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Abstract

Dengue virus (DENV) exists as four genetically distinct serotypes, each of which
is historically assumed to be antigenically uniform. However, recent analyses suggest
that antigenic heterogeneity may exist within each serotype, but its source, extent and
impact remain unclear. Here, we construct a sequence-based model to directly map
antigenic change to underlying genetic divergence. We identify 49 specific substitutions
and four colinear substitution clusters that contribute to dengue antigenic diversity.
We report moderate antigenic diversity within each serotype, resulting in variation in
genotype-specific patterns of heterotypic cross-neutralization. We also quantify the
impact of this antigenic heterogeneity on real-world DENV population dynamics. We
find that antigenic fitness mediates fluctuations in DENV clade frequencies, although
this appears to be primarily explained by coarser serotype-level antigenic differences.
These results provide a more nuanced understanding of dengue antigenic evolution,
with important ramifications for vaccine design and epidemic preparedness.
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Author Summary

Dengue virus (DENV), the causative agent of dengue hemorrhagic fever, exists as four
genetically distinct serotypes, DENV1 to DENV4. These serotypes are antigenically
distinct: symptomatic reinfection with a homotypic virus is very rare, while reinfection
with a heterotypic virus is sometimes associated with severe disease. Until recently, it
has been assumed that viruses within each serotype are antigenically uniform. However,
specific genotypes within each serotype have been anecdotally associated with varying
severity of patient outcomes and epidemic magnitude. One hypothesis is that each serotype
contains overlooked, meaningful antigenic diversity. While antigenic cartography conducted
on neutralization titers suggests that heterogeneity may exist within each serotype, its
source, extent and impact is unclear. Here, we analyze a previously published titer dataset
to quantify and characterize the extent of DENV intraserotype antigenic diversity. We map
antigenic changes to specific mutations in F, the dengue envelope protein, and interpolate
across the alignment to estimate the antigenic distance between pairs of viruses based on
their genetic differences. We identify 49 specific substitutions and four colinear substitution
clusters that contribute to dengue antigenic evolution. We find that DENV antigenic
divergence is tightly coupled to DENV genetic divergence, and is likely a gradual, ongoing
process. We report modest but significant antigenic diversity within each serotype of
DENV, which may have important ramifications for vaccine design. To understand the
impact of this antigenic heterogeneity on real-world DENV population dynamics, we also
quantify the extent to which population immunity—accumulated through recent circulation
of antigenically similar genotypes—determines the success and decline of DENV clades in
a hyperendemic population. We find that antigenic fitness is a key determinant of DENV
population turnover, although this appears to be driven by coarser serotype-level antigenic
differences. By leveraging both molecular data and real-world population dynamics, these
results provide a more nuanced understanding of dengue antigenic evolution, with important
ramifications for improving vaccine design and epidemic preparedness.
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Introduction

Dengue virus (DENV) is a mosquito-borne flavivirus which consists of four genetically
distinct clades, canonically thought of as serotypes (DENV1 — DENV4) (Lanciotti et al.,
1997). DENV circulates primarily in South America and Southeast Asia, infecting 400
million people annually. Primary DENV infection is more often mild and is thought to
generate lifelong homotypic immunity and temporary heterotypic immunity, which typically
wanes over six months to two years (Katzelnick et al., 2016; Reich et al., 2013; Sabin,
1952). Subsequent heterotypic secondary infection induces broad cross-protection, and
symptomatic tertiary and quaternary cases are rare (Gibbons et al., 2007; Olkowski et al.,
2013). However, a small subset of secondary infections are enhanced by non-neutralizing,
cross-reactive antibodies, resulting in severe disease via antibody dependent enhancement
(ADE) (Halstead, 1979; Katzelnick et al., 2017; Salje et al., 2018; Sangkawibha et al., 1984).
Approximately 1-3% of cases progress to severe dengue hemorrhagic fever, causing ~9,000
deaths each year (Bhatt et al., 2013; Stanaway et al., 2016) and relative risk of severe
dengue from secondary heterotypic infection relative to primary infection is estimated to
be ~24 (Mizumoto et al., 2014). Thus, the antigenic relationships between dengue viruses
— describing whether the immune response generated after primary infection results in
protection or enhancement of secondary infection — are key drivers of DENV case outcomes
and epidemic patterns.

While each serotype is clearly genetically and antigenically distinct, it is not clear how
subserotype clades of DENV interact antigenically. Each DENV serotype consists of broad
genetic diversity (Figure 1A), including canonical clades termed ‘genotypes’ (Rico-Hesse,
1990; Twiddy et al., 2003). Specific genotypes have been associated with characteristically
mild or severe disease, and heterogeneous neutralization titers suggest that the immune
response to some genotypes is more cross-protective than others (Gentry et al., 1982; Russell
and Nisalak, 1967). Until recently, it has been assumed that these intraserotype differences
are minimally important compared to interserotype differences. However, empirical evidence
has demonstrated that these genotype-specific differences can drive case outcomes and
epidemic severity (reviewed in Holmes and Twiddy (2003)). For example, analysis of a
longitudinal cohort study demonstrated that specific combinations of primary infection
serotype and secondary infection genotype can mediate individual case outcomes (OhAinle
et al., 2011). On a population scale, the DENV1-immune population of Iquitos, Peru,
experienced either entirely asymptomatic or very severe epidemic seasons in response to
two different genotypes of DENV2 (Kochel et al., 2002).

One explanation for these and similar observations is that overlooked intraserotype antigenic
variation contributes to these genotype-specific case outcomes and epidemic patterns.
Recent efforts to antigenically characterize diverse DENV viruses suggests that each serotype
may contain antigenic heterogeneity, but the source and impact of this heterogeneity is not
clear (Katzelnick et al., 2015). Here, we characterize the evolutionary basis for observed
antigenic heterogeneity among DENV clades. We also quantify the impact of within- and
between-serotype antigenic variation on real-world DENV population dynamics.
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Figure 1. Phylogeny of dengue virus sequences and normalized antigenic distances.
(A) Maximum likelihood phylogeny of the E (envelope) gene from titered dengue viruses. Notably,
each of the four serotypes contains substantial genetic diversity. (B) Pairwise antigenic distances
were estimated by Katzelnick et al. using plaque reduction neutralization titers (PRNT50, see
Methods). Aggregated titer values are standardized such that the distance between autologous
virus-serum pairs is 0, and each titer unit corresponds to a two-fold change in PRNT50 value. Light
gray areas represent missing data. Larger values correspond to greater antigenic distance.

Results

Dengue neutralization titer data

Antigenic distance between a pair of viruses ¢ and j is experimentally quantified using
neutralization titers, which measure how well serum drawn after infection with virus j is
able to neutralize virus ¢ in vitro (Russell and Nisalak, 1967). Throughout the following
we refer to serum raised against virus j as serum j for brevity. To measure the pairwise
antigenic distances for a panel of diverse DENV viruses (Figure 1), Katzelnick et al. infected
naive non-human primates (NHP) with each virus, drew sera at three months post-infection,
and then titered this sera against a panel of test viruses (Katzelnick et al., 2015). To
compare patterns of cross-protection in NHP and humans, they also drew sera from 31
study participants six weeks after inoculation with a monovalent component of the NIH
dengue vaccine candidate. This sera was also titered against a broad panel of DENV viruses.
As originally reported, we find generally consistent patterns of neutralization between the
NHP and human sera data; see Katzelnick et al. (2015) for a detailed comparison. In total,
our dataset consists of 454 NHP sera titers spanning the breadth of DENV diversity, and
728 human sera titers providing deep coverage of a small subset of viruses.

To normalize these measurements, we take the logs of each value, such that one antigenic unit
corresponds to a two-fold drop in neutralization, and we define antigenic distance between
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autologous serum-virus pairs (i.e., virus ¢ and serum 4) as zero. Normalized antigenic
distance between virus ¢ and serum j is thus calculated as D;; = logy(Tj;) — logy(73;), such
that a higher value of D;; indicates that serum j is less effective at neutralizing virus 4,
implying greater antigenic distance between viruses 7 and j. For brevity, these normalized
titer values are hereafter referred to simply as loga(titers).

The full dataset of standardized titer values is shown in Figure 1B. Here, we see that
homotypic virus-serum pairs are more closely related antigenically than heterotypic pairs.
However, we also observe large variance around this trend, both within and between
serotypes. This suggests that treating each serotype as antigenically uniform potentially
overlooks important antigenic heterogeneity across viruses within each serotype.

Dengue antigenic evolution corresponds to genetic divergence

Titer measurements are prone to noise, and there is a limited amount of available titer data.
If the antigenic heterogeneity observed in the raw data is truly the result of an underlying
evolutionary process, we expect that differences in antigenic phenotype correspond to
underlying mutations in surface proteins. Dengue has two surface proteins, prM (membrane)
and E (envelope). While previous studies have identified epitopes on both prM and E,
it is believed that antibodies involved in ADE primarily target prM, while neutralizing
antibodies primarily target E (de Alwis et al., 2014). The assay used to generate this titer
dataset captures neutralization, but does not capture the effects of ADE; we thus focus
our analysis on the E gene.

To fully map the relationship between DENV genetic and antigenic evolution, we adapt
a substitution-based model originally developed for influenza (Neher et al., 2016). Con-
ceptually, this model predicts titer values through three steps. First, we align E gene
sequences from titered dengue viruses and catalog the amino acid mutations between each
serum strain and test virus strain in our dataset. Next, we infer how much antigenic
change is attributable to specific mutations by constructing a parsimonious model that
links normalized antigenic distances to observed mutations. This assigns each mutation m
an antigenic effect size, d,,, > 0; forward and reverse mutations are assigned separate values
of d,,. With this in hand, we estimate the asymmetrical antigenic distance Dij between all
pairs of sera and test viruses by summing over d,, for all mutations observed between the
serum and the test virus (Methods, Eq. 2).

To learn these values of d,,, we first split our dataset into training (random 90% of
measurements) and test data (the remaining 10% of values). We take the training data
and fit d,, for each mutation that is observed two or more times, subject to regularization
as follows (also detailed in Methods, Eq. 3). Parsimoniously, we expect that antigenic
change is more likely to be incurred by a few key mutations than by many mutations;
correspondingly, our prior expectation of values of d,, is exponentially distributed such
that most values of d,,, = 0. This is directly analogous to lasso regression to identify a
few parameters with positive weights and set other parameters to 0 (Tibshirani, 1996).
Additionally, some viruses have greater binding avidity, and some sera are more potent than
others (Figure S1); these ‘row’” and ‘column’ effects, respectively, are normally distributed
and are taken into account when training the model. The model uses convex optimization
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to learn the values of d,;, that minimize the sum of squared errors (SSE) between observed
and predicted titers in the training data. We thus learn model parameters from the
training data, and then use those parameters to predict test data values. We assess model
performance by comparing the predicted test titer values to the actual values, aggregated
across 100-fold Monte Carlo cross validation.

This model formulation is an effective tool for estimating antigenic relationships between
viruses based on their genetic sequences. On average across cross-validation replicates, this
model yields a root mean squared error (RMSE) of 0.75 when predicting titers relative to
their true value (95% CI 0.74-0.77, RMSE), and explains 78% of the observed variation
in neutralization titers overall (95% CI 0.77-0.79, Pearson R?). This is comparable to
the model error from a cartography-based characterization of the same dataset (RMSE
0.65-0.8 logy titer units) (Katzelnick et al., 2015). Prediction error was comparable between
human and non-human primate sera, indicating that these genetic determinants of antigenic
phenotypes are not host species-specific (Figure S2).

The 48 strains included in the titer dataset (as serum strains, test virus strains, or both) are
25.7% divergent on average (amino acid differences in E). Pairwise comparisons of all serum
strains and test viruses yields 1,534 unique mutations that are observed at least twice.
Our parsimonious model attributes antigenic change to a total of 49 specific mutations
and 4 colinear mutation clusters (each consisting of 2-6 co-occurring mutations) (Figure 2,
Table S1). Each of these mutations confers 0.01-2.11 (median 0.19) logs titer units of
antigenic change; 27 mutations or mutation clusters have d,;, > 0.2. These mutations span
all domains of E, and most occur both between and within serotypes (Figure 2).

Each serotype of dengue contains moderate antigenic heterogeneity

By linking antigenic change to specific mutations, we are able to estimate unmeasured
antigenic distances between any pair of viruses in the dataset based on their genetic
differences. As an example, we estimated the antigenic distance between serum raised
against each monovalent component of the NIH vaccine candidate and all other viruses in
the dataset. As shown in Figure 3, vaccine-elicited antibodies result in strong homotypic
neutralization, but heterotypic cross-neutralization varies widely between specific strains.
This has important ramifications for vaccine design and trial evaluation.

We also observe antigenic heterogeneity at the genotype level. On average, heterotypic
genotypes are separated by 6.9 antigenic mutations (or colinear mutation clusters) and
2.18 logy titers. Homotypic genotypes are separated by a mean of 1.9 antigenic mutations,
conferring a total of 0.30 logs titers of antigenic distance (Figure 4). Notably, the titer
dataset spans the breadth of canonical DENV genotypes, but in most cases lacks the
resolution to detect within-genotype antigenic diversity. We thus expect that these results
represent a lower-bound on the true extent of DENV intraserotype antigenic diversity.

In summary, we have identified a small number of antigenically relevant mutations that
explain most of the observed antigenic heterogeneity in dengue, as indicated by neutral-
ization titers. These mutations occur both between and within serotypes, suggesting
that dengue antigenic evolution is an ongoing, though gradual, process. This results in
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Figure 2. Distribution and effect size of antigenic mutations. Each point represents one
antigenically relevant mutation or colinear mutation cluster. Clustered mutations are connected
with dashed lines with point size proportionate to cluster size (N=2-6). The x axis indicates
mutations’ position in F, relative to each functional domain as noted in (B). The y axis indicates
antigenic effect size.

strain-specific and genotype-level antigenic variation, although the scale of this variation is
small compared to serotype-level differences. From this, we conclude that there is antigenic
variation within each serotype of DENV, and that this is driven by underlying genetic
divergence.
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Figure 3. Antigenic distance from NIH vaccine strains. By assigning a discrete increment
of antigenic change to each mutation, we can estimate the asymmetrical antigenic distance between
any serum strain and test virus strain based on their genetic differences. Here, we show the
estimated antigenic distance between serum raised against each monovalent component of the NITH
vaccine candidate (indicated as ‘X’) and each test virus in the tree.

Antigenic novelty predicts serotype success

From the titer model, we find evidence that homotypic genotypes of DENV vary in their
ability to escape antibody neutralization. However, antibody neutralization is only one of
many factors that shape epidemic patterns. We investigate whether the observed antigenic
diversity influences dengue population dynamics in the real world.

The size of the viral population (i.e., prevalence, commonly analyzed using SIR models as
reviewed in Lourengo et al. (2018)) is determined by many complex factors, and reliable
values for population prevalence are largely unavailable. Contrastingly, the composition of
the viral population (i.e., the relative frequency of each viral clade currently circulating)
can be estimated over time by examining historical sequence data (Lee et al., 2018; Neher
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Figure 4. Titer distance by genotype. Values represent the mean interpolated antigenic
distance between canonical dengue genotypes (in standardized logs titer units).

et al., 2016), and is primarily driven by viral fitness (Bedford et al., 2011).

In meaningfully antigenically diverse viral populations, antigenic novelty (relative to
standing population immunity) contributes to viral fitness: as a given virus 4 circulates in
a population, the proportion of the population that is susceptible to infection with i—and
other viruses antigenically similar to :—decreases over time as more people acquire immunity
(Bedford et al., 2012; Luksza and Léssig, 2014). Antigenically novel viruses that are able
to escape this population immunity are better able to infect hosts and sustain transmission
chains, making them fitter than the previously circulating viruses (Bedford et al., 2012;
Gupta et al., 1998; Lourenco and Recker, 2013; Wearing and Rohani, 2006; Zhang et al.,
2005). Thus, if antigenic novelty constitutes a fitness advantage for DENV, then we would
expect greater antigenic distance from recently circulating viruses to correlate with higher
growth rates.

To test this hypothesis, we examine the composition of the dengue virus population in
Southeast Asia from 1970 to 2015. We estimate the relative population frequency of
each DENV serotype at three month intervals, x;(¢) (Figure 5A), based on their observed
relative abundance in the ‘slice’ of the phylogeny corresponding to each timepoint (N=8,644
viruses; see Methods, Eq. 4). While there is insufficient data to directly compare these
estimated frequencies to regional case counts, we see good qualitative concordance between
frequencies similarly estimated for Thailand and previously reported case counts from
Bangkok (Figure S3).
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Figure 5. Antigenic novelty predicts serotype success. (A) The relative frequency of each
serotype, x;, in Southeast Asia estimated every three months based on available sequence data.
(B) Total fitness of each serotype. We calculate antigenic fitness for each serotype over time as
its frequency-weighted antigenic distance from recently circulating viruses. We then add this to a
time-invariant intrinsic fitness value to calculate total fitness. (C) DENV1 frequencies between
1994 and 1996 alongside model projection. At each timepoint ¢, we blind the model to all empirical
data from timepoints later than ¢ and predict each serotype’s future trajectory based on its initial
frequency, time-invariant intrinsic fitness, and antigenic fitness at time ¢t (Methods, Eq. 11). We
predict forward in three-month increments for a total prediction period of dt = 2 years. At each
increment, we use the current predicted frequency to adjust our estimates of antigenic fitness on a
rolling basis (Methods, Eq. 15). (D) Predicted growth rates, § = fiii'&‘)ﬁ), compared to empirically

z; (t+dt)
ZDL(t)
in (C) is shown in (D) as the blue point. Serotype growth versus decline is accurate (i.e., the

predicted and actual growth rates are both > 1 or both < 1, all points outside the gray area) for
66% of predictions.

observed growth rates, g = . Predicted and empirical growth rate of the example illustrated

Fitter virus clades increase in frequency over time, such that x;(t + dt) > z;(t). It follows
that these clades have a growth rate—defined as the fold-change in frequency over time—

greater than one: %{ﬁt) > 1. To isolate the extent to which antigenic fitness contributes

to clade success and decline, we extend work by Luksza and Lassig (2014) to build a simple
model that attempts to predict clade growth rates based on two variables: the antigenic
fitness of the clade at time ¢, and a time-invariant free parameter representing the intrinsic
fitness of the serotype the clade belongs to. We estimate the antigenic fitness of clade i at
time t as a function of its antigenic distance from each viral clade j that has circulated in

10
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the same population over the previous two years, weighted by the relative frequency of j
and adjusted for waning population immunity (Figure 5B; Methods, Eq. 7). Growth rates
are estimated based on a two year sliding window (Figure 5C).

This simple model explains 54.7% of the observed variation in serotype growth rates, and
predicts serotype growth vs. decline correctly for 66.0% of predictions (Figure 5D). This
suggests that antigenic fitness is a major driver of serotype population dynamics. This also
demonstrates that this model captures key components of dengue population dynamics;
examining the formulation of this model in more detail can yield insights into how antigenic
relationships influence DENV population composition. The fitness model includes six
free parameters that are optimized such that the model most accurately reproduces the
observed fluctuations in DENV population composition (minimizing the RMSE of frequency
predictions, see Methods). We find that serotype fluctuations are consistent with a model
wherein population immunity wanes linearly over time, with the probability of protection
dropping by about 63% per year for the first two years after primary infection. This model
assumes no fundamental difference between homotypic and heterotypic reinfection; rather,
homotypic immunity is assumed to wane at the same rate as heterotypic immunity, but
starts from a higher baseline of protection based on closer antigenic distances. We also
find that these dynamics are best explained by intrinsic fitness that moderately varies
by serotype (Table 1); we are not aware of any literature that directly addresses this
observation via competition experiments. However, intrinsic fitness alone is unable to
predict serotype dynamics (Table S3) and relative strength of antigenic fitness and intrinsic
fitness are approximately matched in determining overall serotype fitness.

Antigenic novelty also partially predicts genotype success

To estimate how well antigenic fitness predicts genotype dynamics, we used the same model
to predict genotype success and decline. As before, fitness of genotype i is based on the
intrinsic fitness of the serotype ¢ belongs to, and the antigenic distance between ¢ and
each other genotype, j, that has recently circulated (Figure 6B). For genotypes, we can
calculate antigenic distance between i and j at either the serotype level or the genotype
level. In the ‘interserotype model’, we treat each serotype as antigenically uniform, and
assign the mean serotype-level antigenic distances to all pairs of constituent genotypes. In
the ‘intergenotype model’, we incorporate the observed within-serotype heterogeneity, and
use the mean genotype-level antigenic distances (as shown in Figure 4). If within-serotype
antigenic heterogeneity contributes to genotype fitness, then we would expect estimates
of antigenic fitness based on the ‘intergenotype model’ to better predict genotype growth
rates.

We find that antigenic fitness contributes to genotype turnover, although it explains less
of the observed variation than for serotypes. As for serotypes, intrinsic fitness alone was
unable to predict genotype turnover (Table S3). When antigenic distance is estimated from
the ‘interserotype model’, we find that our model of antigenic fitness explains approximately
28.6% of the observed variation in genotype growth rates, and correctly predicts genotype
growth vs. decline 66.6% of the time (Figure 6C). Perhaps surprisingly, more precise
estimates of antigenic distance between genotypes from the ‘intergenotype model’ does
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not improve our predictions of genotype success (R? = 0.254, 61.0% accuracy; Figure 6D,
Table S3). This suggests that although we find strong evidence that genotypes vary in
their ability to escape neutralizing antibodies, these differences are subtle enough that they
do not impact broad-scale regional dynamics over time.
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Figure 6. Antigenic novelty partially predicts genotype success (A) Relative frequencies
of each canonical dengue genotype across Southeast Asia, estimated from available sequence data.
(B) Antigenic fitness is calculated for each genotype as its frequency-weighted antigenic distance
from recently circulating genotypes. We then add this to a time-invariant, serotype-specific intrinsic
fitness value to calculate total fitness (shown here, arbitrary units). We assess antigenic distance at
either the ‘intergenotype’ or the ‘interserotype’ resolution. In this panel, we show total fitness over
time, incorporating estimates of antigenic fitness derived from the ‘intergenotype’ model. (C, D)
Fitness estimates were used to predict clade growth rates over 2 years, compounding immunity every
three months based on predicted frequency changes (Methods Eq. 15). Here, we compare observed
vs. predicted growth rates for both formulations of the fitness model (using fitness derived from
either ‘interserotype’ or ‘intergenotype’ antigenic distances). Growth versus decline was accurate
(predicted and actual growth rates both > 1 or both < 1, points outside the gray shaded area) for
67% and 61% of predictions, respectively.
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Discussion

Within-serotype antigenic heterogeneity

We show that mapping antigenic change to specific mutations and interpolating across the
DENYV alignment is able to explain a large majority of the observed variation in antigenic
phenotypes, as measured by neutralization titers. We identify 49 specific mutations
and four colinear mutation clusters that contribute to antigenic variation, of which 27
mutations or mutation clusters have an antigenic impact of 0.20 logs titers or greater.
These mutations span all major domains of FE, and occur both within and between
serotypes. This demonstrates that DENV antigenic divergence is closely coupled to
genetic divergence. We use these mutations to infer unmeasured antigenic relationships
between viruses, revealing substantial within-serotype antigenic variation. For comparison,
we reconstructed the ancestral sequence of each serotype and constrained the model to only
permit antigenic change to be attributed to these serotype-level differences. While this
interserotype-only model predicts titers to a reasonable degree, we find that it has higher
error (RMSE = 0.86) than the full model which accounts for within-serotype heterogeneity
(RMSE = 0.79; Table S2). This supports and expands upon previous reports (Forshey
et al., 2016; Katzelnick et al., 2015; Waggoner et al., 2016) that the null hypothesis of
antigenically uniform serotypes is inconsistent with observed patterns of cross-protection
and susceptibility.

Consistent with the relatively long timescale of dengue evolution, we observe many sites
in the dengue phylogeny to have mutated multiple times. These represent instances of
parallelism, reversion and homoplasy. For example, we observe that site 390 is consistently
S in DENV1, N in DENV3 and H in DENV4, while DENV2 genotypes show a mixture
of D, N and S (S4). We estimate an antigenic impact of 0.18 logs titers of the N390S
mutation. Our model predicts that the parallel N390S mutations in DENV1 and DENV2
Cosmopolitan makes these viruses slightly more antigenically similar rather than more
antigenically distinct. Along these lines, we compared the ‘substitution’ model to a similar
model formulation (termed the ‘tree’ model) which assigns d,,, values to individual branches
in the phylogeny, rather than to individual mutations, so that each branch with a positive
d,, value increases antigenic distance between strains (Neher et al., 2016). As expected
from the high degree of homoplasy across the dengue phylogeny, we observe that the
‘substitution” model outperforms the ‘tree’ model in predicting titers in validation datasets
(Table S2).

To investigate the impact of this observed variation, we examine patterns of neutralization
in response to vaccination with each monovalent component of the NIH vaccine candidate.
Here, we see that each monovalent component elicits broad homotypic protection, but
levels of heterotypic cross protection vary widely between heterotypic genotypes. This
is consistent with previous reports of genotype-specific interactions between standing
population immunity and subsequent heterotypic epidemics as modulating epidemic severity
(Kochel et al., 2002; OhAinle et al., 2011). We hypothesize that this observed within-
serotype variation primarily effects heterotypic secondary infection outcomes, rather than
modulating homotypic immunity. Although we note that Juraska et al. (2018) demonstrate
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that vaccine efficacy decreases with increasing amino acid divergence of breakthrough
infections from the vaccine insert.

Overall, we expect that these antigenic phenotypes represent a lower-bound on the extent,
magnitude, and nature of antigenic heterogeneity with DENV. Our current titer dataset
spans the breadth of DENV diversity, but due to small sample size, it lacks the resolution
to detect most sub-genotype antigenic variation. The appearance of the deep antigenic
divergence of the four serotypes, and the more recent antigenic divergences within each
serotype, suggest that DENV antigenic evolution is likely an ongoing, though gradual,
process. We therefore expect that future studies with richer datasets will find additional
antigenic variation within each genotype. This dataset also contains many left-censored
titer values, where we know two viruses are at least T titer units apart, but do not know
exactly how far apart. If we knew the true value of these censored titers, many of them
would indicate larger antigenic distances than the reported values, T', which are used
to train the model. Thus, it is likely that our model systematically underestimates the
magnitude of titer distances.

Finally, antibody neutralization and escape (as measured by PRNT titers) is only one
component of the immune response to DENV. Although analysis of a longitudinal cohort
study shows that these neutralization titers correlate with protection from severe secondary
infection, it is unclear how PRN'T titers correspond to antibody-dependent enhancement
(Katzelnick et al., 2016). It is also important to note that DENV case outcomes are
partially mediated by interactions with innate and T-cell immunity, the effects of which are
not captured in neutralization titers (Green et al., 2014). Overall, while richer datasets and
the development of more holistic assays will be required in order to fully characterize the
extent of DENV antigenic diversity, it is clear that the four-serotype model is insufficient
to explain DENV antigenic evolution.

Viral clade dynamics

We use these inferred antigenic relationships to directly quantify the impact of antigenic
fitness on DENV population composition. To do so, we measure serotype frequencies
across Southeast Asia over time and construct a model to estimate how they will fluctuate
(Methods, Eq. 6-16). This model places a fitness value on each serotype that derives
from a constant intrinsic component alongside a time-dependent antigenic component.
Antigenic fitness declines with population immunity, which is accumulated via the recent
circulation of antigenically similar viruses. Our primary model parameterization assumes
that both heterotypic and homotypic immunity wane linearly over time at the same rate,
with homotypic immunity starting from a higher baseline of protection based on closer
antigenic distances. We compared this to a secondary model parameterization with only
heterotypic waning (see Methods), under which we observe similar model performance
(Table S3).

We find that antigenic fitness is able to explain much of the observed variation in serotype
growth and decline (Figure 5). Forward simulations under the optimized parameter set
display damped oscillations around the serotype-specific ‘set points’ determined by intrinsic
fitnesses, but intrinsic fitness alone is unable to explain serotype fluctuations (R? = 0.04;
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Table S3, Figure S6). This demonstrates that although intrinsic fitness plays an important
role in dictating long-term dynamics, wherein particular serotypes tend to circulate at
low frequency (e.g., DENV4) and others at high frequency (e.g., DENV1 and DENV2),
antigenic fitness plays out on shorter-term time scales, dictating circulation over several
subsequent years.

We similarly use this model to quantify the effect of within-serotype antigenic variation
on the success and decline of canonical DENV genotypes (Figure 6). As above, genotype
antigenic fitness declines with population immunity. Here, we estimate population immunity
based on antigenic distance from recently circulating genotypes, using distances that are
either genotype-specific or based only on the serotype that each genotype belongs to. We
then directly compare how strongly these coarser serotype-level versus specific genotype-
level antigenic relationships impact DENV population dynamics. Overall, we find that
antigenic fitness explains a moderate portion of the observed variation in genotype growth
and decline. Surprisingly, however, we find that incorporating within-serotype antigenic
differences does not improve our predictions (Figure 6C-D). This suggests that although
genotypes are antigenically diverse, these differences do not appear to influence large-scale
regional dynamics over time. This lack of signal could be explained by either (A) genotype-
level frequency trajectories estimated from public data are overly noisy for this application
or (B) our model of antigenic fitness based on PRNT assay data does not match reality, due
to either PRNT assay data not well reflecting human immunity or due to our particular
model formulation that parameterizes immunity from titer distances (Eq. 6-10). In the
present analysis, we are not able to firmly resolve these disparate possibilities.

This observation is also subject to caveats imposed by the available data and model
assumptions. Our estimates of antigenic fitness are informed by the antigenic distances
inferred by the substitution model; thus, as above, we are unable to account for nuanced
antigenic differences between sub-genotype clades of DENV due to limited titer data.
We estimate DENV population composition over time based on available sequence data,
pooled across all of Southeast Asia (Methods, Eq. 4). As the vast majority of cases of
DENYV are asymptomatic, sequenced viruses likely represent a biased sample of more severe
cases from urban centers where patients are more likely to seek and access care. We also
assume that Southeast Asia represents a closed viral population with homogeneous mixing.
However, increasing globalization likely results in some amount of viral importation that is
not accounted for in this model (Allicock et al., 2012). Finally, although Southeast Asia
experiences hyperendemic DENV circulation, the majority of DENV transmissions are
hyper-local (Salje et al., 2017), and viral populations across this broad region may not
mix homogeneously each season. Thus, it is possible that these sub-serotype antigenic
differences impact finer-scale population dynamics, but we lack the requisite data to
examine this hypothesis.

Conclusions
We find that within-serotype antigenic evolution helps explain observed patterns of cross-

neutralization among dengue genotypes. We also find that population immunity is a
strong determinant of the composition of the DENV population across Southeast Asia,
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although this is putatively driven by coarser, serotype-level antigenic differences. As richer
datasets become available, future studies that similarly combine viral genomics, functional
antigenic characterization, and population modeling have great potential to improve our
understanding of how DENV evolves antigenically and moves through populations.

Model sharing and extensions
We have provided all code, configuration files and datasets at github.com/blab/dengue-

antigenic-dynamics, and wholeheartedly encourage other groups to adapt and extend this
framework for further investigation of DENV antigenic evolution and population dynamics.
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Methods

Data
Titers

Antigenic distance between pairs of viruses ¢ and j is experimentally measured using a
neutralization titer, which measures how well serum drawn after infection with virus ¢
is able to neutralize virus j in vitro (Russell and Nisalak, 1967). Briefly, two-fold serial
dilutions of serum ¢ are incubated with a fixed concentration of virus j. Titers represent
the lowest serum concentration able to neutralize 50% of virus, and are reported as the
inverse dilution. We used two publicly available plaque reduction neutralization titer
(PRNT50) datasets generated by Katzelnick et al. in (Katzelnick et al., 2015). The primary
dataset was generated by infecting each of 36 non-human primates with a unique strain
of DENV. NHP sera was drawn after 12 weeks and titered against the panel of DENV
viruses. The secondary dataset was generated by vaccinating 31 human trial participants
with a monovalent component of the NIH DENV vaccine. Sera was drawn after 6 weeks
and titered against the same panel of DENV viruses. As discussed in Katzelnick et al.,
these two datasets show similar patterns of antigenic relationships between DENV viruses.
In total, our dataset includes 1182 measurements across 48 virus strains: 36 of these were
used to generate serum, and 47 were used as test viruses.

Sequences

For the titer model analysis, we used the full sequence of E (envelope) from the 48 strains
in the titer dataset.

For the clade frequencies analysis, we downloaded all dengue genome sequences available
from the Los Alamos National Lab Hemorrhagic Fever Virus Database as of March 7, 2018,
that contained at least the full coding sequence of E (envelope) (total N=12,645) (Kuiken
et al., 2011). We discarded sequences which were putative recombinants, duplicates, lab
strains, or which lacked an annotated sampling location and/or sampling date. We selected
all remaining virus strains that were annotated as a Southeast Asian isolate (total N =
8,644).

For both datasets, we used the annotated reference dataset from (Pyke et al., 2016) to
assign sequences to canonical genotypes.

Alignments and trees

We used MAFFT v7.305b to align nucleotide E gene sequences for each strain before
translating the aligned sequences (no frame-shift indels were present) (Katoh and Standley,
2013). All maximum likelihood phylogenies were constructed with IQ-TREE version 1.6.8
and the GTR+I+G15 nucleotide substitution model (Nguyen et al., 2014).

17


https://doi.org/10.1101/432054
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/432054; this version posted April 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Titer Model

We compute standardized antigenic distance between virus ¢ and serum j (denoted D;;)
from measured titers T;; relative to autologous titers Tj;, such that

Dij = logy(Tii) — logs(Tij)- (1)

We then average normalized titers across individuals. To predict unmeasured titers, we
employ the ‘substitution model’ from Neher et al. (2016) and implemented in Nextstrain
(Hadfield et al., 2018), which assumes that antigenic evolution is driven by underlying
genetic evolution.

In the substitution model, observed titer drops are mapped to mutations between each
serum and test virus strain after correcting for overall virus avidity, v;, and serum potency,
pj (‘row’ and ‘column’ effects, respectively), so that

Dij ~ Dij =Y dm +vi +pj, (2)
m

where d,,, is the titer drop assigned to each mutation, m, between serum ¢ and virus j, and
m iterates over mutations. We randomly withhold 10% of titer measurements as a test set.
We use the remaining 90% of titer measurements as a training set to learn values for virus
avidity, serum potency, and mutation effects. As in Neher et al. (2016), we formulate this
as a convex optimization problem and solve for these parameter values to minimize the
cost function

CZZ(DU—Dij)2+/\2dm+/€zv?+5zp§. (3)
i,j m { J

We used A = 3.0, Kk = 0.6, and 0 = 1.2 to minimize test error. Respectively, these terms
represent the squared training error; an L1 regularization term on mutation effects, such
that most values of d,, = 0; and L2 regularization terms on virus avidities and serum
potencies, such that they are normally distributed. These parameter values are then used to
predict the antigenic distance between all pairs of viruses, ¢ and j. We assess performance
by comparing predicted to known titer values in our test data set, and present test error
(aggregated from 100-fold Monte Carlo cross-validation) throughout the manuscript.

Viral Clade Dynamics
Empirical Clade Frequencies

As discussed in Neher et al. (2016) and Lee et al. (2018), we estimate empirical clade
frequencies from 1970 to 2015 based on observed relative abundances of each clade in the
‘slice’ of the phylogeny corresponding to each quarterly timepoint.

Briefly, the frequency trajectory of each clade in the phylogeny is modeled according to
a Brownian motion diffusion process discretized to three-month intervals. Relative to a
simple Brownian motion, the expectation includes an ‘inertia’ term that adds velocity
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to the diffusion and the variance includes a term x(1 — x) to scale variance according
to frequency following a Wright-Fisher population genetic process. This results in the
diffusion process

z(t+dt) = N (2(t) + edx, dto®z(t) (1 — z(t))) (4)

with ‘volatility’ parameter o2 and inertia parameter e. The term dz is the increment in the
previous timestep, so that dz = x(t) — z(t — dt). We used e = 0.7 and o = 2.0 to maximize
fit to empirical trajectory behavior.

We also include an Bernoulli observation model for clade presence / absence among sampled
viruses at timestep t. This observation model follows

fla,t) =TT =) [T =), ()

veEV vV

where v € V represents the set of viruses that belong to the clade and v ¢ V represents
the set of viruses that do not belong to the clade. Each frequency trajectory is estimated
by simultaneously maximizing the likelihood of the process model and the likelihood of the
observation model via adjusting frequency trajectory T = (z1,...zp).

Population Immunity

For antigenically diverse pathogens, antigenic novelty represents a fitness advantage (Lip-
sitch and O’Hagan, 2007). This means that viruses that are antigenically distinct from
previously-circulating viruses are able to access more susceptible hosts, allowing the anti-
genically novel lineage to expand. We adapt a simple deterministic model from Luksza
and Léssig (2014) to directly quantify dengue antigenic novelty and its impact on viral
fitness. We quantify population immunity to virus ¢ at time ¢, P;(¢), as a function of which
clades have recently circulated in the past IV years, and how antigenically similar each of
these clades is to virus ¢, so that

n=

Pt =3 (wm) 3 (w5t = m CDy) | (6)

n=1

where D;; is the antigenic distance between i and each non-overlapping clade j, n is the
number of years since exposure, and x;(t —n) is the relative frequency of j at year t —n.
Waning immunity is modeled as a non-negative linear function of time following

w(n) = max(1 —yn,0). (7)

The relationship between antigenic distance and the probability of protection, C, is also
assumed to be non-negative and linear with slope —o, such that

C(DU) = max(l - O'Dz'j, 0) (8)

In addition to this primary analysis, we conducted a secondary analysis with a different
parameterization of immunity that removes waning of homotypic immunity while allowing
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waning of heterotypic immunity. In this case, we assume the relationship between antigenic
distance and the probability of protection, C, to be 50% at antigenic distance 1/0 and to
wane based on years since infection n modified by e following

C(Djj,n) = exp (=0 (1/met)" Dij) - 9)

We model the effects of population immunity, P;(¢), on viral antigenic fitness, f;(t), as

fi(t) = fo— BEi(t), (10)

where 8 and fy are fit parameters representing the slope of the linear relationship between
immunity and fitness, and the intrinsic relative fitness of each serotype, respectively.

Frequency Predictions

Similar to the model implemented in Luksza and Léassig (2014), we estimate predicted
clade frequencies at time t + dt as

:Ei(t)efi(t)dt

Zi(t 4 dt) = —ZZ o ()T O

(11)

for short-term predictions (where dt < 1 year).
We do not attempt to predict future frequencies for clades with x;(¢) < 0.05.

For long-term predictions, we must account for immunity accrued at each intermediate
timepoint between ¢ and dt. We divide the interval between ¢t and dt into a total of U
3 month timepoints, [t + u,t + 2u, ...,t + U], such that ¢t + U = dt. We then compound
immunity based on predicted clade frequencies at each intermediate timepoint following

Ti(t +u) = z;(t)efi O (12)

Ei(t + 2u) = £ (t + u)efitrun (13)

it +U) = xi(t)efi(t)uefi(t+u)uefi(t+2u)u'“efi(t-*‘U)U (14)
Ei(t + dt) = Ei(t + U) = z;(t)eXon filtH0)u (15)

We then calculate clade growth rates, defined as the fold-change in relative clade frequency
between time ¢ and time t + dt
Zi(t + dt)

w;(t) 16)
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Null models
To quantify the impact of antigenic fitness on DENV clade success, we compare our
antigenically-informed model to two null models.

Under the ‘equal fitness null’ model, all viruses have equal total fitness (antigenic and
intrinsic fitness) at all timepoints

Feml(e) = 0 (17)

)

F21 (¢ 4 dt) = 24(t)e® = (). (18)

Under the ‘intrinsic fitness null’ model, all viruses have equal antigenic fitness but serotype-
specific intrinsic fitness at all timepoints

fiintrinsic(t) = fo (19)
&Mt dt) = @ (t)el°. (20)

Model performance assessment and parameter fitting

We assess predictive power as the root mean squared error between predicted and empirical
clade frequencies. To assess both the final frequency predictions and the predicted clade
trajectories, this RMSE includes error for each clade, for each starting timepoint ¢, and for
each intermediate predicted timepoint ¢ + u.

Our frequency prediction model has a total of 6 free parameters. We jointly fit these
parameters to minimize RMSE of serotype frequency predictions via the Nelder-Mead
algorithm as implemented in SciPy v.1.0.0 (Table 1) (Gao and Han, 2012; Jones et al.,
2001). We use N = 2 years of previous immunity that contribute to antigenic fitness and
project dt = 2 years in the future when predicting clade frequencies.

Table 1. Optimized fitness model parameters for primary analysis

Parameter Value Description

I3 1.02  Slope of linear relationship between population immunity and viral
fitness

¥ 0.83  Proportion of titers waning each year since primary infection

o 0.76  Slope of linear relationship between titers and probability of protec-
tion

) 0.74  Relative intrinsic fitness of DENV1

52) 0.84 Relative intrinsic fitness of DENV?2

és) 0.50  Relative intrinsic fitness of DENV3

) 0.00  Relative intrinsic fitness of DENV4 (fixed)
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Simulations

To ensure the model machinery functions correctly, we seeded a forward simulation of clade
dynamics with two years of empirical frequencies and simulated predicted dynamics over
the remainder of the time course (Figure S5). We then fit model parameters as described
above, and obtained parameter values that well recover input values (Table 2).

Table 2. Parameter recovery against simulated data.

Parameter Input value Optimized value

B 3.25 3.10
v 0.55 0.56
o 2.35 2.57
1) 0.70 0.72
2) 0.85 0.78
©) 0.40 0.41

Data and software availability

Sequence and titer data, as well as all code used for analyses and figure generation, is
publicly available at github.com/blab/dengue-antigenic-dynamics. Our work relies upon
many open source Python packages and software tools, including iPython (Pérez and
Granger, 2007), Matplotlib (Hunter, 2007), Seaborn (Waskom, 2017), Pandas (McKinney
et al., 2010), CVXOPT (Andersen et al., 2013), NumPy (Gao and Han, 2012; Van Der Walt
et al., 2011), Biopython (Cock et al., 2009), SciPy (Jones et al., 2001), Statsmodels (Seabold
and Perktold, 2010), Nextstrain (Hadfield et al., 2018), MAFFT (Katoh and Standley,
2013), and IQ-TREE (Nguyen et al., 2014). Package versions are documented in the
GitHub repository.
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Supplement

Table S1. Antigenically relevant mutations. Each entry represents a mutation (or colinear
cluster of mutations) inferred by the titer model to have a non-zero antigenic effect size d,,, (shown
in parentheses).

e 16V, S29G, F90Y, o 1139V (0.05) o L333E (0.43)
T176P, V1971, LA7T5M e D154E (0.03) e T3391 (0.65)
(0.71) e K160V (0.03) o V347A (0.28)

e A19T (0.02) e EI61T (0.22) o 1380V (0.45)

o N83K (0.34) e A1621 (0.19) o V382A (0.04)

o AS8K (0.08) o 1162A (0.29) e V3821 (0.37)

o A88Q (1.39) e 1164V (0.01) o N385K, V4541 (0.12)

e Y90F (0.43) e T171S (0.23) e D390S (0.12)

e VOII (0.35) e VI74E (0.46) e N390S (0.18)

e K93R (0.20) e E180T (0.43) o V454T (0.25)

e V114I (0.90) e N203E (0.04) e V461F (0.01)

e L1225 (0.03) o N203K (0.08) o F4611 (0.03)

e S122L (0.07) e D203N (0.14) e 1462V (0.10)

e N124K (0.10) e E203N (1.09) o L4621 (0.16)

e V1291 (0.01) e E203D (1.34) o V462L (2.11)

o 1129V (0.21) e 1308V (0.18) o T478S (0.10)

o 1129A (0.23) e G330D (0.22) o S478M (0.43)

e Y1321 (0.12) e 1335V, N355T, P364V o V4841 (0.39)

e Y132P, R233Q (0.34) (0.18)
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Table S2. Titer model performance comparisons. We compared performance across several
different variations of the titer model. As described in Neher et al. (2016), incremental antigenic
change can be assigned to either amino acid substitutions (‘Substitution’ model) or to branches
in the phylogeny (‘Tree’ model). For each of these models, we can constrain the model such that
antigenic change is allowed to occur only between serotypes (‘Interserotype’) or between AND
within serotypes (‘Full’). For the substitution model, we constrain the interserotype model by
reconstructing the amino acid sequence of the most recent common ancestor for each serotype and
allowing the model to assign antigenic change only to mutations between these ancestral sequences.
For the tree model, we constrain the interserotype model by allowing the model to assign antigenic
change only to branches in the phylogeny that lie between serotypes. We also assess the impact
of the virus avidity and serum potency terms, v, and p,. For all models and metrics, we report
the mean and 95% confidence interval across 100-fold Monte Carlo cross validation with random
90%:10%, training:test splits.

Model Antigenic resolution v, and p RMSE Pearson R?
Substitution Full Yes 0.75 (0.74-0.77)  0.78 (0.77-0.79)
Substitution Full No 1.13 (1.11-1.16)  0.50 (0.48-0.52)
Substitution Interserotype Yes 0.86 (0.85-0.88) 0.72 (0.70-0.73)
Substitution Interserotype No 0.86 (0.84-0.87) 0.71 (0.70-0.72)

Tree Full Yes 0.84 (0.83-0.86) 0.72 (0.71-0.73)
Tree Full No  1.40 (1.38-1.42) 0.24 (0.23-0.26)
Tree Interserotype Yes 0.87 (0.85-0.88) 0.70 (0.69-0.71)
Tree Interserotype No 0.86 (0.84-0.88) 0.72 (0.71-0.73)

Table S3. Fitness model performance comparisons. Here we compare the performance of
the antigenically-informed fitness models to model performance under two null formulations. In the
‘equal’ null model, all clades are assigned equal fitness (i.e., antigenic and intrinsic fitness are set
to 0). In the ‘intrinsic’ null model formulation, only the serotype-specific, time-invariant intrinsic
fitness values contribute to clade fitness (i.e., antigenic fitness is set to 0). For both formulations of
generalized waning, all other parameters were set to the values reported in Table 1 (optimized for
RMSE). Parameters for heterotypic waning were optimized separately.

Resolution Fitness model Waning RMSE Pearson R?> Accuracy
Serotype Interserotype Generalized  0.105 0.547 0.660
Serotype Equal fitness null ~ Generalized 0.130 0.000 0.480
Serotype  Intrinsic fitness null Generalized 0.140 0.042 0.510
Genotype Interserotype Generalized  0.062 0.286 0.666
Genotype Intergenotype Generalized  0.062 0.254 0.610
Genotype Equal fitness null ~ Generalized 0.070 0.000 0.440
Genotype Intrinsic fitness null  Generalized 0.072 0.032 0.530
Serotype Interserotype Heterotypic  0.109 0.533 0.666
Genotype Interserotype Heterotypic  0.063 0.291 0.661
Genotype Intergenotype Heterotypic  0.063 0.203 0.599
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Figure S1. Titer value symmetry. Some viruses have greater avidity overall, and some sera
are more potent overall. We normalize for these row and column effects (v, and py, respectively) in
the titer model. Once overall virus avidity and serum potency are accounted for, titers are roughly

symmetric (i.e., D;; = Dj;).
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Figure S2. Titer prediction error by serum strain and species. Human sera was raised
against four different virus strains (the monovalent vaccine components); non-human primate (NHP)
sera was raised against many different virus strains. Here, we excluded NHP sera raised against the
monovalent vaccine components, such that each normalized titer measurement is aggregated across
individuals, but not across species. We report the out-of-sample titer prediction error for each serum
strain (versus all available test viruses), aggregated across 100-fold Monte Carlo cross-validation.
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Figure S3. Case counts versus clade frequencies in Thailand. As described in the Methods,
we estimate clade frequencies based on observed relative abundance in the ‘slice’ of the phylogeny
at each quarterly timepoint. These frequency estimates are smoothed using a discretized Brownian
motion diffusion process. Here, we compare estimated serotype frequencies across Thailand (all
available high quality sequences) to case counts from a hospital in Bangkok between 1975-2010
(Reich et al., 2013). Biweekly case counts were aggregated into quarterly timepoints, but were not
smoothed. While there are some instances where case counts and frequencies diverge (e.g., DENV4
in the early 1990s), the noisy nature of the unsmoothed case counts artificially deflates estimates of
concordance.
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Figure S4. Genotype as site E 390 across dengue phylogeny. Dengue virus genotypes
can be seen on Nextstrain (Hadfield et al., 2018). A live view of this figure is available at
nextstrain.org/dengue/.
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Figure S5. Simulated serotype frequencies. As described in the Methods, we seeded a
simulation with two years of empirical frequencies and predicted forward to simulate the remainder
of the timecourse. Here, we simulated under the model parameters described in Table 2
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Figure S6. Simulated serotype frequencies (model parameters). As described in the
Methods, we seeded a simulation with two years of empirical frequencies and predicted forward to
simulate the remainder of the timecourse. Here, we simulated under the model parameters described
in Table 1. This results in damped oscillations around the intrinsic fitness value for each serotype,
but these intrinsic fitnesses alone are unable to predict observed clade dynamics (Table S3).

32


https://doi.org/10.1101/432054
http://creativecommons.org/licenses/by-nc/4.0/

