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We studied the methylome in three collections of human postmortem brain (N=206) and blood samples 
(N=1,132) of subjects with major depressive disorder (MDD) and controls. Using an epigenomic deconvolution 
approach we performed cell­type­specific methylome­wide association studies (MWAS) within sub­populations 
of neurons/glia and granulocytes/T­cells/B­cells/monocytes for bulk brain and blood data, respectively. Multiple 
MWAS findings in neurons/glia replicated across brain collections (ORs=509­538, P­values<1x10­5) and were 
reproducible in an array­based MWAS of sorted neurons/glia from a fourth brain collection (N=58). Pathway 
analyses implicated p75NTR/VEGF signaling, neurodegeneration, and blood­brain barrier perturbation. Cell­type­
specific analysis in blood identified associations in CD14+ monocytes ­­ a cell type strongly linked to 
neuroimmune processes and stress. Top results in neurons/glia/bulk and monocytes were enriched for genes 
supported by GWAS for MDD (ORs=2.02­2.87, P­values=0.003 to <1x10­5), neurodegeneration and other 
psychiatric disorders. In summary, we identified novel MDD­methylation associations by using epigenomic 
deconvolution that provided important mechanistic insights for the disease.

Major depressive disorder (MDD) is a mental illness 

characterized by marked and persistent dysphoria1. 

Because the disease has high lifetime prevalence 

(~15%)2, can start early in life, and typically involves a 

chronic course, the World Health Organization ranks MDD 

as the leading cause of disability3. DNA methylation 

studies offer unique opportunities to better understand 

and treat MDD by improving our understanding of the 

involvement of DNA methylation in the dynamic features 

(e.g., episodic nature, course) of MDD and by providing 

insight into how environmental risks (e.g., stress) can 

impact symptom severity4­6. Importantly, methylation 

studies have profound translational potential, as 

methylation is modifiable by treatment and can potentially 

be used as biomarkers to improve diagnosis and clinical 

disease management.

Methylome­wide association studies (MWAS) are 

ideally performed in the tissues where the pathogenic 

processes likely manifest. There exists good evidence 

that MDD has a systemic component that involves both 

brain and peripheral immune cells7, 8. Therefore, we 

sought to characterize MDD­linked methylation changes 

in both brain and blood.

MWAS is typically performed using DNA from bulk 

tissues containing multiple cell types. Failure to account 

for these multiple cell types has several drawbacks9. Most 

recognized is the risk of false positive associations that 

occurs when the abundance of cell types varies across 

samples included in the study10, 11. Underappreciated is 

the negative impact of cell type heterogeneity on the 

statistical power to detect associations with disease. 

Thus, case­control differences may be of opposite 

directions between cell types, resulting in “diluted” and/or 

“canceled out” effect sizes in bulk tissue. Furthermore, as 

the most common cell types will drive the results, 

associations present in low abundance cells may remain 

undetected in bulk tissue. Finally, knowing what cell type 

harbors an association is key for the biological 

interpretation of findings and can be critical for designing 

proper functional follow­up experiments.

It is not practically or fiscally feasible to perform 

methylation assays on isolated cell populations at the 

sample sizes required for adequately powered MWAS. A 

practical solution is to apply statistical methods that are 

informed by data from reference sets of sorted cells to 

deconvolute the cell­type­specific effects from data 
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Figure 1: Epigenomic deconvolution for testing case­control differences in subpopulations of cells. (A) In step 1 of the deconvolution 

method, reference methylomes from purified samples of sorted cells are used to estimate cell type proportions. For each subject at a 

time, bulk methylation data is regressed on the most informative sites in the reference methylomes to obtain estimated proportions of 

each cell type. (B) Once cell type proportions have been estimated for each subject in the study, step 2 uses these proportions to 

estimate case­control differences at site each CpG site at a time. (C) To illustrate how cell­type­specific differences are estimated we 

present a simple example. Since bulk methylation and proportions of neurons/glia will differ between subjects, we can regress bulk 

methylation levels (Y­axis) on the proportion of neuronal cells (X­axis). Thus, extrapolating the regression line to the point where the 

proportion of neurons is zero (i.e., there are only glia cells) estimates the group mean methylation in glia, and extrapolation to the 

point where the proportion of neurons is one estimates the group mean methylation in neurons. By allowing the regression lines to 

differ between controls (black dots) and cases (red crosses), we obtain different predicted cell­type­specific group means that can be 

tested for significance using standard statistical tests. See Online Methods and Supplemental Note 1 for discussion of the statistical 

models.
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from reference sets of sorted cells to deconvolute the cell­

type­specific effects from data generated with bulk 

tissue12. This deconvolution approach is commonly used 

in expression studies but can readily be applied to 

methylation data13, 14. The method has been validated 

using pre­designed mixtures of cell types and applications 

using empirical data have confirmed its value by revealing 

associations undetectable in bulk tissue15.

In the largest and most comprehensive study to 

date, we examined methylation differences between MDD 

cases and controls in bulk brain samples from three 

collections totaling 206 individuals, as well as in 1,132 

independent blood samples. Applying an epigenomic 

deconvolution strategy to bulk tissue data, we performed 

methylome­wide association studies (MWAS) within cell 

populations mainly consisting of neurons/glia and 

granulocytes/T­cells/B­cells/monocytes. Associations 

detected in one set of brain collections were replicated in 

the others using a stringent “round­robin” design. We 

further validated top cell­type­specific associations 

obtained via epigenomic deconvolution against those 

observed in sorted neuronal and glial nuclei from brains of 

an additional 58 case­control subjects. Finally, we tested 

for overrepresentation of genes implicated by our top 

MWAS findings among those identified in recent GWAS 

for MDD and related disorders.

RESULTS
Complete descriptions of study participants, data quality 

control, and analyses are provided in the Supplementary 

Methods.

Cell­type­specific MWAS in brain
We used sequencing­based methylation data from a total 

of 206 postmortem brain samples from three collections16. 

The sample collections were predominantly from Australia 

(AUS; 30 MDD, 31 control; Brodmann Area [BA] 25), 

United States of America (USA; 44 MDD, 37 control; 

BA10) and Canada (CAN; 39 MDD, 25 control; BA10). 

Overall, brain sample characteristics for MDD cases and 

controls were similar (Table S1).

To obtain sequencing­based reference 

methylomes for neurons and glia, we used fluorescence­

activated cell sorting (FACS) to isolate neuronal and glial 

nuclei from cortex of five individuals (Online Methods). 

These reference methylomes enabled us to test for cell­

type­specific case­control differences in samples for 

which only bulk tissue data was available. The principles 

underlying this epigenetic deconvolution approach13, 15 

are illustrated in Figure 1. Implementation details for the 

method are presented in Online Methods and 

Supplemental Note 1.

Estimated proportions of neurons and glia (~1:3) 

matched proportions expected in cortex based on the 

literature17 and showed no significant case­control 

differences. Quantile­Quantile (QQ) plots for the cell­type­

specific MWASs (Figure S3) displayed deviations from 

the 95% confidence interval for small P­values suggesting 

multiple CpGs had discernible effects within cell types. 

Further, MWASs of permuted case­control status for each 

analysis yielded average lambdas that were not 

significantly different from 1 (Figure S4), which indicated 

that our observed P­values were accurate and did not 

show evidence of inflation. Additional validation analyses 

for the deconvolution method are detailed in the Online 

Methods.

To replicate findings in brain we used a stringent 

round­robin design (Figure 2). In each round, a meta­

analysis of two of three datasets (“mini­meta”) was used 

for discovery (P<0.01), and the remaining dataset was 

used for replication (P<0.05), where direction of effect for 

discovery/replication must be equal. Markers that met 

these criteria in at least two of the three round­robin 

iterations were considered to have replicated. 

Permutation tests (Table 1) indicated that the replication 

of markers across datasets was not due to chance for the 

neuronal (odds ratio [OR]=509, P<1x10­5), glial (OR=518, 

P<1x10­5), or bulk (OR=538, P<1x10­5) analyses.

Figure 2: Round­robin replication design for neuron/glia/bulk 

MWAS in three brain collections. We performed a discovery 

MWAS by performing a meta­analysis using only two of the 

three individual MWASs. Results from this discovery “mini­meta” 

were then replicated in the remaining independent. Within each 

of the three possible rounds, a P­value threshold of 0.01 was 

used for discovery mini­meta results. Top discovery sites were 

considered to replicate if P<0.05 in the replication set and 

filtered for equal direction of effect. Finally, only replicating sites 

that were implicated in at least two of the three possible round­

robin iterations were considered to have survived the protocol.
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Neurons & Glia

A total of 4,330/3,882 replicating CpGs that implicated 

1,784/1,682 genes were observed for neurons and glia, 

respectively (Tables S2 & S3). Interestingly, 1,683 CpGs 

were detected in both neurons and glia and were found in 

genes such as HERC2, RNF111, and TRIM3 that all 

encode ubiquitin ligases that have roles in 

neurodevelopment and synaptic plasticity18­23. HERC2 

has also been previously associated with autism24. Top 

findings that were unique to neurons included genes like 

RAPGEF6 and FAM63B. Interestingly, RAPGEF6 has 

also been strongly associated with schizophrenia and has 

been shown to impact anxiety­like behavior in mice25, 26. 

Encoding the deubiquitinase MINDY2, FAM63B was a top 

finding from two past methylation studies of 

schizophrenia27 and bipolar disorder28. Finally, among top 

unique glia findings was a site within the gene HMCN1, 

which has been previously associated with post­partum 

depression29.

Considering the known effects of DNA 

methylation on distal regulatory elements, we tested 

whether our MWAS findings overlapped with Roadmap 

Epigenomics Project chromatin state tracks30. In general, 

results for neurons and glia were not overrepresented at 

chromatin states associated with regulatory features 

(Table S4). However, as the Roadmap Epigenomics 

Project chromatin state tracks for brain were generated in 

bulk tissue, they likely are not representative for many 

cell­type­specific chromatin states. 

We tested results for enrichment of KEGG/

Reactome pathways using a permutation­based method 

that properly controls for the number of CpGs in a gene 

and the presence of correlated sites. Furthermore, this 

approach allows for a correction for testing multiple 

pathways with overlapping genes (Online Methods). To 

identify groups of pathways driven by the same MWAS 

findings, we further clustered the pathways that remained 

significant after correcting for multiple testing (family­wise 

error rate<0.05) based on the presence of overlapping 

genes.

Results for neurons were significantly 

overrepresented in genes belonging to 14 pathways 

(Table S5) and formed five clusters (Figure 3A). The first 

cluster (red) was related to p75 NTR receptor­mediated 

signaling (OR=3.84, P=0.0017) and related neuronal cell 

death processes. A second cluster (yellow) was related to 

Glutamatergic synapse (OR=3.97, P= 0.0123) and 

Circadian entrainment (OR= 4.47, P=0.0023). The most 

significant pathways in the remaining clusters were 

Adherens junction (OR=4.77, P= 0.0031), Pathways in 

cancer (OR=1.69, P=0.0033), and Rho GTPase cycle 

(OR=3.80, P=0.0042).

Genes implicated by results in glia were 

overrepresented for 14 pathways (Table S6) that 

segregated into eight clusters (Figure 4A). The largest 

cluster (red) of glial pathways was driven by multiple 

classes of related secondary messenger systems such as 

Ca­dependent events (OR=6.53, P=0.0056) and PLC 

beta mediated events (OR=4.60, P= 0.0190). Other 

notable pathways enriched in results for glia were p75 

NTR receptor­mediated signaling (OR=3.48, P=0.0095), 

Role of ABL in ROBO­SLIT signaling (OR=13.7, 

P=0.0282), and Cortisol synthesis and secretion 

(OR=3.73, P=0.0484).

Complementary Analyses in Sorted Neurons & Glia

To check the cell­type­specific results obtained via 

epigenomic deconvolution, we also performed MWAS on 

array­based methylation data from FACS isolated 

neuronal (28 MDD, 29 control) and glial (29 MDD, 29 

control) nuclei of postmortem frontal cortex samples31 

(Figures S7 & S8). We next tested for enrichment 

between the replicating sites from our sequencing­based 

cell­type­specific MWASs (above) and the top results from 

the array­based sorted datasets (Tables S7 & S8), using 

two P­value thresholds of 0.05 and 0.01 for replication in 

the latter. It should be noted that only a small fraction of 

CpGs assayed in our sequencing­based data are also 

assayed by array­based approaches. For example, of the 

4,330 replicating CpGs for deconvoluted neurons, only 

169 could be mapped to CpGs actually measured in the 

array­based dataset. 

Nonetheless, despite the limited sample size and 

scope of the sorted data, results for deconvoluted 

neurons were significantly enriched among top

Number of Replicating Sites Odds ratio P­value

Neurons

Glia

Bulk brain

Mean

8.51

7.49

7.52

SD

3.013

2.827

2.838

4,330

3,882

4,048

509

518

538

<1x10­5

<1x10­5

<1x10­5

Permutations Observed

Table 1: Sites passing round­robin replication

Summary results for 100,000 permutations of the round­robin 

replication protocol for bulk brain, neuron, and glia MWASs. 

Mean/median/SD refer to numbers of replicating sites obtained 

by permutation, while Observed is the number of replicating 

sites obtained with the original data.
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results for sorted neurons (19 CpGs, OR=2.05, 

P=0.0484). Our results for deconvoluted glia were also 

enriched among top (P<0.01) results for sorted glia (7 

CpGs, OR=3.11), but did not remain significant after 

correcting for multiple thresholds (P=0.0661).

Top results (P<0.01) from MWAS of FACS sorted 

neurons and glia were significantly overrepresented for a 

number of pathways (Tables S9 & S10) that were also 

implicated in deconvoluted neurons and glia. Notably, 

sorted neurons (Figure 3B) were enriched for Caspase­

mediated cleavage of cytoskeletal proteins (OR=7.67, 

P=0.0165) which is a central apoptotic process and 

involved in neuronal cell death32, 33. Pathways involving 

adherens junctions and focal adhesion molecules were 

similarly shared between results for sorted and 

deconvoluted neurons. Remarkably, the major pathway 

cluster (green, Figure S4B) for sorted glia contained 

terms related to, for example, Ca­dependent events 

(OR=4.76, P=0.0074), which closely mirrored results for 

deconvoluted glia. Together, these results strongly 

support the veracity and robustness of the cell­type­

specific effects detected by the epigenomic deconvolution 

approach.

Bulk Brain

Analysis of bulk brain may provide better power to detect 

case­control differences that influence multiple cell types 

in a similar fashion. Therefore, we also applied the round­

robin protocol to MWAS of the bulk brain methylation 

data, identifying 4,048 MDD­associated CpGs that 

replicated and implicated 1,786 genes (Table S11). The 

top findings in bulk brain included sites located in 

RBFOX1, TMEM44, and PREX1. Variants in the RNA­

slicing regulator RBFOX1 obtained genome­wide 

significance in a recent meta­analysis of large MDD 

GWASs34. In plasma, TMEM44 has been associated with 

circulating levels of the pro­apoptotic tumor necrosis 

factor receptor 1 (TNFR1)35. In rodent models, deficits in 

Figure 3: Cluster plot of significantly enriched pathways for neurons. As pathways often share genes, the raster plot visualizes the 

clustering of pathways (y­axis) determined on the basis of their overlapping genes (x­axis). The solid rectangles indicate genes that 

were both among the top MWAS results and a member of the listed pathway. Note, that only genes that were among the top MWAS 

results are plotted, rather than all possible pathway members. Only pathways containing a minimum of 4 overlapping genes and 

those passing family­wise significance were retained. Complete pathway names, gene names, odds ratios, and P­values are 

presented in Table S5 for deconvoluted neurons and Table S9 for sorted neurons.  
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Figure 4: Cluster plot of significantly enriched pathways for glia. See Figure 3 for an explanation of the plot. Complete pathway 

names, gene names, odds ratios, and P­values are presented in Table S6 for deconvoluted glia and Table S10 for sorted glia.

Prex1 results in autism­like behavior36 and is associated 

with anti­depressant response in humans37. Interestingly, 

very few associations that were detected in deconvoluted 

neurons (1 CpG) or glia (14 CpGs) were also detected in 

bulk, suggesting cell­type­specific effects are indeed 

diluted or obscured in bulk tissue. 

Results for bulk brain were overrepresented in 

regulatory regions such as Bivalent/Poised TSS 

(OR=2.77, P=0.0003) and Flanking Bivalent TSS/

Enhancer (OR=2.70, P=0.0238) (Table S4). A total of 10 

pathways (Table S12) were significantly overrepresented 

among the results for bulk brain spread across five 

clusters (Figure 5). Processes related to Signaling by 

VEGF (OR=4.03, P=0.0015) and Nitric oxide stimulates 

guanylate cyclase (OR=8.78, P=0.0054) were 

representative for the first (red) and second (yellow) 

clusters. Other notable pathways included Focal adhesion 

(OR=2.60, P=0.0424) and NCAM signaling for neurite 

out­growth (OR=4.61, P=0.0095).

Cell­type­specific MWAS in blood
For blood, we used sequencing­based data from 1,132 

whole blood samples16 (812 MDD and 320 controls) from 

the Netherlands Study of Depression and Anxiety 

(NESDA)38. For deconvolution of blood cell types, we 

used sequencing­based references39 from leukocyte 

populations isolated from six human whole blood samples 

using antibodies against CD15, CD3, CD19, and CD14 

that are expressed on the surface of granulocytes, T­cells, 

B­cells, and monocytes, respectively40.

Mean estimated cell type proportions were 55.8, 

31.3, 9.3, and 3.6% for CD15, CD3, CD19, and CD14 
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Figure 5: Cluster plot of significantly enriched pathways for bulk brain. See Figure 3 for an explanation of the plot. Complete pathway 

names, gene names, odds ratios, and P­values are presented in Table S12 for bulk brain.

respectively. With the exception of CD14, the estimated 

cell type proportions differed significantly between cases 

and controls. Notably, MDD cases tended to have 

increased myeloid cell and decreased lymphocyte levels 

as expected41, 42. 

CD15, CD3, CD14, & CD19

As a complementary dataset was unavailable for 

replication of the NESDA sample, we applied an 

appropriate false discovery rate (FDR) of 0.1 for 

declaration of methylome­wide significance43, 44 in cell­

type­specific MWAS in blood. The QQ­plots (Figure S5) 

suggested the main association signals involved CD3 (T­

cells) and CD14 (monocytes), which yielded multiple 

methylome­wide significant results. No significant findings 

from cell­type­specific MWAS in CD15 or CD19 were 

observed. Permutations of case­control status for each 

MWAS in CD3 and CD14 displayed mean lambda values 

that were not significantly different from 1 (Figure S6), 

again suggesting the observed effects were not due to 

uncontrolled artifacts. 

In CD3, 18 CpGs passed methylome­wide 

significance (Table S14). Genic findings for CD3 involved 

STRADB, FLI1/SENCR, and KIAA1217. Due to the 

scarcity of methylome­wide significant results for CD3, 

functional annotation and pathway analyses are not 

presented.

The MWAS for CD14 identified 372 methylome­

wide significant CpGs representing 129 genes (Table 

S15). Among the top genic findings for CD14 were ITPR2, 

SVOPL, TP53, ARNT2, SHANK2, KATNAL2, and GRIA1. 

Findings for CD14 were significantly enriched (OR=52.8, 

P=0.0063) at active transcriptional start sites for 

monocytes (Table S4). Top CD14 MWAS results showed 

overrepresentation of genes involved in 15 pathways 

(Table S16) that resulted in five clusters (Figure 6). The 

largest pathway cluster in CD14 (red) contained pathways 

involving Glutamatergic synapse (OR=15.0, P=0.0007) 

and Oxytocin signaling pathway (8.85, P=0.0061).

Whole Blood

Top findings in whole blood16 (e.g., top site P=1.91x10­8) 

did not pass the FDR threshold of 0.1 employed in the 

current analysis. This again suggests that many effects in 

individual cell types may counter each other and leave 

many associations obscured in whole blood. Alternatively, 

as the blood cell types showing the largest signals are of 

relatively low abundance (CD3 and CD14), statistical 

power may be lacking to detect many of these differences 

as they represent a minority of cells.

Cell­type­specific MWAS of antidepressant 
treatment
Given the potential for antidepressant drug treatment to 

affect the methylome45 we also sought to determine the 

cell­type­specific effects of drug treatment. Biographical 

information for postmortem brain samples often lack 

treatment history and precluded such an analysis in the 

brain datasets. However such information was available 

in NESDA, where we performed cell­type­specific MWAS 

with MDD cases that were treated (N=450) or untreated 

(N=362) with antidepressants. Antidepressant treatment 

was associated (FDR=0.1) with 3 CpGs in CD3 and 359 

CpGs in CD14. Importantly, no sites that were associated 

with antidepressant treatment were also among top MDD 

findings in CD3 and CD14 MWASs. Thus, cell­type­

specific associations to MDD in CD3 and CD14 were not 

simply due to drug treatment, and vice versa.
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Figure 6: Cluster plot of significantly enriched pathways for CD14. See Figure 3 for an explanation of the plot. Complete pathway 

names, gene names, odds ratios, and P­values are presented in Table S16 for CD14.

Top findings are overrepresented at genes from 
GWAS of MDD and other neuropsychiatric 
disorders
We looked for convergence of evidence between our cell­

type­specific MWASs and the top 10,000 variants from six 

recent GWAS meta­analyses for attention­deficit/

hyperactivity disorder (ADHD)46, anxiety disorders47, 

autism spectrum disorder (ASD)48, bipolar disorder 

(BPD)49, MDD34, and schizophrenia49. Additionally, given 

that our results consistently implicated pathways involved 

in neuronal apoptosis, we looked for overlap between 

MWAS results and 869 top GWAS sites for 

neurodegenerative disorders from NHGRI­EBI GWAS 

Catalog data50. 

Genetic variants and methylation markers likely 

exert effects on a given gene at distally remote loci (e.g. 

promoters versus distal protein­coding sequence). 

Therefore, we tested for significant enrichment between 

the genes implicated by top MWAS and GWAS sites, 

while accounting for local correlations and number of sites 

per gene (Online Methods). To check for specificity, we 

also tested for overlap of our top MWAS findings versus 

the top 10,000 variants from a recent GWAS meta­

analysis of breast cancer51.

As expected, no MWAS results were enriched at 

genes associated with breast cancer. In contrast, results 

(Table 2) showed very robust and highly significant 

enrichment between genes implicated by MDD GWAS 

and those replicating across neuron, glia, and bulk brain 

MWAS results. Albeit less robust, replicating CD14 MWAS 

results were also significantly enriched at genes from 

MDD GWAS. Testing also yielded significant overlap of 

genes between bulk brain MWAS and GWAS for BPD 

and neurodegenerative disorders. Results for neuron 

MWAS were further enriched for genes associated with 

ADHD, ASD, and BPD. Glial MWAS findings were also 

enriched for ADHD and BPD genes, as well as those for 

neurodegenerative disorders.

DISCUSSION
In the most comprehensive methylation study of MDD to 

date, we characterized methylome­wide associations in 

large collections of brain and blood samples at a cell­

type­specific level. Using a round­robin replication 

procedure, we identified novel associations with MDD in 

neurons and glia that replicated across three brain 

collections and in a fourth sample of sorted nuclei. Cell­

type­specific MWASs in blood uncovered associations in 

CD14+ monocytes that were not detected in whole blood. 

Strong overlap with past GWAS studies of MDD and 

neurodegenerative disorders also supported the 

robustness of our MWAS findings.

We obtained our results by employing an 

epigenomic deconvolution strategy to perform MWAS on 

individual sub­populations of neurons/glia and 

granulocytes/T­cells/B­cells/monocytes, respectively. The 

robustness of this strategy was demonstrated through a 

series of validation analyses (Online Methods). Cell­

type­specific associations for deconvoluted neurons/glia 

also replicated across brain sample collections. Critically, 

overlap in terms of genes and pathways was found with 

MWASs that involved sorted neurons/glia. Finally, top 

results from cell­type­specific MWASs were significantly 

enriched for genes implicated by external GWAS of MDD 

and related disorders. Taken together, this converge of 

evidence supports the value of the deconvolution strategy 
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as a cost­effective approach to detect cell­type­specific 

associations.

The overall results across brain cell types heavily 

implicated neurotrophin­linked degenerative pathways in 

MDD. The nerve growth factor receptor (p75NTR) regulates 

neuronal apoptosis via interacting proteins such as 

NRAGE, JNK, and Rac. A fine balance of neurotrophin 

signaling through the generally pro­survival Trk receptors 

and apoptotic p75NTR is needed for normal 

neurodevelopment and neuron survival52. Notably, our 

results suggested differences in p75NTR signaling among 

both neurons and glia of MDD cases and controls. While 

less well studied, glia also express p75NTR where it is 

important for oligodendrocyte development and astroglial 

response to injury and insult53.

Patients with treatment­resistant MDD have 

reduced cortical grey matter density54. These grey matter 

reductions appear to be due to a diminished neuronal cell 

size paired with decreased densities of glia in MDD 

patients55, 56. Further, in rat models of depression, glial 

ablation in the prefrontal cortex was sufficient to induce 

depression­like behaviors57. Thus, these grey matter 

alterations in MDD may be partially mediated by p75NTR 

linked apoptotic processes. While we did not observe 

significant differences in estimated neuron:glia ratios 

between MDD cases and controls in our samples, such 

ratios do not reflect absolute differences in cell numbers 

between groups.

Analysis of top bulk brain findings also 

demonstrated enrichment for vascular endothelial growth 

factor (VEGF) and nitric oxide (NO) signaling pathways. 

While more extensively studied as an angiogenic factor, 

some evidence has accumulated for VEGF as a 

neuroprotective factor with links to MDD58. In vascular 

endothelial cells, VEGF regulates NO synthase 

expression where it interacts with the p75NTR in opposing 

fashion59, 60. A similar action for VEGF is seen in brain 

vasculature under pathological conditions where VEGF 

increases blood­brain barrier (BBB) permeability61. Thus, 

our findings implicating VEGF and p75NTR signaling  may 

reflect alterations in BBB integrity in MDD.

It is also interesting to note that MWAS results for 

neurons were significantly enriched for circadian 

entrainment pathways. Sleep disruption presents in 50­

95% of depression cases and is correlated with severity 

and susceptibility to recurrent depression62, 63. These 

circadian disruptions can be seen in abnormal temporal 

expression of canonical clock genes in brain regions 

outside the suprachiasmatic nucleus, such as prefrontal 

cortex64. Whereas our MWAS results did not involve 

canonical clock genes, many intermediate enzymes and 

second messenger systems (e.g. calcium­dependent 

kinases, adenylyl cyclases) drove the enrichment of 

circadian entrainment pathways. Pathways linked to these 

calcium­dependent second messenger systems were also 

prominently featured among results for glia. Like neurons, 

astrocytes express circadian rhythms65. Given the 

centrality of calcium signaling in astrocyte biology66, glial 

defects may also contribute to altered circadian rhythm in 

MDD.

Finally, the most significant MWAS findings 

among blood cell types were observed in CD14+ 

monocytes. Considerable evidence has shown that 

psychological stress activates potent immune responses 

via the hypothalamic­pituitary­adrenal axis67 which leads 

to epigenetic reprogramming of monocytes and 

microglia42, 68, 69. These primed immune cells in­turn 

display a proinflammatory phenotype to future stress and 

GWAS

ADHD

Anxiety Disorders

Autism Spectrum Disorder

Bipolar Disorder

Major Depressive Disorder

Schizophrenia

Neurodegenerative Disorders

Breast Cancer

*Denotes significance even after Bonferroni correction for 8 tests 

Odds Ratio

1.44

1.00

1.38

1.21

2.53

0.52

1.03

1.11

P­value

0.0006*

0.5291

0.0024*

0.0314

<1x10­5*

0.8502

0.3831

0.3269

Odds Ratio

1.36

1.03

1.20

1.22

2.87

0.96

1.21

1.01

P­value

0.0044*

0.3318

0.0687

0.0276

<1x10­5*

0.5375

0.0266

0.4956

Odds Ratio

1.14

1.06

1.11

1.36

2.56

1.47

1.23

1.26

P­value

0.1357

0.2017

0.2075

0.0010*

<1x10­5*

0.2212

0.0119

0.1519

Odds Ratio

0.99

1.24

1.06

0.81

2.02

0.00

1.25

0.00

P­value

0.5534

0.2160

0.5038

0.7249

0.0003*

1.0000

0.3110

1.0000

        MWAS Neurons                 MWAS Glia             MWAS Bulk Brain             MWAS CD14

Table 2: Enrichment of top MWAS findings versus GWAS of neuropsychiatric disorders
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strongly influence mood and behavior via 

neuroinflammatory processes42, 70, 71.

Curiously, the most significant pathway implicated 

in monocytes was related to glutamatergic signaling, 

which was also implicated in neurons. We did not observe 

the same methylation sites in the top of the MWAS from 

neurons and CD14, thereby suggesting any systemic 

component to MDD involves interactions between blood 

and brain rather than coincident changes in identical 

methylation sites. How glutamatergic signaling could 

impact monocytic biology in the context of a blood­brain 

interaction is not immediately clear. However, social 

stress has been shown to lead to depression­like 

behavior via disruption of the BBB72.  Excess glutamate 

also increases BBB permeability and facilitates 

transmigration of monocytes into the brain73, 74.

While glutamate does not appear to be a 

chemoattractant for peripheral monocytes75, other 

glutamatergic ligands like the kynurenine metabolites 

kynurenic acid and quinolinic acid, can activate 

monocytes75­77. Further, severe depression has been 

associated with increased microglial production of 

quinolinic acid78, which in­turn stimulates astrocytes to 

secrete monocyte chemoattractant protein­1 (CCL2)79. 

Disruption of the BBB in depression may facilitate leakage 

of glutamate and/or kynurenine and its metabolites into 

circulation. Indeed, increased plasma concentrations of 

glutamate80 and kynurenine81 have been recently 

observed in MDD in other cohorts. Thus, methylation 

changes linked to glutamatergic signaling in neurons and 

monocytes may reflect responses to a broader excitotoxic 

or neuroinflammatory state. Such a model of stress­

induced BBB changes and/or excitotoxicity in MDD also 

appear supported by our MWASs in brain involving 

p75NTR, VEGF, and cortisol pathways.

One limitation in studies involving biological 

samples from human patients is the potential confound of 

drug treatment. Since antidepressant treatment is highly 

correlated with MDD diagnosis, such a confound is largely 

unavoidable for postmortem samples. However, treatment 

information was available for the NESDA sample. 

Whereas many methylome­wide significant effects were 

associated with antidepressant treatment in CD3 and 

CD14, our top case­control findings in blood cell types did 

not contain any antidepressant­associated sites. 

Therefore, drug treatment was not a significant confound 

in our analyses.

In conclusion, our cell­type­specific MWASs 

revealed many associations otherwise obscured in bulk 

brain and whole blood, and provided unique mechanistic 

insights into the underlying disease processes. This 

highlights the utility of deconvolution methods as valuable 

approaches for performing MWAS in human samples for 

which only bulk tissue data is available. In addition to 

finding significant association signals for MDD in the 

neurons of the postmortem brain samples, we also found 

ample evidence for a role of glia in MDD. These findings 

are notable in light of the historically underappreciated 

role of glia in disease. Cell­type­specific analyses in blood 

strongly suggested a role for monocytes in MDD 

pathology and appears to corroborate animal studies 

linking monocytes to stress­induced behaviors, and 

supports a systemic model of MDD pathology. 

Collectively, top MWAS findings and secondary analyses 

pointed towards neurodegeneration and increased BBB 

permeability, potentially via p75NTR/VEGF signaling, as 

key components of such a systemic model. These 

pathways merit additional research and serious 

consideration as novel therapeutic targets for MDD. 

Lastly, top MWAS results were consistently enriched at 

genes previously associated with MDD, related 

neuropsychiatric disorders, and neurodegenerative 

disorders. Such overlap with external studies bolsters the 

veracity of our results and further highlights the shared 

liabilities among neuropsychiatric disorders.

METHODS
Methods and any associated references are available in 

the Online Methods
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