antidepressant 

action has been reported for dopamine reuptake inhibitors and D2-receptor agonists in animal models 

of depression 77. Furthermore, the dopamine and noradrenaline reuptake inhibitor bupropion is 

licensed for the treatment of depression 78.  

We also identified genes with associated medications which, although not aimed at treating 

depression, may provide unpredicted drug benefits or adverse effects for those with the disorder. The 

Neuregulin 1 (NRG1) receptor ErbB4, found on GABAergic neurones, has been identified as a 

potentially druggable target for depression, anxiety and schizophrenia 79. There is interest in 
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developing agents, such as basimglurant and fenobam, as antidepressants and anxiolytics that target 

glutamatergic receptors 80. Estrogen Receptor 2 (ESR2) has previously been implicated in 

antidepressant action through up-regulation by 3β-hydroxysteroid dehydrogenase 81. Estrogenic 

compounds have also been found to have antidepressant effects in rodent models of depression 82. 

Further, our work highlights other potential druggable genes associated with depression which are not, 

to our knowledge, currently associated with antidepressant treatment or mood-associated adverse 

effects. These include the R-type calcium channel gene, Calcium Voltage-Gated Channel Subunit 

Alpha1 E (CACNA1E), and the nucleosome associated gene, Lysine Methyltransferase 2A (KMT2A) 

83.  

An intriguing omission among the depression-associated genes identified in our study are genes 

linked with the serotonergic system, such as the serotonin transporter SLC6A4; the G protein subunit 

GNB3; the serotonin receptor HTR2A and tryptophan hydroxylase (TPH2). This is surprising, as 

interaction with the serotonergic system forms the basis of most antidepressant treatments. Our 

finding could indicate a functional separation between genetic pathways of depressive disease and 

pathways of antidepressant treatment. Thus, serotonin-associated genes, while potentially relevant for 

predicting efficacy and adverse effects of serotonergic antidepressants, may not be directly associated 

with the aetiology of depression itself (or at least that which is determined by common genetic 

variation identified in GWAS). Indeed, a recent review of the genetics studies of depression has 

remarked upon the failure to demonstrate association with depression for serotonergic and other 

popular candidate genes 84. It may also be that the pathways of depression and serotonergic 

antidepressant effect are separate but entwine through common intermediary genes. One such 

candidate is NRG1, identified here in depression, and also in a recent meta-analysis of antidepressant 

response 85. These findings suggest that there is potentially a need to concurrently model a range of 

‘omics data, including genomics, epigenomics, and transcriptomics to gain further understanding of 

depression pharmacology. 

The principal strength of this study is the increased power obtained from the analysis of three large 

independent cohorts. This has allowed the examination of the effects of variants and regions that have 
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been identified previously to determine whether they maintain an effect on depression. We have used 

variant-based analyses to calculate heritability enrichment across different brain regions and then also 

applied a complimentary approach using the genes assigned to functional gene-sets, with both 

methods highlighting the importance of the prefrontal brain regions. Our study highlights a number of 

potential gene targets for drug repositioning; however, due to the causal heterogeneity of depression 

86, it is likely that stratifying depression will lead to clearer distinction between depression subtypes 

and potential treatments.  

Conclusion 

This study describes a meta-analysis of the three largest depression cohorts (total n = 807,553, with 

246,363 cases and 561,190 controls) currently available. The meta-analysis identified 102 

independently-segregating genetic variants associated with depression in 101 loci and demonstrated a 

consistency of effect directionality in a large replication sample (total n = 1,306,354, with 414,055 

cases and 892,299 controls) and across the three contributing studies allowing greater confidence in 

the findings. The heritability enrichments and gene-set analysis both provided evidence for the role of 

prefrontal brain regions in depression and the genes identified contribute to our understanding of 

biological mechanisms and potential drug targeting opportunities. These findings advance our 

understanding of the underlying genetic architecture of depression and provide novel avenues for 

future research. 

Online Methods 

To conduct our analyses we included data from three previous studies of depression 5, 8, 9. For the UK 

Biobank study 5 slightly different quality control was applied and the data were reanalysed. For the 

other two studies the summary statistics were obtained directly from the respective authors. Further 

information regarding each of these cohorts is provided below. 

UK Biobank 
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The population-based UK Biobank cohort 87 consists of 501,726 individuals with genome-wide data 

for 93,095,623 autosomal genetic variants imputed using the HRC and UK10K reference panels 88. 

We used the variants from the HRC reference panel to conduct a 4-means clustering approach and 

used the first two principal components to identify a genetically homogenous subgroup of 462,065 

individuals.  We next removed 131,790 individuals that had a shared relatedness up to the third degree 

that were identified by UK Biobank based on kinship coefficients (> 0.044) calculated using the 

KING toolset 89. For these 131,790 removed individuals we then calculated a genomic relationship 

matrix and identified one individual to be reinstated from within each related group that had a genetic 

relatedness less than 0.025 with all other participants which allowed us to add an additional 55,745 

individuals back into our sample. We then used a checksum based approach 90 to identify and exclude 

954 individuals from within the UK Biobank cohort that overlapped with the Major Depressive 

Disorder Working Group of the Psychiatric Genomics Consortium (PGC) cohorts analysed by Wray, 

et al. 9. This was possible for a total of 30 out of 33 cohorts that make up the PGC analysis due to the 

availability of genetic data. We also removed those UK Biobank individuals with a variant call rate < 

90% or that were outliers based on heterozygosity, or variants with a call rate < 98%, a minor allele 

frequency < 0.005, those that deviated from Hardy-Weinberg equilibrium (P < 10-6), or had an 

imputation accuracy score < 0.1, leaving a total of 10,612,809 variants for 371,437 individuals. 

Within UK Biobank we used the broad definition of depression 5 with more detailed phenotypic 

information available in that paper. In summary, case and control status of broad depression was 

defined by the participants’ response to the questions ‘Have you ever seen a general practitioner for 

nerves, anxiety, tension or depression?’ or ‘Have you ever seen a psychiatrist for nerves, anxiety, 

tension or depression?’. Exclusions were applied to participants who were identified with bipolar 

disorder, schizophrenia, or personality disorder using self-declared data following the approach of 

Smith, et al. 91  as well as prescriptions for antipsychotic medications. This provided a total of 127,552 

cases and 233,763 controls (n = 361,315, prevalence = 0.353) for analysis. 

Statistical Analysis of UK Biobank 
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To conduct the association analysis within UK Biobank we used BGENIE v1.1 87 to assess the effect 

of each genetic variant using a linear association test: 

1εβ += Xy  

βXy =ˆ  

2b)ˆ( ε+=− Gyy  

where y was the vector of binary observations for each phenotype (controls coded as 0 and cases 

coded as 1). β was the matrix of fixed effects, including sex, age, genotyping array, and the first 8 

principal components and X was the corresponding incidence matrices.  )ˆ( yy − was a vector of 

phenotypes residualized on the fixed effect predictors, G was a vector of expected genotype counts of 

the effect allele (dosages), b was the effect of the genotype on residualized phenotypes, and 
1ε  and 

2ε were vectors of normally distributed errors. The effect sizes and standard errors were transformed 

to the logistic scale by dividing each value by �(1- �), where � is the trait prevalence (0.353). 

23andMe 

We obtained the genome-wide association study results from the discovery 23andMe subset 

(23andMe_307k) from the Hyde, et al. 8 analysis. Phenotypic status was based on responses to web-

based surveys with individuals that self-reported as having received a clinical diagnosis or treatment 

for depression classified as cases. This provided a total of 75,607 cases and 231,747 controls (n = 

307,354, prevalence = 0.25). We excluded variants with an imputation accuracy threshold < 0.6 and 

with a minor allele frequency < 0.005, which left a total of 8,995,180 variants. 

Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium (PGC) 

Wray et al. conducted the largest meta-analysis of MDD to date 9, utilising European-ancestry PGC 

cohorts with an emphasis placed on obtaining clinically-derived phenotypes for MDD. Their meta-

analysis included the 23andMe_307k discovery cohort 8 and a previous release of the UK Biobank 

data 92. We therefore obtained the summary statistics from their meta-analysis of major depression 

with the 23andMe_307k and the previous UK Biobank cohorts removed (PGC_139k). This provided 
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a total of 12,149,399 variant calls for 43,204 cases and 95,680 controls (n = 138,884, prevalence = 

0.31). We excluded variants with an imputation accuracy threshold < 0.6 or a minor allele frequency 

< 0.005, which left a total of 10,365,555 variants. 

Meta-analysis of genome-wide association study summary statistics 

We used Metal 93 to conduct an inverse variance-weighted meta-analysis of the summary statistics 

from the three studies (using the log of the odds ratios and the standard errors of the log of the odds 

ratio), conditional on each variant being available in all three of the contributing cohorts. This 

provided 8,098,588 genetic variants and up to 246,363 cases and 561,190 controls (n = 807,553) for 

the meta-analysis. Linkage disequilibrium score (LDSC) regression intercepts 11 were used for 

genomic inflation control of the three contributing cohorts and the final meta-analysis results. 

Clumping and merging were used to identify the basepair positions of loci containing depression-

associated variants. Clumping of the meta-analysis results was conducted using Plink v1.90b4 94 

applying the following parameters: --clump-p1 1e-4 --clump-p2 1e-4 --clump-r2 0.1 --clump-kb 3000, 

with merging of the clumped loci conducted using bedtools 95. A conditional analysis 10 was used to 

identify independently-segregating variants in each of the merged loci that was genome-wide 

significant, using the linkage disequilibrium structure of UK Biobank as a reference panel. Genome-

wide statistical significance was defined as P < 5 × 10-8, with the meta-analysis results from Metal 

reported. Due to the complexity of the major histocompatibility complex region only the most 

significant variant in that region is reported. 

23andMe replication sample 

The variants that were significant (P < 5 × 10-8) in the meta-analysis, described above, were replicated 

in an independent sample of 1,306,354 unrelated individuals (414,055 cases and 892,299 controls) 

from 23andMe, Inc. Individuals within this replication sample were unrelated to individuals within 

23andMe_307k. Detailed information regarding this replication sample is provided in the 

Supplementary Information. In summary, imputed genetic data was obtained for an unrelated 

European sample and the variants identified as genome-wide significant (P < 5 × 10-8) in the meta-
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analysis were analysed using logistic regression. The phenotype used in the 23andMe replication 

sample was the same used within the 23andMe_307k cohort, described above, with the responses to 

web-based surveys used to classify individuals that self-reported as having received a clinical 

diagnosis or treatment for depression classified as cases. We used Metal 93 to conduct an inverse 

variance-weighted meta-analysis of the significant variants (P < 5 × 10-8)  identified in the previous 

paragraph (using UK Biobank, 23andMe_307 and PGC_139k) and the 23andMe replication cohort. 

Polygenic risk score analysis 

Polygenic risk scores (PRS) were created using Plink v1.90b4 94 and evaluated in the Generation 

Scotland: the Scottish Family Health Study (GS) 96, Münster 9 and BiDirect cohorts 97 using the same 

method described in Wray, et al. 9. Two polygenic risk scores were created: one using weightings 

from the current meta-analysis and one using weightings from a previous association study of major 

depression conducted by Wray, et al. 9 (Wray PRS). To create independent SNP clumping was 

applied using a linkage disequilibrium r2 of < 0.1 and a 500kb sliding window. PRS were calculated 

using P-value thresholds of ≤ 5 × 10-8, ≤ 1 × 10-6, ≤ 1 × 10-4, ≤ 0.001, ≤0.01, ≤0.05, ≤0.1, ≤ 0.2, ≤ 0.5 

and the full model including all SNPs (P ≤ 1). Nagelkerke’s R2 was used to calculate the proportion of 

phenotypic variance explained on the liability scale. PRS were split into deciles and the odds ratio for 

MDD in each decile calculated using the 1st decile as the reference group. 

GS is a family and population-based cohort of 20,195 participants genotyped on the Illumina 

OmniExpress BeadChip (706,786 SNPs). The raw genotype data in GS underwent quality control so 

that individuals with a call rate < 98%, SNPs with a genotyping rate < 98%, a minor allele frequency 

< 1% and a Hardy-Weinberg equilibrium P-value < 10-6 were removed from the dataset and then 

imputed 98, leaving a total of 19,997 GS individuals and 8,633,288 SNPs. Participants underwent a 

clinical diagnosis of MDD using the Structured Clinical Interview for the Diagnostic and Statistical 

Manual of Mental Disorders 99 with further information on the phenotype used provided in Fernandez-

Pujals, et al. 100. An unrelated sample was selected by removing one individual from each pair that 

shared a genomic relationship > 0.025, leaving a total of 975 cases and 5,971 controls. To calculate 
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the PRS, GS was removed from the current meta-analysis and the Wray PRS prior to calculated single 

nucleotide polymorphism (SNP) weights which were filtered so that they only contained SNPs that 

overlapped between the current meta-analysis PRS and the Wray PRS. The first five principal 

components in GS were fitted to account for population stratification. The best thresholds for the 

meta-analysis PRS (P ≤ 0.05; 62,519 SNPs) and Wray PRS (P ≤ 0.001; 5,941 SNPs) were each used 

to test for an association with MDD in GS. 

The Münster cohort is described in Wray, et al. 9 and although this cohort was not part of their meta-

analysis it was used for out of sample prediction using polygenic risk scores. In summary, the 

Münster cohort is a clinically ascertained sample with 960 MDD inpatient cases and 834 screened 

controls. The quality control procedures and the genome-wide association analysis of this cohort was 

conducting the same pipeline as used in Wray, et al. 9. The best thresholds for the meta-analysis PRS 

(P ≤ 0.01; 21,115 SNPs) and Wray PRS (P ≤ 0.05; 62,166 SNPs) were each used to test for an 

association with MDD in the Münster cohort. 

The BiDirect cohort is a prospective observational study established to investigate the relationship 

between depression and cardiovascular disease 97. Cases were recruited from psychiatric and 

psychosomatic hospitals and residential psychiatrists’ practices in and around Münster and were 

required to be between the ages of 35 and 65 and had to be receiving in-patient or out-patient 

treatment for acute depression. A detailed description of the diagnostic criteria used in this cohort is 

provided by Teismann, et al. 97. Controls were randomly ascertained from the local population. The 

quality control procedures and genome-wide association analysis of this cohort was also conducting 

the same pipeline as used in Wray, et al. 9. There were a total of 811 acute depression cases and 469 

controls used to calculate the proportion of variance explained using polygenic risk scores in the 

BiDirect cohort. The best thresholds for the meta-analysis PRS (P ≤ 0.5; 24,964 SNPs) and Wray PRS 

(P ≤ 0.05; 62,144 SNPs) were each used to test for an association with MDD in the BiDirect cohort. 

Genetic Correlations 
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We calculated genetic correlations using LDSC regression 11 and the online software LD hub 

(http://ldsc.broadinstitute.org/) 13. LDSC regression leverages linkage disequilibrium (LD) 

information for each genetic variant such that the χ2 statistic for that variant includes the effects of all 

loci in LD with that variant. This can be extended to the analysis of genetic correlations between traits 

if the χ2 statistic is replaced with the product of 2 z-scores from 2 traits of interest 101. Genetic 

correlations were calculated between the three datasets that contributed to the meta-analysis. Genetic 

correlations were also calculated between our meta-analysed results (23andMe_307k, UK Biobank 

and PGC_139k) for depression and 234 behavioural and disease related traits. P-values were false 

discovery rate (FDR) adjusted102 and correlations reported if PFDR < 0.01. 

Mendelian randomization 

We used Mendelian randomization (MR) to assess whether causal effects exist between depression 

and a number of other traits and disorders. MR uses genetic variants as a proxy for environmental 

exposures, assuming that: i) the genetic variants are associated with the exposure; ii) the genetic 

variants are independent of confounders in the exposure-outcome association; iii) the genetic variants 

are associated with the outcome only via their effect on the exposure, i.e. there is no horizontal 

pleiotropy whereby the variants affect both exposure and outcome independently. Individual genetic 

variants may be weak instruments for assessing causality, particularly if they have only small effect 

sizes. Using multiple genetic variants can increase the strength of the instrument, but also increases 

the risk of violating the MR assumptions. 

We performed bidirectional, two-sample MR between our meta-analysis results for depression and all 

available traits which had a significant genetic correlation with depression (identified in the previous 

section). Traits directly related to or including depression (major depressive disorder, depressive 

symptoms and PGC cross disorder) were excluded due to potential bias. The genetic instruments for 

depression consisted of the independent, genome-wide significant variants, their effect sizes and 

standard errors, as estimated in our genome-wide meta-analysis. Summary statistics from genome-

wide association studies for the other traits were sourced from either publicly available datasets or 

from the MR-Base database 14. Overlapping datasets for the exposure and the outcome can lead to 
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bias and inflation of causal estimates 15. To mitigate this, when the source of the other trait included 

UK Biobank, 23andMe or any of the studies that contributed to PGC_139k, these studies were 

removed from our meta-analysis of depression; for example, the neuroticism trait from van den Berg, 

et al. 17 was assessed against a meta-analysis of depression using UK Biobank and 23andMe_307k 

only.  Where UK Biobank, 23andMe and PGC_139k were all included in the genome-wide 

association study of the other trait then an alternative study was sought for that other trait. 

All analyses were performed using the MR-Base “TwoSampleMR” v0.4.9 package14 in R. To avoid 

bias in the MR estimates due to linkage disequilibrium (r2), clumping was applied using the 

“clump_data” function with an r2 < 0.001. Genetic variants were required to be available in both the 

exposure and outcome traits and were harmonised using the default parameters within the 

TwoSampleMR package. Following this harmonisation, we only examined causal relationships where 

there were at least 30 instrumental genetic variables. 

Directional horizontal pleiotropy, where a genetic instrument has an effect on an outcome 

independent of its influence on the exposure, can be a problem in MR analysis, particularly when 

multiple genetic variants of unknown function are used. We therefore firstly tested for directional 

horizontal pleiotropy using the MR Egger intercept test, as previously described by Hagenaars, Gale, 

Deary and Harris 103. If the MR Egger intercept test had a significant P-value (P < 0.05) then it was 

excluded from the analysis. However, no tests were excluded due to directional horizontal pleiotropy. 

The second analysis conducted was a variant heterogeneity test for global horizontal pleiotropy. 

Variant heterogeneity is an important metric, but high heterogeneity doesn’t necessarily mean bias or 

unreliable results; for example, every instrumental variable could have horizontal pleiotropic effects 

but if they have a mean effect of 0 then there will be no bias, just larger standard errors due to more 

noise. For analyses that had evidence of high variant heterogeneity (P < 0.05), additional sensitivity 

MR tests were conducted. The sensitivity tests that were used were the MR Egger test and the 

weighted median test to examine whether the effect estimate was consistent. 
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The principal MR test of a causal effect was conducted using inverse-variance weighted (IVW) 

regression. This method is based on a regression of the exposure and the outcome which assumes the 

intercept is constrained to zero, and produces a causal estimate of the exposure-outcome association. 

Where there was no evidence of global horizontal pleiotropy (P ≥ 0.05) from the second analysis (see 

previous paragraph), a FDR adjusted102 P-value < 0.01 from the IVW test was required for evidence 

of a causal effect. Where there was evidence of global horizontal pleiotropy (P < 0.05) from the 

second analysis, additional evidence was also sought from the sensitivity tests (MR Egger test and the 

weighted median test). To ensure that a causal effect was not driven by a single variant a ‘leave one 

variant out’ IVW regression analysis was conducted with the least significant observed P-value used 

to assess whether significance was maintained. We tested the causal effect of depression on 24 other 

traits, and the causal effect of 9 other traits on depression.  

Partitioned heritability analyses 

We used stratified LDSC regression to estimate the SNP-based heritability of depression, using the 

sample prevalence as the population prevalence (0.302), and then examined the heritability of 

partitioned functional categories 19. This method assigns variants into 24 functional categories and 

then evaluates the contribution of each category to the overall heritability of a trait. A category is 

enriched for heritability if the variants with high LD to that category have elevated χ2 statistics. The 24 

categories are described in full in the Finucane et al. paper 19. Briefly, they include genetic annotations 

from ReqSeq gene models 104, transcription factor binding sites from ENCODE 104, 105, Roadmap 

epigenomics annotations 106, super-enhancers 107, evolutionarily conserved regions 108 and FANTOM5 

enhancers 109.  Heritability enrichment is defined as the proportion of heritability assigned to a 

functional category divided by the proportion of variants in that category. Cell-type specific 

annotations were also analysed for variants in four histone marks: H3K4me1, H3K4me3, H3K9ac and 

H3K27ac and these were grouped into 9 cell type groups: central nervous system (CNS), 

cardiovascular, connective tissue or bone, gastrointestinal, immune or hematopoietic, kidney, liver, 

skeletal muscle, or other. Given the strong contribution to depression heritability from the CNS we 

used LDSC applied to specifically expressed genes (LDSC-SEG) 110 across 13 brain regions from the 
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GTEx gene-expression database and brain cell-types (neuronal, astrocyte, oligodendrocyte) using 

specifically expressed genes derived from mouse-forebrain 111. 

Gene and gene-set analyses 

A gene-based analysis was applied to the results from our meta-analysis using Multi-marker Analysis 

of GenoMic Annotation (MAGMA) 22 to assess the simultaneous effect of multiple genetic variants 

on 17,842 genes. To account for LD the European panel of the 1,000 Genomes data (phase 3) 112 was 

used as a reference panel. Genetic variants were assigned to genes based on their position according to 

the NCBI 37.3 build. To identify those genes that were genome-wide significant a P-value threshold 

was calculated by applying a Bonferroni correction (α = 0.05 / 17,842; P < 2.80 × 10-6). Regional 

visualisation plots were produced using the online LocusZoom platform113. 

A gene-set analysis was then performed on our gene-based results using gene annotation files from 

the Gene Ontology Consortium (http://geneontology.org/) 114 and the Molecular Signatures Database 

v5.2 115. The annotation file includes gene-sets covering three ontologies; molecular function, cellular 

components, and biological function and consisted of 5,917 gene-sets. To correct for multiple testing, 

we used the MAGMA default setting of 10,000 permutations, and applied a Bonferroni correction (α 

= 0.05 / 5,917; P < 8.45 × 10-6). Additional gene-sets were obtained from Skene, et al. 23 providing 

expression-weighted enrichment for seven brain cell-types (astrocytes ependymal, endothelial mural, 

interneurons, microglia, oligodendrocytes, somatosensory pyramidal neurons, and hippocampus CA1 

pyramidal neurons). These brain cell-types were assessed in MAGMA using the default setting of 

10,000 permutations with a Bonferroni correction (α = 0.05 / 7; P < 7.14 × 10-3) used to assess 

significance. 

Drug - gene interactions 

We examined genes that were identified as significantly associated (P < 2.80 × 10-6) with depression 

using MAGMA 22 for interactions with prescribed medications using the Drug Gene Interaction 

Database (dgidb.genome.wustl.edu) v3.0 24. The Anatomical Therapeutic Chemical (ATC) 

classification system was used to determine the second level classification of each drug identified. 
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ATC classifications for each drug were obtained from the Kyoto Encyclopaedia of Genes and 

Genomics (https://www.genome.jp/kegg/drug/) as the primary source of information with additional 

classifications obtained from the World Health Organisation Collaborating Centre for Drug Statistics 

Methodology (https://www.whocc.no/atc_ddd_index/). Visualisation of the number of interactions 

between each gene associated with depression and each second level ATC classification was 

undertaken using the R package circlize v0.4.1 116. 
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Figure. 1 
(A) Manhattan plot of the observed –log10 P-values of each variant for an association with depression 
in the meta-analysis (n = 807,553; 246,363 cases and 561,190 controls). Variants are positioned 
according to the GRCh37 assembly 
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Figure. 2 
(A) Significance of cell type enrichment using a partitioned heritability approach. The dashed line 
represents statistical significance after Bonferroni correction (-log10P = 2.36) and * indicates 
significant enrichment for that cell type 
(B) Significance of enrichment estimates, based on genetic summary statistics, for brain regions using 
GTEx. The dashed line represents the Bonferroni cut-off for statistical significance (-log10P = 2.41) 
and * indicates significant enrichment for that brain region 
(C) Significant enrichment P-values, based on genetic summary statistics, for brain cell regions using 
GTEx overlaid on a physical representation of brain anatomy 

The pseudo-coloring used in Figure 2C highlights the P-values of the regions of the brain in red that 
were significantly enriched (P < 0.05) for depression variants 
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Figure. 3 
Chord diagram of genes significantly associated (P < 2.80 × 10-6) with depression and the second 
level Anatomical Therapeutic Chemical classifications to which interacting drugs have been assigned. 
The width of each line is determined by the number of drugs known to interact with each gene. The 
genes are ordered by significance with depression with those most significantly associated located at 
the top of the diagram 
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Tables 

Table 1 
Sample sizes and the proportion of males and females of the depression cohorts used in the meta-
analysis and the replication cohort 

Cohort  Study Cases 
(Prop. Male, Female) 

Controls 
(Prop. Male, Female) 

Total 
(Prop. Male, Female)  

23andMe_307k  Hyde, et al. 8 75,607 (0.38, 0.62) 231,747 (0.56, 0.44) 307,354 (0.52, 0.48) 

UK Biobank  Howard, et al. 5 127,552 (0.35, 0.65) 233,763 (0.52, 0.48) 361,315 (0.46, 0.54) 

PGC_139k†  Wray, et al. 9 43,204 95,680 138,884 

Meta-analysis   246,363 561,190 807,553 

Replication  Unpublished 414,055 (0.30, 0.70) 892,299 (0.50, 0.50) 1,306,354 (0.44, 0.56) 

 

† Proportion of males and females not reported for PGC_139k 

 

Table 2 
Out of sample prediction for depression using polygenic risk scores obtained from the current meta-
analysis and from Wray, et al. 9 with Generation Scotland (GS), Münster and BiDirect as the target 
cohorts 

Sample Cohort 
 

Target Cohort Nagelkerke’s R2 P-value 
Odds ratio in 10th decile 

(95% Confidence Interval)  

Meta-analysis PRS  GS 1.5% 5.14 × 10-11 2.0 (1.5 – 2.8) 

Meta-analysis PRS  Münster 2.5% 9.04 × 10-10 2.4 (1.6 – 3.7) 

Meta-analysis PRS  BiDirect 3.2% 1.68 × 10-8 3.5 (2.0 – 6.0) 

Wray PRS  GS 0.8% 1.38 × 10-6 1.7 (1.3 – 2.3) 

Wray PRS  Münster 2.3% 3.50 × 10-9 3.1 (2.0 – 4.8) 

Wray PRS  BiDirect 2.7% 1.97 × 10-7 2.9 (1.7 – 4.9) 

 
Nagelkerke’s R2 was used to calculate the proportion of phenotypic variance explained on the liability scale 
with P-values used to determine whether the proportion explained was significant. The odds ratios and 95% 
confidence intervals of the tenth decile in each target cohort is reported using the first decile as the reference 
group. 
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Table 3 
Gene pathways with a significant effect (Pcorrected < 0.05) on depression identified through gene-set 
enrichment analysis in MAGMA 22 

Pathway Number 
of genes 

Beta Standard 
error 

P-value PCorrected 

GO_POSTSYNAPSE 351 0.34 0.056 8.15 × 10-10 4.82 × 10-6 

GO_SYNAPSE 707 0.219 0.040 2.47 × 10-8 1.46 × 10-4 

GO_NEURON_SPINE 114 0.509 0.096 6.13 × 10-8 3.63 × 10-4 

GO_EXCITATORY_SYNAPSE 181 0.405 0.077 8.29 × 10-8 4.90 × 10-4 

GO_SYNAPSE_PART 571 0.225 0.044 1.24 × 10-7 7.32 × 10-4 

GO_BEHAVIOR 489 0.245 0.049 2.32 × 10-7 1.38 × 10-3 

GO_COGNITION 238 0.346 0.069 2.77 × 10-7 1.64 × 10-3 

GO_NEURON_PROJECTION 883 0.18 0.036 3.39 × 10-7 2.01 × 10-3 

GO_MODULATION_OF_SYNAPTIC_TRANSMISSION 283 0.298 0.061 4.25 × 10-7 2.52 × 10-3 

GO_REGULATION_OF_SYNAPSE_STRUCTURE_OR_ACTIVITY 219 0.335 0.071 1.19 × 10-6 7.02 × 10-3 

GO_REGULATION_OF_SYNAPTIC_PLASTICITY 133 0.412 0.089 1.95 × 10-6 0.012 

GO_NEURON_PART 1183 0.142 0.031 3.17 × 10-6 0.019 

GO_DENDRITE 420 0.229 0.052 4.76 × 10-6 0.028 

GO_SINGLE_ORGANISM_BEHAVIOR 367 0.244 0.056 5.86 × 10-6 0.035 

Somatosensory Pyramidal Neurons 1217 0.121 0.031 3.87 × 10-5 2.71 × 10-4 

 

Pathways with a “GO” prefix were obtained from the Gene Ontology Consortium 114. The Somatosensory 
Pyramidal Neurons gene-set was obtained from Skene, et al. 23. 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 8, 2019. ; https://doi.org/10.1101/433367doi: bioRxiv preprint 

https://doi.org/10.1101/433367
http://creativecommons.org/licenses/by/4.0/


 

42 

 

Supplementary Information Titles and Legends 

 

Supplementary Information 

General directionality agreement of variants that have previously been associated with depression 

Cohort information for the 23andMe replication dataset 

Members of the Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium 
and their affiliations 

 

Supplementary Figure 1 

Quantile-quantile plot of the observed P-values on those expected for each genetic variants 
association with depression in our meta-analysis  

 

Supplementary Figure 2 

Odds ratios and 95% confidence intervals for Major Depressive Disorder (MDD) in Generation 
Scotland based on polygenic risk score (PRS) deciles calculated from the current meta-analysis of 
depression and from the summary statistics from the genome-wide association study of major 
depression conducted by Wray, et al. 9. 

 

Supplementary Figure 3 

Significant genetic correlations (rG; P < 0.01, after false discovery rate correction) between depression 
and other behavioural and disease related traits using LD score regression implemented in LD Hub 
software (http://ldsc.broadinstitute.org/). 

A negative rG indicates that an earlier or lower value of a continuous trait (i.e. earlier father’s age of 
death or lower subjective well being was associated with depression. A positive rG indicates that a 
later or higher value of a continuous trait (i.e. higher triglyceride level) was associated with 
depression. Where multiple studies have examined a single trait the pubmed number of the study is 
given in brackets. 

 

Supplementary Figure 4 

Mendelian randomisation test for a putative causal effect of depression on neuroticism using inverse 
weighted regression, MR Egger and a weighted median test 

 

Supplementary Figure 5 

Mendelian randomisation analysis for a putative causal effect of depression on ever vs. never smoked 
using inverse weighted regression 

 

Supplementary Figure 6 
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Mendelian randomisation test for a putative causal effect of neuroticism on depression using inverse 
weighted regression, MR Egger and a weighted median test 

 

Supplementary Figure 7 

Contribution of functional annotation categories to the heritability of depression based on the variants 
within each category 

Error bars represent jackknife standard errors for each the estimate of enrichment, and an asterisk 
indicates significance (P < 0.0021) after Bonferroni correction. The dashed line represents the 
threshold for no enrichment. 

 

Supplementary Figure 8 

Coefficients (β) of significantly enriched brain cell regions using GTEx overlaid on physical 
representation of brain anatomy 

The pseudo-coloring highlights the coefficients of the brain regions in red that were significantly 
enriched (P < 0.05) for depression variants 

 

Supplementary Figure 9 

Stratified LD score regression analyses showing significance of enrichment estimates for 3 brain cell 
types in depression. 

The dashed line represents the Bonferroni threshold for significance (P < 0.0167) and * indicates 
significant enrichment for that brain cell type 
 

Supplementary Figure 10 

Regional visualization plot centred on the independently-associated variant, rs1021363, close to the 
Sortilin related VPS10 domain containing receptor 3 (SORCS3) gene on chromosome 10. 
Recombination rates used in the plots are based on the European 1000 Genomes panel from 
November 2014 

 

Supplementary Figure 11 

Regional visualization plots centred on independently-associated variants (A. rs2568958 and B. 
rs10890020) close to the Neuronal Growth Regulator 1 (NEGR1) gene on chromosome 1. 
Recombination rates used in the plots are based on the European 1000 Genomes panel from 
November 2014 

 

Supplementary Figure 12 

Regional visualization plots centred on independently-associated variants (A. rs62091461, B. 
rs12966052, and C. rs12967143) close to the Transcription Factor 4 (TCF4) and RAB27B genes on 
chromosome 18. Recombination rates used in the plots are based on the European 1000 Genomes 
panel from November 2014 
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Supplementary Table Titles and Legends 

Supplementary Table 1 

Variants with a P-value < 5 × 10-8 for an association with depression in the meta-analysis of 
PGC_139k, 23andMe_307k and UK Biobank 

 

Supplementary Table 2 

The direction of effect of previously reported significant variants for depression across the studies 
contributing to the meta-analysis 

 

Supplementary Table 3 

Genetic correlations between depression and other behavioural and disease related traits using LD 
score regression implemented in LD Hub software (http://ldsc.broadinstitute.org/) 

 

Supplementary Table 4 

Mendelian randomization analysis between depression and other traits using MR Egger test for 
directional horizontal pleiotropy, inverse variance weighted (IVW) test for variant heterogeneity and 
IVW regression, weighted median and MR Egger tests for a causal effect 

 

Supplementary Table 5 

Heritability partitioned by functional annotation enrichment. The asterisk indicates significance after 
Bonferroni correction for multiple testing (P < 0.0021) 

 

Supplementary Table 6 

Partitioning of the heritability estimate by cell type enrichment. The asterisk indicates significance 
after Bonferroni correction for multiple testing (P < 0.0056) 

 

Supplementary Table 7 

Enrichment estimates for brain regions using GTEx. The asterisk indicates significance after 
Bonferroni correction for multiple testing (P < 0.0038) 

 

Supplementary Table 8 

Enrichment estimates for brain cell types. The asterisk indicates significance after Bonferroni 
correction for multiple testing (P < 0.0167) 
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Supplementary Table 9 

Genome-wide significant gene-based hits (P < 2.80 x 10-6) in the meta-analysis of depression using 
MAGMA. NSNPS is the number of SNPs in the gene; NiSNPs is the number of independent SNPs in 
the gene 

 

Supplementary Table 10 

Number and proportion of gene overlap within the Gene Ontology Consortium gene-sets associated 
(Pcorrected < 0.05) with depression 

Values on the lower diagonal are the number of overlapping genes between gene sets. Values on the 
upper diagonal are the proportion of overlapping genes within the gene set containing the lower 
number of genes 

 

Supplementary Table 11 

Drug x gene interactions for the genes identified as significantly associated with depression with 
interactions obtained from the drug gene interaction database (http://dgidb.genome.wustl.edu/). The 
Anatomical Therapeutic Chemical (ATC) classification for each drug is provided along with the type 
of interaction and its source 
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