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Cell-type-specific methylome-wide association studies implicate
neurodegenerative processes and neuroimmune communication in

major depressive disorder

Robin F. Chan', Gustavo Turecki?, Andrey A. Shabalin', Jerry Guintivano?, Min Zhao', Lin Y Xie',
Gerard van Grootheest*, Zachary A. Kaminsky®¢, Brian Dean’8, Brenda W.J.H. Penninx?, Karolina

A. Aberg', and Edwin J.C.G. van den Oord'*

We studied the methylome in three collections of human postmortem brain (N=206) and blood samples
(N=1,132) of subjects with major depressive disorder (MDD) and controls. Using an epigenomic deconvolution
approach we performed cell-type-specific methylome-wide association studies (MWAS) within sub-populations
of neurons/glia and granulocytes/T-cells/B-cells/monocytes for bulk brain and blood data, respectively. Multiple
MWAS findings in neurons/glia replicated across brain collections (ORs=509-538, P-values<1x10-5) and were
reproducible in an array-based MWAS of sorted neurons/glia from a fourth brain collection (N=58). Pathway
analyses implicated p75NTR/IVEGF signaling, neurodegeneration, and blood-brain barrier perturbation. Cell-type-
specific analysis in blood identified associations in CD14+ monocytes -- a cell type strongly linked to
neuroimmune processes and stress. Top results in neurons/glia/bulk and monocytes were enriched for genes
supported by GWAS for MDD (ORs=2.02-2.87, P-values=0.003 to <1x10-%), neurodegeneration and other
psychiatric disorders. In summary, we identified novel MDD-methylation associations by using epigenomic
deconvolution that provided important mechanistic insights for the disease.

Major depressive disorder (MDD) is a mental illness
characterized by marked and persistent dysphoria’.
Because the disease has high lifetime prevalence
(~15%)?, can start early in life, and typically involves a
chronic course, the World Health Organization ranks MDD
as the leading cause of disability3. DNA methylation
studies offer unique opportunities to better understand
and treat MDD by improving our understanding of the
involvement of DNA methylation in the dynamic features
(e.g., episodic nature, course) of MDD and by providing
insight into how environmental risks (e.g., stress) can
impact symptom severity*6. Importantly, methylation
studies have profound translational potential, as
methylation is modifiable by treatment and can potentially
be used as biomarkers to improve diagnosis and clinical
disease management.

Methylome-wide association studies (MWAS) are
ideally performed in the tissues where the pathogenic
processes likely manifest. There exists good evidence
that MDD has a systemic component that involves both
brain and peripheral immune cells” 8. Therefore, we
sought to characterize MDD-linked methylation changes
in both brain and blood.

MWAS is typically performed using DNA from bulk
tissues containing multiple cell types. Failure to account
for these multiple cell types has several drawbacks®. Most
recognized is the risk of false positive associations that
occurs when the abundance of cell types varies across
samples included in the study'® "', Underappreciated is
the negative impact of cell type heterogeneity on the
statistical power to detect associations with disease.
Thus, case-control differences may be of opposite
directions between cell types, resulting in “diluted” and/or
“canceled out” effect sizes in bulk tissue. Furthermore, as
the most common cell types will drive the results,
associations present in low abundance cells may remain
undetected in bulk tissue. Finally, knowing what cell type
harbors an association is key for the biological
interpretation of findings and can be critical for designing
proper functional follow-up experiments.

It is not practically or fiscally feasible to perform
methylation assays on isolated cell populations at the
sample sizes required for adequately powered MWAS. A
practical solution is to apply statistical methods that are
informed by data from reference sets of sorted cells to
deconvolute the cell-type-specific effects from data
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Figure 1: Epigenomic deconvolution for testing case-control differences in subpopulations of cells. (A) In step 1 of the deconvolution
method, reference methylomes from purified samples of sorted cells are used to estimate cell type proportions. For each subject at a
time, bulk methylation data is regressed on the most informative sites in the reference methylomes to obtain estimated proportions of
each cell type. (B) Once cell type proportions have been estimated for each subject in the study, step 2 uses these proportions to
estimate case-control differences at site each CpG site at a time. (C) To illustrate how cell-type-specific differences are estimated we
present a simple example. Since bulk methylation and proportions of neurons/glia will differ between subjects, we can regress bulk
methylation levels (Y-axis) on the proportion of neuronal cells (X-axis). Thus, extrapolating the regression line to the point where the
proportion of neurons is zero (i.e., there are only glia cells) estimates the group mean methylation in glia, and extrapolation to the
point where the proportion of neurons is one estimates the group mean methylation in neurons. By allowing the regression lines to
differ between controls (black dots) and cases (red crosses), we obtain different predicted cell-type-specific group means that can be
tested for significance using standard statistical tests. See Online Methods and Supplemental Note 1 for discussion of the statistical
models.
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from reference sets of sorted cells to deconvolute the cell-
type-specific effects from data generated with bulk
tissue'2. This deconvolution approach is commonly used
in expression studies but can readily be applied to
methylation data'3 4. The method has been validated
using pre-designed mixtures of cell types and applications
using empirical data have confirmed its value by revealing
associations undetectable in bulk tissue'®.

In the largest and most comprehensive study to
date, we examined methylation differences between MDD
cases and controls in bulk brain samples from three
collections totaling 206 individuals, as well as in 1,132
independent blood samples. Applying an epigenomic
deconvolution strategy to bulk tissue data, we performed
methylome-wide association studies (MWAS) within cell
populations mainly consisting of neurons/glia and
granulocytes/T-cells/B-cells/monocytes. Associations
detected in one set of brain collections were replicated in
the others using a stringent “round-robin” design. We
further validated top cell-type-specific associations
obtained via epigenomic deconvolution against those
observed in sorted neuronal and glial nuclei from brains of
an additional 58 case-control subjects. Finally, we tested
for overrepresentation of genes implicated by our top
MWAS findings among those identified in recent GWAS
for MDD and related disorders.

RESULTS

Complete descriptions of study participants, data quality
control, and analyses are provided in the Supplementary
Methods.

Cell-type-specific MWAS in brain

We used sequencing-based methylation data from a total
of 206 postmortem brain samples from three collections’®.
The sample collections were predominantly from Australia
(AUS; 30 MDD, 31 control; Brodmann Area [BA] 25),
United States of America (USA; 44 MDD, 37 control;
BA10) and Canada (CAN; 39 MDD, 25 control; BA10).
Overall, brain sample characteristics for MDD cases and
controls were similar (Table S1).

To obtain sequencing-based reference
methylomes for neurons and glia, we used fluorescence-
activated cell sorting (FACS) to isolate neuronal and glial
nuclei from cortex of five individuals (Online Methods).
These reference methylomes enabled us to test for cell-
type-specific case-control differences in samples for
which only bulk tissue data was available. The principles
underlying this epigenetic deconvolution approach?3. 15
are illustrated in Figure 1. Implementation details for the

TR it A R R R
method are presented in Online Methods and
Supplemental Note 1.

Estimated proportions of neurons and glia (~1:3)
matched proportions expected in cortex based on the
literature'” and showed no significant case-control
differences. Quantile-Quantile (QQ) plots for the cell-type-
specific MWASs (Figure S3) displayed deviations from
the 95% confidence interval for small P-values suggesting
multiple CpGs had discernible effects within cell types.
Further, MWASSs of permuted case-control status for each
analysis yielded average lambdas that were not
significantly different from 1 (Figure S4), which indicated
that our observed P-values were accurate and did not
show evidence of inflation. Additional validation analyses
for the deconvolution method are detailed in the Online
Methods.

To replicate findings in brain we used a stringent
round-robin design (Figure 2). In each round, a meta-
analysis of two of three datasets (“mini-meta”) was used
for discovery (P<0.01), and the remaining dataset was
used for replication (P<0.05), where direction of effect for
discovery/replication must be equal. Markers that met
these criteria in at least two of the three round-robin
iterations were considered to have replicated.
Permutation tests (Table 1) indicated that the replication
of markers across datasets was not due to chance for the
neuronal (odds ratio [OR]=509, P<1x10-%), glial (OR=518,
P<1x10%), or bulk (OR=538, P<1x10-%) analyses.

discovery o same
mini-meta replication direction
P <0.01 P<0.05 ¢ cffect

overlap
| (2 0f 3)

Figure 2: Round-robin replication design for neuron/glia/bulk
MWAS in three brain collections. We performed a discovery
MWAS by performing a meta-analysis using only two of the
three individual MWASSs. Results from this discovery “mini-meta”
were then replicated in the remaining independent. Within each
of the three possible rounds, a P-value threshold of 0.01 was
used for discovery mini-meta results. Top discovery sites were
considered to replicate if P<0.05 in the replication set and
filtered for equal direction of effect. Finally, only replicating sites
that were implicated in at least two of the three possible round-
robin iterations were considered to have survived the protocol.
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Table 1: Sites passing round-robin replication

Number of Replicating Sites Odds ratio P-value

Permutations  Observed

Mean SD
Neurons 851 3.013 4,330 509 <1x10°
Glia 749 2827 3,882 518 <1x10°
Bulk brain 752 2.838 4,048 538 <1x10°

Summary results for 100,000 permutations of the round-robin
replication protocol for bulk brain, neuron, and glia MWASSs.
Mean/median/SD refer to numbers of replicating sites obtained
by permutation, while Observed is the number of replicating
sites obtained with the original data.

Neurons & Glia

A total of 4,330/3,882 replicating CpGs that implicated
1,784/1,682 genes were observed for neurons and glia,
respectively (Tables S2 & S3). Interestingly, 1,683 CpGs
were detected in both neurons and glia and were found in
genes such as HERC2, RNF111, and TRIM3 that all
encode ubiquitin ligases that have roles in
neurodevelopment and synaptic plasticity'8-23, HERC2
has also been previously associated with autism?2*. Top
findings that were unique to neurons included genes like
RAPGEF6 and FAM63B. Interestingly, RAPGEF6 has
also been strongly associated with schizophrenia and has
been shown to impact anxiety-like behavior in mice?® 26,
Encoding the deubiquitinase MINDY2, FAM63B was a top
finding from two past methylation studies of
schizophrenia?” and bipolar disorder28. Finally, among top
unique glia findings was a site within the gene HMCN1,
which has been previously associated with post-partum
depression?°.

Considering the known effects of DNA
methylation on distal regulatory elements, we tested
whether our MWAS findings overlapped with Roadmap
Epigenomics Project chromatin state tracks®C. In general,
results for neurons and glia were not overrepresented at
chromatin states associated with regulatory features
(Table S4). However, as the Roadmap Epigenomics
Project chromatin state tracks for brain were generated in
bulk tissue, they likely are not representative for many
cell-type-specific chromatin states.

We tested results for enrichment of KEGG/
Reactome pathways using a permutation-based method
that properly controls for the number of CpGs in a gene
and the presence of correlated sites. Furthermore, this
approach allows for a correction for testing multiple
pathways with overlapping genes (Online Methods). To
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identify groups of pathways driven by the same MWAS
findings, we further clustered the pathways that remained
significant after correcting for multiple testing (family-wise
error rate<0.05) based on the presence of overlapping
genes.

Results for neurons were significantly
overrepresented in genes belonging to 14 pathways
(Table S5) and formed five clusters (Figure 3A). The first
cluster (red) was related to p75 NTR receptor-mediated
signaling (OR=3.84, P=0.0017) and related neuronal cell
death processes. A second cluster (yellow) was related to
Glutamatergic synapse (OR=3.97, P= 0.0123) and
Circadian entrainment (OR= 4.47, P=0.0023). The most
significant pathways in the remaining clusters were
Adherens junction (OR=4.77, P= 0.0031), Pathways in
cancer (OR=1.69, P=0.0033), and Rho GTPase cycle
(OR=3.80, P=0.0042).

Genes implicated by results in glia were
overrepresented for 14 pathways (Table S6) that
segregated into eight clusters (Figure 4A). The largest
cluster (red) of glial pathways was driven by multiple
classes of related secondary messenger systems such as
Ca-dependent events (OR=6.53, P=0.0056) and PLC
beta mediated events (OR=4.60, P= 0.0190). Other
notable pathways enriched in results for glia were p75
NTR receptor-mediated signaling (OR=3.48, P=0.0095),
Role of ABL in ROBO-SLIT signaling (OR=13.7,
P=0.0282), and Cortisol synthesis and secretion
(OR=3.73, P=0.0484).

Complementary Analyses in Sorted Neurons & Glia
To check the cell-type-specific results obtained via

epigenomic deconvolution, we also performed MWAS on
array-based methylation data from FACS isolated
neuronal (28 MDD, 29 control) and glial (29 MDD, 29
control) nuclei of postmortem frontal cortex samples3’
(Figures S7 & S8). We next tested for enrichment
between the replicating sites from our sequencing-based
cell-type-specific MWASs (above) and the top results from
the array-based sorted datasets (Tables S7 & S8), using
two P-value thresholds of 0.05 and 0.01 for replication in
the latter. It should be noted that only a small fraction of
CpGs assayed in our sequencing-based data are also
assayed by array-based approaches. For example, of the
4,330 replicating CpGs for deconvoluted neurons, only
169 could be mapped to CpGs actually measured in the
array-based dataset.

Nonetheless, despite the limited sample size and
scope of the sorted data, results for deconvoluted
neurons were significantly enriched among top
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Figure 3: Cluster plot of significantly enriched pathways for neurons. As pathways often share genes, the raster plot visualizes the

clustering of pathways (y-axis) determined on the basis of their overlapping genes (x-axis). The solid rectangles indicate genes that

were both among the top MWAS results and a member of the listed pathway. Note, that only genes that were among the top MWAS

results are plotted, rather than all possible pathway members. Only pathways containing a minimum of 4 overlapping genes and

those passing family-wise significance were retained. Complete pathway names, gene names, odds ratios, and P-values are

presented in Table S5 for deconvoluted neurons and Table S9 for sorted neurons.

results for sorted neurons (19 CpGs, OR=2.05,
P=0.0484). Our results for deconvoluted glia were also
enriched among top (P<0.01) results for sorted glia (7
CpGs, OR=3.11), but did not remain significant after
correcting for multiple thresholds (P=0.0661).

Top results (P<0.01) from MWAS of FACS sorted
neurons and glia were significantly overrepresented for a
number of pathways (Tables S9 & S10) that were also
implicated in deconvoluted neurons and glia. Notably,
sorted neurons (Figure 3B) were enriched for Caspase-
mediated cleavage of cytoskeletal proteins (OR=7.67,
P=0.0165) which is a central apoptotic process and
involved in neuronal cell death3? 33. Pathways involving
adherens junctions and focal adhesion molecules were
similarly shared between results for sorted and
deconvoluted neurons. Remarkably, the major pathway
cluster (green, Figure S4B) for sorted glia contained
terms related to, for example, Ca-dependent events
(OR=4.76, P=0.0074), which closely mirrored results for

deconvoluted glia. Together, these results strongly
support the veracity and robustness of the cell-type-
specific effects detected by the epigenomic deconvolution
approach.

Bulk Brain

Analysis of bulk brain may provide better power to detect
case-control differences that influence multiple cell types
in a similar fashion. Therefore, we also applied the round-
robin protocol to MWAS of the bulk brain methylation
data, identifying 4,048 MDD-associated CpGs that
replicated and implicated 1,786 genes (Table S$11). The
top findings in bulk brain included sites located in
RBFOX1, TMEM44, and PREX1. Variants in the RNA-
slicing regulator RBFOX1 obtained genome-wide
significance in a recent meta-analysis of large MDD
GWASs?34. In plasma, TMEM44 has been associated with
circulating levels of the pro-apoptotic tumor necrosis
factor receptor 1 (TNFR1)35. In rodent models, deficits in

5
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Figure 4: Cluster plot of significantly enriched pathways for glia. See Figure 3 for an explanation of the plot. Complete pathway
names, gene names, odds ratios, and P-values are presented in Table S6 for deconvoluted glia and Table S$10 for sorted glia.

Prex1 results in autism-like behavior3® and is associated
with anti-depressant response in humans?®’. Interestingly,
very few associations that were detected in deconvoluted
neurons (1 CpG) or glia (14 CpGs) were also detected in
bulk, suggesting cell-type-specific effects are indeed
diluted or obscured in bulk tissue.

Results for bulk brain were overrepresented in
regulatory regions such as Bivalent/Poised TSS
(OR=2.77, P=0.0003) and Flanking Bivalent TSS/
Enhancer (OR=2.70, P=0.0238) (Table S4). A total of 10
pathways (Table $12) were significantly overrepresented
among the results for bulk brain spread across five
clusters (Figure 5). Processes related to Signaling by
VEGF (OR=4.03, P=0.0015) and Nitric oxide stimulates
guanylate cyclase (OR=8.78, P=0.0054) were
representative for the first (red) and second (yellow)

clusters. Other notable pathways included Focal adhesion
(OR=2.60, P=0.0424) and NCAM signaling for neurite
out-growth (OR=4.61, P=0.0095).

Cell-type-specific MWAS in blood
For blood, we used sequencing-based data from 1,132
whole blood samples'® (812 MDD and 320 controls) from
the Netherlands Study of Depression and Anxiety
(NESDA)3. For deconvolution of blood cell types, we
used sequencing-based references?® from leukocyte
populations isolated from six human whole blood samples
using antibodies against CD15, CD3, CD19, and CD14
that are expressed on the surface of granulocytes, T-cells,
B-cells, and monocytes, respectively*©.

Mean estimated cell type proportions were 55.8,
31.3, 9.3, and 3.6% for CD15, CD3, CD19, and CD14
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Figure 5: Cluster plot of significantly enriched pathways for bulk brain. See Figure 3 for an explanation of the plot. Complete pathway

names, gene names, odds ratios, and P-values are presented in Table S$12 for bulk brain.

respectively. With the exception of CD14, the estimated
cell type proportions differed significantly between cases
and controls. Notably, MDD cases tended to have
increased myeloid cell and decreased lymphocyte levels
as expected*! 42,

CD15, CD3, CD14, & CD19

As a complementary dataset was unavailable for
replication of the NESDA sample, we applied an
appropriate false discovery rate (FDR) of 0.1 for
declaration of methylome-wide significance*3 44 in cell-
type-specific MWAS in blood. The QQ-plots (Figure S5)
suggested the main association signals involved CD3 (T-
cells) and CD14 (monocytes), which yielded multiple
methylome-wide significant results. No significant findings
from cell-type-specific MWAS in CD15 or CD19 were
observed. Permutations of case-control status for each
MWAS in CD3 and CD14 displayed mean lambda values
that were not significantly different from 1 (Figure S6),
again suggesting the observed effects were not due to
uncontrolled artifacts.

In CD3, 18 CpGs passed methylome-wide
significance (Table $14). Genic findings for CD3 involved
STRADB, FLI1/SENCR, and KIAA1217. Due to the
scarcity of methylome-wide significant results for CD3,
functional annotation and pathway analyses are not
presented.

The MWAS for CD14 identified 372 methylome-
wide significant CpGs representing 129 genes (Table
S$15). Among the top genic findings for CD14 were ITPR?2,
SVOPL, TP53, ARNT2, SHANK2, KATNAL2, and GRIA1.
Findings for CD14 were significantly enriched (OR=52.8,
P=0.0063) at active transcriptional start sites for
monocytes (Table S4). Top CD14 MWAS results showed

overrepresentation of genes involved in 15 pathways
(Table $16) that resulted in five clusters (Figure 6). The
largest pathway cluster in CD14 (red) contained pathways
involving Glutamatergic synapse (OR=15.0, P=0.0007)
and Oxytocin signaling pathway (8.85, P=0.0061).

Whole Blood

Top findings in whole blood'é (e.g., top site P=1.91x10-8)
did not pass the FDR threshold of 0.1 employed in the
current analysis. This again suggests that many effects in
individual cell types may counter each other and leave
many associations obscured in whole blood. Alternatively,
as the blood cell types showing the largest signals are of
relatively low abundance (CD3 and CD14), statistical
power may be lacking to detect many of these differences
as they represent a minority of cells.

Cell-type-specific MWAS of antidepressant
treatment

Given the potential for antidepressant drug treatment to
affect the methylome*® we also sought to determine the
cell-type-specific effects of drug treatment. Biographical
information for postmortem brain samples often lack
treatment history and precluded such an analysis in the
brain datasets. However such information was available
in NESDA, where we performed cell-type-specific MWAS
with MDD cases that were treated (N=450) or untreated
(N=362) with antidepressants. Antidepressant treatment
was associated (FDR=0.1) with 3 CpGs in CD3 and 359
CpGs in CD14. Importantly, no sites that were associated
with antidepressant treatment were also among top MDD
findings in CD3 and CD14 MWASSs. Thus, cell-type-
specific associations to MDD in CD3 and CD14 were not
simply due to drug treatment, and vice versa.
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Figure 6: Cluster plot of significantly enriched pathways for CD14. See Figure 3 for an explanation of the plot. Complete pathway
names, gene names, odds ratios, and P-values are presented in Table S16 for CD14.

Top findings are overrepresented at genes from
GWAS of MDD and other neuropsychiatric
disorders

We looked for convergence of evidence between our cell-
type-specific MWASs and the top 10,000 variants from six
recent GWAS meta-analyses for attention-deficit/
hyperactivity disorder (ADHD)*¢, anxiety disorders*’,
autism spectrum disorder (ASD)*8, bipolar disorder
(BPD)*°, MDD?34, and schizophrenia*®. Additionally, given
that our results consistently implicated pathways involved
in neuronal apoptosis, we looked for overlap between
MWAS results and 869 top GWAS sites for
neurodegenerative disorders from NHGRI-EBI GWAS
Catalog data®°.

Genetic variants and methylation markers likely
exert effects on a given gene at distally remote loci (e.g.
promoters versus distal protein-coding sequence).
Therefore, we tested for significant enrichment between
the genes implicated by top MWAS and GWAS sites,
while accounting for local correlations and number of sites
per gene (Online Methods). To check for specificity, we
also tested for overlap of our top MWAS findings versus
the top 10,000 variants from a recent GWAS meta-
analysis of breast cancer®'.

As expected, no MWAS results were enriched at
genes associated with breast cancer. In contrast, results
(Table 2) showed very robust and highly significant
enrichment between genes implicated by MDD GWAS
and those replicating across neuron, glia, and bulk brain
MWAS results. Albeit less robust, replicating CD14 MWAS
results were also significantly enriched at genes from
MDD GWAS. Testing also yielded significant overlap of
genes between bulk brain MWAS and GWAS for BPD

and neurodegenerative disorders. Results for neuron
MWAS were further enriched for genes associated with
ADHD, ASD, and BPD. Glial MWAS findings were also
enriched for ADHD and BPD genes, as well as those for
neurodegenerative disorders.

DISCUSSION

In the most comprehensive methylation study of MDD to
date, we characterized methylome-wide associations in
large collections of brain and blood samples at a cell-
type-specific level. Using a round-robin replication
procedure, we identified novel associations with MDD in
neurons and glia that replicated across three brain
collections and in a fourth sample of sorted nuclei. Cell-
type-specific MWASSs in blood uncovered associations in
CD14+ monocytes that were not detected in whole blood.
Strong overlap with past GWAS studies of MDD and
neurodegenerative disorders also supported the
robustness of our MWAS findings.

We obtained our results by employing an
epigenomic deconvolution strategy to perform MWAS on
individual sub-populations of neurons/glia and
granulocytes/T-cells/B-cells/monocytes, respectively. The
robustness of this strategy was demonstrated through a
series of validation analyses (Online Methods). Cell-
type-specific associations for deconvoluted neurons/glia
also replicated across brain sample collections. Critically,
overlap in terms of genes and pathways was found with
MWASSs that involved sorted neurons/glia. Finally, top
results from cell-type-specific MWASs were significantly
enriched for genes implicated by external GWAS of MDD
and related disorders. Taken together, this converge of
evidence supports the value of the deconvolution strategy
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Table 2: Enrichment of top MWAS findings versus GWAS of neuropsychiatric disorders

MWAS Neurons MWAS Glia MWAS Bulk Brain MWAS CD14
GWAS Odds Ratio  P-value Odds Ratio  P-value Odds Ratio  P-value Odds Ratio  P-value
ADHD 1.44  0.0006* 1.36  0.0044* 1.14 0.1357 0.99 0.5534
Anxiety Disorders 1.00 0.5291 1.03 0.3318 1.06 0.2017 1.24 0.2160
Autism Spectrum Disorder 1.38  0.0024* 1.20 0.0687 1.1 0.2075 1.06 0.5038
Bipolar Disorder 1.21 0.0314 1.22 0.0276 1.36  0.0010* 0.81 0.7249
Major Depressive Disorder 2.53 <1x105* 2.87 <1x10°* 256 <1x10°5* 2.02 0.0003*
Schizophrenia 0.52 0.8502 0.96 0.5375 1.47 0.2212 0.00 1.0000
Neurodegenerative Disorders 1.03 0.3831 1.21 0.0266 1.23 0.0119 1.25 0.3110
Breast Cancer 1.1 0.3269 1.01 0.4956 1.26 0.1519 0.00 1.0000

*Denotes significance even after Bonferroni correction for 8 tests

as a cost-effective approach to detect cell-type-specific
associations.

The overall results across brain cell types heavily
implicated neurotrophin-linked degenerative pathways in
MDD. The nerve growth factor receptor (p75NR) regulates
neuronal apoptosis via interacting proteins such as
NRAGE, JNK, and Rac. A fine balance of neurotrophin
signaling through the generally pro-survival Trk receptors
and apoptotic p75NTRis needed for normal
neurodevelopment and neuron survival®2. Notably, our
results suggested differences in p75NTR signaling among
both neurons and glia of MDD cases and controls. While
less well studied, glia also express p75NTR where it is
important for oligodendrocyte development and astroglial
response to injury and insult3s.

Patients with treatment-resistant MDD have
reduced cortical grey matter density54. These grey matter
reductions appear to be due to a diminished neuronal cell
size paired with decreased densities of glia in MDD
patients®? 56, Further, in rat models of depression, glial
ablation in the prefrontal cortex was sufficient to induce
depression-like behaviors®. Thus, these grey matter
alterations in MDD may be partially mediated by p75NTR
linked apoptotic processes. While we did not observe
significant differences in estimated neuron:glia ratios
between MDD cases and controls in our samples, such
ratios do not reflect absolute differences in cell numbers
between groups.

Analysis of top bulk brain findings also
demonstrated enrichment for vascular endothelial growth
factor (VEGF) and nitric oxide (NO) signaling pathways.
While more extensively studied as an angiogenic factor,
some evidence has accumulated for VEGF as a
neuroprotective factor with links to MDD®8. In vascular

endothelial cells, VEGF regulates NO synthase
expression where it interacts with the p75NTR in opposing
fashion®? €0, A similar action for VEGF is seen in brain
vasculature under pathological conditions where VEGF
increases blood-brain barrier (BBB) permeability®!. Thus,
our findings implicating VEGF and p75NTR signaling may
reflect alterations in BBB integrity in MDD.

It is also interesting to note that MWAS results for
neurons were significantly enriched for circadian
entrainment pathways. Sleep disruption presents in 50-
95% of depression cases and is correlated with severity
and susceptibility to recurrent depression®2 63, These
circadian disruptions can be seen in abnormal temporal
expression of canonical clock genes in brain regions
outside the suprachiasmatic nucleus, such as prefrontal
cortex®. Whereas our MWAS results did not involve
canonical clock genes, many intermediate enzymes and
second messenger systems (e.g. calcium-dependent
kinases, adenylyl cyclases) drove the enrichment of
circadian entrainment pathways. Pathways linked to these
calcium-dependent second messenger systems were also
prominently featured among results for glia. Like neurons,
astrocytes express circadian rhythms®5. Given the
centrality of calcium signaling in astrocyte biology®®, glial
defects may also contribute to altered circadian rhythm in
MDD.

Finally, the most significant MWAS findings
among blood cell types were observed in CD14+
monocytes. Considerable evidence has shown that
psychological stress activates potent immune responses
via the hypothalamic-pituitary-adrenal axis®” which leads
to epigenetic reprogramming of monocytes and
microglia*? €869, These primed immune cells in-turn
display a proinflammatory phenotype to future stress and

10


https://doi.org/10.1101/432088
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/432088; this version posted October 3, 2018. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, Wh8 hgs&granted bi ,Rzg\l/)9

elbwnerane

strongly influence mood and behavior via
neuroinflammatory processes?*2 70. 71,

Curiously, the most significant pathway implicated
in monocytes was related to glutamatergic signaling,
which was also implicated in neurons. We did not observe
the same methylation sites in the top of the MWAS from
neurons and CD14, thereby suggesting any systemic
component to MDD involves interactions between blood
and brain rather than coincident changes in identical
methylation sites. How glutamatergic signaling could
impact monocytic biology in the context of a blood-brain
interaction is not immediately clear. However, social
stress has been shown to lead to depression-like
behavior via disruption of the BBB”2. Excess glutamate
also increases BBB permeability and facilitates
transmigration of monocytes into the brain’3. 74,

While glutamate does not appear to be a
chemoattractant for peripheral monocytes’®, other
glutamatergic ligands like the kynurenine metabolites
kynurenic acid and quinolinic acid, can activate
monocytes”-77. Further, severe depression has been
associated with increased microglial production of
quinolinic acid’®, which in-turn stimulates astrocytes to
secrete monocyte chemoattractant protein-1 (CCL2)7°.
Disruption of the BBB in depression may facilitate leakage
of glutamate and/or kynurenine and its metabolites into
circulation. Indeed, increased plasma concentrations of
glutamate8® and kynurenine®! have been recently
observed in MDD in other cohorts. Thus, methylation
changes linked to glutamatergic signaling in neurons and
monocytes may reflect responses to a broader excitotoxic
or neuroinflammatory state. Such a model of stress-
induced BBB changes and/or excitotoxicity in MDD also
appear supported by our MWASS in brain involving
p75NTR VEGF, and cortisol pathways.

One limitation in studies involving biological
samples from human patients is the potential confound of
drug treatment. Since antidepressant treatment is highly
correlated with MDD diagnosis, such a confound is largely
unavoidable for postmortem samples. However, treatment
information was available for the NESDA sample.
Whereas many methylome-wide significant effects were
associated with antidepressant treatment in CD3 and
CD14, our top case-control findings in blood cell types did
not contain any antidepressant-associated sites.
Therefore, drug treatment was not a significant confound
in our analyses.

In conclusion, our cell-type-specific MWASs
revealed many associations otherwise obscured in bulk
brain and whole blood, and provided unique mechanistic
insights into the underlying disease processes. This

lic ns%}%?&%%gig%%igtﬁa%épg t;ir%i,lt isdmade available urclider
C /Or depressive aisoraer
highlights the utility of deconvolution methods as valuable
approaches for performing MWAS in human samples for
which only bulk tissue data is available. In addition to
finding significant association signals for MDD in the
neurons of the postmortem brain samples, we also found
ample evidence for a role of glia in MDD. These findings
are notable in light of the historically underappreciated
role of glia in disease. Cell-type-specific analyses in blood
strongly suggested a role for monocytes in MDD
pathology and appears to corroborate animal studies
linking monocytes to stress-induced behaviors, and
supports a systemic model of MDD pathology.
Collectively, top MWAS findings and secondary analyses
pointed towards neurodegeneration and increased BBB
permeability, potentially via p75NTR/VEGF signaling, as
key components of such a systemic model. These
pathways merit additional research and serious
consideration as novel therapeutic targets for MDD.
Lastly, top MWAS results were consistently enriched at
genes previously associated with MDD, related
neuropsychiatric disorders, and neurodegenerative
disorders. Such overlap with external studies bolsters the
veracity of our results and further highlights the shared
liabilities among neuropsychiatric disorders.

METHODS

Methods and any associated references are available in
the Online Methods
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