

1 Behavioural and neural signatures of perceptual evidence 2 accumulation are modulated by pupil-linked arousal

3
4 Jochem van Kempen^{1,2*}, Gerard M. Loughnane^{3,4}, Daniel P. Newman², Simon P. Kelly⁶, Alexander
5 Thiele¹, Redmond G O'Connell^{2,4,5}, Mark A. Bellgrove^{2,5}

6

7 ¹Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom,

8 ²Monash Institute for Cognitive and Clinical Neurosciences, School of Psychological Sciences,

9 Monash University, Melbourne, Victoria 3800, Australia,

10 ³School of Engineering, ⁴Trinity College Institute of Neuroscience, and ⁵School of Psychology,

11 Trinity College Dublin, Dublin 2, Ireland, and ⁶School of Electrical and Electronic Engineering,

12 University College Dublin, Dublin 4, Ireland

13

14 * For correspondence:

15 Jochem.van-Kempen@newcastle.ac.uk

16 Abstract

17 The timing and accuracy of perceptual decision making is exquisitely sensitive to fluctuations in
18 arousal. Although extensive research has highlighted the role of neural evidence accumulation in
19 forming decisions, our understanding of how arousal impacts these processes remains limited. Here
20 we isolated electrophysiological signatures of evidence accumulation alongside signals reflecting
21 target selection, attentional engagement and motor output and examined their modulation as a
22 function of both tonic and phasic arousal, indexed by baseline and task-evoked pupil diameter,
23 respectively. For both pupillometric measures, the relationship with reaction time was best described
24 by a second-order, U-shaped, polynomial. Additionally, the two pupil measures were predictive of a
25 unique set of EEG signatures that together represent multiple information processing steps of
26 perceptual decision-making, including evidence accumulation. Finally, we found that behavioural
27 variability associated with fluctuations in both tonic and phasic arousal was largely mediated by
28 variability in evidence accumulation.

29 Introduction

30 The speed and accuracy with which humans, as well as non-human animals, respond to a stimulus
31 depends not only on the characteristics of the stimulus, but also on the cognitive state of the subject.
32 When drowsy, a subject will respond more slowly to the same stimulus compared to when she is
33 attentive and alert. Central arousal also fluctuates across a smaller range during quiet wakefulness,
34 when the subject is neither drowsy or inattentive, nor overly excited or distractible. Although these

35 trial-to-trial fluctuations can impact on behavioural performance during decision-making tasks
36 (Aston-Jones and Cohen, 2005), it is largely unknown how arousal modulates the underlying
37 processes that support decision formation. Perceptual decision-making depends on multiple neural
38 processing stages that represent and select sensory information, those that process and accumulate
39 sensory evidence, and those that prepare and execute motor commands. Variability in central arousal
40 could affect any one or potentially all of these processing stages, which in turn could influence
41 behavioural performance.

42 The neuromodulatory systems that control central arousal state, such as the noradrenergic
43 (NA) locus coeruleus (LC) and the cholinergic basal forebrain (BF), have also been suggested to drive
44 fluctuations in endogenous activity linked to changes in cortical (de)synchronization, i.e. cortical state
45 (Harris and Thiele, 2011; Lee and Dan, 2012), and are linked to cognitive functions such as attention
46 (Thiele and Bellgrove, 2018), both known to affect information processing and behavioural
47 performance. These modulatory systems have both tonic and phasic firing patterns that are recruited
48 on different timescales and support different functional roles (Aston-Jones and Cohen, 2005; Dayan
49 and Yu, 2006; Parikh et al., 2007; Parikh and Sarter, 2008; Sarter et al., 2016). Tonic changes in
50 neuromodulator activity occur over longer timescales that can span multiple trials, whereas fast (task-
51 evoked) recruitment through phasic activation occurs on short enough timescales to influence neural
52 activity and behavioural decisions within the same trial (Aston-Jones and Cohen, 2005; Bouret and
53 Sara, 2005; Dayan and Yu, 2006; Parikh et al., 2007).

54 Pupil diameter correlates strongly with a variety of measurements of cortical state and
55 behavioural arousal (Eldar et al., 2013; Reimer et al., 2014; McGinley et al., 2015b, 2015a; Vinck et
56 al., 2015; Engel et al., 2016), and can thus be considered a reliable proxy of central arousal state.
57 Indeed, there is a strong correlation between pupil size and activity in various neuromodulatory
58 centres that control arousal (Aston-Jones and Cohen, 2005; Gilzenrat et al., 2010; Murphy et al.,
59 2014a; Varazzani et al., 2015; Joshi et al., 2016; Reimer et al., 2016; de Gee et al., 2017). Both
60 baseline pupil diameter, reflecting tonic activity levels in neuromodulatory centres (tonic arousal), and
61 task-evoked pupil diameter changes (phasic arousal), have been related to specific neural processing
62 stages of perceptual decision making. Baseline pupil diameter correlates with sensory sensitivity
63 (McGinley et al., 2015a, 2015b) and is predictive of behavioural performance during elementary
64 detection tasks (Murphy et al., 2011; McGinley et al., 2015a). Pupil diameter also changes phasically
65 in the course of a single decision (Beatty, 1982a; de Gee et al., 2014, 2017; Lempert et al., 2015;
66 Murphy et al., 2016; Urai et al., 2017), and has been related to specific elements of the decision
67 making process, such as decision bias (de Gee et al., 2014, 2017), uncertainty (Urai et al., 2017), and
68 urgency (Murphy et al., 2016). This suggests that these neuromodulatory systems do not only dictate
69 network states (through tonic activity changes), but that they are recruited throughout the decision
70 making process (Cheadle et al., 2014; de Gee et al., 2014, 2017). Although both baseline pupil
71 diameter and the phasic pupil response have been associated with specific aspects of decision-making,

72 the relationship between pupil-linked arousal and the electrophysiological correlates of decision-
73 making, and in particular evidence accumulation, are largely unknown.

74 Recently developed behavioural paradigms have made it possible to non-invasively study the
75 individual electroencephalographic (EEG) signatures of perceptual decision-making described above
76 (O'Connell et al., 2012; Kelly and O'Connell, 2013; Loughnane et al., 2016, 2018; Newman et al.,
77 2017). In these paradigms, participants are required to continuously monitor (multiple) stimuli for
78 subtle changes in a feature. Because stimuli are presented continuously, target onset times (and
79 locations) are unpredictable, and sudden stimulus onsets are absent, eliminating sensory evoked
80 deflections in the EEG traces. These characteristics allow for the investigation of the gradual
81 development of build-to-threshold decision variables as well as signals that code for the selection of
82 relevant information from multiple competing stimuli, a critical feature of visuospatial attentional
83 orienting that impact evidence accumulation processes (Loughnane et al., 2016).

84 Here, we asked how arousal influences EEG signals that relate to each of the separate
85 processing stages described above. Specifically, we tested the effects of pupil-linked arousal on pre-
86 target preparatory parieto-occipital α -band activity, associated with fluctuations in the allocation of
87 attentional resources (Kelly and O'Connell, 2013); early target selection signals measured over
88 contra- and ipsilateral occipital cortex, the N2c and N2i (Loughnane et al., 2016); perceptual evidence
89 accumulation signals measured as the centroparietal positivity (CPP), which is a build-to-threshold
90 decision variable demonstrated to scale with the strength of sensory evidence and predictive of
91 reaction time (RT) (O'Connell et al., 2012; Kelly and O'Connell, 2013); and motor-preparation
92 signals measured via contralateral β -band activity (Donner et al., 2009; O'Connell et al., 2012). Of
93 these signals, we extracted specific characteristics such as the latency, build-up rate and amplitude,
94 and tested whether these were affected by pupil-linked arousal. Additionally, because the variance and
95 response reliability of the membrane potential of sensory neurons varies with pupil diameter (Reimer
96 et al., 2014; McGinley et al., 2015a), we also investigated whether arousal affected the inter-trial
97 phase coherence (ITPC), a measure of across trial consistency in the EEG signal, of the N2 and the
98 CPP.

99 We found that both baseline pupil diameter as well as the pupil response were predictive of
100 behavioural performance, and that this relationship was best described by a U-shaped, second-order
101 polynomial, model fit. Furthermore, we found that both tonic and phasic arousal bore a predictive
102 relationship with the neural signals coding for baseline attentional engagement, early target selection,
103 evidence accumulation as well as the preparatory motor response. Although neural activity
104 representing all these stages varied with changes in arousal, unique variability in task performance
105 due to tonic arousal (baseline pupil diameter) could only be explained by the amplitude of target
106 selection signals and the consistency of the build-up rate of the CPP, reflecting evidence
107 accumulation. In contrast, variability due to phasic arousal (pupil response) was explained by pre-
108 target α -band activity as well as the build-up rate and consistency of the CPP.

109 Results

110 80 subjects performed a continuous version of the random dot motion task in which they were asked
 111 to report temporally and spatially unpredictable periods of coherent motion within either of two
 112 streams of random motion (Figure 1A). We investigated whether the trial-to-trial fluctuations in
 113 behavioural performance and EEG signatures of perceptual decision making could, in part, be
 114 explained by trial-to-trial differences in the size of the baseline pupil diameter (reflecting tonic
 115 arousal) and the post-target pupil response (reflecting phasic arousal). We quantified this relationship
 116 by allocating data into 5 bins based on the size of either the baseline pupil diameter or the phasic pupil
 117 diameter response (Figure 1B & Figure 1D). We then used sequential multilevel model analyses and
 118 maximum likelihood ratio tests to test for fixed effects of pupil bin. We determined whether a linear
 119 fit was better than a constant fit and subsequently whether the fit of a second-order polynomial (e.g.,
 120 U-shaped relationship), indicating a non-monotonic relationship between pupil diameter and
 121 behaviour/EEG, was superior to a linear fit.

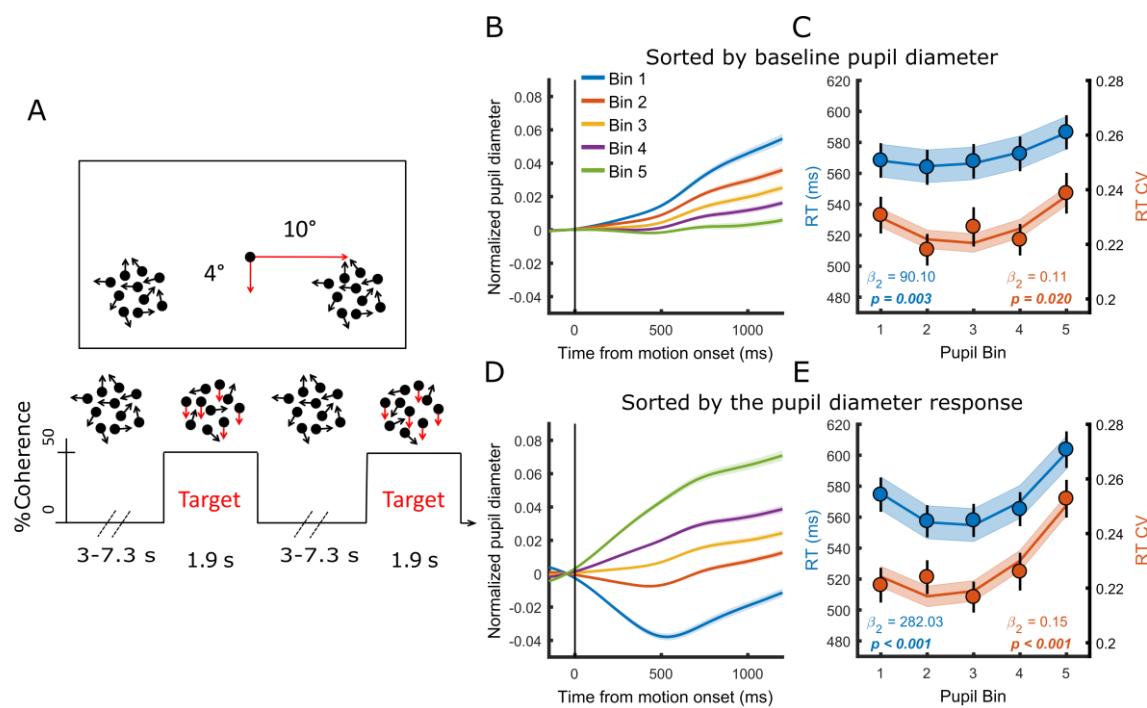


Figure 1. (A) Paradigm. Subjects fixated on a central dot while monitoring two peripheral patches of continuously presented randomly moving dots. At pseudorandom times an intermittent period of coherent downward motion (50%) occurred in either the left or the right hemifield. A speeded right handed button press was required upon detection of coherent motion. (B-C) Pupil diameter time course and task performance sorted by baseline pupil diameter. (B) Pupil time-course for the five bins. (C) Behavioural performance for the five bins. Markers indicate mean reaction times (RT, blue, left y-axis) and reaction time coefficient of variation (RTcv, red, right y-axis), lines and shading indicate significant quadratic fits. (D-E) Same conventions as B-C, but sorted by the pupil diameter response. Error bars and shaded regions denote ± 1 standard error of the mean (SEM). Stats, linear mixed effects model analyses (Statistical analyses).

122 **Both tonic and phasic arousal are predictive of task performance in a U-shaped
123 manner**

124 We first investigated the relationship between trial-by-trial pupil dynamics and behavioural
125 performance. As stimuli were presented well above perceptual threshold, our subjects performed at
126 ceiling (Newman et al., 2017). We therefore focused on RT and the RT coefficient of variation
127 (RTcv), a measure of performance variability calculated by dividing the standard deviation in RT by
128 the mean (Bellgrove et al., 2004), rather than accuracy. We found that both measures of behavioural
129 performance displayed a non-monotonic, U-shaped, relationship with both baseline pupil diameter
130 (RT $\chi^2_{(1)} = 8.98$, $p = 0.003$; RTcv $\chi^2_{(1)} = 5.36$, $p = 0.020$) and the pupil diameter response (RT $\chi^2_{(1)} =$
131 116.65 , $p < 0.001$; RTcv $\chi^2_{(1)} = 12.36$, $p < 0.001$). Responses were fastest and least variable for
132 intermediate pupil bins (Figure 1C & Figure 1E). We repeated this analysis in single-trial, non-binned
133 data, in which we additionally controlled for time-on-task effects, confirming that these effects were
134 not dependent on the binning procedure (Supplementary information). Additionally, we noticed that
135 when we band-pass filtered the pupil diameter, rather than low-pass filtered, the relationship between
136 baseline pupil diameter and task performance was not significant, whereas this did not affect the
137 relationship between the pupil response and task performance (Supplementary figure 1). This suggests
138 that slow fluctuations in baseline pupil diameter (<0.01Hz) are driving the effect on task performance.

139 Having established a relationship between task performance and both tonic and phasic modes
140 of central arousal state, we next focused on the relationship between these pupil dynamics and the
141 neural signatures underpinning target detection on this perceptual decision making task (Loughnane et
142 al., 2016; Newman et al., 2017).

143

144 **U-shaped relationship between phasic arousal and decision computation**

145 During decision making, perceptual evidence has to be accumulated over time. This accumulation
146 process has long been related to build-to-threshold activity in single neurons in parietal cortex (Gold
147 and Shadlen, 2007; but see Latimer et al., 2015, 2016; Shadlen et al., 2016). The centro-parietal
148 positivity (CPP) measured from scalp EEG exhibits many of these same properties, including a
149 representation of the accumulation of sensory evidence towards a decision bound (O'Connell et al.,
150 2012, 2018; Kelly and O'Connell, 2013). Here we tested the relationship between the pupil diameter
151 response and the onset, build-up rate, amplitude and consistency (ITPC) of the CPP (Figure 2). We
152 found that the onset latency of the evidence accumulation process, defined as the first time point that
153 showed a significant difference from zero for 15 consecutive time points, displayed a quadratic
154 relationship with the size of the pupil response ($\chi^2_{(1)} = 7.53$, $p = 0.006$), such that the fastest onsets
155 were found for intermediate pupil response bins and slower onsets for the extreme bins (Figure 2A).
156 Likewise, the slope of the CPP, reflecting the build-up rate of evidence accumulation, also displayed a
157 non-monotonic, inverted-U shaped, relationship with the pupil response ($\chi^2_{(1)} = 7.81$, $p = 0.005$). The

158 amplitude of the CPP, representing the threshold of the accumulation process, did not vary with the
 159 pupil diameter response ($p = 0.24$). We thus found a direct relationship between phasic arousal and
 160 the onset and build-up rate of evidence accumulation. Moreover, the non-monotonic relationship with
 161 the neural parameters of the CPP closely resembled the relationship between the pupil response and

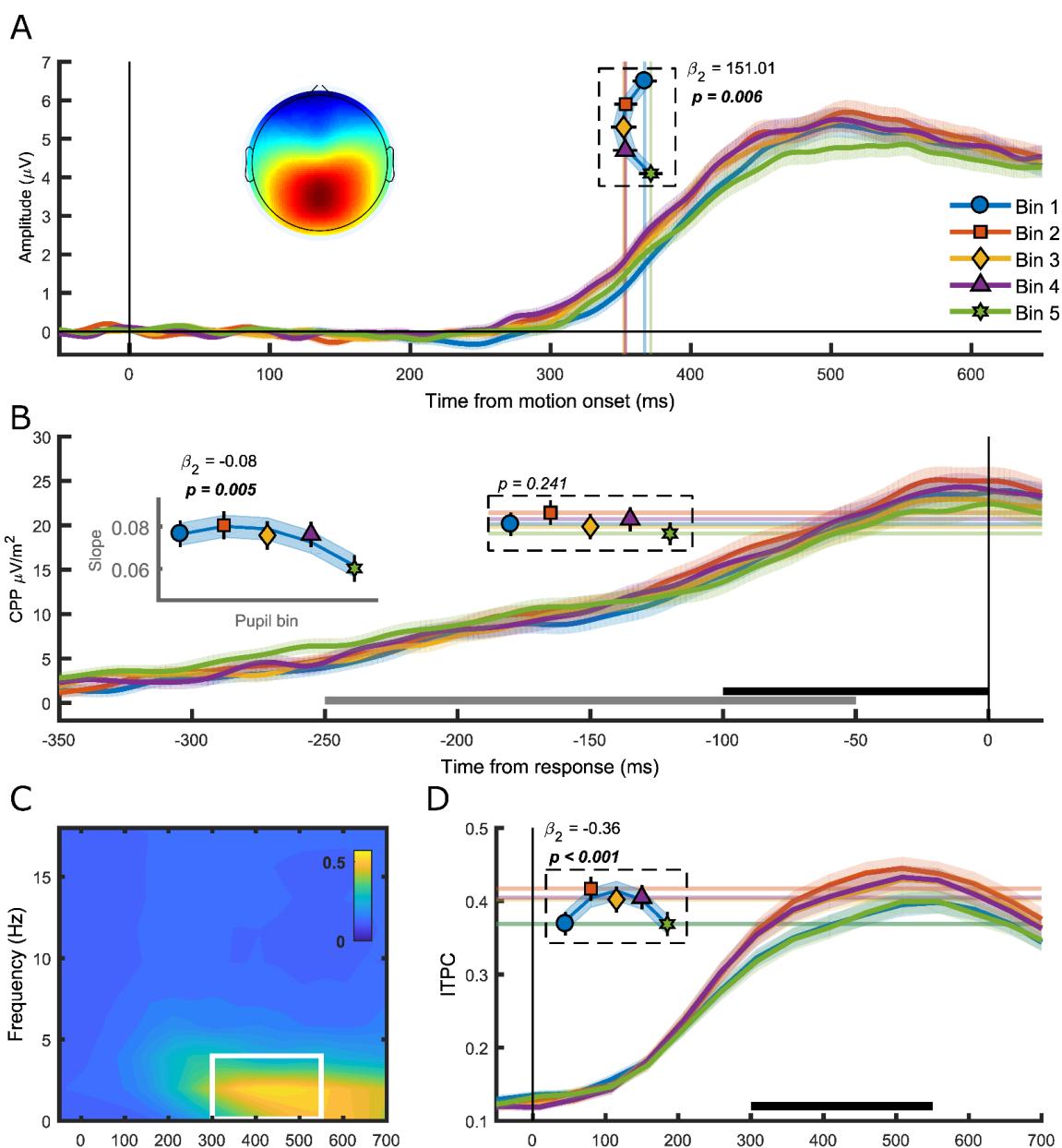


Figure 2. The centro-parietal positivity (CPP) in relation to phasic arousal. (A) The stimulus-locked CPP time-course shows faster onset times for intermediate pupil response bins. The inset shows the scalp topography of the CPP. Vertical lines and markers indicate the onset latencies per bin. (B) The response-locked CSD-transformed CPP time-course. Horizontal lines and symbols indicate the CPP amplitude, and the inset displays the build-up rate of the CPP across pupil response bins. The black bar represents the time window used for the calculation of the CPP amplitude and the grey bar the time window used for the calculation of the build-up rate. (C) Grand average inter-trial phase coherence (ITPC) per time-frequency point for the CPP. White box represents the time-frequency window selected for statistical analyses. (D) ITPC per pupil bin over time for frequencies below 4 Hz. The black bar indicates the time window used for further analysis. Horizontal lines and symbols indicate the averaged ITPC in the time-frequency window indicated by the white box in panel C. Lines and shading indicate significant quadratic fits to the data. Error bars and shaded regions denote ± 1 SEM. Stats, linear mixed effects model analyses (Statistical analyses).

162 behavioural performance (Figure 1E). Because the membrane potential of sensory neurons shows the
163 least variance and highest response reliability at intermediate baseline pupil diameter (McGinley et
164 al., 2015a), we additionally investigated the ITPC, a measure of across trial consistency, of the CPP.
165 We computed ITPC with a single-taper spectral analysis in a 512 ms sliding window computed at 50
166 ms intervals, with a frequency resolution of 1.95 Hz (Materials and Methods). Based on the stimulus-
167 locked grand average time-frequency spectrum, we selected a time (300-550 ms) and frequency
168 window (<4 Hz) for further statistical analyses (Figure 2C). We found a quadratic (inverted U-shape)
169 relationship between pupil diameter response and the consistency of the CPP signal ($\chi^2_{(1)} = 30.42$, $p <$
170 0.001), indicating that the CPP signal is less variable for intermediate pupil response bins (Figure 2D).
171 Together, these results confirm the hypothesized relationship between the pupil diameter response and
172 electrophysiological correlates of evidence accumulation. Next, we asked whether other stages of
173 information processing underpinning perceptual decision making also varied with the pupil response.
174

175 **The phasic pupil response relates monotonically to spectral measures of baseline 176 attentional engagement and displays a U-shaped relationship with motor output**

177 We next investigated pre-target preparatory α -band power (8-13 Hz), a sensitive index of attentional
178 deployment that has been shown to vary with behavioural performance. Specifically, previous studies
179 have found higher pre-target α -band power preceding trials with longer RT, and that fluctuations in α -
180 power may reflect an attentional influence on variability in task performance (Ergenoglu et al., 2004;
181 van Dijk et al., 2008; O'Connell et al., 2009; Kelly and O'Connell, 2013). We first verified the
182 relationship between α -band power and behavioural performance by binning the data into 5 bins
183 according to α -band power and performing the same sequential regression analysis as described above
184 (Figure 3A). We replicated previous findings (Kelly and O'Connell, 2013) and found an
185 approximately linear relationship between α -band power and RT ($\chi^2_{(1)} = 23.31$, $p < 0.001$) but not
186 RTcv ($p = 0.26$). In line with previous research (Hong et al., 2014), pupil diameter response was
187 inversely related to α -band power (Figure 3B), displaying an approximately linear relationship ($\chi^2_{(1)} =$
188 47.19, $p < 0.001$), suggesting that pre-target attentional engagement is related to phasic arousal.

189 We next focused on response-related motor activity in the form of left hemispheric β -power
190 (LHB). LHB decreases before a button press and has been shown to reflect the motor-output stage of
191 perceptual decision making, but also to trace decision formation, reflecting the build-up of choice
192 selective activity (Donner et al., 2009). Here we investigated the LHB amplitude and build-up rate
193 preceding response (Figure 3C). We found that both LHB amplitude ($\chi^2_{(1)} = 4.18$, $p = 0.041$) and LHB
194 slope ($\chi^2_{(1)} = 3.94$, $p = 0.047$) displayed a non-monotonic relationship with pupil response, suggesting
195 that phasic arousal influences the build-up rate of choice-related activity over motor cortex. The build-
196 up rate results accord with those for the CPP, as for both measures the slope declined with a larger

197 pupil diameter response (note that LHB decreases during decision formation, i.e. has a negative
 198 slope).

199

200 Only ipsilateral target selection signals correlate with the phasic pupil response

201 Next we investigated the N2 (Figure 3D-F), a stimulus-locked early target selection signal that has
 202 been shown to predict behavioural performance and modulate the onset and build-up rate of the CPP

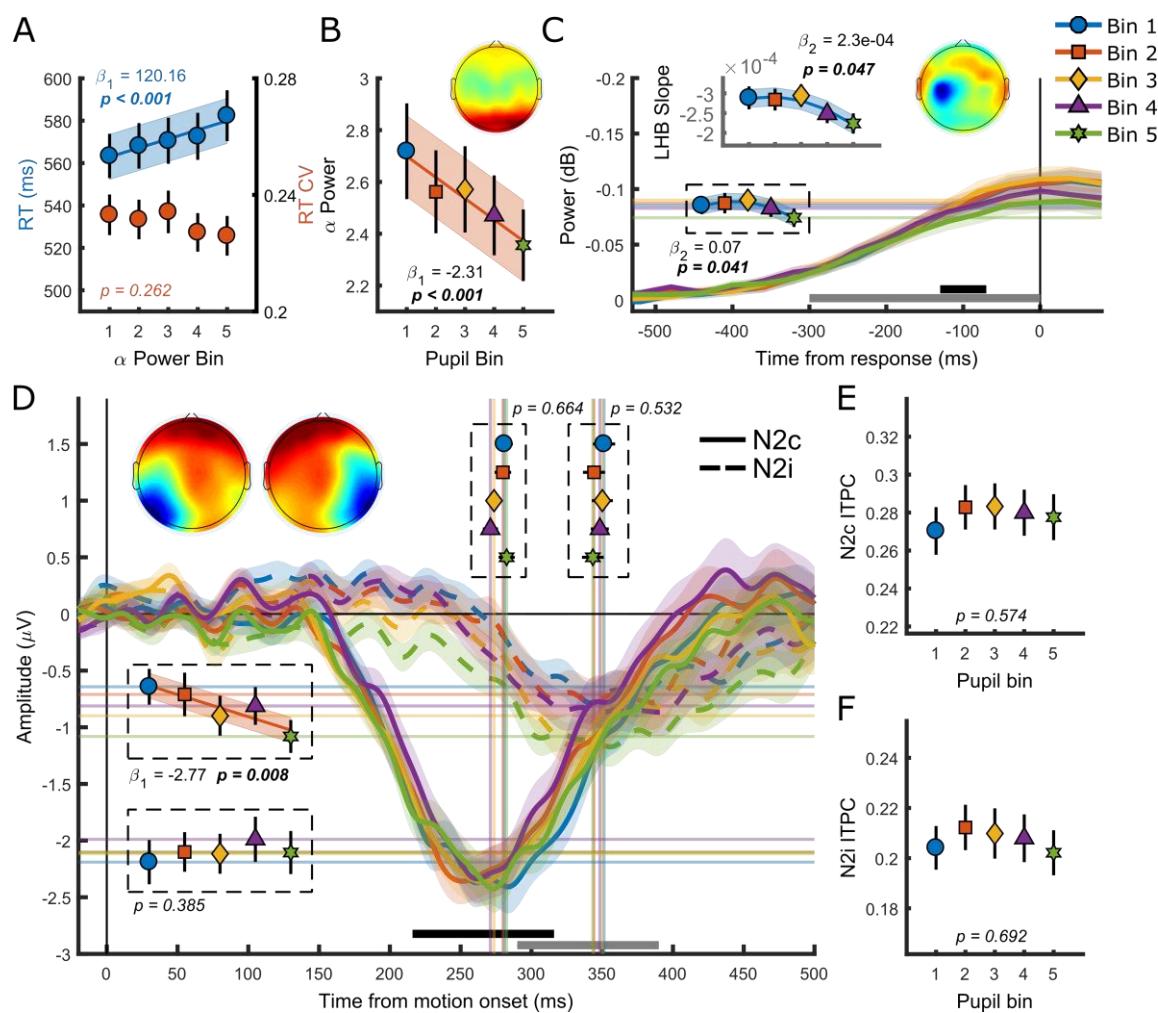


Figure 3. (A) RT and RTcv in relation to pre-target α power. (B) Pre-target α power in relation to the pupil response. (C) response-related left hemispheric β power (LHB) per pupil bin. Horizontal lines and marks indicate the average LHB in the time window indicated by the black bar. Inset shows LHB build-up rate, as determined by fitting a straight line through the LHB in the time window indicated by the grey bar. Note the reverse y-axis direction. (D) The stimulus-locked N2c (solid lines) and N2i (dashed lines) time-course binned by the pupil response. Vertical lines and markers show the peak latencies. Horizontal lines and markers show the average N2 amplitude during the time period indicated by the black (N2c) and grey (N2i) bars. (E-F) N2c (E) and N2i (F) ITPC per pupil bin over the time and frequency window determined based on the grand average ITPC (Supplementary figure 2). Insets show the scalp topography of each neural signal. Lines and shading indicate significant fits to the data. Linear fits are displayed when a first-order polynomial fit was superior to a constant fit, and quadratic fits are displayed where second-order fits were superior to a first-order fit. Error bars and shaded regions denote ± 1 SEM. Stats, linear mixed effects model analyses (Statistical analyses).

203 (Loughnane et al., 2016). Because of the spatial nature of the task, we analysed the negative
204 deflection over both the contra- (N2c) and ipsi-lateral (N2i) hemisphere, relative to the target location.
205 The pupil response was not predictive of any aspect of the N2c. Specifically, phasic arousal was not
206 predictive of N2c latency ($p = 0.66$) or amplitude ($p = 0.39$), nor did we find any relationship between
207 the pupil response and the N2c ITPC ($p = 0.57$). Although the pupil response was not predictive of
208 N2i latency ($p = 0.53$) or ITPC (0.69), it was predictive of N2i amplitude ($\chi^2_{(1)} = 6.94$, $p = 0.008$).
209 Previously, we showed that the N2c, rather than N2i, correlated with RT and modulated CPP
210 (Loughnane et al., 2016). It is therefore interesting that N2i, rather than N2c varied with the pupil
211 response. Below, we will discuss whether this effect could (partially) explain the relationship between
212 the pupil response and task performance.

213

214 **Variation in spatial attention influences task performance, but cannot explain the 215 U-shaped relationship between pupil response and RT**

216 Having established a relationship between the size of the pupil response and both task performance
217 and EEG signatures of perceptual decision making, we investigated whether the U-shaped relationship
218 with behavioural performance could be explained by factors other than phasic arousal. Alongside
219 activity in neuromodulatory centres, pupil diameter also correlates with activity in the intermediate
220 layers of the superior colliculus (SCi) (Wang et al., 2012; Joshi et al., 2016; de Gee et al., 2017). The
221 SCi, besides preparing and executing eye movements, is involved in directing covert attention
222 (Kustov and Lee Robinson, 1996; Ignashchenkova et al., 2004; Muller et al., 2005; Lovejoy and
223 Krauzlis, 2010), and provides an essential contribution to the selection of stimuli from amongst
224 competing distractors (McPeek and Keller, 2002, 2004; reviewed in Mysore and Knudsen, 2011).
225 Therefore, given our use of multiple simultaneously presented competing stimuli, variations in spatial
226 attention could potentially explain variability in behavioural performance and pupil diameter
227 responses. Indeed, previous research has reported an association between poorer behavioural
228 performance and large pupil diameter responses when there was a requirement to monitor multiple
229 stimuli simultaneously (Kristjansson et al., 2009).

230 To test this possibility, we further investigated the relationship between pupil responses and
231 the ipsilateral N2 target selection signal (Figure 3D). If on trials with lower behavioural performance
232 attention was focused on the distractor stimulus, then early target selection signals contralateral to the
233 distractor stimulus (i.e. ipsilateral to the target stimulus) might differ compared to trials with relatively
234 better performance. Additionally, these differences might be present throughout the trial, before the
235 N2i is expected to reveal differences between target and non-target stimuli (Loughnane et al., 2016).
236 We therefore conducted a sliding window linear mixed effect model analysis predicting N2i
237 amplitude for each 100 ms window, in 10 ms increments, from -20 before to 500 ms after target onset
238 (Figure 4A). This analysis revealed that the pupil diameter was predictive of N2i amplitude from as

239 early as 70 ms after target onset, much earlier than the previously reported target selection onset of
 240 308 ms (Loughnane et al., 2016), and therefore unlikely to reflect target processing. Rather, large
 241 pupil responses and a large N2 amplitude could reflect a bias in attention or expectation of the target

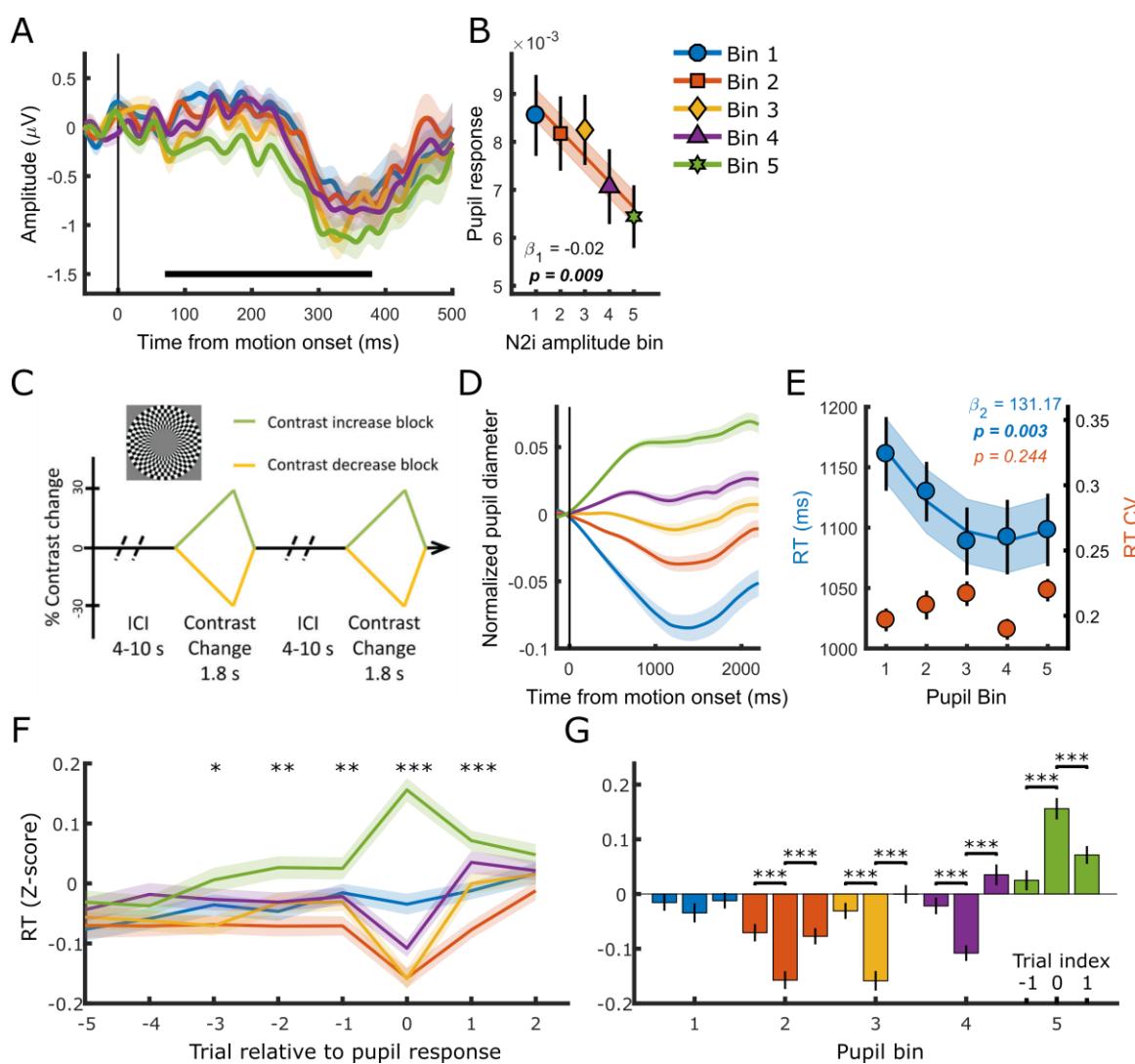


Figure 4. (A) The stimulus-locked N2i time-course binned by the pupil response. The time period indicated by the black bar displays the times where there was a significant, approximately linear, relationship between the pupil response and N2i amplitude. Stats, sliding window linear mixed effect model analysis (main text), FDR corrected. (B) The size of the pupil response, sorted by N2i amplitude. (C-E) Data from a different dataset using a contrast change detection paradigm where subjects monitored a single central target stimulus (Loughnane et al., 2018). (C) Task paradigm. Participants monitored a single central checkerboard stimulus for gradual contrast changes. (D) Pupil time-courses for the 5 bins. (E) Relationship between behavioural performance and the pupil diameter response. Markers indicate mean reaction times (RT, blue, left y-axis) and reaction time coefficient of variation (RTcv, red, right y-axis). (F) Z-scored log transformed RT across subsequent trials, sorted by pupil diameter on trial 0. Significance stars indicate when RT for the 5th pupil bin was significantly higher than the average RT across the first 4 bins. (G) RT per pupil bin for trial index -1, 0 and 1 (panel F). Lines and shading indicate significant fits to the data. Linear fits are displayed when a first-order polynomial fit was superior to a constant fit, and quadratic fits are displayed where second-order fits were superior to a first-order fit. Error bars and shaded regions denote ± 1 SEM. Stats, linear mixed effects model analyses (panel A-E, Statistical analyses), and paired sample t-tests, FDR corrected (panel F-G).

242 location. Although large pupil responses have previously been related to a reduction in decision bias
243 (de Gee et al., 2014, 2017), these studies did not investigate decision bias in the context of spatially
244 unpredictable target locations. As the size of the N2i could indicate the need to shift attention, we next
245 tested whether the size of the N2i amplitude could predict the size of the pupil diameter response. In
246 line with the results described above, where trials with larger pupil responses displayed larger N2i
247 amplitudes, N2i amplitude displayed an inverse relationship (note that the first bin contains the largest
248 N2i responses) with the pupil diameter response ($\chi^2_{(1)} = 6.91$, $p = 0.009$), with larger pupil responses
249 for larger N2i amplitudes (Figure 4B). This suggests that attentional shifts, possibly through
250 recruitment of the SCi, could lead to larger pupil responses and lower behavioural performance.

251 To further investigate whether these effects could explain (part of) the current results, we
252 analysed the relationship between the pupil diameter response and task performance from a different
253 dataset (Loughnane et al., 2018) in which participants ($n = 17$) monitored a single, centrally
254 positioned, flickering checkerboard annulus for a gradual change in contrast (Figure 4C). Pupil
255 diameter on this non-spatial task also displayed across-trial variability (Figure 4D), which predicted
256 RT in a non-monotonic fashion ($\chi^2_{(1)} = 8.85$, $p = 0.003$). RTcv did not scale with the pupil diameter
257 response (Figure 4E) ($p = 0.24$). We furthermore confirmed that the non-monotonic relationship
258 between the pupil response and RT was not dependent on the binning procedure or time-on-task
259 effects by repeating this analysis on single-trial data in which we controlled for these factors
260 (Supplementary Table 1). Thus, the U-shaped relationship between the pupil diameter response and
261 behaviour (RT) cannot be attributed to attentional shifts away from a distractor stimulus and may be a
262 more general phenomenon during protracted perceptual decision-making.

263

264 **Large pupil responses may indicate a performance monitoring compensatory
265 mechanism**

266 For both NA and acetylcholine (ACh) it has been found that phasic activity is task dependent and
267 generally larger on trials with good performance (Aston-Jones et al., 1994, 1997, Rajkowski et al.,
268 1994, 2004; Parikh et al., 2007; Gritton et al., 2016). It therefore seems counterintuitive that in this
269 study large pupil responses, presumably reflecting transient activity in these modulatory systems
270 amongst others, are associated with lower behavioural performance. One possible explanation of these
271 results is that this transient reflects a NA and/or ACh-related compensatory mechanism (Murphy et
272 al., 2011; Sarter et al., 2016). Although speculative, a transient in phasic arousal could, on the current
273 task, reflect a correction from a state with low performance. Indeed, trials with maximum pupil
274 dilations and low task performance have been found to be preceded by trials with progressively longer
275 RT, and followed by better task performance (Murphy et al., 2011). We therefore tested whether trials
276 with a large pupil diameter response were preceded/followed by trials with worse/better task
277 performance. Figure 4F-G shows the RT for trials relative to the trial on which the pupil response was

278 measured (trial 0). Trials with larger pupil responses (bin 5, green) were preceded by trials with
279 slower than average RT (Figure 4F), and this effect was observed for up to 3 trials before trial 0.
280 Although on the subsequent trial (trial 1) RT was still slower than average, RT was significantly faster
281 compared to trial 0 (Figure 4G). Additionally, the trials for which the pupil response is largest are the
282 only trials on which there is both a decrease in task performance (increase in RT) from the previous
283 trial, and a subsequent improvement in performance on the next trial. The other bins displayed the
284 exact opposite pattern, and none of them showed an improvement in task performance after trial 0. A
285 phasic pupillary response could thus indicate a compensatory mechanism, signalling the need to
286 adjust the neural circuitry to a state that facilitates better performance. As Murphy et al. (2011)
287 concluded, large pupil responses may reflect phasic activations driven by higher cortical performance
288 monitoring brain regions that serve to reengage participants in the task.
289

290 **The impact of phasic arousal on task performance is mainly mediated by the 291 consistency in evidence accumulation**

292 Regardless of the neural mechanism, we found that pupil-linked phasic arousal was predictive of
293 specific neural signals at multiple information processing stages of perceptual decision making. To
294 test which of these signals explained unique variability in behavioural performance across the 5 pupil
295 response bins and subjects, the neural signals were added to a linear mixed effects model predicting
296 either RT or RTcv with their order of entry determined hierarchically by their temporal order in the
297 decision-making process. This allowed us to test whether each successive stage of neural processing
298 would improve the fit of the model to the behavioural data, over and above the fit of the previous
299 stage. Note that none of the predictors were highly correlated ($r < 0.25$), with the exception of CPP
300 onset and CPP ITPC ($r = 0.43$), CPP build-up rate and CPP amplitude ($r = -0.59$), and LHB build-up
301 rate and amplitude ($r = -0.28$). Compared to the baseline model predicting RT with pupil bin, the
302 addition of pre-target α -power significantly improved the model fit ($\chi^2_{(1)} = 10.63$, $p < 0.001$). None of
303 the measures of early target selection improved the fit of the model; neither N2c latency ($\chi^2_{(1)} = 0.75$,
304 $p = 0.39$) or amplitude ($\chi^2_{(1)} = 0.47$, $p = 0.49$), nor N2i latency ($\chi^2_{(1)} = 0.90$, $p = 0.34$) or amplitude
305 ($\chi^2_{(1)} = 2.34$, $p = 0.13$). We found that both the addition of CPP onset ($\chi^2_{(1)} = 27.24$, $p < 0.001$) as well
306 as the build-up rate ($\chi^2_{(1)} = 11.74$, $p < 0.001$) significantly improved the model fit. Whereas the
307 addition of CPP amplitude did not ($\chi^2_{(1)} = 3.19$, $p = 0.07$), the addition of CPP ITPC substantially
308 improved the fit of the model ($\chi^2_{(1)} = 40.60$, $p < 0.001$). Although both LHB amplitude and build-up
309 rate varied with phasic arousal, neither improved the fit of the model (LHB build-up rate $\chi^2_{(1)} = 2.09$,
310 $p = 0.15$; amplitude $\chi^2_{(1)} = 0.59$, $p = 0.44$). Overall, this model suggested that pre-target α -power, CPP
311 onset, build-up rate and ITPC exert partially independent influences on RT. Because some variables
312 were highly correlated (e.g. CPP onset and ITPC) we used an algorithm for forward/backward
313 stepwise model selection (Venables and Ripley, 2002) to test whether each neural signal indeed

314 explained independent variability that is not explained by any of the other signals. This procedure
315 eliminated CPP onset from the final model ($F_{(1)} = 2.60$, $p = 0.11$). Thus, only pre-target α -power, CPP
316 build-up rate and CPP ITPC significantly improved the model fit for predicting RT. These three
317 variables were forced into one linear mixed effects model predicting RT (Statistical analyses), and
318 comparison to a baseline model revealed a good fit ($\chi^2_{(3)} = 82.18$, $p < 0.001$). The fixed effects of the
319 model (the neural signals) explained 14.6% of the variability in RT (marginal r^2) across the 5 pupil
320 response bins, and together with the random effects (across subject variability) it explained 93.1% of
321 the variability (conditional r^2).

322 We performed the same hierarchical regression analysis to see which neural signals explained
323 variability in RTcv. We summarised the results of this analysis in Supplementary Table 2, and report
324 the most important results here. The hierarchical regression analysis revealed that both CPP onset and
325 CPP ITPC improved the model fit, but eliminated CPP onset after the forward/backward model
326 selection. Consequently, CPP ITPC was the only variable that exerted independent influence on
327 RTcv. Comparison against a baseline model revealed a significant fit ($\chi^2_{(1)} = 19.78$, $p < 0.001$) that
328 had a marginal r^2 of 11.1% and a conditional r^2 of 46.5%.

329 Table 1 shows the final parameter estimates for the neural signals that significantly predicted
330 variability in RT or RTcv that is due to variability in phasic arousal. From this analysis we can
331 conclude that CPP ITPC was the strongest predictor for RT and the only predictor for RTcv. These
332 results provide novel insight into the mechanism by which the neuromodulators that control arousal
333 can influence behaviour. The impact of these modulators on decision-making, previously suggested to
334 be recruited throughout the decision-making process (Cheadle et al., 2014; de Gee et al., 2014, 2017),
335 is thus mainly mediated by their effects on the consistency in evidence accumulation.

336 Next, we turn to tonic arousal and its relationship to these same EEG components of
337 perceptual decision-making.

Table 1. Parameter estimates for the final linear mixed effect model of RT and RTcv binned by the pupil diameter response or baseline. The only parameters included are the neural signals that significantly improved the model fit.

	RT				RTcv			
	β	β SE	T	p	β	β SE	t	P
<i>Pupil response</i>								
pre-target α-power	0.18	0.050	3.70	<0.001				
CPP build-up rate	-0.10	0.042	-2.26	0.024				
CPP ITPC	-0.23	0.029	-7.97	<0.001	-0.26	0.056	-4.66	<0.001
<i>Baseline Pupil diameter</i>								
N2c amplitude	0.05	0.027	1.95	0.052*				
CPP ITPC	-0.18	0.032	-5.48	<0.001	-0.31	0.056	-5.45	<0.001

* Although N2c amplitude fell short of the nominal statistical significance threshold, a robust regression analysis confirmed a significant positive relationship with RT (Supplementary Table 4).

338 **Baseline pupil diameter is inversely related to the consistency of evidence**

339 **accumulation**

340 Figure 5 illustrates the relationship between baseline pupil diameter and the CPP. Unlike the pupil
 341 response, baseline pupil diameter was not predictive of the onset ($p = 0.17$), build-up rate ($p = 0.15$),
 342 or amplitude of the CPP ($p = 0.10$). The only component that significantly scaled with baseline pupil
 343 diameter was the consistency of evidence accumulation, CPP ITPC ($\chi^2_{(1)} = 9.34$, $p = 0.002$). In line
 344 with previous research that revealed increased variability in the rate of evidence accumulation during
 345 periods with larger baseline pupil diameter (Murphy et al., 2014b), we found an inverse,
 346 approximately linear, relationship in which higher baseline pupil diameter displayed lower EEG
 347 signal consistency (Figure 5D). Thus, states of higher arousal are characterized by less consistency,
 348 i.e. more variability, in the accumulation of evidence. Additionally, these states (bin 4 and 5) also
 349 show slower RT and higher RTcv (Figure 1C), indicating that higher variability in the rate of evidence
 350 accumulation (due to higher tonic arousal) affects task performance.

351

352 **Baseline pupil diameter relates to spectral measures of baseline attention
 353 engagement and motor output as well as early target selection**

354 We found a relationship between baseline pupil diameter and specific characteristics of multiple
 355 neural processing stages of perceptual decision-making. Specifically, as observed before (Hong et al.,
 356 2014), pre-target alpha power (Figure 6A) varied with baseline pupil diameter in a non-monotonic,
 357 inverted-U shaped, manner ($\chi^2_{(1)} = 4.40$, $p = 0.036$). This suggests that with higher tonic arousal, alpha
 358 activity is higher (or less desynchronised). Next, we tested whether baseline pupil diameter was
 359 predictive of EEG characteristics representing motor output (Figure 6B). We found an approximately

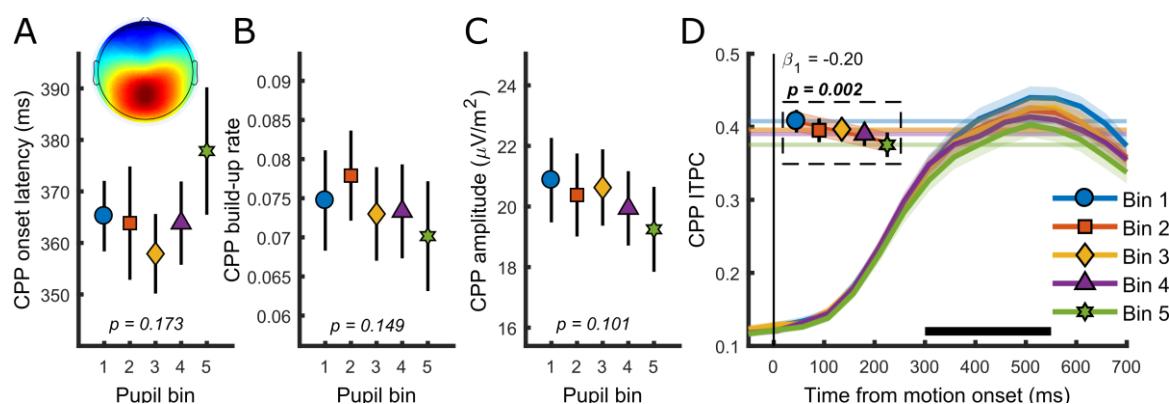


Figure 5. Relationship between baseline pupil diameter and the CPP. (A) CPP onset latency, (B) build-up rate, (C) amplitude and (D) ITPC per pupil bin over time for frequencies below 4 Hz. The black bar indicates the time window used for further analysis. Horizontal lines and symbols indicate the averaged ITPC in the time-frequency window indicated by the white box in Figure 2 panel C. Lines and shading indicate significant fits to the data. Linear fits are displayed when a first-order polynomial fit was superior to a constant fit. Error bars and shaded regions denote ± 1 SEM. Stats, linear mixed effects model analyses (Statistical analyses).

360 linear relationship with LHB build-up rate ($\chi^2_{(1)} = 11.1$, $p < 0.001$), decreasing with larger baseline
361 pupil diameter, but we did not find a relationship with LHB amplitude ($p = 0.18$).

362 Lastly, we investigated whether baseline pupil diameter affected our early target selection
363 signal, the N2 (Figure 6C-D). Previous studies have revealed that baseline pupil diameter affected the
364 size and variability of neural responses to visual and auditory stimuli (Reimer et al., 2014; McGinley
365 et al., 2015a). Here we found that baseline pupil diameter was not predictive of the peak latency of the
366 N2c ($p = 0.74$), but that it did display a monotonic relationship with the N2c amplitude ($\chi^2_{(1)} = 14.31$,
367 $p < 0.001$). Trials with larger baseline pupil diameter displayed smaller N2c amplitudes, suggesting

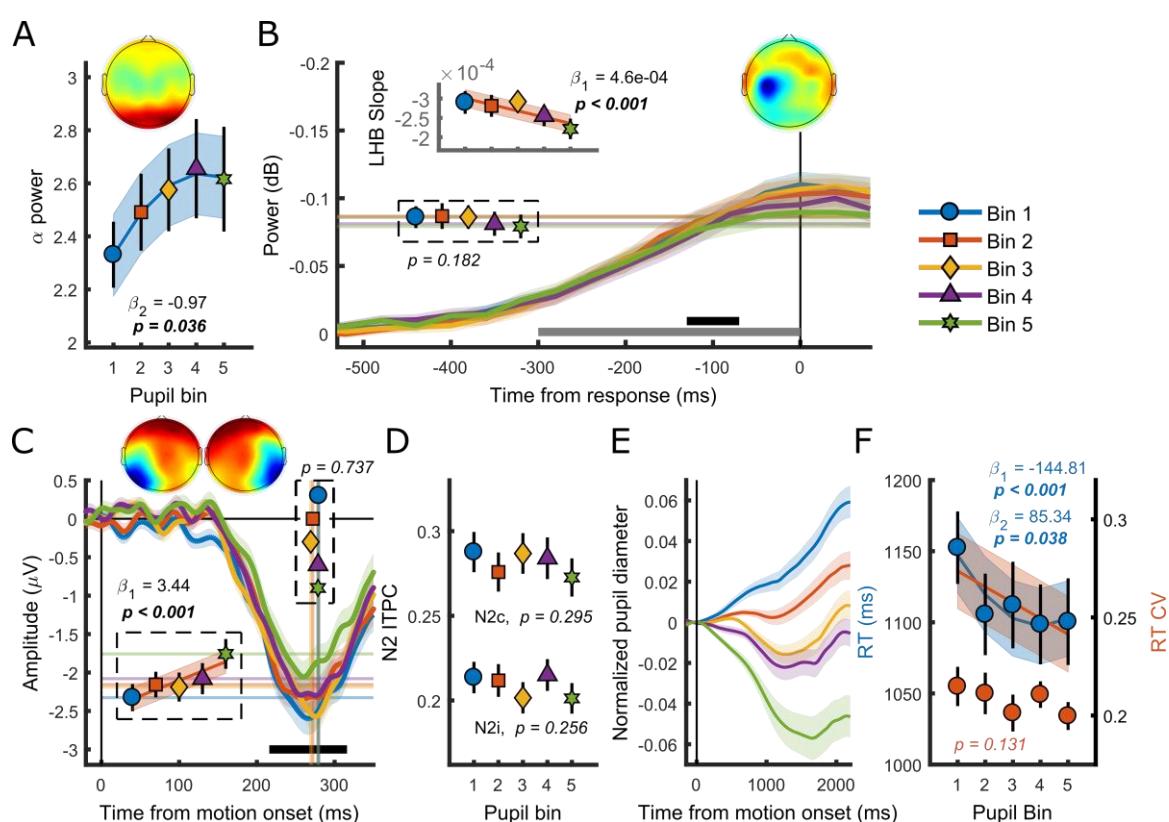


Figure 6. (A) Pre-target α power by baseline pupil diameter. (B) Response-related left hemispheric β power (LHB) per pupil bin. Horizontal lines and markers indicate the average LHB in the time window indicated by the black bar. Inset shows the LHB build-up rate, as determined by fitting a straight line through the LHB in the time window indicated by the grey bar. Note the reverse y-axis direction. (C) The stimulus-locked N2c time-course binned by baseline pupil diameter. Vertical lines and markers show the peak latencies. Horizontal lines and markers show the average N2c amplitude during the time period indicated by the black bar. (D) N2c and N2i ITPC per pupil bin averaged in a time-frequency window based on the grand average (Supplementary figure 2). (E-F) Data from a different dataset using a contrast change detection paradigm where subjects monitored a single central target stimulus (Loughnane et al., 2018). (E) Pupil time-courses for the 5 baseline pupil diameter bins. (F) Relationship between behavioural performance and baseline pupil diameter. Markers indicate mean reaction times (RT, blue, left y-axis) and reaction time coefficient of variation (RTcv, red, right y-axis). Insets show the scalp topography of each neural signal. Lines and shading indicate significant fits to the data. Linear fits are displayed when a first-order polynomial fit was superior to a constant fit, and quadratic fits are displayed where second-order fits were superior to a first-order fit. Error bars and shaded regions denote ± 1 SEM. Stats, linear mixed effects model analyses (Statistical analyses).

368 that higher arousal has a negative impact on sensory encoding. N2c ITPC did not vary with baseline
369 pupil diameter ($p = 0.30$), and nor did N2i ITPC ($p = 0.26$), N2i latency ($p = 0.87$) or amplitude ($p =$
370 0.06). We thus found that, similar to the phasic pupil diameter response, baseline pupil diameter is
371 predictive of specific characteristics of each of the processing stages of perceptual decision-making.
372 Next, we investigated which of these components explained unique variance in task performance
373 across pupil size bins.

374

375 **Consistency in evidence accumulation mediates the influence of tonic arousal on 376 task performance**

377 We again performed the same hierarchical regression analysis as described above, to see which of the
378 neural signals explained unique variability in task performance associated with tonic arousal. The full
379 results of this analysis are summarised in Supplementary Table 3. Here we discuss the main findings.
380 After the application of a forward/backward model selection algorithm (Venables and Ripley, 2002),
381 N2c amplitude and CPP ITPC were the only parameters that were predictive of RT (Table 1). These
382 variables were forced into one regression model predicting RT, and comparison against a baseline
383 model with baseline pupil diameter as a factor revealed a significant fit ($\chi^2_{(2)} = 32.6$, $p < 0.001$) with a
384 marginal (conditional) r^2 of 4.2% (94.4%). This same hierarchical regression procedure revealed that
385 CPP ITPC was the only EEG component that explained unique variability in RTcv (Table 1).
386 Comparison against a baseline model also led to a significant fit ($\chi^2_{(1)} = 26.59$, $p < 0.001$), with a
387 marginal (conditional) r^2 of 11.7% (43.3%).

388 Thus, additional to a small effect of N2c amplitude on RT, the consistency of the evidence
389 accumulation process was the only stage of information processing that explained unique within and
390 across-subject variability in task performance associated with changes in baseline pupil diameter.

391

392 **During decision-making, baseline pupil diameter does not always predict task 393 performance in a U-shaped manner**

394 Other than a small non-monotonic relationship with pre-target α power, none of the relationships
395 between baseline pupil diameter and the other EEG components was best described by a quadratic
396 polynomial. We therefore asked whether the U-shaped relationship with task performance is a general
397 phenomenon during decision-making. To this end, we again analysed the data from a different dataset
398 using a contrast change detection paradigm where subjects monitored a single central target stimulus
399 (Loughnane et al., 2018). Here, we found a small non-monotonic relationship between baseline pupil
400 diameter and RT ($\chi^2_{(1)} = 4.33$, $p = 0.038$), and no relationship with RTcv ($p = 0.13$) (Figure 6E-F).
401 Because of the small size of the non-monotonic effect with RT, we repeated this analysis in single-
402 trial, non-binned data, to investigate whether this effect arose from the binning procedure, or time-on-
403 task effects (Supplementary Table 1). This analysis revealed a monotonic relationship between

404 baseline pupil diameter and RT ($\chi^2_{(1)} = 8.21$, $p = 0.004$), but no non-monotonic relationship ($p = 0.18$).
405 Because the non-monotonic relationship was not found using single trial data, we additionally plotted
406 the inverse monotonic relationship between baseline pupil diameter and RT for the binned data
407 (Figure 6F).

408 It thus seems that on this task, higher levels of central arousal, as opposed to intermediate
409 levels, are associated with improved task performance.

410 **Discussion**

411 Here we investigated whether behavioural and neural correlates of decision-making varied as a
412 function of baseline or task-evoked pupil diameter. The perceptual decision-making paradigm
413 employed (Figure 1A) allowed us to monitor the relationship between pupil diameter and independent
414 measures of attentional engagement, early target selection, evidence accumulation and motor output.
415 We found that the trial-by-trial variability in both tonic and phasic arousal, as measured by the size of
416 the baseline pupil diameter and pupil response (Figure 1B-D), respectively, were predictive of
417 behavioural performance. This relationship was best described by a second-order, U-shaped,
418 polynomial fit for both RT as well as the variability of RT, RTcv (Figure 1C-E).

419 We furthermore established that both tonic and phasic arousal were predictive of a subset of
420 EEG signatures, together reflecting discrete aspects of information processing underpinning
421 perceptual decision-making. A hierarchical regression analysis allowed us to determine which of these
422 processing stages exerted an independent influence on behavioural performance associated with
423 central arousal. We found that pre-target α power, indexing baseline attentional engagement, and the
424 build-up rate and consistency of the CPP, reflecting the evidence accumulation process, each
425 explained unique variability in task performance that was due to variability in phasic arousal.
426 Variability in task performance due to variability in tonic arousal, was explained by the amplitude of
427 the target selection signal N2c and the consistency of the CPP.

428 We thus revealed a direct relationship between both tonic and phasic measures of arousal, and
429 a distinct but overlapping set of EEG signatures of perceptual decision-making.
430

431 **Why does the phasic pupil response predict performance in a U-shaped fashion?**

432 Although previous studies have related the size of phasic pupil dilations to behavioural performance
433 (Beatty, 1982b; Kristjansson et al., 2009; de Gee et al., 2017), the association between pupil dilation
434 and speed of detection or cognitive effort is not usually described by a non-linear relationship (but see
435 de Gee et al. (2017) for one account of a non-monotonic relationship with perceptual sensitivity). In
436 this study, we found a strong non-monotonic, U-shaped, relationship between phasic pupil dilations,
437 behavioural performance and EEG signatures during a decision-making task. Here, the largest

438 pupillary constriction and dilation were associated with the poorest behavioural performance, whereas
439 a modest dilation was associated with the best performance.

440 Arousal determines the way a subject interacts with its environment. Intermediate arousal
441 allows for optimal interaction with the task at hand, whereas suboptimal performance is observed
442 when the subject is either too drowsy or too excitable/distractible (Yerkes and Dodson, 1908; Aston-
443 Jones and Cohen, 2005). At the neuronal level this entails that too little or too much neuromodulatory
444 drive is detrimental for neural signalling and cognition, a phenomenon described for a variety of
445 neuromodulators (Aston-Jones et al., 1999; Aston-Jones and Cohen, 2005; Vijayraghavan et al., 2007;
446 Cano-Colino et al., 2014; Smucny et al., 2016). Although U-shaped relationships between pupil-
447 linked arousal and behavioural performance have previously been found with tonic, rather than phasic
448 measures of central arousal (Aston-Jones and Cohen, 2005; Murphy et al., 2011; McGinley et al.,
449 2015a), the effect of neuromodulatory drive on target neurons after phasic activation could follow a
450 similar U-shaped relationship. Indeed, the classically cited study revealing U-shaped relationships
451 between stimulus intensity and discrimination learning rate investigated whether learning to choose a
452 white over a black passage-way depended on the strength of a “disagreeable electric shock” (Yerkes
453 and Dodson, 1908). Presumably, this shock elicited, amongst others, phasic activation in
454 neuromodulatory arousal centres, which could have influenced the speed with which mice “acquired
455 the habit of avoiding the black-passage way”. Additionally, phasic activation of neuromodulatory
456 systems likely leads to a larger instantaneous increase in neuromodulator availability within or nearby
457 the synaptic cleft than tonic activity (Florin-Lechner et al., 1996; Berridge and Waterhouse, 2003).
458 Phasic arousal could therefore affect target structures and behaviour more strongly and selectively
459 than tonic arousal. Because neuromodulator availability increases transiently upon phasic activation,
460 and these modulators can rapidly be removed from the synaptic cleft (Sarter et al., 2009), target
461 structures could also be less affected by the effects of adaptation for instance, and would thus not
462 display sensitivity decreases to neuromodulators that might be expected during tonic stimulation.
463 Phasic, versus tonic, activity could thus lead to a more local modulator release that supports
464 attentional processes rather than global brain states per se (Thiele and Bellgrove, 2018). Rich
465 computational models that take into account multiple timescales, potential co-transmitters,
466 neuromodulator interactions, and internal behavioural states, as well as input integration from
467 different brain regions (Gjorgjieva et al., 2016), combined with decision-making (O’Connell et al.,
468 2018) could shed light on the neural mechanisms underlying the differential effects of tonic versus
469 phasic neuromodulation on its target structures.

470 As noted in the Results, we initially hypothesized that the association between low
471 behavioural performance and large pupil responses was due to our use of multiple competing stimuli
472 in which the target location was spatially unpredictable. Kristjansson et al. (2009) compared pupillary
473 responses accompanying slow versus normal performance in a visual vigilance task, focusing on
474 phasic attentional lapses, rather than tonic performance decrements. Subjects monitored three 4-digit

475 timers and were required to indicate as quickly as possible when one of the timers started counting.
476 Slow responses, compared to normal responses, were associated with larger phasic pupil responses.
477 On the other hand, on trials with normal response latencies, the pupil diameter hardly changed.
478 Although pupillary responses on trials with fast RTs were not described, these results do indicate that
479 poor performance can be associated with large pupil dilations on a task that requires monitoring
480 multiple visual stimuli. The required attentional shift could elicit pupil dilations through its
481 relationship with the superior colliculus (Wang et al., 2012; Wang and Munoz, 2015; Joshi et al.,
482 2016; de Gee et al., 2017). On this task, the occurrence of these attentional shifts could be indicated
483 by the amplitude of the N2i. The amplitude of the N2i, ipsilateral to the target and contralateral to the
484 distractor stimulus, was larger for large pupil responses (Figure 4A). This difference was present as
485 early as 70ms after target onset, making it unlikely that it reflects target processing. Rather, large
486 pupil responses, accompanied by larger N2i amplitudes, could indicate that attention was more biased
487 towards one of the stimuli. Trials where the non-attended stimulus turned out to be the target would
488 require a shift in attention, which in turn could be the cause of the delay in response. Indeed, we found
489 an inverse relationship between the N2i amplitude and the size of the pupil response (Figure 4B),
490 suggesting that the need for an attentional shift elicits large pupil responses, which could explain the
491 lower behavioural performance on trials with larger pupil dilations. To see whether attentional shifts
492 could be the sole mechanism by which to explain the U-shaped relationship between pupil response
493 size and task performance, we analysed data from a different experiment in which participants
494 monitored a single stimulus (Figure 4C-E). On this task, although pupil responses did not relate to
495 RTcv, they were predictive of RT in a quadratic manner. The lack of relationship with RTcv on the
496 contrast change detection task implies that variability in RT on the motion detection task could be
497 brought about by shifts in attention, and thus explain the U-shaped relationship between the pupil
498 response and RTcv. However, the quadratic relationship with RT indicates that shifts in attention
499 cannot be the sole cause of the U-shaped relationship between the pupil response and task
500 performance, and that this might be a more general phenomenon during protracted decision-making.

501 Part of our results can be interpreted in light of the relationship between pupil dilations and
502 the activity in brain areas such as the LC or BF (Aston-Jones and Cohen, 2005; Gilzenrat et al., 2010;
503 Varazzani et al., 2015; Joshi et al., 2016; Reimer et al., 2016; de Gee et al., 2017). Poor performance
504 upon pupil constrictions is in line with studies showing that sensory target detection is suboptimal
505 when a transient LC or BF response is absent (Aston-Jones et al., 1994; Rajkowski et al., 1994; Parikh
506 et al., 2007; Gritton et al., 2016). Additionally, naturally occurring pupillary constrictions are
507 preceded by transient activity decreases in the LC (Joshi et al., 2016), and are associated with
508 increased synchronization of cortical activity, a signature of cortical down states, as well as
509 suboptimal processing of visual stimuli (Reimer et al., 2014). Our results suggest that event-related
510 pupillary constrictions could be associated with similar neural mechanisms.

511 We additionally found, however, that the largest pupil responses, presumably reflecting the
512 largest phasic modulatory responses, were also associated with lower behavioural performance.
513 Although large pupil responses on trials with low task performance have been reported before
514 (Kristjansson et al., 2009; Murphy et al., 2011; Hong et al., 2014), these results do not seem
515 compatible with an interpretation in which the LC is driving this effect. Direct electrophysiological
516 recordings from the LC have revealed a positive correlation between LC phasic activity and
517 behavioural performance on elementary target detection tasks, without indications that a large phasic
518 LC response leads to worse performance (Aston-Jones et al., 1994, 1997, Rajkowska et al., 1994,
519 2004). Instead, on trials where discrimination is more difficult and RT latencies are longer, the LC
520 response is delayed (Rajkowska et al., 2004), which would bring about a delay in pupil dilation rather
521 than an immediate, larger response. Although at odds with these studies, Murphy et al., (2011)
522 previously described a similar relationship, in which trials with large pupil responses were preceded
523 by progressively worse performance which was subsequently followed by better task performance.
524 This finding was interpreted as a compensatory mechanism, driven by cortical performance
525 monitoring brain regions that, via a phasic LC response, possibly reflect a reset of the network
526 (Bouret and Sara, 2005) to reengage participants in the task. Another possible neural mechanism that
527 may lead to the same behavioural outcome is that this effect is driven by cholinergic transients that
528 have been hypothesized to signify a switch from a ‘signal-detection down’ to a ‘signal-detection up
529 state’, facilitating target detection (Sarter et al., 2016).

530 Future research will need to determine which (combination of) brainstem nuclei associated
531 with specific aspects of phasic arousal alterations, or other cognitive functions essential for perceptual
532 decision-making, bring about the effects observed in this study.

533

534 **Why does baseline pupil diameter predict performance in a U-shaped fashion?**

535 As predicted by the adaptive gain theory (Aston-Jones and Cohen, 2005), we found optimal
536 performance on trials with intermediate baseline pupil diameter. This effect was however only
537 observed when the pupil diameter data was not high-pass filtered (Supplementary figure 1). This
538 indicates that slow changes (<0.01 Hz) in pupil diameter are driving the effects on task performance.
539 U-shaped relationships with task performance have previously been found during auditory target
540 detection tasks (Murphy et al., 2011; McGinley et al., 2015a), but to the best of our knowledge never
541 during visual decision-making paradigms. Indeed, the effects of pupil-linked arousal can have
542 differential effects on activity across different brain regions (McGinley et al., 2015b). For instance,
543 signal-to-noise ratios of sensory responses in auditory cortex peak at intermediate baseline pupil
544 diameter (McGinley et al., 2015a), whereas in visual areas they are larger for higher baseline pupil
545 diameter (Vinck et al., 2015).

546 Although we found U-shaped relationships with task performance, in line with previous
547 research (Hong et al., 2014), out of all the investigated EEG components, only pre-target α power
548 displayed a small non-monotonic relationship with baseline pupil diameter. Approximately linear
549 relationships were found with pre-target α power asymmetry, N2c amplitude, LHB amplitude and
550 build-up rate, as well as an inverse relationship with CPP ITPC. Of these, only N2c amplitude and
551 CPP ITPC explained within and across subject variability in task performance (Table 1). It thus seems
552 that the effect of tonic arousal on task performance is mainly driven by an approximately linear
553 relationship with target selection and evidence accumulation consistency. This led us to question
554 whether a U-shaped relationship between tonic arousal and task performance on protracted visual
555 decision-making tasks is a more general phenomenon, or heavily dependent on specific aspects of the
556 behavioural paradigm. The absence of a non-monotonic relationship between baseline pupil diameter
557 and task performance during contrast change detection (Figure 6F) suggests the latter. These
558 differences could be driven by different task demands; on simple tasks performance may benefit from
559 increases in arousal, whereas optimal performance on more difficult discrimination tasks could be
560 found with intermediate arousal (Yerkes and Dodson, 1908; McGinley et al., 2015b). RT was
561 however substantially longer on the task where we did not find a U-shaped relationship (compare
562 Figure 1E & Figure 6F), suggesting that this task was more demanding. Alternatively, the relationship
563 between tonic arousal and task performance could be contingent on attentional demands. On tasks
564 with longer RT that require accumulation of evidence across a longer time-period, greater sustained
565 attention is required, which could benefit from increased arousal and would thus predict an inverse
566 linear relationship between baseline pupil diameter and performance (Figure 6F).

567 Depending on the behavioural paradigm and task demands, the relationship between central
568 arousal, performance and neural activity may take different forms (McGinley et al., 2015b).
569 Membrane potential recordings from sensory and association areas, as well as direct
570 electrophysiological recordings from neuromodulatory brainstem centres during protracted decision-
571 making, are needed to gain further insight in the exact mechanisms that drive the relationship between
572 cortical state, sensory encoding, evidence accumulation and task performance.

573 **574 Recruitment of neuromodulators throughout the decision process**

575 The change in pupil diameter during decision-making (Beatty, 1982a; de Gee et al., 2014, 2017;
576 Lempert et al., 2015; Murphy et al., 2016; Urai et al., 2017) suggests that neuromodulators are
577 recruited throughout the decision-making process, reflecting the sustained ramping activity during
578 evidence accumulation (Cheadle et al., 2014; de Gee et al., 2014, 2017). Our results show that phasic
579 arousal affects several components of the decision variable, the onset, build-up rate and in particular
580 the consistency of the evidence accumulation process. Because variability in CPP ITPC was the main
581 determinant of variability in task performance, our results suggest that phasic arousal affects

582 performance on the task at hand mainly by influencing the variability of the accumulation of sensory
583 evidence.

584 On trials with very short reaction times, during elementary detection tasks, LC phasic
585 responses are more aligned to the response than target onset (Clayton, 2004), and have therefore been
586 hypothesized to aid the alignment of distributed networks to prepare for motor output (Aston-Jones
587 and Cohen, 2005). During decision-making, however, there may be more time for NA (and other
588 modulators) to influence the decision network (Eckhoff et al., 2009; Nomoto et al., 2010), and could
589 thus influence decisions throughout decision formation (Dayan and Yu, 2006; Cheadle et al., 2014; de
590 Gee et al., 2014, 2017), i.e. during evidence accumulation. Indeed, although the size of the pupil
591 response was predictive of both LHB build-up rate and amplitude, these effects were relatively small
592 and neither EEG component explained unique variance in task performance. Rather, evidence
593 accumulation itself was affected by phasic arousal, which in turn explained variability in task
594 performance. The CPP shares many of the same characteristics of the classic P3 EEG component,
595 suggesting that the P3 reflects the decision formation itself, rather than the neural processes occurring
596 before or after (O'Connell et al., 2012; Kelly and O'Connell, 2013; Twomey et al., 2015). Because of
597 the dense LC innervation of the neural areas thought to be its source, the P3 has been hypothesized to
598 reflect the LC phasic response (Nieuwenhuis et al., 2005). It thus seems likely that the CPP, and
599 therefore evidence accumulation, is also influenced by LC activity. Likewise, it seems plausible that
600 ACh affects attentional processes/evidence accumulation in parietal cortex, and thus also the CPP.
601 Unilateral cholinergic deafferentation of parietal cortex reduces the proportions of neurons that
602 respond to cues, whereas it increases the proportion that respond to distractor stimuli (Broussard et al.,
603 2009). Moreover, whereas in control conditions, the neural population that responded to cues or
604 distractors were largely distinct, after deafferentation these populations overlapped substantially,
605 indicating that cholinergic innervation of parietal cortex is essential for distinguishing cue from
606 distractor and thus for selecting and possibly accumulating the appropriate sensory evidence.
607

608 **Variability in task performance due to pupil-linked arousal is best predicted by 609 the consistency in evidence accumulation**

610 During epochs of quiet wakefulness, membrane potential fluctuations of neurons in visual,
611 somatosensory and auditory cortex are closely tracked by baseline pupil diameter (Reimer et al.,
612 2014; McGinley et al., 2015a). These fluctuations in subthreshold membrane potential are
613 characteristic of changing cortical state. Small pupil diameter is characterized by prominent low-
614 frequency (2-10 Hz) and nearly absent high-frequency oscillations (30-80 Hz), whereas larger pupil
615 diameter is characterized by reduced low-frequency, but increased high-frequency oscillations
616 (McGinley et al., 2015a, 2015b). Thus, the average subthreshold membrane potential is most stable
617 during intermediate pupil diameter, when neither low nor high-frequency components predominate.

618 States of lower variability are furthermore characterized by more reliable sensory responses, higher
619 spike rates, increased neural gain and better behavioural performance (Reimer et al., 2014; McGinley
620 et al., 2015a, 2015b). In addition to activity in early sensory areas, there is some evidence that activity
621 in higher-order association areas is also more reliable with intermediate arousal. During auditory
622 target detection, human subjects displayed the least variable RT at intermediate baseline pupil
623 diameter, as well as the highest amplitudes of the P3 component elicited by task-relevant stimuli
624 (Murphy et al., 2011).

625 Here we found that the consistency of evidence accumulation was the main EEG predictor of
626 variability in task performance associated with both tonic and phasic arousal. For tonic arousal,
627 although CPP ITPC did not follow the same U-shaped relationship as task performance, our findings
628 are largely in line with modelling studies which suggested that higher arousal is specifically predictive
629 of more variability in evidence accumulation (Murphy et al., 2014b). For phasic arousal, higher
630 consistency, and thus less variability, was found for intermediate pupil bins, which also displayed the
631 best behavioural performance. These results suggest that similar neural mechanisms of cortical state
632 described for sensory cortex (Reimer et al., 2014; McGinley et al., 2015b, 2015a; Vinck et al., 2015)
633 might also affect neurons in higher-order association areas (e.g. parietal cortex) and thereby influence
634 evidence accumulation and task performance. Simultaneous pupil diameter and membrane potential
635 recordings in parietal cortex during protracted decision-making are needed to confirm this hypothesis.
636

637 **Target selection signal amplitude is modulated by pupil-linked arousal**

638 In the present study, we used a paradigm in which two stimuli were continuously presented and target
639 occurrence was both spatially and temporally unpredictable. Successful target detection thus relied on
640 locating and selecting sensory evidence from multiple sources of information. Loughnane et al. (2016)
641 have shown that these early target selection signals, contralateral to the target stimulus (N2c),
642 modulate sensory evidence accumulation and behavioural performance. Although previous studies
643 have characterised the dependence of the quality of sensory responses on fluctuations in cortical state,
644 as measured by baseline pupil diameter (Reimer et al., 2014; McGinley et al., 2015a; Vinck et al.,
645 2015), to the best of our knowledge, the influence of pupil-linked arousal on target selection signals
646 has not been described before. Here, we showed that early target selection signals are modulated by
647 tonic arousal such that larger baseline pupil diameter was predictive of smaller N2c amplitudes
648 (Figure 6C). Moreover, the amplitude of the N2c also explained unique variability in task
649 performance across pupil bins and subjects (Table 1).

650 At first glance it seems counterintuitive that target selection amplitudes are decreased,
651 whereas visual encoding in early visual cortex is enhanced on trials with larger baseline pupil
652 diameter (Vinck et al., 2015), or during pupil dilation (Reimer et al., 2014). These differences could
653 be due to differences in the nature of the recordings, as these previous studies used invasive

654 electrophysiology and calcium imaging whereas we used scalp EEG, limiting especially the spatial
655 resolution of our analyses that might be necessary to elucidate these effects (e.g. single neuron
656 orientation tuning). Alternatively, they could constitute differential effects of arousal on visual
657 encoding and target selection. More likely, however, they are due to specific task demands, in
658 particular our use of multiple simultaneously presented competing stimuli. Indeed, there is some
659 evidence that an increase in arousal, as measured by pupil diameter, can increase the ability of a
660 distractor to disrupt performance on a Go/No-Go task in non-human primates (Ebitz et al., 2014). At
661 high arousal levels, performance might thus be negatively affected when the task requires the
662 successful suppression of distracting information, i.e. with higher arousal it is more difficult to focus
663 on the task at hand (Aston-Jones and Cohen, 2005; McGinley et al., 2015b). On the current task, it
664 might thus be more difficult to select and process information from one of the two competing stimuli
665 during states of high arousal, leading to reduced N2c amplitude as well as reduced performance.

666 In addition to the effects on tonic arousal on the N2c, we found that phasic arousal was
667 predictive of the amplitude of the N2i (Figure 3D). However, because this effect was not restricted to
668 the time period around the peak latency, and present from as early as 70 ms (Figure 4A), it is unlikely
669 to reflect target selection (see above). Rather, it seems plausible that these differences reflect
670 differences in the expected location of target presentation. Thus, our observation that phasic arousal
671 was not predictive of any aspect of target selection is broadly consistent with (de Gee et al., 2017),
672 who found that the pupil response was not predictive of sensory responses.

673

674 **Concluding remarks**

675 In this study we investigated the relationship between measures of tonic and phasic pupil-linked
676 arousal and behavioural and EEG measures of perceptual decision-making. We found that trial-to-trial
677 variability in both tonic and phasic arousal accounted for variability in task performance and were
678 predictive of a unique, but overlapping, set of neural metrics of perceptual decision-making. These
679 results confirm our hypothesized relationship between pupil diameter and the electrophysiological
680 correlates of evidence accumulation, providing further support for the notion that the neuromodulators
681 that control central arousal are recruited throughout the decision making process. Moreover, the
682 relationships with task performance were best described by a second-order, U-shaped, polynomial
683 model fit, indicating that during decision-making there are optimal levels of both tonic and phasic
684 activity in the (network of) neuromodulatory centres that control central arousal. Although we found
685 that pupil-linked arousal was predictive of EEG correlates associated with attentional engagement,
686 target selection, evidence accumulation and motor output, the effects of arousal on behavioural
687 performance are mainly mediated through the consistency in evidence accumulation.

688 Materials and Methods

689 Task procedures

690 Subjects (n=80) and methods are largely overlapping with the details and procedures described
691 elsewhere (Newman et al., 2017). Here we summarise details necessary to understand this study, and
692 we also describe procedures that differ from the previous study. Participants were seated in a
693 darkened room, 56 cm from the stimulus display (21 inch CRT monitor, 85 Hz 1024 × 768
694 resolution), asked to perform a continuous bilateral variant (O'Connell et al., 2012; Kelly and
695 O'Connell, 2013) of the random dot motion task (Newsome et al., 1989; Britten et al., 1992). Subjects
696 fixated on a central dot while monitoring two peripheral patches of continuously presented randomly
697 moving dots (Figure 1A). At pseudorandom times, an intermittent period of coherent downward
698 motion (50%) occurred in either the left or the right hemifield. Upon detection of coherent motion,
699 participants responded with a speeded right-handed button press. A total of 288 trials were presented
700 over 16 blocks (18 trials per block).

701

702 Data acquisition and preprocessing

703 Electroencephalogram (EEG) was recorded from 64 electrodes using an ActiveTwo (Biosemi, 512Hz)
704 system at Trinity College Dublin, Ireland or a BrainAmp DC (Brainproducts, 500Hz) at Monash
705 University, Australia. Data were processed using both custom written scripts and EEGLAB functions
706 (Delorme and Makeig, 2004) in Matlab (MathWorks). Noisy channels were interpolated after which
707 the data were notch filtered between 49-51 Hz, band-pass filtered (0.1-35Hz), and rereferenced to the
708 average reference. Data recorded using the Biosemi system were resampled to 500Hz and combined
709 with the data recorded with the Brainproducts system. Epochs were extracted from -800 to 2800 ms
710 around target onset and baselined with respect to -100 to 0 ms before target onset. To minimize
711 volume conduction and increase spatial specificity, for specific analyses the data were converted to
712 current source density (Kayser and Tenke, 2006). We rejected trials from analyses if the reaction
713 times were <150 or >1700 ms after coherent motion onset, or if either the EEG on any channel
714 exceeded 100 mV, or if the subject broke fixation or blinked (Pupillometry) during the analysis period
715 of the trial, the 500 ms preceding target onset for pre-target α power activity or the interval of 100 ms
716 before target onset to 200 ms after the response.

717 Pre-target α -band power (8-13 Hz), N2 amplitude and latency, CPP onset and build-up rate
718 and response related β -power amplitude and build-up rate were computed largely in the same way as
719 in Newman et al. (2017). Briefly, α -band power was computed over the 500 ms preceding target onset
720 using temporal spectral evolution (TSE) methods (Thut, 2006), and pooled over two symmetrical
721 parietal regions of interest, using channels O1, O2, PO3, PO4, PO7 and PO8. The N2 components
722 were measured at electrodes P7 and P8, ipsi- and contralateral to the target location (Loughnane et al.,
723 2016; Newman et al., 2017), and the CPP was measured at central electrode Pz. These signals were

724 aggregated to an average waveform for each pupil bin and each participant. We determined the
725 latency of the N2c/N2i as the time point with the most negative amplitude value in the stimulus-
726 locked waveform between 150-400/200-450 ms , while N2c/N2i amplitude was measured as the mean
727 amplitude inside a 100 ms window centered on the stimulus-locked grand average peak (266/340 ms)
728 (Loughnane et al., 2016; Newman et al., 2017).

729 Onset latency of the CPP was measured by performing running sample point by sample point
730 t-tests against zero across each participant's stimulus-locked CPP waveforms. CPP onset was defined
731 as the first point at which the amplitude reached significance at the 0.05 level for ≥ 15 consecutive
732 points. Because we decreased our statistical power by binning the trials into 5 bins (see pupillometry),
733 we did not find an onset for every bin for a subset of subjects (baseline pupil diameter: 13 bins over
734 11 subjects, pupil response: 16 bins over 12 subjects). Because of our use of linear mixed effect
735 analyses, these subjects could still be included in the analysis, with only the missing values being
736 omitted. Both CPP build-up rate and amplitude were computed using the response-locked waveform
737 of the CSD transformed data to minimize influence from negative-going fronto-central scalp
738 potentials (Kelly and O'Connell, 2013). Build-up rate was defined as the slope of a straight line fitted
739 to this signal in the window from -250 ms to -50 ms before response. CPP amplitude was defined as
740 the mean amplitude within the 100 ms before the response.

741 Response related left hemisphere β -power (LHB, 20-35 Hz) was measured over the left motor
742 cortex at electrode C3 using short-time Fourier transform (STFT) with a 286 ms window size and 20
743 ms step size (O'Connell et al., 2012; Newman et al., 2017). LHB amplitude was measured from the
744 response-locked waveform in the window from -130 to -70 ms preceding the response, whereas the
745 LHB build-up rate was defined as the slope of a straight line fitted to this same waveform in the 300
746 ms before the response.

747 Inter-trial phase coherence (ITPC) was estimated using single-taper spectral methods from the
748 Chronux toolbox (Bokil et al., 2010) and adapted scripts. We used a 256 sample (512 ms) sliding
749 short time window, with a step size of 25 samples (50 ms). This gave us a half bandwidth (W) of 1.95
750 Hz: $W = (K+1)/2T$, with K being the number of data tapers, K=1, and T (s) being the length of the
751 time window. Frequencies were estimated from 0.1 to 35Hz.

752

753 **Pupillometry**

754 Eye movements and pupil data were recorded using an SR Research EyeLink eye tracker (Eye-Link
755 version 2.04, SR Research/SMI). Blinks were linearly interpolated from 200 ms before to 200 ms
756 after automatically identified blinks, and the interpolated pupil data was then low-pass filtered (< 6
757 Hz, second order butterworth). Epochs were extracted from -800 to 2800 ms around coherent motion
758 onset. Trials in which fixation errors or blinks occurred within the analysis period, from 100 ms
759 before target onset to 200 ms after response, were excluded from analysis. Fixation errors were

760 defined as gaze deviations of more than 3°. The pupil diameter was normalized by dividing by the
761 maximum pupil diameter on any trial in the analysis window from 100 ms before target onset to 200
762 ms after the response for each subject, and baselined on a single trial basis. We computed the baseline
763 pupil diameter by averaging the pupil diameter in the 100 ms before target onset.

764 A scalar measure of the pupil diameter response was computed by taking the difference
765 between the average pupil diameter in the 400 ms surrounding response and the baseline activity from
766 the same trial. Computing the pupil diameter response over a different size time window surrounding
767 response or by using the linear projection (de Gee et al., 2014; Kloosterman et al., 2015) led to similar
768 results. We used linear regression to remove the trial-by-trial fluctuations in single-trial pupil
769 amplitudes that could be due to baseline pupil diameter, inter-trial interval and target side, all factors
770 that are known to influence either the post target pupil response and/or behavioural response times
771 (Kristjansson et al., 2009; de Gee et al., 2014; Kloosterman et al., 2015; Newman et al., 2017).

772 Next, we binned our behavioural and EEG data according to either the baseline pupil diameter
773 or the post target pupil response into 5 equally sized bins (mean $49.63 \pm \text{SEM } 0.81$ trials, minimum
774 bin size = 20 trials) (Figure 1B & D). The division into 5 bins allowed us to investigate possible
775 quadratic trends in the data.

776

777 Statistical analyses

778 We used RStudio (RStudio Team (2016). RStudio: Integrated Development for R. RStudio, Inc.,
779 Boston, MA URL <http://www.rstudio.com>) with the package *lme4* (Bates et al., 2015) to perform a
780 linear mixed effects analysis of the relationship between baseline pupil diameter or the pupil response
781 and behavioural measures and EEG signatures of detection. As fixed effects, we entered pupil bin (see
782 Pupilometry) into the model. As random effects, we had separate intercepts for subjects, accounting
783 for the repeated measurements within each subject. We sequentially tested the fit of a monotonic
784 relationship (first-order polynomial) against a baseline model (zero-order polynomial), and a non-
785 monotonic (second-order polynomial) against the monotonic fit by means of maximum likelihood
786 ratio tests, using orthogonal polynomial contrast attributes. The behavioural or EEG measure y was
787 modelled as a linear combination of polynomial basis functions of the pupil bins (X):

788

$$789 y \sim \beta_0 + \beta_1 X + \beta_2 X^2$$

790

791 , with β as the polynomial coefficients. This multilevel approach was preferred over a standard
792 repeated measures analysis of variance (ANOVA), because it allowed us to test for first and second-
793 order polynomial relationships, as well as to account for missing values in the CPP onset estimation.
794 After testing the relationship between behavioural and neural signatures of decision-making and
795 pupillometric measures individually, the neural signals were added sequentially into consecutive

796 regression models predicting RT and RTcv. This model had both a random intercept for each subject,
797 allowing for different baseline-levels of behavioural performance, as well as a random slope of pupil
798 bin, for each subject, which allowed for across-subject variation in the effect of pupil bin on
799 behavioural performance. The hierarchical entry of the predictors allowed us to model the individual
800 differences in behavioural performance, as a function of the EEG signals representing each temporal
801 stage of neural processing. Starting with preparatory signals (α -power), to early target selection
802 signals (N2), to evidence accumulation (CPP), to motor preparation (LHB). The hierarchical addition
803 of the predictors informed us whether each of the EEG signals reflecting successive stages of neural
804 processing improved the fit of the model predicting behavioural data. The signals that explained
805 unique variance were then simultaneously forced into a simplified model predicting RT or RTcv,
806 which made it possible to obtain accurate parameter estimates not contaminated by signals that were
807 shown not to improve model fits. Note that only subjects for which we could determine the CPP onset
808 latency for all bins were included in this hierarchical model. For this final model, all behavioural and
809 neural variables were scaled between 0 and 1 across subjects according to the formula: $y_i = (x_i -$
810 $\min x_i) / (\max x_i - \min x_i)$, where y_i is the scaled variable, x_i is the variable to be scaled. This
811 scaling procedure did not change the relationship of the variable within or across subjects, but scaled
812 all predictor variables to the same range. Again, significance values were obtained by means of
813 maximum likelihood ratio tests.

814 Data plotted in all figures are the mean and the standard error of the mean (SEM) across
815 subjects. Linear fits are plotted when first-order fits were superior to the zero-order (constant) fit,
816 quadratic fits are plotted when second-order fits were superior to the first-order fit.

817

818 **Notes**

819 Raw data (<https://figshare.com/s/8d6f461834c47180a444>) are open access and available under a
820 Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International Licence. Analysis
821 scripts are freely available on github (https://github.com/jochemvankempen/2018_Monash).

822 **Acknowledgements**

823 J.K. and A.T. are supported by research funding from the Henry Wellcome Trust (093104). M.A.B. is
824 supported by fellowship and project grant support from the Australian Research Council (ARC;
825 FT130101488; DP150100986; DP180102066). A.T. and M.A.B. are supported by research funding
826 from a strategic research partnership between the Newcastle University and Monash
827 University. M.A.B, R.O.C and A.T are supported by research funding from the Office of Naval
828 Research Global (ONR Global).

829 Competing Interests

830 No competing interests exist with any of the authors.

831 References

832 Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function:
833 adaptive gain and optimal performance. *Annu Rev Neurosci* 28:403–450 Available at:
834 <http://www.annualreviews.org/doi/10.1146/annurev.neuro.28.061604.135709>.

835 Aston-Jones G, Rajkowska J, Cohen J (1999) Role of locus coeruleus in attention and behavioral
836 flexibility. *Biol Psychiatry* 46:1309–1320 Available at:
837 <http://linkinghub.elsevier.com/retrieve/pii/S0006322399001407>.

838 Aston-Jones G, Rajkowska J, Kubiak P (1997) Conditioned responses of monkey locus coeruleus
839 neurons anticipate acquisition of discriminative behavior in a vigilance task. *Neuroscience*
840 80:697–715 Available at: <http://linkinghub.elsevier.com/retrieve/pii/S0306452297000602>.

841 Aston-Jones G, Rajkowska J, Kubiak P, Alexinsky T (1994) Locus coeruleus neurons in monkey are
842 selectively activated by attended cues in a vigilance task. *J Neurosci* 14:4467–4480 Available at:
843 <http://www.ncbi.nlm.nih.gov/pubmed/8027789>.

844 Bates D, Mächler M, Bolker B, Walker S (2015) Fitting Linear Mixed-Effects Models Using lme4. *J
845 Stat Softw* 67 Available at: <http://arxiv.org/abs/1406.5823>.

846 Beatty J (1982a) Task-evoked pupillary responses, processing load, and the structure of processing
847 resources. *Psychol Bull* 91:276–292 Available at:
848 <http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-2909.91.2.276>.

849 Beatty J (1982b) Phasic Not Tonic Pupillary Responses Vary With Auditory Vigilance Performance.
850 *Psychophysiology* 19:167–172 Available at: [http://doi.wiley.com/10.1111/j.1469-8986.1982.tb02540.x](http://doi.wiley.com/10.1111/j.1469-
851 8986.1982.tb02540.x).

852 Berridge CW, Waterhouse BD (2003) The locus coeruleus–noradrenergic system: modulation of
853 behavioral state and state-dependent cognitive processes. *Brain Res Rev* 42:33–84 Available at:
854 <http://linkinghub.elsevier.com/retrieve/pii/S0165017303001437>.

855 Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP (2010) Chronux: A platform for analyzing
856 neural signals. *J Neurosci Methods* 192:146–151 Available at:
857 <http://linkinghub.elsevier.com/retrieve/pii/S0165027010003444>.

858 Bouret S, Sara SJ (2005) Network reset: a simplified overarching theory of locus coeruleus
859 noradrenaline function. *Trends Neurosci* 28:574–582 Available at:
860 <http://linkinghub.elsevier.com/retrieve/pii/S0166223605002432>.

861 Britten K, Shadlen M, Newsome W, Movshon J (1992) The analysis of visual motion: a comparison
862 of neuronal and psychophysical performance. *J Neurosci* 12:4745–4765 Available at:
863 <http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=1464765&retmode=r>

864 ef&cmd=prlinks%5Cnpapers3://publication/uuid/E8CEBDDA-F6CF-4392-AEE5-
865 5F9E687F3ED1.

866 Broussard JI, Karelina K, Sarter M, Givens B (2009) Cholinergic optimization of cue-evoked parietal
867 activity during challenged attentional performance. *Eur J Neurosci* 29:1711–1722 Available at:
868 <http://doi.wiley.com/10.1111/j.1460-9568.2009.06713.x>.

869 Cano-Colino M, Almeida R, Gomez-Cabrero D, Artigas F, Compte A (2014) Serotonin Regulates
870 Performance Nonmonotonically in a Spatial Working Memory Network. *Cereb Cortex* 24:2449–
871 2463 Available at: <https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bht096>.

872 Cheadle S, Wyart V, Tsetsos K, Myers N, de Gardelle V, Herce Castañón S, Summerfield C (2014)
873 Adaptive Gain Control during Human Perceptual Choice. *Neuron* 81:1429–1441 Available at:
874 <http://linkinghub.elsevier.com/retrieve/pii/S0896627314000518>.

875 Clayton EC (2004) Phasic Activation of Monkey Locus Ceruleus Neurons by Simple Decisions in a
876 Forced-Choice Task. *J Neurosci* 24:9914–9920 Available at:
877 <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.2446-04.2004>.

878 Dayan P, Yu AJ (2006) Phasic norepinephrine: A neural interrupt signal for unexpected events. *Netw
879 Comput Neural Syst* 17:335–350 Available at:
880 <http://www.tandfonline.com/doi/full/10.1080/09548980601004024>.

881 de Gee JW, Colizoli O, Kloosterman NA, Knapen T, Nieuwenhuis S, Donner TH (2017) Dynamic
882 modulation of decision biases by brainstem arousal systems. *Elife* 6:1–36 Available at:
883 <http://elifesciences.org/lookup/doi/10.7554/eLife.23232>.

884 de Gee JW, Knapen T, Donner TH (2014) Decision-related pupil dilation reflects upcoming choice
885 and individual bias. *Proc Natl Acad Sci* 111:E618–E625 Available at:
886 <http://www.pnas.org/lookup/doi/10.1073/pnas.1317557111>.

887 Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG
888 dynamics including independent component analysis. *J Neurosci Methods* 134:9–21 Available
889 at: http://ac.els-cdn.com/S0165027003003479/1-s2.0-S0165027003003479-main.pdf?_tid=336a8184-2684-11e7-8605-00000aab0f02&acdnat=1492773669_497ab65b5f857280a6ed4d13928ea2ca [Accessed April 21,
890 2017].

891 Donner TH, Siegel M, Fries P, Engel AK (2009) Buildup of Choice-Predictive Activity in Human
892 Motor Cortex during Perceptual Decision Making. *Curr Biol* 19:1581–1585 Available at:
893 https://ac.els-cdn.com/S0960982209015437/1-s2.0-S0960982209015437-main.pdf?_tid=089ae988-f9fd-11e7-9ed1-00000aacb362&acdnat=1516025262_164ba055d16590bda0781c671aaacf39 [Accessed January
894 15, 2018].

895 Ebitz RB, Pearson JM, Platt ML (2014) Pupil size and social vigilance in rhesus macaques. *Front
896 Neurosci* 8 Available at: <http://journal.frontiersin.org/article/10.3389/fnins.2014.00100/abstract>.

901 Eckhoff P, Wong-Lin KF, Holmes P (2009) Optimality and Robustness of a Biophysical Decision-
902 Making Model under Norepinephrine Modulation. *J Neurosci* 29:4301–4311 Available at:
903 <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5024-08.2009>.

904 Eldar E, Cohen JD, Niv Y (2013) The effects of neural gain on attention and learning. *Nat Neurosci*
905 16:1146–1153 Available at:
906 <http://www.ncbi.nlm.nih.gov/article/3725201>&tool=pmcentrez&rendertype
907 pe=abstract.

908 Engel TA, Steinmetz NA, Gieselmann MA, Thiele A, Moore T, Boahen K (2016) Selective
909 modulation of cortical state during spatial attention. *Science* (80-) 354:1140–1144 Available at:
910 <http://www.science.org/cgi/doi/10.1126/science.aag1420>.

911 Ergenoglu T, Demiralp T, Bayraktaroglu Z, Ergen M, Beydagi H, Uresin Y (2004) Alpha rhythm of
912 the EEG modulates visual detection performance in humans. *Cogn Brain Res* 20:376–383
913 Available at: <http://linkinghub.elsevier.com/retrieve/pii/S0926641004000941>.

914 Florin-Lechner SM, Druhan JP, Aston-Jones G, Valentino RJ (1996) Enhanced norepinephrine
915 release in prefrontal cortex with burst stimulation of the locus coeruleus. *Brain Res* 742:89–97
916 Available at: <http://linkinghub.elsevier.com/retrieve/pii/S0006899396009675>.

917 Gilzenrat MS, Nieuwenhuis S, Jepma M, Cohen JD (2010) Pupil diameter tracks changes in control
918 state predicted by the adaptive gain theory of locus coeruleus function. *Cogn Affect Behav*
919 *Neurosci* 10:252–269 Available at:
920 <http://www.springerlink.com/index/10.3758/CABN.10.2.252>.

921 Gjorgjieva J, Drion G, Marder E (2016) Computational implications of biophysical diversity and
922 multiple timescales in neurons and synapses for circuit performance. *Curr Opin Neurobiol*
923 37:44–52 Available at: <http://dx.doi.org/10.1016/j.conb.2015.12.008>.

924 Gold JI, Shadlen MN (2007) The Neural Basis of Decision Making. *Annu Rev Neurosci* 30:535–574
925 Available at: <http://www.ncbi.nlm.nih.gov/pubmed/17600525> [Accessed July 10, 2014].

926 Gritton HJ, Howe WM, Mallory CS, Hetrick VL, Berke JD, Sarter M (2016) Cortical cholinergic
927 signaling controls the detection of cues. *Proc Natl Acad Sci* 113:E1089–E1097 Available at:
928 <http://www.pnas.org/lookup/doi/10.1073/pnas.1516134113>.

929 Harris KD, Thiele A (2011) Cortical state and attention. *Nat Rev Neurosci* 12:509–523 Available at:
930 <http://www.nature.com/articles/nrn3084>.

931 Hong L, Walz JM, Sajda P (2014) Your Eyes Give You Away: Prestimulus Changes in Pupil
932 Diameter Correlate with Poststimulus Task-Related EEG Dynamics Hamed S Ben, ed. *PLoS*
933 One 9:e91321 Available at: <http://dx.plos.org/10.1371/journal.pone.0091321>.

934 Ignashchenkova A, Dicke PW, Haarmeier T, Thier P (2004) Neuron-specific contribution of the
935 superior colliculus to overt and covert shifts of attention. *Nat Neurosci* 7:56–64 Available at:
936 <http://www.nature.com/articles/nn1169>.

937 Joshi S, Li Y, Kalwani RM, Gold JI (2016) Relationships between Pupil Diameter and Neuronal

975 Neurosci 38:2163–2176 Available at:
976 <http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.2340-17.2018>.

977 Lovejoy LP, Krauzlis RJ (2010) Inactivation of primate superior colliculus impairs covert selection of
978 signals for perceptual judgments. Nat Neurosci 13:261–266 Available at:
979 <http://www.nature.com/articles/nn.2470>.

980 McGinley MJ, David S V., McCormick DA (2015a) Cortical Membrane Potential Signature of
981 Optimal States for Sensory Signal Detection. Neuron 87:179–192 Available at:
982 <http://dx.doi.org/10.1016/j.neuron.2015.05.038>.

983 McGinley MJ, Vinck M, Reimer J, Batista-Brito R, Zagha E, Cadwell CR, Tolias AS, Cardin JA,
984 McCormick DA (2015b) Waking State: Rapid Variations Modulate Neural and Behavioral
985 Responses. Neuron 87:1143–1161 Available at: <http://dx.doi.org/10.1016/j.neuron.2015.09.012>.

986 McPeek RM, Keller EL (2002) Saccade target selection in the superior colliculus during a visual
987 search task. J Neurophysiol 88:2019–2034 Available at:
988 <http://jn.physiology.org/content/88/4/2019%5Cnhttp://jn.physiology.org/content/88/4/2019.short%5Cnhttp://jn.physiology.org/content/jn/88/4/2019.full.pdf%5Cnhttp://www.ncbi.nlm.nih.gov/p>
990 ubmed/12364525.

991 McPeek RM, Keller EL (2004) Deficits in saccade target selection after inactivation of superior
992 colliculus. Nat Neurosci 7:757–763 Available at: <http://www.nature.com/articles/nn1269>.

993 Muller JR, Philiastides MG, Newsome WT (2005) Microstimulation of the superior colliculus focuses
994 attention without moving the eyes. Proc Natl Acad Sci 102:524–529 Available at:
995 <http://www.pnas.org/cgi/doi/10.1073/pnas.0408311101>.

996 Murphy PR, Boonstra E, Nieuwenhuis S (2016) Global gain modulation generates time-dependent
997 urgency during perceptual choice in humans. Nat Commun 7:13526 Available at:
998 <http://dx.doi.org/10.1038/ncomms13526%5Cnhttp://www.nature.com/doifinder/10.1038/ncomm>
999 s13526.

1000 Murphy PR, O'Connell RG, O'Sullivan M, Robertson IH, Balsters JH (2014a) Pupil diameter
1001 covaries with BOLD activity in human locus coeruleus. Hum Brain Mapp 35:4140–4154
1002 Available at: <http://doi.wiley.com/10.1002/hbm.22466>.

1003 Murphy PR, Robertson IH, Balsters JH, O'connell RG (2011) Pupillometry and P3 index the locus
1004 coeruleus-noradrenergic arousal function in humans. Psychophysiology 48:1532–1543 Available
1005 at: <http://doi.wiley.com/10.1111/j.1469-8986.2011.01226.x>.

1006 Murphy PR, Vandekerckhove J, Nieuwenhuis S (2014b) Pupil-Linked Arousal Determines Variability
1007 in Perceptual Decision Making O'Reilly JX, ed. PLoS Comput Biol 10:e1003854 Available at:
1008 <http://dx.plos.org/10.1371/journal.pcbi.1003854>.

1009 Mysore SP, Knudsen EI (2011) The role of a midbrain network in competitive stimulus selection.
1010 Curr Opin Neurobiol 21:653–660 Available at:
1011 <http://linkinghub.elsevier.com/retrieve/pii/S0959438811000924>.

1012 Newman DP, Loughnane GM, Kelly SP, O'Connell RG, Bellgrove MA (2017) Visuospatial
1013 Asymmetries Arise from Differences in the Onset Time of Perceptual Evidence Accumulation. *J
1014 Neurosci* 37:3378–3385 Available at:
1015 <http://www.jneurosci.org/content/jneuro/37/12/3378.full.pdf> [Accessed April 20, 2017].

1016 Newsome WT, Britten KH, Movshon JA (1989) Neuronal correlates of a perceptual decision. *Nature*
1017 341:52–54 Available at: <http://www.nature.com/doifinder/10.1038/341052a0>.

1018 Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3, and the locus coeruleus--
1019 norepinephrine system. *Psychol Bull* 131:510–532 Available at:
1020 http://dare.ubvu.vu.nl/bitstream/handle/1871/16998/Nieuwenhuis_Psychological
1021 Bulletin_131(4)_2005_u.pdf?sequence=2 [Accessed December 20, 2017].

1022 Nomoto K, Schultz W, Watanabe T, Sakagami M (2010) Temporally Extended Dopamine Responses
1023 to Perceptually Demanding Reward-Predictive Stimuli. *J Neurosci* 30:10692–10702 Available
1024 at: <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4828-09.2010>.

1025 O'Connell RG, Dockree PM, Kelly SP (2012) A supramodal accumulation-to-bound signal that
1026 determines perceptual decisions in humans. *Nat Neurosci* 15:1729–1735 Available at:
1027 <http://www.ncbi.nlm.nih.gov/pubmed/23103963> [Accessed October 8, 2014].

1028 O'Connell RG, Dockree PM, Robertson IH, Bellgrove MA, Foxe JJ, Kelly SP (2009) Uncovering the
1029 Neural Signature of Lapsing Attention: Electrophysiological Signals Predict Errors up to 20 s
1030 before They Occur. *J Neurosci* 29:8604–8611 Available at:
1031 <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5967-08.2009>.

1032 O'Connell RG, Shadlen MN, Wong-Lin K, Kelly SP (2018) Bridging Neural and Computational
1033 Viewpoints on Perceptual Decision-Making. *Trends Neurosci* xx:1–15 Available at:
1034 <https://doi.org/10.1016/j.tins.2018.06.005>.

1035 Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal Acetylcholine Release Controls Cue
1036 Detection on Multiple Timescales. *Neuron* 56:141–154 Available at: http://ac.els-cdn.com/S0896627307006745/1-s2.0-S0896627307006745-main.pdf?_tid=c3c68606-4baa-11e7-b903-00000aab0f6b&acdnat=1496858425_98631c2399f8a1cf667358952b60577
1037 [Accessed June 7, 2017].

1039 Parikh V, Sarter M (2008) Cholinergic Mediation of Attention. *Ann N Y Acad Sci* 1129:225–235
1040 Available at: <http://doi.wiley.com/10.1196/annals.1417.021>.

1041 Rajkowski J, Kubiak P, Aston-Jones G (1994) Locus coeruleus activity in monkey: Phasic and tonic
1042 changes are associated with altered vigilance. In: *Brain Research Bulletin*, pp 607–616.

1043 Rajkowski J, Majczynski H, Clayton E, Aston-Jones G (2004) Activation of Monkey Locus
1044 Coeruleus Neurons Varies With Difficulty and Performance in a Target Detection Task. *J
1045 Neurophysiol* 92:361–371 Available at: <http://www.physiology.org/doi/10.1152/jn.00673.2003>.

1046 Reimer J, Froudarakis E, Cadwell CR, Yatsenko D, Denfield GH, Tolias AS (2014) Pupil
1047 Fluctuations Track Fast Switching of Cortical States during Quiet Wakefulness. *Neuron* 84:355–

1048

1049 362 Available at: <http://dx.doi.org/10.1016/j.neuron.2014.09.033> [Accessed October 3, 2017].

1050 Reimer J, McGinley MJ, Liu Y, Rodenkirch C, Wang Q, McCormick DA, Tolias AS (2016) Pupil
1051 fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. *Nat Commun*
1052 7:13289 Available at: <http://dx.doi.org/10.1038/ncomms13289>.

1053 Sarter M, Lustig C, Berry AS, Gritton H, Howe WM, Parikh V (2016) What do phasic cholinergic
1054 signals do? *Neurobiol Learn Mem* 130:135–141 Available at: http://ac.els-cdn.com/S1074742716000459/1-s2.0-S1074742716000459-main.pdf?_tid=ab1f7ae4-918d-11e7-b172-00000aacb361&acdnat=1504542510_7412be7fc0f08173a5b4462c2ae81331
1057 [Accessed September 4, 2017].

1058 Sarter M, Parikh V, Howe WM (2009) Phasic acetylcholine release and the volume transmission
1059 hypothesis: time to move on. *Nat Rev Neurosci* 10:383–390 Available at:
1060 <http://www.nature.com/articles/nrn2635>.

1061 Shadlen MN, Kiani R, Newsome WT, Gold JI, Wolpert DM, Zylberberg A, Ditterich J, de Lafuente
1062 V, Yang T, Roitman J (2016) Comment on “Single-trial spike trains in parietal cortex reveal
1063 discrete steps during decision-making.” *Science* (80-) 351:1406–1406 Available at:
1064 <http://www.sciencemag.org/cgi/doi/10.1126/science.aaa4056>.

1065 Smucny J, Olincy A, Rojas DC, Tregellas JR (2016) Neuronal effects of nicotine during auditory
1066 selective attention in schizophrenia. *Hum Brain Mapp* 37:410–421 Available at:
1067 <http://doi.wiley.com/10.1002/hbm.23040>.

1068 Thiele A, Bellgrove MA (2018) Neuromodulation of Attention. *Neuron* 97:769–785 Available at:
1069 <https://doi.org/10.1016/j.neuron.2018.01.008> [Accessed February 27, 2018].

1070 Thut G (2006) -Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial
1071 Attention Bias and Predicts Visual Target Detection. *J Neurosci* 26:9494–9502 Available at:
1072 <http://www.ncbi.nlm.nih.gov/pubmed/16971533> [Accessed October 7, 2014].

1073 Twomey DM, Murphy PR, Kelly SP, O’Connell RG (2015) The classic P300 encodes a build-to-
1074 threshold decision variable. *Eur J Neurosci* 42:1636–1643 Available at:
1075 <http://doi.wiley.com/10.1111/ejn.12936>.

1076 Urai AE, Braun A, Donner TH (2017) Pupil-linked arousal is driven by decision uncertainty and alters
1077 serial choice bias. *Nat Commun* 8:14637 Available at:
1078 <http://www.nature.com/doifinder/10.1038/ncomms14637>.

1079 van Dijk H, Schoffelen J-M, Oostenveld R, Jensen O (2008) Prestimulus Oscillatory Activity in the
1080 Alpha Band Predicts Visual Discrimination Ability. *J Neurosci* 28:1816–1823 Available at:
1081 <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1853-07.2008>.

1082 Varazzani C, San-Galli A, Gilardeau S, Bouret S (2015) Noradrenaline and Dopamine Neurons in the
1083 Reward/Effort Trade-Off: A Direct Electrophysiological Comparison in Behaving Monkeys. *J
1084 Neurosci* 35:7866–7877 Available at:
1085 <http://www.jneurosci.org/content/jneuro/35/20/7866.full.pdf> [Accessed January 3, 2018].

1086 Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th ed. New York: Springer.

1087 Vijayraghavan S, Wang M, Birnbaum SG, Williams G V, Arnsten AFT (2007) Inverted-U dopamine

1088 D1 receptor actions on prefrontal neurons engaged in working memory. *Nat Neurosci* 10:376–

1089 384 Available at: <http://www.ncbi.nlm.nih.gov/pubmed/17277774> [Accessed November 24,

1090 2014].

1091 Vinck M, Batista-Brito R, Knoblich U, Cardin JA (2015) Arousal and Locomotion Make Distinct

1092 Contributions to Cortical Activity Patterns and Visual Encoding. *Neuron* 86:740–754 Available

1093 at: <http://dx.doi.org/10.1016/j.neuron.2015.03.028> [Accessed October 2, 2017].

1094 Wang C-A, Boehnke SE, White BJ, Munoz DP (2012) Microstimulation of the Monkey Superior

1095 Colliculus Induces Pupil Dilation Without Evoking Saccades. *J Neurosci* 32:3629–3636

1096 Available at: <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5512-11.2012>.

1097 Wang C-A, Munoz DP (2015) A circuit for pupil orienting responses: implications for cognitive

1098 modulation of pupil size. *Curr Opin Neurobiol* 33:134–140 Available at:

1099 <http://dx.doi.org/10.1016/j.conb.2015.03.018>.

1100 Yerkes RM, Dodson JD (1908) The relation of strength of stimulus to rapidity of habit-formation. *J*

1101 *Comp Neurol Psychol* 18:459–482 Available at: <http://doi.wiley.com/10.1002/cne.920180503>

1102 [Accessed January 9, 2018].

1103

1104

1105 **Supplementary information**

1106 **The effect of pupil diameter on task performance is not an artefact of the binning** 1107 **procedure**

1108 To get an accurate impression of the relationship between pupillary dynamics and task performance, it
1109 is best to perform regression analyses on a single trial basis. Unfortunately, many of our behavioural
1110 and EEG components of decision-making require the averaging of trials. For instance, RTcv is
1111 calculated by dividing the standard deviation by the mean of RT. Likewise, CPP onset latency is
1112 computed by performing running sample point by sample point t-tests against zero across each
1113 participant's stimulus-locked CPP waveforms, and cannot be computed on a single-trial basis.
1114 Therefore, we chose to bin our data according to the size of the pupil diameter baseline/response into
1115 5 bins. This however led us to question whether the relationship between pupil diameter and task
1116 performance could be dependent on our binning procedure. Therefore, we ran another regression
1117 analysis wherein we predicted single trial RT by sequentially adding the linear and quadratic
1118 coefficients for baseline pupil diameter (*BPD*) and pupil response (*PR*):

1119

1120
$$RT \sim \beta_0 + \beta_1 BPD + \beta_2 BPD^2 + \beta_3 PR + \beta_4 PR^2$$

1121

1122 , with β as the polynomial coefficients. We compared the first model to a random-intercept-only
1123 model including subject ID, inter-trial interval, stimulus side, as well as the trial and block number (to
1124 control for potential time on task effects), and tested the fit of subsequent models to the previous
1125 model fit. This analysis revealed a significant improvement for each step of the sequential analysis,
1126 for which the results and parameters estimates are shown in Supplementary Table 1. These analyses
1127 confirm that both the size of the baseline pupil diameter and the pupil response are predictive of task
1128 performance on a single trial basis. This relationship moreover follows a non-monotonic, quadratic,
1129 function.

1130 We repeated this analysis for another dataset in which subjects were required to detect a
1131 contrast change in a single centrally presented stimulus (Loughnane et al., 2018). This analysis
1132 revealed very similar results, except that the association between baseline pupil diameter and RT was
1133 best described by a linear relationship, instead of a second-order polynomial.

1134

1135

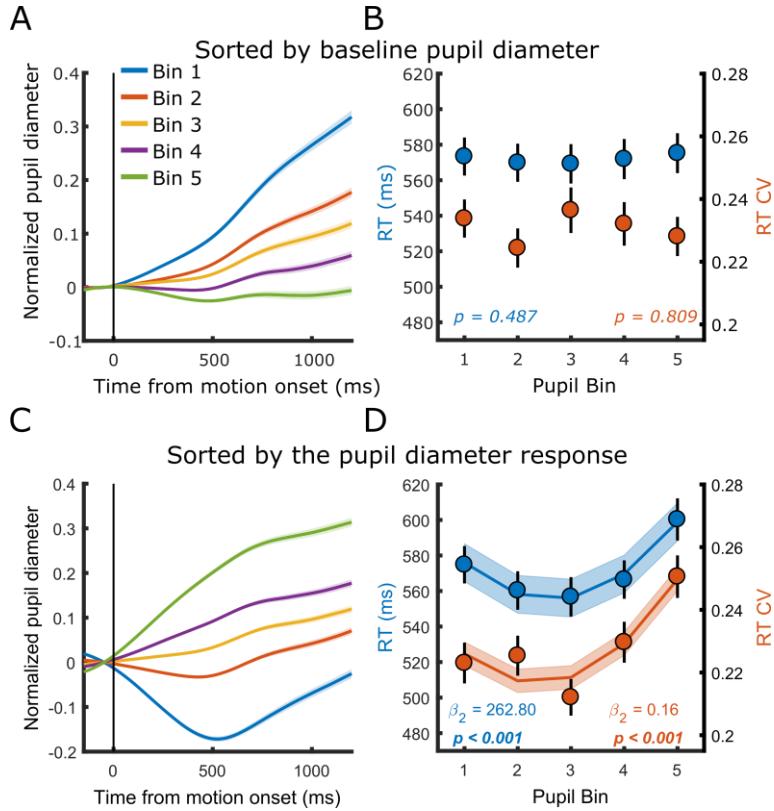
1136 Supplementary Table 1. Parameter estimates for the single-trial mixed effect model analysis predicting RT using linear and
1137 polynomial basis functions of baseline pupil diameter (BPD) and the pupil response (PR). RDM, random dot motion task,
1138 CD, contrast change detection task (Loughnane et al., 2018).

	Model comparison		Parameter estimates			
	χ^2	<i>p</i>	β	βSE	<i>t</i>	<i>p</i>
<i>RDM</i>						
<i>BPD</i>	5.31	0.021	0.43	0.064	6.64	<0.001
<i>BPD</i> ²	56.83	<0.001	0.43	0.049	8.75	<0.001
<i>PR</i>	65.65	<0.001	0.39	0.044	8.77	<0.001
<i>PR</i> ²	239.67	<0.001	0.72	0.046	15.53	<0.001
<i>CD</i>						
<i>BPD</i>	8.21	0.004	-0.14	0.027	-5.14	<0.001
<i>BPD</i> ²	1.82	0.178	0.01	0.022	0.47	0.636
<i>PR</i>	21.70	<0.001	-0.12	0.023	-5.16	<0.001
<i>PR</i> ²	46.38	<0.001	0.15	0.021	6.84	<0.001

1139

1140

1141 **Baseline pupil diameter is not predictive of task performance when high-pass**
 1142 **filtered**

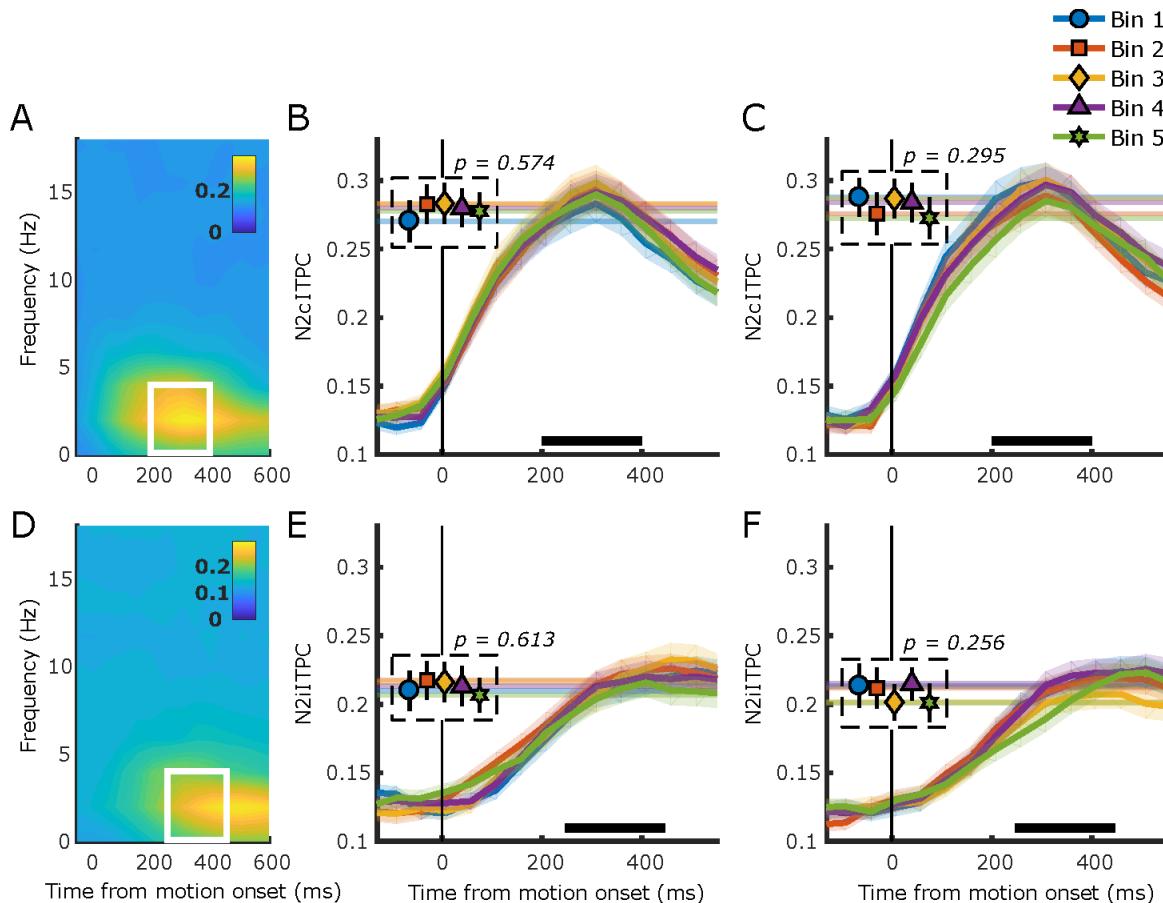


Supplementary figure 1. The relationship between baseline pupil diameter and the pupil response with task performance, for band-pass (0.1 – 6 Hz), rather than low-pass (<6Hz) filtered pupil diameter data. (A-B) Pupil diameter time course and task performance sorted by baseline pupil diameter. (A) Pupil time-course for the five bins. (B) Behavioural performance for the five bins. Markers indicate mean reaction times (RT, blue, left y-axis) and reaction time coefficient of variation (RTcv, red, right y-axis). (C-D) Same conventions as A-B, but sorted by the pupil diameter response. Error bars and shaded regions denote ± 1 standard error of the mean (SEM). Stats, linear mixed effects model analyses (Statistical analyses).

1143

1144 N2 ITPC analysis

1145



Supplementary figure 2. N2 ITPC. (A) Grand average inter-trial phase coherence (ITPC) per time-frequency point for the N2c. White box represents the time-frequency window selected for statistical analyses. (B) N2c ITPC per pupil response bin, (C) N2c ITPC per baseline pupil bin. Horizontal lines indicate average ITPC per pupil bin during the time window indicated by the black bar. (D-F) As in A-C but for N2i. Note that the time window used for the N2i analysis did not cover the peak ITPC activity, but rather focused on the time window in which the N2i amplitude peaked (Figure 3D). Error bars and shaded regions denote ± 1 SEM. Stats, linear mixed effects model analyses (Statistical analyses).

1146 **Hierarchical regression analysis predicting variability in task performance**
1147 **associated with phasic and tonic arousal**

1148 The tables below show the results from the model comparisons of the hierarchical regression analysis
1149 testing which of the signals associated with each of the neural processing stages of perceptual
1150 decision-making explained unique variance in task performance associated with phasic
1151 (Supplementary Table 2) or tonic arousal (Supplementary Table 3). The neural signals were added to
1152 a linear mixed effects model predicting either RT or RTcv in a hierarchical fashion, with their order
1153 determined by their temporal order in the decision-making process (Statistical analyses). This allowed
1154 us to test whether each successive stage of neural processing would improve the fit of the model to the
1155 behavioural data, over and above the fit of the previous stage. To test whether each of the neural
1156 signals that significantly improved the model fit indeed explained unique variance in task
1157 performance that is not explained by any of the other variables we used an algorithm for
1158 forward/backward stepwise model selection (Venables and Ripley, 2002). This procedure could
1159 exclude EEG parameters from the final model that for instance are highly correlated to other variables
1160 predictive of task performance. The variables that were not eliminated were forced into one linear
1161 mixed effects model predicting RT or RTcv, of which the final model parameters are shown in Table
1162 1.

1163 Most of the EEG variables were uncorrelated ($r < 0.25$). The ones that were correlated were,
1164 CPP onset and CPP ITPC ($r = 0.34$), CPP amplitude with CPP build-up rate (-0.50) and ITPC (-0.32),
1165 and LHB build-up rate and amplitude (-0.33) for baseline pupil diameter, and CPP onset and CPP
1166 ITPC ($r = 0.43$), CPP build-up rate and CPP amplitude ($r = -0.59$), and LHB build-up rate and
1167 amplitude ($r = -0.28$) for the pupil response.

1168

1169 Supplementary Table 2. Results from model comparisons of the hierarchical regression analysis predicting variability in task
1170 performance due to phasic arousal. Boldface font indicates parameters that significantly improved the model fit compared to
1171 the addition of the neural signal associated with the previous neural processing stage. Red text indicates the parameters that
1172 were excluded from the final model during the forward/backward stepwise regression (main text). Final model fits revealed a
1173 marginal (conditional) r^2 of 14.6% (93.1%) and 11.1% (46.4%) for RT and RTcv, respectively.

	RT				RTcv			
	Model comparison		Stepwise model selection		Model comparison		Stepwise model selection	
EEG component	χ^2	p	F	p	χ^2	p	F	p
Pre-target α Power	10.63	< 0.001	13.65	< 0.001	0.45	0.50		
N2c latency	0.75	0.39			0.04	0.87		
N2c amplitude	0.47	0.49			0.97	0.32		
N2i latency	0.90	0.34			1.67	0.20		

N2i amplitude	2.34	0.13			0.002	0.96		
CPP onset	27.24	< 0.001	2.60	0.11	8.96	0.003	0.75	0.39
CPP build-up rate	11.74	<0.001	5.12	0.02	0.67	0.41		
CPP amplitude	3.20	0.07			0.96	0.33		
CPP ITPC	40.60	< 0.001	63.49	< 0.001	10.45	0.001	20.48	< 0.001
LHB build-up rate	2.09	0.15			0.04	0.85		
LHB amplitude	0.59	0.44			0.02	0.89		

1174

1175 Supplementary Table 3. Results from model comparisons of the hierarchical regression analysis predicting variability in task
 1176 performance due to tonic arousal. Boldface font indicates parameters that significantly improved the model fit compared to
 1177 the addition of the neural signal associated with the previous neural processing stage. Red text indicates the parameters that
 1178 were excluded from the final model during the forward/backward stepwise regression (main text). Final model fits revealed a
 1179 marginal (conditional) r^2 of 4.2% (94.4%) and 11.7% (43.3%) for RT and RTcv, respectively.

	RT				RTcv			
	Model comparison		Stepwise model selection		Model comparison		Stepwise model selection	
EEG component	χ^2	p	F	p	χ^2	p	F	p
Pre-target α Power	0.70	0.40			0.02	0.88		
N2c latency	0.41	0.52			0.33	0.57		
N2c amplitude	4.45	0.035	4.62	0.033	0.57	0.45		
N2i latency	0.004	0.95			0.09	0.76		
N2i amplitude	0.39	0.53			0.01	0.92		
CPP onset	7.48	0.006	0.01	0.91	2.05	0.15		
CPP build-up rate	5.73	0.017	3.48	0.06	0.40	0.53		
CPP amplitude	1.47	0.23			0.04	0.85		
CPP ITPC	27.09	< 0.001	31.29	< 0.001	27.66	< 0.001	28.17	< 0.001
LHB build-up rate	0.37	0.54			2.88	0.09		
LHB amplitude	0.03	0.87			1.44	0.23		

1180

1181

1182 **Robust regression of final parameter estimates predicting variability in task
1183 performance**

1184 To confirm whether each of the neural signals selected by the hierarchical regression analysis indeed
1185 had a significant effect on task performance, we performed a robust regression (Supplementary Table
1186 4) based on 5000 bootstrap replicates to calculate the 95% confidence intervals around the β
1187 parameter estimates for the final model fit (Table 1).

1188

1189 Supplementary Table 4. Robust regression analysis results. 95% CI for β parameter estimates of the final model fit presented
1190 in Table 1.

	RT	RTcv
<i>Pupil response</i>		
pre-target α -power	0.083 – 0.280	
CPP build-up rate	-0.181 – -0.012	
CPP ITPC	-0.287 – -0.172	-0.373 – -0.148
<i>Baseline Pupil diameter</i>		
N2c amplitude	0.002 – 0.107	
CPP ITPC	-0.241 – -0.114	-0.416 – -0.196

1191