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Abstract 16 

The timing and accuracy of perceptual decision making is exquisitely sensitive to fluctuations in 17 

arousal. Although extensive research has highlighted the role of neural evidence accumulation in 18 

forming decisions, our understanding of how arousal impacts these processes remains limited. Here 19 

we isolated electrophysiological signatures of evidence accumulation alongside signals reflecting 20 

target selection, attentional engagement and motor output and examined their modulation as a 21 

function of both tonic and phasic arousal, indexed by baseline and task-evoked pupil diameter, 22 

respectively. For both pupillometric measures, the relationship with reaction time was best described 23 

by a second-order, U-shaped, polynomial. Additionally, the two pupil measures were predictive of a 24 

unique set of EEG signatures that together represent multiple information processing steps of 25 

perceptual decision-making, including evidence accumulation. Finally, we found that behavioural 26 

variability associated with fluctuations in both tonic and phasic arousal was largely mediated by 27 

variability in evidence accumulation. 28 

Introduction 29 

The speed and accuracy with which humans, as well as non-human animals, respond to a stimulus 30 

depends not only on the characteristics of the stimulus, but also on the cognitive state of the subject. 31 

When drowsy, a subject will respond more slowly to the same stimulus compared to when she is 32 

attentive and alert. Central arousal also fluctuates across a smaller range during quiet wakefulness, 33 

when the subject is neither drowsy or inattentive, nor overly excited or distractible. Although these 34 
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trial-to-trial fluctuations can impact on behavioural performance during decision-making tasks 35 

(Aston-Jones and Cohen, 2005), it is largely unknown how arousal modulates the underlying 36 

processes that support decision formation. Perceptual decision-making depends on multiple neural 37 

processing stages that represent and select sensory information, those that process and accumulate 38 

sensory evidence, and those that prepare and execute motor commands. Variability in central arousal 39 

could affect any one or potentially all of these processing stages, which in turn could influence 40 

behavioural performance. 41 

The neuromodulatory systems that control central arousal state, such as the noradrenergic 42 

(NA) locus coeruleus (LC) and the cholinergic basal forebrain (BF), have also been suggested to drive 43 

fluctuations in endogenous activity linked to changes in cortical (de)synchronization, i.e. cortical state 44 

(Harris and Thiele, 2011; Lee and Dan, 2012), and are linked to cognitive functions such as attention 45 

(Thiele and Bellgrove, 2018), both known to affect information processing and behavioural 46 

performance. These modulatory systems have both tonic and phasic firing patterns that are recruited 47 

on different timescales and support different functional roles (Aston-Jones and Cohen, 2005; Dayan 48 

and Yu, 2006; Parikh et al., 2007; Parikh and Sarter, 2008; Sarter et al., 2016). Tonic changes in 49 

neuromodulator activity occur over longer timescales that can span multiple trials, whereas fast (task-50 

evoked) recruitment through phasic activation occurs on short enough timescales to influence neural 51 

activity and behavioural decisions within the same trial (Aston-Jones and Cohen, 2005; Bouret and 52 

Sara, 2005; Dayan and Yu, 2006; Parikh et al., 2007).  53 

 Pupil diameter correlates strongly with a variety of measurements of cortical state and 54 

behavioural arousal (Eldar et al., 2013; Reimer et al., 2014; McGinley et al., 2015b, 2015a; Vinck et 55 

al., 2015; Engel et al., 2016), and can thus be considered a reliable proxy of central arousal state. 56 

Indeed, there is a strong correlation between pupil size and activity in various neuromodulatory 57 

centres that control arousal (Aston-Jones and Cohen, 2005; Gilzenrat et al., 2010; Murphy et al., 58 

2014a; Varazzani et al., 2015; Joshi et al., 2016; Reimer et al., 2016; de Gee et al., 2017). Both 59 

baseline pupil diameter, reflecting tonic activity levels in neuromodulatory centres (tonic arousal), and 60 

task-evoked pupil diameter changes (phasic arousal), have been related to specific neural processing 61 

stages of perceptual decision making. Baseline pupil diameter correlates with sensory sensitivity 62 

(McGinley et al., 2015a, 2015b) and is predictive of behavioural performance during elementary 63 

detection tasks (Murphy et al., 2011; McGinley et al., 2015a). Pupil diameter also changes phasically 64 

in the course of a single decision (Beatty, 1982a; de Gee et al., 2014, 2017; Lempert et al., 2015; 65 

Murphy et al., 2016; Urai et al., 2017), and has been related to specific elements of the decision 66 

making process, such as decision bias (de Gee et al., 2014, 2017), uncertainty (Urai et al., 2017), and 67 

urgency (Murphy et al., 2016). This suggests that these neuromodulatory systems do not only dictate 68 

network states (through tonic activity changes), but that they are recruited throughout the decision 69 

making process (Cheadle et al., 2014; de Gee et al., 2014, 2017). Although both baseline pupil 70 

diameter and the phasic pupil response have been associated with specific aspects of decision-making, 71 
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the relationship between pupil-linked arousal and the electrophysiological correlates of decision-72 

making, and in particular evidence accumulation, are largely unknown.  73 

 Recently developed behavioural paradigms have made it possible to non-invasively study the 74 

individual electroencephalographic (EEG) signatures of perceptual decision-making described above 75 

(O’Connell et al., 2012; Kelly and O’Connell, 2013; Loughnane et al., 2016, 2018; Newman et al., 76 

2017). In these paradigms, participants are required to continuously monitor (multiple) stimuli for 77 

subtle changes in a feature. Because stimuli are presented continuously, target onset times (and 78 

locations) are unpredictable, and sudden stimulus onsets are absent, eliminating sensory evoked 79 

deflections in the EEG traces. These characteristics allow for the investigation of the gradual 80 

development of build-to-threshold decision variables as well as signals that code for the selection of 81 

relevant information from multiple competing stimuli, a critical feature of visuospatial attentional 82 

orienting that impact evidence accumulation processes (Loughnane et al., 2016). 83 

Here, we asked how arousal influences EEG signals that relate to each of the separate 84 

processing stages described above. Specifically, we tested the effects of pupil-linked arousal on pre-85 

target preparatory parieto-occipital α-band activity, associated with fluctuations in the allocation of 86 

attentional resources (Kelly and O’Connell, 2013); early target selection signals measured over 87 

contra- and ipsilateral occipital cortex, the N2c and N2i (Loughnane et al., 2016); perceptual evidence 88 

accumulation signals measured as the centroparietal positivity (CPP), which is a build-to-threshold 89 

decision variable demonstrated to scale with the strength of sensory evidence and predictive of 90 

reaction time (RT) (O’Connell et al., 2012; Kelly and O’Connell, 2013); and motor-preparation 91 

signals measured via contralateral β-band activity (Donner et al., 2009; O’Connell et al., 2012). Of 92 

these signals, we extracted specific characteristics such as the latency, build-up rate and amplitude, 93 

and tested whether these were affected by pupil-linked arousal. Additionally, because the variance and 94 

response reliability of the membrane potential of sensory neurons varies with pupil diameter (Reimer 95 

et al., 2014; McGinley et al., 2015a), we also investigated whether arousal affected the inter-trial 96 

phase coherence (ITPC), a measure of across trial consistency in the EEG signal, of the N2 and the 97 

CPP.  98 

We found that both baseline pupil diameter as well as the pupil response were predictive of 99 

behavioural performance, and that this relationship was best described by a U-shaped, second-order 100 

polynomial, model fit. Furthermore, we found that both tonic and phasic arousal bore a predictive 101 

relationship with the neural signals coding for baseline attentional engagement, early target selection, 102 

evidence accumulation as well as the preparatory motor response. Although neural activity 103 

representing all these stages varied with changes in arousal, unique variability in task performance 104 

due to tonic arousal (baseline pupil diameter) could only be explained by the amplitude of target 105 

selection signals and the consistency of the build-up rate of the CPP, reflecting evidence 106 

accumulation. In contrast, variability due to phasic arousal (pupil response) was explained by pre-107 

target α-band activity as well as the build-up rate and consistency of the CPP.  108 
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Results 109 

80 subjects performed a continuous version of the random dot motion task in which they were asked 110 

to report temporally and spatially unpredictable periods of coherent motion within either of two 111 

streams of random motion (Figure 1A). We investigated whether the trial-to-trial fluctuations in 112 

behavioural performance and EEG signatures of perceptual decision making could, in part, be 113 

explained by trial-to-trial differences in the size of the baseline pupil diameter (reflecting tonic 114 

arousal) and the post-target pupil response (reflecting phasic arousal). We quantified this relationship 115 

by allocating data into 5 bins based on the size of either the baseline pupil diameter or the phasic pupil 116 

diameter response (Figure 1B & Figure 1D). We then used sequential multilevel model analyses and 117 

maximum likelihood ratio tests to test for fixed effects of pupil bin. We determined whether a linear 118 

fit was better than a constant fit and subsequently whether the fit of a second-order polynomial (e.g, 119 

U-shaped relationship), indicating a non-monotonic relationship between pupil diameter and 120 

behaviour/EEG, was superior to a linear fit.  121 

 

Figure 1. (A) Paradigm. Subjects fixated on a central dot while monitoring two peripheral patches of continuously 

presented randomly moving dots. At pseudorandom times an intermittent period of coherent downward motion (50%) 

occurred in either the left or the right hemifield. A speeded right handed button press was required upon detection of 

coherent motion. (B-C) Pupil diameter time course and task performance sorted by baseline pupil diameter. (B) Pupil 

time-course for the five bins. (C) Behavioural performance for the five bins. Markers indicate mean reaction times (RT, 

blue, left y-axis) and reaction time coefficient of variation (RTcv, red, right y-axis), lines and shading indicate 

significant quadratic fits. (D-E) Same conventions as B-C, but sorted by the pupil diameter response. Error bars and 

shaded regions denote ±1 standard error of the mean (SEM). Stats, linear mixed effects model analyses (Statistical 

analyses). 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 3, 2018. ; https://doi.org/10.1101/433060doi: bioRxiv preprint 

https://doi.org/10.1101/433060
http://creativecommons.org/licenses/by-nc/4.0/


5 

 

Both tonic and phasic arousal are predictive of task performance in a U-shaped 122 

manner 123 

We first investigated the relationship between trial-by-trial pupil dynamics and behavioural 124 

performance. As stimuli were presented well above perceptual threshold, our subjects performed at 125 

ceiling (Newman et al., 2017). We therefore focused on RT and the RT coefficient of variation 126 

(RTcv), a measure of performance variability calculated by dividing the standard deviation in RT by 127 

the mean (Bellgrove et al., 2004), rather than accuracy. We found that both measures of behavioural 128 

performance displayed a non-monotonic, U-shaped, relationship with both baseline pupil diameter 129 

(RT χ2
(1) = 8.98, p = 0.003; RTcv χ2

(1) = 5.36, p = 0.020) and the pupil diameter response (RT χ2
(1) = 130 

116.65, p < 0.001; RTcv χ2
(1) = 12.36, p < 0.001). Responses were fastest and least variable for 131 

intermediate pupil bins (Figure 1C & Figure 1E). We repeated this analysis in single-trial, non-binned 132 

data, in which we additionally controlled for time-on-task effects, confirming that these effects were 133 

not dependent on the binning procedure (Supplementary information). Additionally, we noticed that 134 

when we band-pass filtered the pupil diameter, rather than low-pass filtered, the relationship between 135 

baseline pupil diameter and task performance was not significant, whereas this did not affect the 136 

relationship between the pupil response and task performance (Supplementary figure 1). This suggests 137 

that slow fluctuations in baseline pupil diameter (<0.01Hz) are driving the effect on task performance.  138 

Having established a relationship between task performance and both tonic and phasic modes 139 

of central arousal state, we next focused on the relationship between these pupil dynamics and the 140 

neural signatures underpinning target detection on this perceptual decision making task (Loughnane et 141 

al., 2016; Newman et al., 2017).  142 

 143 

U-shaped relationship between phasic arousal and decision computation 144 

During decision making, perceptual evidence has to be accumulated over time. This accumulation 145 

process has long been related to build-to-threshold activity in single neurons in parietal cortex (Gold 146 

and Shadlen, 2007; but see Latimer et al., 2015, 2016; Shadlen et al., 2016). The centro-parietal  147 

positivity (CPP) measured from scalp EEG exhibits many of these same properties, including a 148 

representation of the accumulation of sensory evidence towards a decision bound (O’Connell et al., 149 

2012, 2018; Kelly and O’Connell, 2013). Here we tested the relationship between the pupil diameter 150 

response and the onset, build-up rate, amplitude and consistency (ITPC) of the CPP (Figure 2). We 151 

found that the onset latency of the evidence accumulation process, defined as the first time point that 152 

showed a significant difference from zero for 15 consecutive time points, displayed a quadratic 153 

relationship with the size of the pupil response (χ2
(1) = 7.53, p = 0.006), such that the fastest onsets 154 

were found for intermediate pupil response bins and slower onsets for the extreme bins (Figure 2A). 155 

Likewise, the slope of the CPP, reflecting the build-up rate of evidence accumulation, also displayed a 156 

non-monotonic, inverted-U shaped, relationship with the pupil response (χ2
(1) = 7.81, p = 0.005). The 157 
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amplitude of the CPP, representing the threshold of the accumulation process, did not vary with the 158 

pupil diameter response (p = 0.24). We thus found a direct relationship between phasic arousal and 159 

the onset and build-up rate of evidence accumulation. Moreover, the non-monotonic relationship with 160 

the neural parameters of the CPP closely resembled the relationship between the pupil response and 161 

 

Figure 2. The centro-parietal positivity (CPP) in relation to phasic arousal. (A) The stimulus-locked CPP time-course 

shows faster onset times for intermediate pupil response bins. The inset shows the scalp topography of the CPP. 

Vertical lines and markers indicate the onset latencies per bin. (B) The response-locked CSD-transformed CPP time-

course. Horizontal lines and symbols indicate the CPP amplitude, and the inset displays the build-up rate of the CPP 

across pupil response bins. The black bar represents the time window used for the calculation of the CPP amplitude and 

the grey bar the time window used for the calculation of the build-up rate. (C) Grand average inter-trial phase coherence 

(ITPC) per time-frequency point for the CPP. White box represents the time-frequency window selected for statistical 

analyses. (D) ITPC per pupil bin over time for frequencies below 4 Hz. The black bar indicates the time window used 

for further analysis. Horizontal lines and symbols indicate the averaged ITPC in the time-frequency window indicated 

by the white box in panel C. Lines and shading indicate significant quadratic fits to the data. Error bars and shaded 

regions denote ±1 SEM. Stats, linear mixed effects model analyses (Statistical analyses). 
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behavioural performance (Figure 1E). Because the membrane potential of sensory neurons shows the 162 

least variance and highest response reliability at intermediate baseline pupil diameter (McGinley et 163 

al., 2015a), we additionally investigated the ITPC, a measure of across trial consistency, of the CPP. 164 

We computed ITPC with a single-taper spectral analysis in a 512 ms sliding window computed at 50 165 

ms intervals, with a frequency resolution of 1.95 Hz (Materials and Methods). Based on the stimulus-166 

locked grand average time-frequency spectrum, we selected a time (300-550 ms) and frequency 167 

window (<4 Hz) for further statistical analyses (Figure 2C). We found a quadratic (inverted U-shape) 168 

relationship between pupil diameter response and the consistency of the CPP signal (χ2
(1) = 30.42, p < 169 

0.001), indicating that the CPP signal is less variable for intermediate pupil response bins (Figure 2D). 170 

Together, these results confirm the hypothesized relationship between the pupil diameter response and 171 

electrophysiological correlates of evidence accumulation. Next, we asked whether other stages of 172 

information processing underpinning perceptual decision making also varied with the pupil response.  173 

 174 

The phasic pupil response relates monotonically to spectral measures of baseline 175 

attentional engagement and displays a U-shaped relationship with motor output  176 

We next investigated pre-target preparatory α-band power (8-13 Hz), a sensitive index of attentional 177 

deployment that has been shown to vary with behavioural performance. Specifically, previous studies 178 

have found higher pre-target α-band power preceding trials with longer RT, and that fluctuations in α-179 

power may reflect an attentional influence on variability in task performance (Ergenoglu et al., 2004; 180 

van Dijk et al., 2008; O’Connell et al., 2009; Kelly and O’Connell, 2013). We first verified the 181 

relationship between α-band power and behavioural performance by binning the data into 5 bins 182 

according to α-band power and performing the same sequential regression analysis as described above 183 

(Figure 3A). We replicated previous findings (Kelly and O’Connell, 2013) and found an 184 

approximately linear relationship between α-band power and RT (χ2
(1) = 23.31, p < 0.001) but not 185 

RTcv (p = 0.26). In line with previous research (Hong et al., 2014), pupil diameter response was 186 

inversely related to α-band power (Figure 3B), displaying an approximately linear relationship (χ2
(1) = 187 

47.19, p < 0.001), suggesting that pre-target attentional engagement is related to phasic arousal.  188 

We next focused on response-related motor activity in the form of left hemispheric β-power 189 

(LHB). LHB decreases before a button press and has been shown to reflect the motor-output stage of 190 

perceptual decision making, but also to trace decision formation, reflecting the build-up of choice 191 

selective activity (Donner et al., 2009). Here we investigated the LHB amplitude and build-up rate 192 

preceding response (Figure 3C). We found that both LHB amplitude (χ2
(1) = 4.18, p = 0.041) and LHB 193 

slope (χ2
(1) = 3.94, p = 0.047) displayed a non-monotonic relationship with pupil response, suggesting 194 

that phasic arousal influences the build-up rate of choice-related activity over motor cortex. The build-195 

up rate results accord with those for the CPP, as for both measures the slope declined with a larger 196 
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pupil diameter response (note that LHB decreases during decision formation, i.e. has a negative 197 

slope).  198 

 199 

Only ipsilateral target selection signals correlate with the phasic pupil response 200 

Next we investigated the N2 (Figure 3D-F), a stimulus-locked early target selection signal that has 201 

been shown to predict behavioural performance and modulate the onset and build-up rate of the CPP 202 

 

Figure 3. (A) RT and RTcv in relation to pre-target α power. (B) Pre-target α power in relation to the pupil response. (C)  

response-related left hemispheric β power (LHB) per pupil bin. Horizontal lines and marks indicate the average LHB in 

the time window indicated by the black bar. Inset shows LHB build-up rate, as determined by fitting a straight line 

through the LHB in the time window indicated by the grey bar. Note the reverse y-axis direction. (D) The stimulus-

locked N2c (solid lines) and N2i (dashed lines) time-course binned by the pupil response. Vertical lines and markers 

show the peak latencies. Horizontal lines and markers show the average N2 amplitude during the time period indicated 

by the black (N2c) and grey (N2i) bars. (E-F) N2c (E) and N2i (F) ITPC per pupil bin over the time and frequency 

window determined based on the grand average ITPC (Supplementary figure 2). Insets show the scalp topography of 

each neural signal. Lines and shading indicate significant fits to the data. Linear fits are displayed when a first-order 

polynomial fit was superior to a constant fit, and quadratic fits are displayed where second-order fits were superior to a 

first-order fit. Error bars and shaded regions denote ±1 SEM. Stats, linear mixed effects model analyses (Statistical 

analyses).  
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(Loughnane et al., 2016). Because of the spatial nature of the task, we analysed the negative 203 

deflection over both the contra- (N2c) and ipsi-lateral (N2i) hemisphere, relative to the target location. 204 

The pupil response was not predictive of any aspect of the N2c. Specifically, phasic arousal was not 205 

predictive of N2c latency (p = 0.66) or amplitude (p = 0.39), nor did we find any relationship between 206 

the pupil response and the N2c ITPC (p = 0.57). Although the pupil response was not predictive of 207 

N2i latency (p = 0.53) or ITPC (0.69), it was predictive of N2i amplitude (χ2
(1) = 6.94, p = 0.008). 208 

Previously, we showed that the N2c, rather than N2i, correlated with RT and modulated CPP 209 

(Loughnane et al., 2016). It is therefore interesting that N2i, rather than N2c varied with the pupil 210 

response. Below, we will discuss whether this effect could (partially) explain the relationship between 211 

the pupil response and task performance.  212 

 213 

Variation in spatial attention influences task performance, but cannot explain the 214 

U-shaped relationship between pupil response and RT 215 

Having established a relationship between the size of the pupil response and both task performance 216 

and EEG signatures of perceptual decision making, we investigated whether the U-shaped relationship 217 

with behavioural performance could be explained by factors other than phasic arousal. Alongside 218 

activity in neuromodulatory centres, pupil diameter also correlates with activity in the intermediate 219 

layers of the superior colliculus (SCi) (Wang et al., 2012; Joshi et al., 2016; de Gee et al., 2017). The 220 

SCi, besides preparing and executing eye movements, is involved in directing covert attention 221 

(Kustov and Lee Robinson, 1996; Ignashchenkova et al., 2004; Muller et al., 2005; Lovejoy and 222 

Krauzlis, 2010), and provides an essential contribution to the selection of stimuli from amongst 223 

competing distractors (McPeek and Keller, 2002, 2004; reviewed in Mysore and Knudsen, 2011). 224 

Therefore, given our use of multiple simultaneously presented competing stimuli, variations in spatial 225 

attention could potentially explain variability in behavioural performance and pupil diameter 226 

responses. Indeed, previous research has reported an association between poorer behavioural 227 

performance and large pupil diameter responses when there was a requirement to monitor multiple 228 

stimuli simultaneously (Kristjansson et al., 2009).  229 

To test this possibility, we further investigated the relationship between pupil responses and 230 

the ipsilateral N2 target selection signal (Figure 3D). If on trials with lower behavioural performance 231 

attention was focused on the distractor stimulus, then early target selection signals contralateral to the 232 

distractor stimulus (i.e. ipsilateral to the target stimulus) might differ compared to trials with relatively 233 

better performance. Additionally, these differences might be present throughout the trial, before the 234 

N2i is expected to reveal differences between target and non-target stimuli (Loughnane et al., 2016). 235 

We therefore conducted a sliding window linear mixed effect model analysis predicting N2i 236 

amplitude for each 100 ms window, in 10 ms increments, from -20 before to 500 ms after target onset 237 

(Figure 4A). This analysis revealed that the pupil diameter was predictive of N2i amplitude from as 238 
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early as 70 ms after target onset, much earlier than the previously reported target selection onset of 239 

308 ms (Loughnane et al., 2016), and therefore unlikely to reflect target processing. Rather, large 240 

pupil responses and a large N2 amplitude could reflect a bias in attention or expectation of the target 241 

 

Figure 4. (A) The stimulus-locked N2i time-course binned by the pupil response. The time period indicated by the black 

bar displays the times where there was a significant, approximately linear, relationship between the pupil response and 

N2i amplitude. Stats, sliding window linear mixed effect model analysis (main text), FDR corrected. (B) The size of the 

pupil response, sorted by N2i amplitude. (C-E) Data from a different dataset using a contrast change detection paradigm 

where subjects monitored a single central target stimulus (Loughnane et al., 2018). (C) Task paradigm. Participants 

monitored a single central checkerboard stimulus for gradual contrast changes. (D) Pupil time-courses for the 5 bins. (E) 

Relationship between behavioural performance and the pupil diameter response. Markers indicate mean reaction times 

(RT, blue, left y-axis) and reaction time coefficient of variation (RTcv, red, right y-axis). (F) Z-scored log transformed 

RT across subsequent trials, sorted by pupil diameter on trial 0. Significance stars indicate when RT for the 5th pupil bin 

was significantly higher than the average RT across the first 4 bins. (G) RT per pupil bin for trial index -1, 0 and 1 

(panel F). Lines and shading indicate significant fits to the data. Linear fits are displayed when a first-order polynomial 

fit was superior to a constant fit, and quadratic fits are displayed where second-order fits were superior to a first-order 

fit. Error bars and shaded regions denote ±1 SEM. Stats, linear mixed effects model analyses (panel A-E, Statistical 

analyses), and paired sample t-tests, FDR corrected (panel F-G). 
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location. Although large pupil responses have previously been related to a reduction in decision bias 242 

(de Gee et al., 2014, 2017), these studies did not investigate decision bias in the context of spatially 243 

unpredictable target locations. As the size of the N2i could indicate the need to shift attention, we next 244 

tested whether the size of the N2i amplitude could predict the size of the pupil diameter response. In 245 

line with the results described above, where trials with larger pupil responses displayed larger N2i 246 

amplitudes, N2i amplitude displayed an inverse relationship (note that the first bin contains the largest 247 

N2i responses) with the pupil diameter response (χ2
(1) = 6.91, p = 0.009), with larger pupil responses 248 

for larger N2i amplitudes (Figure 4B). This suggests that attentional shifts, possibly through 249 

recruitment of the SCi, could lead to larger pupil responses and lower behavioural performance. 250 

To further investigate whether these effects could explain (part of) the current results, we 251 

analysed the relationship between the pupil diameter response and task performance from a different 252 

dataset (Loughnane et al., 2018) in which participants (n = 17) monitored a single, centrally 253 

positioned, flickering checkerboard annulus for a gradual change in contrast (Figure 4C). Pupil 254 

diameter on this non-spatial task also displayed across-trial variability (Figure 4D), which predicted 255 

RT in a non-monotonic fashion (χ2
(1) = 8.85, p = 0.003). RTcv did not scale with the pupil diameter 256 

response (Figure 4E) (p = 0.24). We furthermore confirmed that the non-monotonic relationship 257 

between the pupil response and RT was not dependent on the binning procedure or time-on-task 258 

effects by repeating this analysis on single-trial data in which we controlled for these factors 259 

(Supplementary Table 1). Thus, the U-shaped relationship between the pupil diameter response and 260 

behaviour (RT) cannot be attributed to attentional shifts away from a distractor stimulus and may be a 261 

more general phenomenon during protracted perceptual decision-making.  262 

 263 

Large pupil responses may indicate a performance monitoring compensatory 264 

mechanism 265 

For both NA and acetylcholine (ACh) it has been found that phasic activity is task dependent and 266 

generally larger on trials with good performance (Aston-Jones et al., 1994, 1997, Rajkowski et al., 267 

1994, 2004; Parikh et al., 2007; Gritton et al., 2016). It therefore seems counterintuitive that in this 268 

study large pupil responses, presumably reflecting transient activity in these modulatory systems 269 

amongst others, are associated with lower behavioural performance. One possible explanation of these 270 

results is that this transient reflects a NA and/or ACh-related compensatory mechanism (Murphy et 271 

al., 2011; Sarter et al., 2016). Although speculative, a transient in phasic arousal could, on the current 272 

task, reflect a correction from a state with low performance. Indeed, trials with maximum pupil 273 

dilations and low task performance have been found to be preceded by trials with progressively longer 274 

RT, and followed by better task performance (Murphy et al., 2011). We therefore tested whether trials 275 

with a large pupil diameter response were preceded/followed by trials with worse/better task 276 

performance. Figure 4F-G shows the RT for trials relative to the trial on which the pupil response was 277 
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measured (trial 0). Trials with larger pupil responses (bin 5, green) were preceded by trials with 278 

slower than average RT (Figure 4F), and this effect was observed for up to 3 trials before trial 0. 279 

Although on the subsequent trial (trial 1) RT was still slower than average, RT was significantly faster 280 

compared to trial 0 (Figure 4G). Additionally, the trials for which the pupil response is largest are the 281 

only trials on which there is both a decrease in task performance (increase in RT) from the previous 282 

trial, and a subsequent improvement in performance on the next trial. The other bins displayed the 283 

exact opposite pattern, and none of them showed an improvement in task performance after trial 0. A 284 

phasic pupillary response could thus indicate a compensatory mechanism, signalling the need to 285 

adjust the neural circuitry to a state that facilitates better performance. As Murphy et al. (2011) 286 

concluded, large pupil responses may reflect phasic activations driven by higher cortical performance 287 

monitoring brain regions that serve to reengage participants in the task.  288 

   289 

The impact of phasic arousal on task performance is mainly mediated by the 290 

consistency in evidence accumulation 291 

Regardless of the neural mechanism, we found that pupil-linked phasic arousal was predictive of 292 

specific neural signals at multiple information processing stages of perceptual decision making. To 293 

test which of these signals explained unique variability in behavioural performance across the 5 pupil 294 

response bins and subjects, the neural signals were added to a linear mixed effects model predicting 295 

either RT or RTcv with their order of entry determined hierarchically by their temporal order in the 296 

decision-making process. This allowed us to test whether each successive stage of neural processing 297 

would improve the fit of the model to the behavioural data, over and above the fit of the previous 298 

stage. Note that none of the predictors were highly correlated (r < 0.25), with the exception of CPP 299 

onset and CPP ITPC (r = 0.43), CPP build-up rate and CPP amplitude (r = -0.59), and LHB build-up 300 

rate and amplitude (r = -0.28). Compared to the baseline model predicting RT with pupil bin, the 301 

addition of pre-target α-power significantly improved the model fit (χ2
(1) = 10.63, p < 0.001). None of 302 

the measures of early target selection improved the fit of the model; neither N2c latency (χ2
(1) = 0.75, 303 

p = 0.39) or amplitude (χ2
(1) = 0.47, p = 0.49), nor N2i latency (χ2

(1) = 0.90, p = 0.34) or amplitude 304 

(χ2
(1) = 2.34, p = 0.13). We found that both the addition of CPP onset (χ2

(1) = 27.24, p < 0.001) as well 305 

as the build-up rate (χ2
(1) = 11.74, p < 0.001) significantly improved the model fit. Whereas the 306 

addition of CPP amplitude did not (χ2
(1) = 3.19, p = 0.07), the addition of CPP ITPC substantially 307 

improved the fit of the model (χ2
(1) = 40.60, p < 0.001). Although both LHB amplitude and build-up 308 

rate varied with phasic arousal, neither improved the fit of the model (LHB build-up rate χ2
(1) = 2.09, 309 

p = 0.15; amplitude χ2
(1) = 0.59, p = 0.44). Overall, this model suggested that pre-target α-power, CPP 310 

onset, build-up rate and ITPC exert partially independent influences on RT. Because some variables 311 

were highly correlated (e.g. CPP onset and ITPC) we used an algorithm for forward/backward 312 

stepwise model selection (Venables and Ripley, 2002) to test whether each neural signal indeed 313 
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explained independent variability that is not explained by any of the other signals. This procedure 314 

eliminated CPP onset from the final model (F(1) = 2.60, p = 0.11). Thus, only pre-target α-power, CPP 315 

build-up rate and CPP ITPC significantly improved the model fit for predicting RT. These three 316 

variables were forced into one linear mixed effects model predicting RT (Statistical analyses), and 317 

comparison to a baseline model revealed a good fit (χ2
(3) = 82.18, p < 0.001). The fixed effects of the 318 

model (the neural signals) explained 14.6% of the variability in RT (marginal r2) across the 5 pupil 319 

response bins, and together with the random effects (across subject variability) it explained 93.1% of 320 

the variability (conditional r2).  321 

 We performed the same hierarchical regression analysis to see which neural signals explained 322 

variability in RTcv. We summarised the results of this analysis in Supplementary Table 2, and report 323 

the most important results here. The hierarchical regression analysis revealed that both CPP onset and 324 

CPP ITPC improved the model fit, but eliminated CPP onset after the forward/backward model 325 

selection. Consequently, CPP ITPC was the only variable that exerted independent influence on 326 

RTcv. Comparison against a baseline model revealed a significant fit (χ2
(1) = 19.78, p < 0.001) that 327 

had a marginal r2 of 11.1% and a conditional r2 of 46.5%.  328 

Table 1 shows the final parameter estimates for the neural signals that significantly predicted 329 

variability in RT or RTcv that is due to variability in phasic arousal. From this analysis we can 330 

conclude that CPP ITPC was the strongest predictor for RT and the only predictor for RTcv. These 331 

results provide novel insight into the mechanism by which the neuromodulators that control arousal 332 

can influence behaviour. The impact of these modulators on decision-making, previously suggested to 333 

be recruited throughout the decision-making process (Cheadle et al., 2014; de Gee et al., 2014, 2017), 334 

is thus mainly mediated by their effects on the consistency in evidence accumulation. 335 

Next, we turn to tonic arousal and its relationship to these same EEG components of 336 

perceptual decision-making. 337 

Table 1. Parameter estimates for the final linear mixed effect model of RT and RTcv binned by the pupil diameter 

response or baseline. The only parameters included are the neural signals that significantly improved the model fit. 

 
RT RTcv 

 β β SE T p β β SE t P 

Pupil response          

pre-target α-power 0.18 0.050 3.70 <0.001     

CPP build-up rate -0.10 0.042 -2.26 0.024     

CPP ITPC -0.23 0.029 -7.97 <0.001 -0.26 0.056 -4.66 <0.001 

Baseline Pupil diameter         

N2c amplitude 0.05 0.027 1.95 0.052*     

CPP ITPC -0.18 0.032 -5.48 <0.001 -0.31 0.056 -5.45 <0.001 

* Although N2c amplitude fell short of the nominal statistical significance threshold, a robust regression analysis 

confirmed a significant positive relationship with RT (Supplementary Table 4). 
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Baseline pupil diameter is inversely related to the consistency of evidence 338 

accumulation 339 

Figure 5 illustrates the relationship between baseline pupil diameter and the CPP. Unlike the pupil 340 

response, baseline pupil diameter was not predictive of the onset (p = 0.17), build-up rate (p = 0.15), 341 

or amplitude of the CPP (p = 0.10). The only component that significantly scaled with baseline pupil 342 

diameter was the consistency of evidence accumulation, CPP ITPC (χ2
(1) = 9.34, p = 0.002). In line 343 

with previous research that revealed increased variability in the rate of evidence accumulation during 344 

periods with larger baseline pupil diameter (Murphy et al., 2014b), we found an inverse, 345 

approximately linear, relationship in which higher baseline pupil diameter displayed lower EEG 346 

signal consistency (Figure 5D). Thus, states of higher arousal are characterized by less consistency, 347 

i.e. more variability, in the accumulation of evidence. Additionally, these states (bin 4 and 5) also 348 

show slower RT and higher RTcv (Figure 1C), indicating that higher variability in the rate of evidence 349 

accumulation (due to higher tonic arousal) affects task performance.  350 

 351 

Baseline pupil diameter relates to spectral measures of baseline attention 352 

engagement and motor output as well as early target selection 353 

We found a relationship between baseline pupil diameter and specific characteristics of multiple 354 

neural processing stages of perceptual decision-making. Specifically, as observed before (Hong et al., 355 

2014), pre-target alpha power (Figure 6A) varied with baseline pupil diameter in a non-monotonic, 356 

inverted-U shaped, manner (χ2
(1) = 4.40, p = 0.036). This suggests that with higher tonic arousal, alpha 357 

activity is higher (or less desynchronised). Next, we tested whether baseline pupil diameter was 358 

predictive of EEG characteristics representing motor output (Figure 6B). We found an approximately 359 

 

Figure 5. Relationship between baseline pupil diameter and the CPP. (A) CPP onset latency, (B) build-up rate, (C) 

amplitude and (D) ITPC per pupil bin over time for frequencies below 4 Hz. The black bar indicates the time window 

used for further analysis. Horizontal lines and symbols indicate the averaged ITPC in the time-frequency window 

indicated by the white box in Figure 2 panel C. Lines and shading indicate significant fits to the data. Linear fits are 

displayed when a first-order polynomial fit was superior to a constant fit. Error bars and shaded regions denote ±1 SEM. 

Stats, linear mixed effects model analyses (Statistical analyses). 
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linear relationship with LHB build-up rate (χ2
(1) = 11.1, p < 0.001), decreasing with larger baseline 360 

pupil diameter, but we did not find a relationship with LHB amplitude (p = 0.18).  361 

Lastly, we investigated whether baseline pupil diameter affected our early target selection 362 

signal, the N2 (Figure 6C-D). Previous studies have revealed that baseline pupil diameter affected the 363 

size and variability of neural responses to visual and auditory stimuli (Reimer et al., 2014; McGinley 364 

et al., 2015a). Here we found that baseline pupil diameter was not predictive of the peak latency of the 365 

N2c (p = 0.74), but that it did display a monotonic relationship with the N2c amplitude (χ2
(1) = 14.31, 366 

p < 0.001). Trials with larger baseline pupil diameter displayed smaller N2c amplitudes, suggesting 367 

 

Figure 6. (A) Pre-target α power by baseline pupil diameter. (B) Response-related left hemispheric β power (LHB) per 

pupil bin. Horizontal lines and markers indicate the average LHB in the time window indicated by the black bar. Inset 

shows the LHB build-up rate, as determined by fitting a straight line through the LHB in the time window indicated by 

the grey bar. Note the reverse y-axis direction. (C) The stimulus-locked N2c time-course binned by baseline pupil 

diameter. Vertical lines and markers show the peak latencies. Horizontal lines and markers show the average N2c 

amplitude during the time period indicated by the black bar. (D) N2c and N2i ITPC per pupil bin averaged in a time-

frequency window based on the grand average (Supplementary figure 2). (E-F) Data from a different dataset using a 

contrast change detection paradigm where subjects monitored a single central target stimulus (Loughnane et al., 2018). 

(E) Pupil time-courses for the 5 baseline pupil diameter bins. (F) Relationship between behavioural performance and 

baseline pupil diameter. Markers indicate mean reaction times (RT, blue, left y-axis) and reaction time coefficient of 

variation (RTcv, red, right y-axis). Insets show the scalp topography of each neural signal. Lines and shading indicate 

significant fits to the data. Linear fits are displayed when a first-order polynomial fit was superior to a constant fit, and 

quadratic fits are displayed where second-order fits were superior to a first-order fit. Error bars and shaded regions 

denote ±1 SEM. Stats, linear mixed effects model analyses (Statistical analyses). 
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that higher arousal has a negative impact on sensory encoding. N2c ITPC did not vary with baseline 368 

pupil diameter (p = 0.30), and nor did N2i ITPC (p = 0.26), N2i latency (p = 0.87) or amplitude (p = 369 

0.06). We thus found that, similar to the phasic pupil diameter response, baseline pupil diameter is 370 

predictive of specific characteristics of each of the processing stages of perceptual decision-making. 371 

Next, we investigated which of these components explained unique variance in task performance 372 

across pupil size bins.   373 

 374 

Consistency in evidence accumulation mediates the influence of tonic arousal on 375 

task performance 376 

We again performed the same hierarchical regression analysis as described above, to see which of the 377 

neural signals explained unique variability in task performance associated with tonic arousal. The full 378 

results of this analysis are summarised in Supplementary Table 3.  Here we discuss the main findings. 379 

After the application of a forward/backward model selection algorithm (Venables and Ripley, 2002), 380 

N2c amplitude and CPP ITPC were the only parameters that were predictive of RT (Table 1). These 381 

variables were forced into one regression model predicting RT, and comparison against a baseline 382 

model with baseline pupil diameter as a factor revealed a significant fit (χ2
(2) = 32.6, p < 0.001) with a 383 

marginal (conditional) r2 of 4.2% (94.4%). This same hierarchical regression procedure revealed that 384 

CPP ITPC was the only EEG component that explained unique variability in RTcv (Table 1). 385 

Comparison against a baseline model also led to a significant fit (χ2
(1) = 26.59, p < 0.001), with a 386 

marginal (conditional) r2 of 11.7% (43.3%).  387 

Thus, additional to a small effect of N2c amplitude on RT, the consistency of the evidence 388 

accumulation process was the only stage of information processing that explained unique within and 389 

across-subject variability in task performance associated with changes in baseline pupil diameter.  390 

 391 

During decision-making, baseline pupil diameter does not always predict task 392 

performance in a U-shaped manner  393 

Other than a small non-monotonic relationship with pre-target α power, none of the relationships 394 

between baseline pupil diameter and the other EEG components was best described by a quadratic 395 

polynomial. We therefore asked whether the U-shaped relationship with task performance is a general 396 

phenomenon during decision-making. To this end, we again analysed the data from a different dataset 397 

using a contrast change detection paradigm where subjects monitored a single central target stimulus 398 

(Loughnane et al., 2018). Here, we found a small non-monotonic relationship between baseline pupil 399 

diameter and RT (χ2
(1) = 4.33, p = 0.038), and no relationship with RTcv (p = 0.13) (Figure 6E-F). 400 

Because of the small size of the non-monotonic effect with RT, we repeated this analysis in single-401 

trial, non-binned data, to investigate whether this effect arose from the binning procedure, or time-on-402 

task effects (Supplementary Table 1). This analysis revealed a monotonic relationship between 403 
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baseline pupil diameter and RT (χ2
(1) = 8.21, p = 0.004), but no non-monotonic relationship (p = 0.18). 404 

Because the non-monotonic relationship was not found using single trial data, we additionally plotted 405 

the inverse monotonic relationship between baseline pupil diameter and RT for the binned data 406 

(Figure 6F).  407 

It thus seems that on this task, higher levels of central arousal, as opposed to intermediate 408 

levels, are associated with improved task performance. 409 

Discussion 410 

Here we investigated whether behavioural and neural correlates of decision-making varied as a 411 

function of baseline or task-evoked pupil diameter. The perceptual decision-making paradigm 412 

employed (Figure 1A) allowed us to monitor the relationship between pupil diameter and independent 413 

measures of attentional engagement, early target selection, evidence accumulation and motor output. 414 

We found that the trial-by-trial variability in both tonic and phasic arousal, as measured by the size of 415 

the baseline pupil diameter and pupil response (Figure 1B-D), respectively, were predictive of 416 

behavioural performance. This relationship was best described by a second-order, U-shaped, 417 

polynomial fit for both RT as well as the variability of RT, RTcv (Figure 1C-E).  418 

We furthermore established that both tonic and phasic arousal were predictive of a subset of 419 

EEG signatures, together reflecting discrete aspects of information processing underpinning 420 

perceptual decision-making. A hierarchical regression analysis allowed us to determine which of these 421 

processing stages exerted an independent influence on behavioural performance associated with 422 

central arousal. We found that pre-target α power, indexing baseline attentional engagement, and the 423 

build-up rate and consistency of the CPP, reflecting the evidence accumulation process, each 424 

explained unique variability in task performance that was due to variability in phasic arousal. 425 

Variability in task performance due to variability in tonic arousal, was explained by the amplitude of 426 

the target selection signal N2c and the consistency of the CPP. 427 

We thus revealed a direct relationship between both tonic and phasic measures of arousal, and 428 

a distinct but overlapping set of EEG signatures of perceptual decision-making.  429 

 430 

Why does the phasic pupil response predict performance in a U-shaped fashion? 431 

Although previous studies have related the size of phasic pupil dilations to behavioural performance 432 

(Beatty, 1982b; Kristjansson et al., 2009; de Gee et al., 2017), the association between pupil dilation 433 

and speed of detection or cognitive effort is not usually described by a non-linear relationship (but see 434 

de Gee et al. (2017) for one account of a non-monotonic relationship with perceptual sensitivity). In 435 

this study, we found a strong non-monotonic, U-shaped, relationship between phasic pupil dilations, 436 

behavioural performance and EEG signatures during a decision-making task. Here, the largest 437 
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pupillary constriction and dilation were associated with the poorest behavioural performance, whereas 438 

a modest dilation was associated with the best performance.  439 

Arousal determines the way a subject interacts with its environment. Intermediate arousal 440 

allows for optimal interaction with the task at hand, whereas suboptimal performance is observed 441 

when the subject is either too drowsy or too excitable/distractible (Yerkes and Dodson, 1908; Aston-442 

Jones and Cohen, 2005). At the neuronal level this entails that too little or too much neuromodulatory 443 

drive is detrimental for neural signalling and cognition, a phenomenon described for a variety of 444 

neuromodulators (Aston-Jones et al., 1999; Aston-Jones and Cohen, 2005; Vijayraghavan et al., 2007; 445 

Cano-Colino et al., 2014; Smucny et al., 2016). Although U-shaped relationships between pupil-446 

linked arousal and behavioural performance have previously been found with tonic, rather than phasic 447 

measures of central arousal (Aston-Jones and Cohen, 2005; Murphy et al., 2011; McGinley et al., 448 

2015a), the effect of neuromodulatory drive on target neurons after phasic activation could follow a 449 

similar U-shaped relationship. Indeed, the classically cited study revealing U-shaped relationships 450 

between stimulus intensity and discrimination learning rate investigated whether learning to choose a 451 

white over a black passage-way depended on the strength of a “disagreeable electric shock” (Yerkes 452 

and Dodson, 1908). Presumably, this shock elicited, amongst others, phasic activation in 453 

neuromodulatory arousal centres, which could have influenced the speed with which mice “acquired 454 

the habit of avoiding the black-passage way”. Additionally, phasic activation of neuromodulatory 455 

systems likely leads to a larger instantaneous increase in neuromodulator availability within or nearby 456 

the synaptic cleft than tonic activity (Florin-Lechner et al., 1996; Berridge and Waterhouse, 2003).  457 

Phasic arousal could therefore affect target structures and behaviour more strongly and selectively 458 

than tonic arousal. Because neuromodulator availability increases transiently upon phasic activation, 459 

and these modulators can rapidly be removed from the synaptic cleft (Sarter et al., 2009), target 460 

structures could also be less affected by the effects of adaptation for instance, and would thus not 461 

display sensitivity decreases to neuromodulators that might be expected during tonic stimulation. 462 

Phasic, versus tonic, activity could thus lead to a more local modulator release that supports 463 

attentional processes rather than global brain states per se (Thiele and Bellgrove, 2018). Rich 464 

computational models that take into account multiple timescales, potential co-transmitters, 465 

neuromodulator interactions, and internal behavioural states, as well as input integration from 466 

different brain regions (Gjorgjieva et al., 2016), combined with decision-making (O’Connell et al., 467 

2018) could shed light on the neural mechanisms underlying the differential effects of tonic versus 468 

phasic neuromodulation on its target structures. 469 

As noted in the Results, we initially hypothesized that the association between low 470 

behavioural performance and large pupil responses was due to our use of multiple competing stimuli 471 

in which the target location was spatially unpredictable. Kristjansson et al. (2009) compared pupillary 472 

responses accompanying slow versus normal performance in a visual vigilance task, focusing on 473 

phasic attentional lapses, rather than tonic performance decrements. Subjects monitored three 4-digit 474 
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timers and were required to indicate as quickly as possible when one of the timers started counting. 475 

Slow responses, compared to normal responses, were associated with larger phasic pupil responses. 476 

On the other hand, on trials with normal response latencies, the pupil diameter hardly changed. 477 

Although pupillary responses on trials with fast RTs were not described, these results do indicate that 478 

poor performance can be associated with large pupil dilations on a task that requires monitoring 479 

multiple visual stimuli. The required attentional shift could elicit pupil dilations through its 480 

relationship with the superior colliculus (Wang et al., 2012; Wang and Munoz, 2015; Joshi et al., 481 

2016; de Gee et al., 2017). On this task, the occurrence of these attentional shifts could be indicated 482 

by the amplitude of the N2i. The amplitude of the N2i, ipsilateral to the target and contralateral to the 483 

distractor stimulus, was larger for large pupil responses (Figure 4A). This difference was present as 484 

early as 70ms after target onset, making it unlikely that it reflects target processing. Rather, large 485 

pupil responses, accompanied by larger N2i amplitudes, could indicate that attention was more biased 486 

towards one of the stimuli. Trials where the non-attended stimulus turned out to be the target would 487 

require a shift in attention, which in turn could be the cause of the delay in response. Indeed, we found 488 

an inverse relationship between the N2i amplitude and the size of the pupil response (Figure 4B), 489 

suggesting that the need for an attentional shift elicits large pupil responses, which could explain the 490 

lower behavioural performance on trials with larger pupil dilations. To see whether attentional shifts 491 

could be the sole mechanism by which to explain the U-shaped relationship between pupil response 492 

size and task performance, we analysed data from a different experiment in which participants 493 

monitored a single stimulus (Figure 4C-E). On this task, although pupil responses did not relate to 494 

RTcv, they were predictive of RT in a quadratic manner. The lack of relationship with RTcv on the 495 

contrast change detection task implies that variability in RT on the motion detection task could be 496 

brought about by shifts in attention, and thus explain the U-shaped relationship between the pupil 497 

response and RTcv. However, the quadratic relationship with RT indicates that shifts in attention 498 

cannot be the sole cause of the U-shaped relationship between the pupil response and task 499 

performance, and that this might be a more general phenomenon during protracted decision-making. 500 

Part of our results can be interpreted in light of the relationship between pupil dilations and 501 

the activity in brain areas such as the LC or BF (Aston-Jones and Cohen, 2005; Gilzenrat et al., 2010; 502 

Varazzani et al., 2015; Joshi et al., 2016; Reimer et al., 2016; de Gee et al., 2017). Poor performance 503 

upon pupil constrictions is in line with studies showing that sensory target detection is suboptimal 504 

when a transient LC or BF response is absent (Aston-Jones et al., 1994; Rajkowski et al., 1994; Parikh 505 

et al., 2007; Gritton et al., 2016). Additionally, naturally occurring pupillary constrictions are 506 

preceded by transient activity decreases in the LC (Joshi et al., 2016), and are associated with 507 

increased synchronization of cortical activity, a signature of cortical down states, as well as 508 

suboptimal processing of visual stimuli (Reimer et al., 2014). Our results suggest that event-related 509 

pupillary constrictions could be associated with similar neural mechanisms. 510 
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We additionally found, however, that the largest pupil responses, presumably reflecting the 511 

largest phasic modulatory responses, were also associated with lower behavioural performance. 512 

Although large pupil responses on trials with low task performance have been reported before 513 

(Kristjansson et al., 2009; Murphy et al., 2011; Hong et al., 2014), these results do not seem 514 

compatible with an interpretation in which the LC is driving this effect. Direct electrophysiological 515 

recordings from the LC have revealed a positive correlation between LC phasic activity and 516 

behavioural performance on elementary target detection tasks, without indications that a large phasic 517 

LC response leads to worse performance (Aston-Jones et al., 1994, 1997, Rajkowski et al., 1994, 518 

2004). Instead, on trials where discrimination is more difficult and RT latencies are longer, the LC 519 

response is delayed (Rajkowski et al., 2004), which would bring about a delay in pupil dilation rather 520 

than an immediate, larger response. Although at odds with these studies, Muprhy et al., (2011) 521 

previously described a similar relationship, in which trials with large pupil responses were preceded 522 

by progressively worse performance which was subsequently followed by better task performance. 523 

This finding was interpreted as a compensatory mechanism, driven by cortical performance 524 

monitoring brain regions that, via a phasic LC response, possibly reflect a reset of the network 525 

(Bouret and Sara, 2005) to reengage participants in the task. Another possible neural mechanism that 526 

may lead to the same behavioural outcome is that this effect is driven by cholinergic transients that 527 

have been hypothesized to signify a switch from a ‘signal-detection down’ to a ‘signal-detection up 528 

state’, facilitating target detection (Sarter et al., 2016).  529 

Future research will need to determine which (combination of) brainstem nuclei associated 530 

with specific aspects of phasic arousal alterations, or other cognitive functions essential for perceptual 531 

decision-making, bring about the effects observed in this study. 532 

 533 

Why does baseline pupil diameter predict performance in a U-shaped fashion? 534 

As predicted by the adaptive gain theory (Aston-Jones and Cohen, 2005), we found optimal 535 

performance on trials with intermediate baseline pupil diameter. This effect was however only 536 

observed when the pupil diameter data was not high-pass filtered (Supplementary figure 1). This 537 

indicates that slow changes (<0.01 Hz) in pupil diameter are driving the effects on task performance. 538 

U-shaped relationships with task performance have previously been found during auditory target 539 

detection tasks (Murphy et al., 2011; McGinley et al., 2015a), but to the best of our knowledge never 540 

during visual decision-making paradigms. Indeed, the effects of pupil-linked arousal can have 541 

differential effects on activity across different brain regions (McGinley et al., 2015b). For instance, 542 

signal-to-noise ratios of sensory responses in auditory cortex peak at intermediate baseline pupil 543 

diameter (McGinley et al., 2015a), whereas in visual areas they are larger for higher baseline pupil 544 

diameter (Vinck et al., 2015).  545 
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 Although we found U-shaped relationships with task performance, in line with previous 546 

research (Hong et al., 2014), out of all the investigated EEG components, only pre-target α power 547 

displayed a small non-monotonic relationship with baseline pupil diameter. Approximately linear 548 

relationships were found with pre-target α power asymmetry, N2c amplitude, LHB amplitude and 549 

build-up rate, as well as an inverse relationship with CPP ITPC. Of these, only N2c amplitude and 550 

CPP ITPC explained within and across subject variability in task performance (Table 1). It thus seems 551 

that the effect of tonic arousal on task performance is mainly driven by an approximately linear 552 

relationship with target selection and evidence accumulation consistency. This led us to question 553 

whether a U-shaped relationship between tonic arousal and task performance on protracted visual 554 

decision-making tasks is a more general phenomenon, or heavily dependent on specific aspects of the 555 

behavioural paradigm. The absence of a non-monotonic relationship between baseline pupil diameter 556 

and task performance during contrast change detection (Figure 6F) suggests the latter. These 557 

differences could be driven by different task demands; on simple tasks performance may benefit from 558 

increases in arousal, whereas optimal performance on more difficult discrimination tasks could be 559 

found with intermediate arousal (Yerkes and Dodson, 1908; McGinley et al., 2015b). RT was 560 

however substantially longer on the task where we did not find a U-shaped relationship (compare 561 

Figure 1E & Figure 6F), suggesting that this task was more demanding. Alternatively, the relationship 562 

between tonic arousal and task performance could be contingent on attentional demands. On tasks 563 

with longer RT that require accumulation of evidence across a longer time-period, greater sustained 564 

attention is required, which could benefit from increased arousal and would thus predict an inverse 565 

linear relationship between baseline pupil diameter and performance (Figure 6F). 566 

 Depending on the behavioural paradigm and task demands, the relationship between central 567 

arousal, performance and neural activity may take different forms (McGinley et al., 2015b). 568 

Membrane potential recordings from sensory and association areas, as well as direct 569 

electrophysiological recordings from neuromodulatory brainstem centres during protracted decision-570 

making, are needed to gain further insight in the exact mechanisms that drive the relationship between 571 

cortical state, sensory encoding, evidence accumulation and task performance.  572 

 573 

Recruitment of neuromodulators throughout the decision process  574 

The change in pupil diameter during decision-making (Beatty, 1982a; de Gee et al., 2014, 2017; 575 

Lempert et al., 2015; Murphy et al., 2016; Urai et al., 2017) suggests that neuromodulators are 576 

recruited throughout the decision-making process, reflecting the sustained ramping activity during 577 

evidence accumulation (Cheadle et al., 2014; de Gee et al., 2014, 2017). Our results show that phasic 578 

arousal affects several components of the decision variable, the onset, build-up rate and in particular 579 

the consistency of the evidence accumulation process. Because variability in CPP ITPC was the main 580 

determinant of variability in task performance, our results suggest that phasic arousal affects 581 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 3, 2018. ; https://doi.org/10.1101/433060doi: bioRxiv preprint 

https://doi.org/10.1101/433060
http://creativecommons.org/licenses/by-nc/4.0/


22 

 

performance on the task at hand mainly by influencing the variability of the accumulation of sensory 582 

evidence.  583 

On trials with very short reaction times, during elementary detection tasks, LC phasic 584 

responses are more aligned to the response than target onset (Clayton, 2004), and have therefore been 585 

hypothesized to aid the alignment of distributed networks to prepare for motor output (Aston-Jones 586 

and Cohen, 2005). During decision-making, however, there may be more time for NA (and other 587 

modulators) to influence the decision network (Eckhoff et al., 2009; Nomoto et al., 2010), and could 588 

thus influence decisions throughout decision formation (Dayan and Yu, 2006; Cheadle et al., 2014; de 589 

Gee et al., 2014, 2017), i.e. during evidence accumulation. Indeed, although the size of the pupil 590 

response was predictive of both LHB build-up rate and amplitude, these effects were relatively small 591 

and neither EEG component explained unique variance in task performance. Rather, evidence 592 

accumulation itself was affected by phasic arousal, which in turn explained variability in task 593 

performance. The CPP shares many of the same characteristics of the classic P3 EEG component, 594 

suggesting that the P3 reflects the decision formation itself, rather than the neural processes occurring 595 

before or after (O’Connell et al., 2012; Kelly and O’Connell, 2013; Twomey et al., 2015). Because of 596 

the dense LC innervation of the neural areas thought to be its source, the P3 has been hypothesized to 597 

reflect the LC phasic response (Nieuwenhuis et al., 2005). It thus seems likely that the CPP, and 598 

therefore evidence accumulation, is also influenced by LC activity. Likewise, it seems plausible that 599 

ACh affects attentional processes/evidence accumulation in parietal cortex, and thus also the CPP. 600 

Unilateral cholinergic deafferentation of parietal cortex reduces the proportions of neurons that 601 

respond to cues, whereas it increases the proportion that respond to distractor stimuli (Broussard et al., 602 

2009). Moreover, whereas in control conditions, the neural population that responded to cues or 603 

distractors were largely distinct, after deafferentation these populations overlapped substantially, 604 

indicating that cholinergic innervation of parietal cortex is essential for distinguishing cue from 605 

distractor and thus for selecting and possibly accumulating the appropriate sensory evidence.  606 

 607 

Variability in task performance due to pupil-linked arousal is best predicted by 608 

the consistency in evidence accumulation 609 

During epochs of quiet wakefulness, membrane potential fluctuations of neurons in visual, 610 

somatosensory and auditory cortex are closely tracked by baseline pupil diameter (Reimer et al., 611 

2014; McGinley et al., 2015a). These fluctuations in subthreshold membrane potential are 612 

characteristic of changing cortical state. Small pupil diameter is characterized by prominent low-613 

frequency (2-10 Hz) and nearly absent high-frequency oscillations (30-80 Hz), whereas larger pupil 614 

diameter is characterized by reduced low-frequency, but increased high-frequency oscillations 615 

(McGinley et al., 2015a, 2015b). Thus, the average subthreshold membrane potential is most stable 616 

during intermediate pupil diameter, when neither low nor high-frequency components predominate. 617 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 3, 2018. ; https://doi.org/10.1101/433060doi: bioRxiv preprint 

https://doi.org/10.1101/433060
http://creativecommons.org/licenses/by-nc/4.0/


23 

 

States of lower variability are furthermore characterized by more reliable sensory responses, higher 618 

spike rates, increased neural gain and better behavioural performance (Reimer et al., 2014; McGinley 619 

et al., 2015a, 2015b). In addition to activity in early sensory areas, there is some evidence that activity 620 

in higher-order association areas is also more reliable with intermediate arousal. During auditory 621 

target detection, human subjects displayed the least variable RT at intermediate baseline pupil 622 

diameter, as well as the highest amplitudes of the P3 component elicited by task-relevant stimuli 623 

(Murphy et al., 2011).  624 

 Here we found that the consistency of evidence accumulation was the main EEG predictor of 625 

variability in task performance associated with both tonic and phasic arousal. For tonic arousal, 626 

although CPP ITPC did not follow the same U-shaped relationship as task performance, our findings 627 

are largely in line with modelling studies which suggested that higher arousal is specifically predictive 628 

of more variability in evidence accumulation (Murphy et al., 2014b). For phasic arousal, higher 629 

consistency, and thus less variability, was found for intermediate pupil bins, which also displayed the 630 

best behavioural performance. These results suggest that similar neural mechanisms of cortical state 631 

described for sensory cortex (Reimer et al., 2014; McGinley et al., 2015b, 2015a; Vinck et al., 2015) 632 

might also affect neurons in higher-order association areas (e.g. parietal cortex) and thereby influence 633 

evidence accumulation and task performance. Simultaneous pupil diameter and membrane potential 634 

recordings in parietal cortex during protracted decision-making are needed to confirm this hypothesis.  635 

 636 

Target selection signal amplitude is modulated by pupil-linked arousal 637 

In the present study, we used a paradigm in which two stimuli were continuously presented and target 638 

occurrence was both spatially and temporally unpredictable. Successful target detection thus relied on 639 

locating and selecting sensory evidence from multiple sources of information. Loughnane et al. (2016) 640 

have shown that these early target selection signals, contralateral to the target stimulus (N2c), 641 

modulate sensory evidence accumulation and behavioural performance. Although previous studies 642 

have characterised the dependence of the quality of sensory responses on fluctuations in cortical state, 643 

as measured by baseline pupil diameter (Reimer et al., 2014; McGinley et al., 2015a; Vinck et al., 644 

2015), to the best of our knowledge, the influence of pupil-linked arousal on target selection signals 645 

has not been described before. Here, we showed that early target selection signals are modulated by 646 

tonic arousal such that larger baseline pupil diameter was predictive of smaller N2c amplitudes 647 

(Figure 6C). Moreover, the amplitude of the N2c also explained unique variability in task 648 

performance across pupil bins and subjects (Table 1).  649 

 At first glance it seems counterintuitive that target selection amplitudes are decreased, 650 

whereas visual encoding in early visual cortex is enhanced on trials with larger baseline pupil 651 

diameter (Vinck et al., 2015), or during pupil dilation (Reimer et al., 2014). These differences could 652 

be due to differences in the nature of the recordings, as these previous studies used invasive 653 
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electrophysiology and calcium imaging whereas we used scalp EEG, limiting especially the spatial 654 

resolution of our analyses that might be necessary to elucidate these effects (e.g. single neuron 655 

orientation tuning). Alternatively, they could constitute differential effects of arousal on visual 656 

encoding and target selection. More likely, however, they are due to specific task demands, in 657 

particular our use of multiple simultaneously presented competing stimuli. Indeed, there is some 658 

evidence that an increase in arousal, as measured by pupil diameter, can increase the ability of a 659 

distractor to disrupt performance on a Go/No-Go task in non-human primates (Ebitz et al., 2014). At 660 

high arousal levels, performance might thus be negatively affected when the task requires the 661 

successful suppression of distracting information, i.e. with higher arousal it is more difficult to focus 662 

on the task at hand (Aston-Jones and Cohen, 2005; McGinley et al., 2015b). On the current task, it 663 

might thus be more difficult to select and process information from one of the two competing stimuli 664 

during states of high arousal, leading to reduced N2c amplitude as well as reduced performance. 665 

In addition to the effects on tonic arousal on the N2c, we found that phasic arousal was 666 

predictive of the amplitude of the N2i (Figure 3D). However, because this effect was not restricted to 667 

the time period around the peak latency, and present from as early as 70 ms (Figure 4A), it is unlikely 668 

to reflect target selection (see above). Rather, it seems plausible that these differences reflect 669 

differences in the expected location of target presentation. Thus, our observation that phasic arousal 670 

was not predictive of any aspect of target selection is broadly consistent with (de Gee et al., 2017), 671 

who found that the pupil response was not predictive of sensory responses.  672 

 673 

Concluding remarks 674 

In this study we investigated the relationship between measures of tonic and phasic pupil-linked 675 

arousal and behavioural and EEG measures of perceptual decision-making. We found that trial-to-trial 676 

variability in both tonic and phasic arousal accounted for variability in task performance and were 677 

predictive of a unique, but overlapping, set of neural metrics of perceptual decision-making. These 678 

results confirm our hypothesized relationship between pupil diameter and the electrophysiological 679 

correlates of evidence accumulation, providing further support for the notion that the neuromodulators 680 

that control central arousal are recruited throughout the decision making process. Moreover, the 681 

relationships with task performance were best described by a second-order, U-shaped, polynomial 682 

model fit, indicating that during decision-making there are optimal levels of both tonic and phasic 683 

activity in the (network of) neuromodulatory centres that control central arousal. Although we found 684 

that pupil-linked arousal was predictive of EEG correlates associated with attentional engagement, 685 

target selection, evidence accumulation and motor output, the effects of arousal on behavioural 686 

performance are mainly mediated through the consistency in evidence accumulation.  687 
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Materials and Methods 688 

Task procedures 689 

Subjects (n=80) and methods are largely overlapping with the details and procedures described 690 

elsewhere (Newman et al., 2017). Here we summarise details necessary to understand this study, and 691 

we also describe procedures that differ from the previous study. Participants were seated in a 692 

darkened room, 56 cm from the stimulus display (21 inch CRT monitor, 85 Hz 1024 × 768 693 

resolution), asked to perform a continuous bilateral variant (O’Connell et al., 2012; Kelly and 694 

O’Connell, 2013) of the random dot motion task (Newsome et al., 1989; Britten et al., 1992). Subjects 695 

fixated on a central dot while monitoring two peripheral patches of continuously presented randomly 696 

moving dots (Figure 1A). At pseudorandom times, an intermittent period of coherent downward 697 

motion (50%) occurred in either the left or the right hemifield. Upon detection of coherent motion, 698 

participants responded with a speeded right-handed button press. A total of 288 trials were presented 699 

over 16 blocks (18 trials per block). 700 

 701 

Data acquisition and preprocessing 702 

Electroencephalogram (EEG) was recorded from 64 electrodes using an ActiveTwo (Biosemi, 512Hz) 703 

system at Trinity College Dublin, Ireland or a BrainAmp DC (Brainproducts, 500Hz) at Monash 704 

University, Australia. Data were processed using both custom written scripts and EEGLAB functions 705 

(Delorme and Makeig, 2004) in Matlab (MathWorks). Noisy channels were interpolated after which 706 

the data were notch filtered between 49-51 Hz, band-pass filtered (0.1-35Hz), and rereferenced to the 707 

average reference. Data recorded using the Biosemi system were resampled to 500Hz and combined 708 

with the data recorded with the Brainproducts system. Epochs were extracted from -800 to 2800 ms 709 

around target onset and baselined with respect to -100 to 0 ms before target onset. To minimize 710 

volume conduction and increase spatial specificity, for specific analyses the data were converted to 711 

current source density (Kayser and Tenke, 2006). We rejected trials from analyses if the reaction 712 

times were <150 or >1700 ms after coherent motion onset, or if either the EEG on any channel 713 

exceeded 100 mV, or if the subject broke fixation or blinked (Pupillometry) during the analysis period 714 

of the trial, the 500 ms preceding target onset for pre-target α power activity or the interval of 100 ms 715 

before target onset to 200 ms after the response. 716 

Pre-target α-band power (8-13 Hz), N2 amplitude and latency, CPP onset and build-up rate 717 

and response related β-power amplitude and build-up rate were computed largely in the same way as 718 

in Newman et al. (2017). Briefly, α-band power was computed over the 500 ms preceding target onset 719 

using temporal spectral evolution (TSE) methods (Thut, 2006), and pooled over two symmetrical 720 

parietal regions of interest, using channels O1, O2, PO3, PO4, PO7 and PO8. The N2 components 721 

were measured at electrodes P7 and P8, ipsi- and contralateral to the target location (Loughnane et al., 722 

2016; Newman et al., 2017), and the CPP was measured at central electrode Pz. These signals were 723 
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aggregated to an average waveform for each pupil bin and each participant. We determined the 724 

latency of the N2c/N2i as the time point with the most negative amplitude value in the stimulus-725 

locked waveform between 150-400/200-450 ms , while N2c/N2i amplitude was measured as the mean 726 

amplitude inside a 100 ms window centered on the stimulus-locked grand average peak (266/340 ms) 727 

(Loughnane et al., 2016; Newman et al., 2017). 728 

Onset latency of the CPP was measured by performing running sample point by sample point 729 

t-tests against zero across each participant’s stimulus-locked CPP waveforms. CPP onset was defined 730 

as the first point at which the amplitude reached significance at the 0.05 level for ≥15 consecutive 731 

points. Because we decreased our statistical power by binning the trials into 5 bins (see pupillometry), 732 

we did not find an onset for every bin for a subset of subjects (baseline pupil diameter: 13 bins over 733 

11 subjects, pupil response: 16 bins over 12 subjects). Because of our use of linear mixed effect 734 

analyses, these subjects could still be included in the analysis, with only the missing values being 735 

omitted. Both CPP build-up rate and amplitude were computed using the response-locked waveform 736 

of the CSD transformed data to minimize influence from negative-going fronto-central scalp 737 

potentials (Kelly and O’Connell, 2013). Build-up rate was defined as the slope of a straight line fitted 738 

to this signal in the window from -250 ms to -50 ms before response. CPP amplitude was defined as 739 

the mean amplitude within the 100 ms before the response. 740 

Response related left hemisphere β-power (LHB, 20-35 Hz) was measured over the left motor 741 

cortex at electrode C3 using short-time Fourier transform (STFT) with a 286 ms window size and 20 742 

ms step size (O’Connell et al., 2012; Newman et al., 2017). LHB amplitude was measured from the 743 

response-locked waveform in the window from -130 to -70 ms preceding the response, whereas the 744 

LHB build-up rate was defined as the slope of a straight line fitted to this same waveform in the 300 745 

ms before the response.  746 

Inter-trial phase coherence (ITPC) was estimated using single-taper spectral methods from the 747 

Chronux toolbox (Bokil et al., 2010) and adapted scripts. We used a 256 sample (512 ms) sliding 748 

short time window, with a step size of 25 samples (50 ms). This gave us a half bandwidth (W) of 1.95 749 

Hz: W = (K+1)/2T, with K being the number of data tapers, K=1, and T (s) being the length of the 750 

time window. Frequencies were estimated from 0.1 to 35Hz. 751 

 752 

Pupillometry 753 

Eye movements and pupil data were recorded using an SR Research EyeLink eye tracker (Eye-Link 754 

version 2.04, SR Research/SMI). Blinks were linearly interpolated from 200 ms before to 200 ms 755 

after automatically identified blinks, and the interpolated pupil data was then low-pass filtered (< 6 756 

Hz, second order butterworth). Epochs were extracted from -800 to 2800 ms around coherent motion 757 

onset. Trials in which fixation errors or blinks occurred within the analysis period, from 100 ms 758 

before target onset to 200 ms after response, were excluded from analysis. Fixation errors were 759 
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defined as gaze deviations of more than 3°. The pupil diameter was normalized by dividing by the 760 

maximum pupil diameter on any trial in the analysis window from 100 ms before target onset to 200 761 

ms after the response for each subject, and baselined on a single trial basis. We computed the baseline 762 

pupil diameter by averaging the pupil diameter in the 100 ms before target onset.  763 

 A scalar measure of the pupil diameter response was computed by taking the difference 764 

between the average pupil diameter in the 400 ms surrounding response and the baseline activity from 765 

the same trial. Computing the pupil diameter response over a different size time window surrounding 766 

response or by using the linear projection (de Gee et al., 2014; Kloosterman et al., 2015) led to similar 767 

results. We used linear regression to remove the trial-by-trial fluctuations in single-trial pupil 768 

amplitudes that could be due to baseline pupil diameter, inter-trial interval and target side, all factors 769 

that are known to influence either the post target pupil response and/or behavioural response times 770 

(Kristjansson et al., 2009; de Gee et al., 2014; Kloosterman et al., 2015; Newman et al., 2017).  771 

Next, we binned our behavioural and EEG data according to either the baseline pupil diameter 772 

or the post target pupil response into 5 equally sized bins (mean 49.63 ± SEM 0.81 trials, minimum 773 

bin size = 20 trials) (Figure 1B & D). The division into 5 bins allowed us to investigate possible 774 

quadratic trends in the data. 775 

 776 

Statistical analyses 777 

We used RStudio (RStudio Team (2016). RStudio: Integrated Development for R. RStudio, Inc., 778 

Boston, MA URL http://www.rstudio.com) with the package lme4 (Bates et al., 2015) to perform a 779 

linear mixed effects analysis of the relationship between baseline pupil diameter or the pupil response 780 

and behavioural measures and EEG signatures of detection. As fixed effects, we entered pupil bin (see 781 

Pupillometry) into the model. As random effects, we had separate intercepts for subjects, accounting 782 

for the repeated measurements within each subject. We sequentially tested the fit of a monotonic 783 

relationship (first-order polynomial) against a baseline model (zero-order polynomial), and a non-784 

monotonic (second-order polynomial) against the monotonic fit by means of maximum likelihood 785 

ratio tests, using orthogonal polynomial contrast attributes. The behavioural or EEG measure 𝑦 was 786 

modelled as a linear combination of polynomial basis functions of the pupil bins (𝑋): 787 

 788 

𝑦 ~ 𝛽0 +  𝛽1𝑋 + 𝛽2𝑋2 789 

 790 

, with 𝛽 as the polynomial coefficients. This multilevel approach was preferred over a standard 791 

repeated measures analysis of variance (ANOVA), because it allowed us to test for first and second-792 

order polynomial relationships, as well as to account for missing values in the CPP onset estimation. 793 

After testing the relationship between behavioural and neural signatures of decision-making and 794 

pupillometric measures individually, the neural signals were added sequentially into consecutive 795 
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regression models predicting RT and RTcv. This model had both a random intercept for each subject, 796 

allowing for different baseline-levels of behavioural performance, as well as a random slope of pupil 797 

bin, for each subject, which allowed for across-subject variation in the effect of pupil bin on 798 

behavioural performance. The hierarchical entry of the predictors allowed us to model the individual 799 

differences in behavioural performance, as a function of the EEG signals representing each temporal 800 

stage of neural processing. Starting with preparatory signals (α-power), to early target selection 801 

signals (N2), to evidence accumulation (CPP), to motor preparation (LHB). The hierarchical addition 802 

of the predictors informed us whether each of the EEG signals reflecting successive stages of neural 803 

processing improved the fit of the model predicting behavioural data. The signals that explained 804 

unique variance were then simultaneously forced into a simplified model predicting RT or RTcv, 805 

which made it possible to obtain accurate parameter estimates not contaminated by signals that were 806 

shown not to improve model fits. Note that only subjects for which we could determine the CPP onset 807 

latency for all bins were included in this hierarchical model. For this final model, all behavioural and 808 

neural variables were scaled between 0 and 1 across subjects according to the formula: 𝑦𝑖 = (𝑥𝑖 −809 

min 𝑥𝑖)/(max 𝑥𝑖 − min 𝑥𝑖), where 𝑦𝑖 is the scaled variable, 𝑥𝑖 is the variable to be scaled. This 810 

scaling procedure did not change the relationship of the variable within or across subjects, but scaled 811 

all predictor variables to the same range. Again, significance values were obtained by means of 812 

maximum likelihood ratio tests. 813 

Data plotted in all figures are the mean and the standard error of the mean (SEM) across 814 

subjects. Linear fits are plotted when first-order fits were superior to the zero-order (constant) fit, 815 

quadratic fits are plotted when second-order fits were superior to the first-order fit.  816 

 817 

Notes 818 

Raw data (https://figshare.com/s/8d6f461834c47180a444) are open access and available under a 819 

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International Licence. Analysis 820 

scripts are freely available on github (https://github.com/jochemvankempen/2018_Monash). 821 
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Supplementary information 1105 

The effect of pupil diameter on task performance is not an artefact of the binning 1106 

procedure 1107 

To get an accurate impression of the relationship between pupillary dynamics and task performance, it 1108 

is best to perform regression analyses on a single trial basis. Unfortunately, many of our behavioural 1109 

and EEG components of decision-making require the averaging of trials. For instance, RTcv is 1110 

calculated by dividing the standard deviation by the mean of RT. Likewise, CPP onset latency is 1111 

computed by performing running sample point by sample point t-tests against zero across each 1112 

participant’s stimulus-locked CPP waveforms, and cannot be computed on a single-trial basis. 1113 

Therefore, we chose to bin our data according to the size of the pupil diameter baseline/response into 1114 

5 bins. This however led us to question whether the relationship between pupil diameter and task 1115 

performance could be dependent on our binning procedure. Therefore, we ran another regression 1116 

analysis wherein we predicted single trial RT by sequentially adding the linear and quadratic 1117 

coefficients for baseline pupil diameter (𝐵𝑃𝐷) and pupil response (𝑃𝑅): 1118 

 1119 

𝑅𝑇 ~ 𝛽0 +  𝛽1𝐵𝑃𝐷 +  𝛽2𝐵𝑃𝐷2 +  𝛽3𝑃𝑅 +  𝛽4𝑃𝑅2 1120 

 1121 

, with 𝛽 as the polynomial coefficients. We compared the first model to a random-intercept-only 1122 

model including subject ID, inter-trial interval, stimulus side, as well as the trial and block number (to 1123 

control for potential time on task effects), and tested the fit of subsequent models to the previous 1124 

model fit. This analysis revealed a significant improvement for each step of the sequential analysis, 1125 

for which the results and parameters estimates are shown in Supplementary Table 1. These analyses 1126 

confirm that both the size of the baseline pupil diameter and the pupil response are predictive of task 1127 

performance on a single trial basis. This relationship moreover follows a non-monotonic, quadratic, 1128 

function.  1129 

 We repeated this analysis for another dataset in which subjects were required to detect a 1130 

contrast change in a single centrally presented stimulus (Loughnane et al., 2018). This analysis 1131 

revealed very similar results, except that the association between baseline pupil diameter and RT was 1132 

best described by a linear relationship, instead of a second-order polynomial. 1133 

 1134 
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Supplementary Table 1. Parameter estimates for the single-trial mixed effect model analysis predicting RT using linear and 1136 

polynomial basis functions of baseline pupil diameter (BPD) and the pupil response (PR). RDM, random dot motion task, 1137 

CD, contrast change detection task (Loughnane et al., 2018).  1138 

 Model comparison Parameter estimates 

RDM  χ2 p β β SE t p 

BPD 5.31 0.021 0.43 0.064 6.64 <0.001 

BPD2 56.83 <0.001 0.43 0.049 8.75 <0.001 

PR 65.65 <0.001 0.39 0.044 8.77 <0.001 

PR2 239.67 <0.001 0.72 0.046 15.53 <0.001 

CD       

BPD 8.21 0.004 -0.14 0.027 -5.14 <0.001 

BPD2 1.82 0.178 0.01 0.022 0.47 0.636 

PR 21.70 <0.001 -0.12 0.023 -5.16 <0.001 

PR2 46.38 <0.001 0.15 0.021 6.84 <0.001 

 1139 
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Baseline pupil diameter is not predictive of task performance when high-pass 1141 

filtered 1142 

 1143 

 

Supplementary figure 1. The relationship between baseline pupil diameter and the pupil response with task 

performance, for band-pass (0.1 – 6 Hz), rather than low-pass (<6Hz) filtered pupil diameter data. (A-B) Pupil diameter 

time course and task performance sorted by baseline pupil diameter. (A) Pupil time-course for the five bins. (B) 

Behavioural performance for the five bins. Markers indicate mean reaction times (RT, blue, left y-axis) and reaction 

time coefficient of variation (RTcv, red, right y-axis). (C-D) Same conventions as A-B, but sorted by the pupil diameter 

response. Error bars and shaded regions denote ±1 standard error of the mean (SEM). Stats, linear mixed effects model 

analyses (Statistical analyses). 
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N2 ITPC analysis 1144 

1145 

 

Supplementary figure 2. N2 ITPC. (A) Grand average inter-trial phase coherence (ITPC) per time-frequency point for 

the N2c. White box represents the time-frequency window selected for statistical analyses. (B) N2c ITPC per pupil 

response bin, (C) N2c ITPC per baseline pupil bin. Horizontal lines indicate average ITPC per pupil bin during the time 

window indicated by the black bar. (D-F) As in A-C but for N2i. Note that the time window used for the N2i analysis 

did not cover the peak ITPC activity, but rather focused on the time window in which the N2i amplitude peaked (Figure 

3D). Error bars and shaded regions denote ±1 SEM. Stats, linear mixed effects model analyses (Statistical analyses). 
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Hierarchical regression analysis predicting variability in task performance 1146 

associated with phasic and tonic arousal 1147 

The tables below show the results from the model comparisons of the hierarchical regression analysis 1148 

testing which of the signals associated with each of the neural processing stages of perceptual 1149 

decision-making explained unique variance in task performance associated with phasic 1150 

(Supplementary Table 2) or tonic arousal (Supplementary Table 3). The neural signals were added to 1151 

a linear mixed effects model predicting either RT or RTcv in a hierarchical fashion, with their order 1152 

determined by their temporal order in the decision-making process (Statistical analyses). This allowed 1153 

us to test whether each successive stage of neural processing would improve the fit of the model to the 1154 

behavioural data, over and above the fit of the previous stage. To test whether each of the neural 1155 

signals that significantly improved the model fit indeed explained unique variance in task 1156 

performance that is not explained by any of the other variables we used an algorithm for 1157 

forward/backward stepwise model selection (Venables and Ripley, 2002). This procedure could 1158 

exclude EEG parameters from the final model that for instance are highly correlated to other variables 1159 

predictive of task performance. The variables that were not eliminated were forced into one linear 1160 

mixed effects model predicting RT or RTcv, of which the final model parameters are shown in Table 1161 

1.  1162 

 Most of the EEG variables were uncorrelated (r < 0.25). The ones that were correlated were, 1163 

CPP onset and CPP ITPC (r = 0. 34), CPP amplitude with CPP build-up rate (-0.50) and ITPC (-0.32), 1164 

and LHB build-up rate and amplitude (-0.33) for baseline pupil diameter, and CPP onset and CPP 1165 

ITPC (r = 0.43), CPP build-up rate and CPP amplitude (r = -0.59), and LHB build-up rate and 1166 

amplitude (r = -0.28) for the pupil response. 1167 

 1168 

Supplementary Table 2. Results from model comparisons of the hierarchical regression analysis predicting variability in task 1169 

performance due to phasic arousal. Boldface font indicates parameters that significantly improved the model fit compared to 1170 

the addition of the neural signal associated with the previous neural processing stage. Red text indicates the parameters that 1171 

were excluded from the final model during the forward/backward stepwise regression (main text). Final model fits revealed a 1172 

marginal (conditional) r2 of 14.6% (93.1%) and 11.1% (46.4%) for RT and RTcv, respectively.  1173 

 RT RTcv 

 Model 

comparison 

Stepwise model 

selection 

Model 

comparison 

Stepwise model 

selection 

EEG component χ2 p F p  χ2 p F p 

Pre-target α Power  10.63 < 0.001 13.65 < 0.001 0.45 0.50   

N2c latency 0.75 0.39   0.04 0.87   

N2c amplitude 0.47 0.49   0.97 0.32   

N2i latency 0.90 0.34   1.67 0.20   
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N2i amplitude 2.34 0.13   0.002 0.96   

CPP onset 27.24 < 0.001 2.60 0.11 8.96 0.003 0.75 0.39 

CPP build-up rate 11.74 <0.001 5.12 0.02 0.67 0.41   

CPP amplitude 3.20 0.07   0.96 0.33   

CPP ITPC 40.60 < 0.001 63.49 < 0.001 10.45 0.001 20.48 < 0.001 

LHB build-up rate 2.09 0.15   0.04 0.85   

LHB amplitude 0.59 0.44   0.02 0.89   

 1174 

Supplementary Table 3. Results from model comparisons of the hierarchical regression analysis predicting variability in task 1175 

performance due to tonic arousal. Boldface font indicates parameters that significantly improved the model fit compared to 1176 

the addition of the neural signal associated with the previous neural processing stage. Red text indicates the parameters that 1177 

were excluded from the final model during the forward/backward stepwise regression (main text). Final model fits revealed a 1178 

marginal (conditional) r2 of 4.2% (94.4%) and 11.7% (43.3%) for RT and RTcv, respectively.  1179 

 RT RTcv 

 Model 

comparison 

Stepwise model 

selection 

Model comparison Stepwise model 

selection 

EEG component χ2 p F p χ2 p F p 

Pre-target α Power  0.70 0.40   0.02 0.88   

N2c latency 0.41 0.52   0.33 0.57   

N2c amplitude 4.45 0.035 4.62 0.033 0.57 0.45   

N2i latency 0.004 0.95   0.09 0.76   

N2i amplitude 0.39 0.53   0.01 0.92   

CPP onset 7.48 0.006 0.01 0.91 2.05 0.15   

CPP build-up rate 5.73 0.017 3.48 0.06 0.40 0.53   

CPP amplitude 1.47 0.23   0.04 0.85   

CPP ITPC 27.09 < 0.001 31.29 < 0.001 27.66 < 0.001 28.17 < 0.001 

LHB build-up rate 0.37 0.54   2.88 0.09   

LHB amplitude 0.03 0.87   1.44 0.23   

  1180 
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Robust regression of final parameter estimates predicting variability in task 1182 

performance 1183 

To confirm whether each of the neural signals selected by the hierarchical regression analysis indeed 1184 

had a significant effect on task performance, we performed a robust regression (Supplementary Table 1185 

4) based on 5000 bootstrap replicates to calculate the 95% confidence intervals around the β 1186 

parameter estimates for the final model fit (Table 1).  1187 

 1188 

Supplementary Table 4. Robust regression analysis results. 95% CI for β parameter estimates of the final model fit presented 1189 

in Table 1.  1190 

 
RT RTcv 

Pupil response    

pre-target α-power 0.083 – 0.280  

CPP build-up rate -0.181 – -0.012   

CPP ITPC -0.287 – -0.172 -0.373 – -0.148 

Baseline Pupil diameter   

N2c amplitude 0.002 – 0.107  

CPP ITPC -0.241 – -0.114   -0.416 – -0.196 

 1191 
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