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Abstract 
Most current models assume that the perceptual and cognitive processes of visual word 
recognition and reading operate upon neuronally coded domain-general low-level visual 
representations – typically oriented line representations. We here demonstrate, 
consistent with neurophysiological theories of Bayesian-like predictive neural 
computations, that prior visual knowledge of words is utilized to ‘explain away’ redundant 
and highly expected parts of the visual percept. Subsequent processing stages, 
accordingly, operate upon an optimized representation of the visual input, the 
orthographic prediction error, highlighting only information relevant for word 
identification. We show that this informationally optimized representation is related to 
orthographic word characteristics, accounts for word recognition behavior, and is 
processed early in the visual processing stream, i.e., in occipital cortex and before 200 
ms after word-onset. Based on these findings, we propose that prior visual-orthographic 
knowledge is used to optimize the representation of visually presented words, which in 
turn allows for highly efficient reading processes.  
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Introduction 
Written language – script – developed over the last ~8,000 years in many different 

variants (Haarmann, 2007). It is a symbolic representation of meaning, based on the 

combination of simple high contrast visual features (oriented lines) that our brains 

translate efficiently into linguistically meaningful units. Cognitive-psychological models 

of reading specify the perceptual and cognitive processes involved in activating 

orthographic, phonological, and lexico-semantic representations of perceived words 

from such low-level visual-perceptual features (for a review see Norris, 2013). While some 

models – consistent with other domains of perception (e.g., Riesenhuber & Poggio, 1999 

for object recognition) – indeed assume oriented line representations as the lowest-level 

visual feature involved in visual word recognition (e.g., Coltheart, Rastle, Perry, Langdon, 

& Ziegler, 2001; Davis, 2010; Dehaene, Cohen, Sigman, & Vinckier, 2005; McClelland & 

Rumelhart, 1981; Perry, Ziegler, & Zorzi, 2007; Whitney & Cornelissen, 2008), other 

cognitive models use as starting point a more integrated, domain-specific 

representations, i.e., letters (Engbert, Nuthmann, Richter, & Kliegl, 2005; Reichle, Rayner, 

& Pollatsek, 2003; Sibley, Kello, Plaut, & Elman, 2008).  

 Interestingly, this does not take into account findings from visual neuroscience 

indicating that already the neuronal representation of an oriented line is an abstraction 

of the visual input: The phenomenon of end-stopping describes that an oriented line (i.e., 

the frequently-assumed low-level input into the visual word recognition system) is not 

represented in the brain by many neurons with receptive fields along the length of the 

line, but by only two neurons that have their receptive fields at the beginning and end of 

the line (Bolz & Gilbert, 1986; D. H. Hubel & Livingstone, 1987; David H. Hubel & Wiesel, 

1965). While preserving the representation of line length and angle, this neuronal 

representation can be more efficient by several orders of magnitude. Given these results, 

we hypothesized that early perceptual stages of visual word recognition should also 

operate upon informationally optimized representations of the visual-orthographic input.  

To provide a computationally explicit account for explaining end-stopping, Rao 

and Ballard (Rao & Ballard, 1999) successfully adapted the computational principles of 

predictive coding (Srinivasan, Laughlin, & Dubs, 1982). Predictive coding postulates that 

perceived regularities in the world are used to build up internal models of the (hidden) 

causes of sensory events, and that these internal predictions are imprinted in a top-down 

manner upon the hierarchically lower sensory systems, thereby increasing processing 

efficiency by inhibiting the processing of correctly predicted input (K. Friston, 2005a; Rao 

& Ballard, 1999). When sensory input violates these expectations or is not fully predicted, 
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a prediction error signal is generated and propagated up the cortical processing 

hierarchy in a bottom-up fashion (e.g. Todorovic, van Ede, Maris, & de Lange, 2011), 

where it is used for model updating and thus serves to optimize future predictions (Clark, 

2013; Rao & Ballard, 1999). In the case of line representations and end-stopping, neurons 

with receptive fields at the beginning and end of the line fire and this information is 

propagated to higher areas where they activate abstract line representations, which in 

turn in a recursive, top-down manner ‘predict away’ the activity of the receptive fields 

between the two endpoints of the line (Rao & Ballard, 1999). Predictive coding has by 

now received support in many domains of perceptual neuroscience, from retinal coding 

(Srinivasan et al., 1982), auditory (Todorovic et al., 2011; Wacongne, Changeux, & 

Dehaene, 2012) and speech perception (Arnal, Wyart, & Giraud, 2011; Gagnepain, 

Henson, & Davis, 2012) to object (Kersten, Mamassian, & Yuille, 2004) and face 

recognition (Schwiedrzik & Freiwald, 2017), indicating that this framework is likely a 

generalized computational principle of the brain. 

Most readers can process written language at a remarkably high speed. We 

reasoned that the high efficiency of visual-orthographic processing necessary for efficient 

reading makes it likely that the visual system also optimizes the ‘low-level’ perceptual 

representations used for orthographic processing during reading. Inspired by the wide 

applicability of the principles of predictive coding (see previous paragraph), the present 

model-based study explores whether computational principles of predictive coding may 

contribute to the informational optimization of perceived written words already at the 

earliest neurocognitive stages of reading. In an influential theoretical paper, Price and 

Devlin (Price & Devlin, 2011) have proposed that principles of predictive coding may be 

involved in visual word recognition. Their ‘Interactive Account’ model focuses explicitly 

on ‘intermediate-level’ stages of visual word processing that are attributed to the left 

ventral occipito-temporal cortex (vOT; often also referred to as ‘visual word form area’, 

e.g., Dehaene & Cohen, 2011; Dehaene et al., 2005). The Interactive Account model 

postulates that at the level of lvOT, visual-perceptual information that is propagated 

bottom-up from early visual to higher areas when reading a string of letters, is integrated 

with phonological and semantic information fed to lvOT from higher cortical areas in a 

top-down manner. Empirical support for this proposal comes from a study by Kherif et 

al. (2011) demonstrating semantic priming effects between words and pictures of objects, 

in lvOT.  

However, predictive coding as a general model of cortical processing should, in 

principle, not be restricted to a specific level of processing, but rather apply to all sensory-
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perceptual stages of the reading process – including also reading-related visual 

processes in lower level visual areas (i.e., that take place before the integrative processes 

attributed to the vOT/visual word form area in the Interactive Account model; see, e.g., 

also Fig. 2 of Price & Devlin, 2011). We thus hypothesized here that ‘higher level’ 

linguistic expectations – either in the form of contextual constraint from preceding input 

or in the form of our knowledge of the orthography of a language – should be imprinted 

upon the earliest stages of visual-orthographic processing, thereby ‘optimizing’ earlier, 

i.e., pre-lexical processing stages that are typically associated with brain processes 

located posterior to the visual word form area (e.g., Dehaene et al., 2005) and temporally 

earlier than 250 ms (Grainger & Holcomb, 2009). 

Interestingly, the feature-configurations that constitute letters and words, i.e., that 

are part of our orthographic knowledge of language, contain highly redundant 

information (Changizi, Zhang, Ye, & Shimojo, 2006) – like vertical lines often occurring at 

the same position (e.g., the left vertical line in E, R, N, P, B, D, F, H, K, L, M) or letters 

often positioned at the same location in a word (e.g., s or y as final letters in English). As 

such redundancies contribute very little to unique letter and word identification, using 

prior orthographic knowledge to subtract the redundant part of the percept is a plausible 

strategy of our brain to reduce the amount of to-be-processed information – and thus a 

plausible way of increasing the efficiency of the neuronal code that is fundamental to 

visual word recognition.  

We here propose that during the earliest stages of visual word recognition, 

following the principles of predictive coding, the visual-orthographic input signal is 

‘optimized’ on the basis of our knowledge and expectations about the redundancies of 

the respective script. In other words, we propose that our orthographic knowledge of 

language is literally used to ‘predict away’ the uninformative part of visual input during 

reading. As a result, the subsequent stages of visual word recognition (as described in 

several models of reading; see above and (Norris, 2013) for review) can proceed upon an 

informationally optimized representation of the input. As this informationally optimized 

input representation highlights the unexpected (and thus more informative) part of the 

stimulus, we termed it the orthographic prediction error (oPE). In the following, we 

describe one possible, computationally explicit implementation of this proposal, which 

we refer to as the Prediction Error Model of Reading (PEMoR), and we report quantitative 

evaluations of the PEMoR using lexicon-based, behavioral, EEG, und functional MRI data. 

To compare the PEMoR with an alternative account that implements early visual 

processing stages without top-down predictions and prediction errors, we also 
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conducted most of the reported analyses for a full pixel-based representation of the 

perceived stimuli (Pixel based Model of Reading; PixMoR). As a result, for most model 

evaluations, we compare two parameters, one reflecting strictly bottom-up visual 

processing without a prediction-based optimization step and one based on a top-down-

/prediction-based optimization of the sensory representation of the perceived word. 

 

The Prediction Error Model of Reading (PEMoR) 
The Prediction Error Model of Reading postulates that one identifies words not on the 

basis of the full physical input into the visual system contained in a string of letters, but 

rather based on an optimized (and thus more efficient) neuronal code representing only 

the informative part of the percept (while redundant and expected information is 

cancelled out at earliest-possible processing stages; Rao & Ballard, 1999). In the 

predictive coding framework, this non-redundant portion of a stimulus is formalized as a 

prediction error; we apply this principle to visual word recognition, and propose that 

internal (i.e., knowledge- or context-dependent) visual-orthographic expectations are 

subtracted from the sensory input, so that further processing stages operate upon an 

orthographic prediction error (oPE) signal (Fig. 1a). It is commonly believed that higher 

level linguistic representations can initiate specific expectations about upcoming words 

(DeLong, Urbach, & Kutas, 2005; Kliegl, Nuthmann, & Engbert, 2006; Nieuwland et al., 

2018; Price & Devlin, 2011) – e.g., about the class (noun or verb) and meaning of the next 

word in a sentence like “The scientists made an unexpected … (discovery)”. The 

fundamental difference between these psycholinguistic assumptions about semantic and 

syntactic predictions and the proposed visual-orthographic prediction in PEMoR, is that 

we postulate predictive processes already at much earlier stages of visual processing.  
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Figure 1. Prediction error 
model of reading (PEMoR). (a) 
The PEMoR assumes that 
during word recognition, 
redundant visual-
orthographic information is 
‘explained away’, thereby 
highlighting the informative 
aspects of the percept. 
Subsequent stages of word 
recognition and linguistic 
processing (i.e. accessing 
abstract letter and word 
representations), thus, 
operate upon an 
informationally optimized 
input representation. This 
assumption is here tested for 
single-word reading, i.e., 
independent of context, by 
subtracting a ‘visual-
orthographic prediction’ from 
the input. (b) The visual-
orthographic, knowledge-
based prediction is 
implemented as a pixel-by-
pixel mean across image 
representations of all known 
words (here approximated by 
all words in a psycholinguistic 
database; only five letters 
words, as in most 
experiments reported here; 
but see Supplemental figure 
1b and e for a prediction 
including different word 
lengths). The resulting visual-
orthographic prediction, 
shown on the right, contains 
the most redundant visual 
information across all words. 
(c) Across multiple 
languages, these predictions 

are very similar, with the exception of the upper-case initial letter that is visible in the German prediction 
(because experiments in German involved only nouns). (d) The orthographic prediction error (oPE) is 
estimated, for each word, by a pixel-by-pixel subtraction of the orthographic prediction from the input word 
(based on their image representations; see Methods for details). While the two example words have similar 
numbers of pixels, subtracting the orthographic prediction results in substantially different residual (i.e., oPE) 
images. The values underneath the prediction error images represent a quantitative estimate of the 
orthographic prediction error, the sum of all gray values from each pixel per image, and show that the amount 
of information reduction (∆) can differ strongly between words. (e) Letter-length unspecific prediction for 
German, based on ~190.000 words. 
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Here, we quantitatively test the assumptions of the PEMoR for the most frequently 

investigated paradigm in reading research, single word recognition. In the absence of 

sentence context, the redundant visual information (i.e., the visual-orthographic 

prediction or, in Bayesian terms, the prior) is a function of our orthographic knowledge 

of words. We approximate this prior knowledge quantitatively as the pixel-by-pixel mean 

over image representations of all words derived from a psycholinguistic database 

(Brysbaert et al., 2011; see Fig. 1b and Methods). Interestingly, the resulting visual-

orthographic predictions look similar across different languages sharing the same writing 

system (compare Fig. 1c) and correlate highly with each other (i.e., based on the 

individual gray values of the pixels from the prediction image; r ranging from .95 to .99).  

We estimate the orthographic prediction error as a pixel-by-pixel subtraction of 

this visual-orthographic prediction (or prior in Bayesian terms) from each perceived word 

(Fig. 1d). This step of ‘predicting away’ the redundant part of written words reduces the 

amount of to-be-processed information by up to 51% (on average 33%, 37%, and 31% 

for English, French, and German, respectively; see Methods, Formula 4), thereby 

optimizing the visual input signal in the sense of highlighting only its informative parts 

(Fig. 1d). According to the PEMoR, the resulting orthographic prediction error is a critical 

early (i.e., pre-lexical) stage of word identification, representing (part of) the access code 

that our brain uses to activate word meaning.  

We test this model by calculating for each stimulus item a numeric prediction error 

(oPE) value, which equates the sum of all gray scale values in the respective (200 by 40 

pixel) stimulus image to represent the PEMoR. While this per-item summary oPE value 

does not take into account the spatial layout of the stimulus item, it represents an 

estimate of the amount of neuronal activation needed to represent the specific stimulus. 

Importantly, representing the oPE as a single value allows us to compare it directly to 

other typical word characteristics that are closely tied to different psychological models, 

like word frequency (Brysbaert et al., 2011) or orthographic familiarity (Coltheart, 

Davelaar, Jonasson, & Besner, 1977; Yarkoni, Balota, & Yap, 2008). In the following, we 

provide empirical support for this model by demonstrating that our orthographic 

prediction error (i) is correlated with orthographic familiarity of words measured as a 

property of lexicon statistics, (ii) accounts for response times in three languages, (iii) is 

represented in occipital brain regions, and (iv) electrophysiological signals from 150-250 

ms after word onset. 

As there exists – to the best of our knowledge – no generally accepted null model 

against which to compare the PEMoR, we also quantified the information contained in 
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each stimulus item prior to prediction-based optimization, by calculating the sum of all 

pixels in each original stimulus image. We used this pixel count parameter as an estimate 

of the full bottom-up information that would have to be processed in the absence of 

prediction-/top down-based optimization of the percept. For most empirical model 

evaluations reported in the following, we thus compare the performance of the pixel 

count parameter with the orthographic prediction error since current models of visual 

word recognition do not specify processing down to the level of individual pixels of a 

word image 
 

Materials and Methods 
Implementation of the PEMoR 
The estimation of the orthographic prediction error as assumed in PEMoR was 

implemented by image-based computations. Using the EBImage package in R (Pau, 

Fuchs, Sklyar, Boutros, & Huber, 2010), letter-strings were transformed into gray scale 

images (size for, e.g., 5-letter words: 140x40 pixels) that can be represented by a 2-

dimensional matrix in which white is represented as 1, black as 0, and gray as 

intermediate values. This matrix representation allows an easy implementation of the 

subtraction computation presented in Fig. 1a, i.e.,  
 

(1)	%
𝑆𝐼(,( … 𝑆𝐼(+,,(
⋮ ⋱ ⋮

𝑆𝐼(,+, … 𝑆𝐼(+,,+,
/ − %

𝑃(,( … 𝑃(+,,(
⋮ ⋱ ⋮

𝑃(,+, … 𝑃(+,,+,
/ = %

𝑜𝑃𝐸(,( … 𝑜𝑃𝐸(+,,(
⋮ ⋱ ⋮

𝑜𝑃𝐸(,+, … 𝑜𝑃𝐸(+,,+,
/ 

 

where SIx,y indicates the sensory input at each pixel. Px,y reflects the prediction matrix 

which is in the present study calculated as an average across all words (or a subset 

thereof) in a lexical database e.g., the example shown in Fig. 1b is based on 5,896 nouns 

of five letters length from the English SUBTLEX database (Heuven et al., 2014). This 

orthographic prediction was estimated by transforming each of n words into a matrix as 

described above and then averaging the values included in these matrices:  

 

(2)	

∑ %
𝑆𝐼(,( … 𝑆𝐼(+,,(
⋮ ⋱ ⋮

𝑆𝐼(,+, … 𝑆𝐼(+,,+,
/7

(

𝑛 = %
𝑃(,( … 𝑃(+,,(
⋮ ⋱ ⋮

𝑃(,+, … 𝑃(+,,+,
/ 
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The PEMoR model postulates that during word processing, SI is reduced by the 

prediction matrix P, resulting in an orthographic prediction error matrix (oPE) as shown 

above in formula (1). The resulting orthographic predication error is therefore black (i.e. 

value 0) at pixels were the prediction was perfect and gray to white (i.e. value > 0) where 

the visual information was not predicted perfectly. As a last step, a numeric value for the 

orthographic prediction error of each stimulus was determined by summing all values of 

its prediction error matrix. This numeric representation of the prediction error is used as 

parameter for all empirical evaluations. 
 

(3)	∑ %
𝑜𝑃𝐸(,( … 𝑜𝑃𝐸(+,,(
⋮ ⋱ ⋮

𝑜𝑃𝐸(,+, … 𝑜𝑃𝐸(+,,+,
/ = 𝑜𝑃𝐸:;< 

 

The amount of information reduction (𝐼=>?;@>?) achieved by this predictive computation 

can then be calculated by relating the numeric representation of the prediction error to 

an analogous numeric representation of the respective word SIsum:  

 

(4)	1 −
𝑜𝑃𝐸:;<
𝑆𝐼:;<

∗ 100 = 𝐼=>?;@>? 

 

Participants.  

35, 54, 39, 31, and 38 healthy volunteers (age from 18 to 39) participated in the two 

German lexical decision studies, the fMRI, the EEG, and the handwriting experiments, 

respectively. All had normal reading speed (reading scores above 20th percentile 

estimated by a standardized screening; unpublished adult version of Mayringer & 

Wimmer, 2014), reported absence of speech difficulties, had no history of neurological 

diseases, and normal or corrected-to-normal vision. Participants gave written informed 

consent and received student credit or financial compensation (10€/h) as incentive for 

participating. The research was approved by the ethics board of the University of 

Salzburg (EK-GZ: 20/2014; fMRI study) and Goethe University Frankfurt (#2015-229; EEG 

study, lexical decision studies). Behavioral results for English, and French were obtained 

from publicly available data sets, whose samples are described elsewhere (Ferrand et al., 

2010; Keuleers et al., 2012). 
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Materials, experimental procedures, and statistical analyses. 
Lexicon-based Characterization of the Orthographic Prediction Error. We calculated the 

number of pixels per word, the orthographic prediction error, and established word 

characteristics (Orthographic Levenshtein distance (Yarkoni et al., 2008), word frequency) 

for 3,110 German (Brysbaert et al., 2011) nouns (i.e., the subset used for the empirical 

evaluations later on; with uppercase first letters), for 5,896 English (Heuven et al., 2014) 

words, 5,638 French (New, Pallier, Brysbaert, & Ferrand, 2004) words, and 4,418 Dutch 

(Keuleers, Brysbaert, et al., 2010) words. All items had a length of five letters. For the 

German nouns, we additionally estimated a more comprehensive set of orthographic 

word characteristics, including bi-, tri-, quadirgram-frequencies (i.e., occurrences of 2, 3, 

4 letter combinations), and Coltheart’s N (Coltheart et al., 1977); see Fig. 2b). 

Orthographic Levenshtein distance and Coltheart’s N were estimated with the vwr 

Package in R (Keuleers, 2013). 

 

Accounting for Word Recognition Behavior. German lexical decision task 1: 800 five-

letter nouns and 800 five-letter nonwords (400 pronouncable pseudowords, 400 

unpronouncable non-words/consonant clusters) were presented in pseudorandomized 

order (Experiment Builder software, SR-Research, Ontario, Canada; black on white 

background; Courier-New font; .3° of visual angle per letter; 21″ LCD monitor with 1,024 

× 768 resolution and 60Hz refresh rate), preceded by 10 practice trials. Participants 

judged for each letter string whether it was a word or not using a regular PC keyboard, 

with left and right arrow keys for words and non-words, respectively. Before stimulus 

presentation, two black vertical bars (one above and one below the vertical position of 

the letter string) were presented for 500 ms, and letter strings were displayed until a 

button was pressed. Response times were measured in relation to the stimulus onset. 

German lexical decision task 2 including noisy stimuli reports a replication in German with 

70 five-letter words and 70 nonwords (36 pseudowords, 34 consonant clusters) with no 

noise with identical procedures except that data were acquired in small groups of up to 

8 participants. In addition, words with 20% or 40% noise added (i.e. 20% or 40% of pixels 

were displaced; for details see Gagl et al., 2014) were presented in blocks of 140 (70 five-

letter words and 70 nonwords).   

Linear mixed model (LMM) analysis implemented in the lme4 package (Bates, 

Mächler, Bolker, & Walker, 2015) of the R statistics software were used for analyzing 

lexical decision data as LMMs are optimized for estimating statistical models with crossed 

random effects for items. These analyses result in effect size estimates with confidence 
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intervals (SE) and a t-value. Following standard procedures, t-values larger than 2 are 

considered significant since this indicates that the effect size ±2 SE does not include zero 

(Kliegl, Wei, Dambacher, Yan, & Zhou, 2011). For the presentation in Fig. 3a,b,d,e,g,h,k,l 

co-varying effects were removed by the keepef function of the remef package 

(Hohenstein & Kliegl, 2014/2017). All response times were log-transformed, which 

accounts for the ex-Gaussian distribution of response times. In addition, orthographic 

prediction error, and number of pixels were centered and normalized by R’s scale() 

function in order to optimize LMM analysis. 

  

Cortical Representation of the Orthographic Prediction Error. 60 five-letter words and 

180 pseudowords were presented in pseudorandom order (yellow Courier New font on 

gray background; 800 ms per stimulus; ISI 2,150 ms) as well as 30 catch trials consisting 

of the German word Taste (button), indicating participants to press the response button. 

Catch trials were excluded from the analyses. All items consisted of two syllables and 

were matched on OLD20 (Yarkoni et al., 2008) and mean bigram frequency between 

conditions. To facilitate estimation of the hemodynamic response, an asynchrony 

between the TR (2,250 ms) and stimulus presentation (onset asynchrony: 2,150 + 800 ms) 

was established and 60 null events were interspersed among trials; a fixation cross was 

shown during inter-stimulus intervals and null events. The sequence of presentation was 

determined by a genetic algorithm (Wager & Nichols, 2003), which optimized for maximal 

statistical power and psychological validity. The fMRI session was divided into 2 runs with 

a duration of approximately 8 min each.  

A Siemens Magnetom TRIO 3-Tesla scanner (Siemens AG, Erlangen, Germany) 

equipped with a 32-channel head-coil was used for functional and anatomical image 

acquisition. The BOLD signal was acquired with a T2*-weighted gradient echo echo-

planar imaging sequence (TR = 2,250 ms; TE = 30 ms; Flip angle = 70°; 86 x 86 matrix; 

FoV = 192 mm). Thirty-six descending axial slices with a slice thickness of 3 mm and a 

slice gap of 0.3 mm were acquired within each TR. In addition, for each participant a 

gradient echo field map (TR = 488 ms; TE 1 = 4.49 ms; TE 2 = 6.95 ms) and a high-

resolution structural scan (T1-weighted MPRAGE sequence; 1 x 1 x 1.2 mm) were 

acquired. Stimuli were presented using an MR-compatible LCD screen (NordicNeuroLab, 

Bergen, Norway) with a refresh rate of 60 Hz and a resolution of 1,024x768 pixels. 

SPM8 software (http://www.fil.ion.ucl.ac.uk/spm), running on Matlab 7.6 

(Mathworks, Inc., MA, USA), was used for preprocessing and statistical analysis. 

Functional images were realigned, unwarped, corrected for geometric distortions by use 
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of the FieldMap toolbox, and slice-time corrected. The high-resolution structural image 

was pre-processed and normalized using the VBM8 toolbox (http://dbm.neuro.uni-

jena.de/vbm8). The image was segmented into gray matter, white matter, and CSF 

compartments, denoised, and warped into MNI space by registering it to the DARTEL 

template of the VBM8 toolbox using the high-dimensional DARTEL registration algorithm 

(Ashburner, 2007). Functional images were co-registered to the high-resolution structural 

image, which was normalized to the MNI T1 template image, and resulting normalization 

parameters were applied to the functional data, which were then resampled to a 

resolution of 2×2×2 mm and smoothed with a 6 mm FWHM Gaussian kernel. 

For statistical analysis, we first modeled stimulus onsets with a canonical 

hemodynamic response function and its temporal derivative, including movement 

parameters from the realignment step and catch trials as covariates of no interest, a high-

pass filter with a cut off of 128 s, and an AR(1) model (K. J. Friston et al., 2002) to correct 

for autocorrelation. For the group level statistics, t-tests were implemented with a voxel 

level threshold of p < .001 uncorrected and a cluster level correction for multiple 

comparisons (p < .05 family-wise error corrected).  

 

Cortical timing of the Orthographic Prediction Error. 200 five-letter words, 100 

pseudowords, and 100 consonant strings (nonwords) were presented for 800 ms (black 

on white background; Courier-New font, .3° of visual angle per letter), followed by an 

800 ms blank screen and a 1,500 ms hash mark presentation, which marked an interval 

in which the participants were instructed to blink if necessary. In addition, 60 catch trials 

(procedure as described for fMRI study) were included in the experiment. Stimuli were 

presented on a 19″ CRT monitor (resolution 1,024 × 768 pixels, refresh rate 150Hz), and 

were preceded by two black vertical bars presented for 500 - 1,000 ms to reduce stimulus 

onset expectancies.  

EEG was recorded from 64 active Ag/Ag-Cl electrodes (extended 10-20 system) 

using an actiCAP system (BrainProducts, Germany). FCz served as common reference 

and the EOG was recorded from the outer canthus of each eye as well as from below the 

left eye. A 64-channel Brainamp (BrainProducts, Germany) amplifier with a 0.1–1,000 Hz 

band pass filter sampled the amplified signal with 500Hz. Electrode impedances were 

kept below 5kΩ. Offline, the EEG data were re-referenced to the average of all channels. 

EEG data were preprocessed using MNE-Python (Gramfort et al., 2014), including high 

(.1 Hz) and low pass (30 Hz) filtering and removal of ocular artifacts using ICA (Delorme, 

Sejnowski, & Makeig, 2007). For each subject, epochs from 0.5 s before to 0.8 s after 
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word onset were extracted and baselined by subtracting the pre-stimulus mean, after 

rejecting trials with extreme (>50 �V peak-to-peak variation) values. Multiple regression 

analysis, with the exact same parameters as for the behavioral evaluation (orthographic 

prediction error, number of pixels, word/non-word, and the interactions with the 

word/non-word distinction), was conducted and a cluster-based permutation test (Maris 

& Oostenveld, 2007) was used for significance testing. 1,024 label permutations were 

conducted to estimate the distribution of thresholded clusters of spatially and temporally 

(i.e., across electrodes and time) adjacent time points under the null hypothesis. All 

clusters with a probability of less than an assumed alpha value of 0.05 under this 

simulated null hypothesis were considered statistically significant. The presentation of 

effect patterns (line and box-plots) in Fig. 6 co-varying effects were removed by the 

keepef function of the remef package (Hohenstein & Kliegl, 2014/2017). 

 

Application to handwriting. We obtained handwriting samples (26 upper and 26 lower 

case letters; 10 common German compound words, 10-24 letters long) from 10 different 

writers (see Fig. 6a,b for examples). The single letters were scanned and centered within 

a 50x50 pixels image. These images were used to estimate, for each script separately, 

pixel-by-pixel predictions for upper and lower-case letters (see also Fig. 6a,b), analogous 

to the procedures described above and in Fig. 1b. Subsequently, these predictions were 

subtracted from each letter of the alphabet, within the respective script sample (matrix 

subtraction; Formula 1). In contrast to computer fonts the correlation of the orthographic 

prediction error and the respective item’s number of pixels was high (r = .98). To 

compensate this, the orthographic prediction error was normalized by a division with the 

respective pixel count. Readability ratings (5-point Likert scale) were obtained from 38 

participants (27 females; mean age 25 years) by presenting all ten versions of all ten 

handwritten compound words, in addition to the identical word in computerized script.  

For the handwriting data, we implemented a LMM analysis that predicted the 

orthographic prediction error (Fig. 6c-d) from the following parameters: mean prediction 

strength (i.e., mean of the values extracted from the prediction matrix), number of all 

non-white pixels (both scaled), and letter case. The random effect on the intercept was 

estimated for each script. In addition, a second LMM was estimated for readability ratings 

with the orthographic prediction error as the only predictor and participants as random 

effect on the intercept and as random effect of the orthographic prediction error slope. 
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Results 
Lexicon-based Characterization of the Orthographic Prediction Error 
Cognitive psychologists have developed several quantitative measures to characterize 

words (Brysbaert et al., 2011; Coltheart et al., 1977; Yarkoni et al., 2008), mostly derived 

from large text corpora and psycholinguistic word databases (Heuven, Mandera, 

Keuleers, & Brysbaert, 2014; Keuleers, Brysbaert, & New, 2010; see Fig. 2a for most 

essential characteristics and examples). Abundant empirical research demonstrates that 

these lexicon-based word characteristics are predictive of different aspects of reading 

behavior (Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004; Rayner, 2009). 

Accordingly, understanding how the orthographic prediction error, derived from the 

implemented PEMoR (see Fig. 1), relates to these measures provides an essential first 

indication that this informationally optimized and supposedly pre-lexical perceptual 

signal is indeed involved in word recognition.  

Across all words, the orthographic prediction error (i.e., the sum of all gray values 

after subtracting the knowledge-based prior from the actual stimulus image; cf. Fig. 1d 

and Methods) clusters with several measures that are commonly interpreted as 

orthographic (Fig. 2b): These widely-used (psycho-) linguistic characteristics reflect the 

(non-) uniqueness of words in terms of their orthographic similarity to other words (e.g., 

the number of Coltheart neighbors (Coltheart et al., 1977) or the orthographic distance 

(OLD20; (Yarkoni et al., 2008); cf. Fig. 2a) and letter co-occurrences (e.g., bi- and trigram 

frequencies; cf. Fig. 2a). Note that these measures describe the statistics of letters and 

letter combinations in all words retrieved from a lexicon database (Keuleers, Brysbaert, 

et al., 2010). In cognitive psychological research, one associates these measures 

consistently with the first, i.e., orthographic, stages of processing written words before 

lexical access (Coltheart et al., 2001; Grainger & Jacobs, 1996). These correlations are an 

impressive result as it demonstrates that a neurophysiologically inspired transformation 

of the visual stimulus, i.e., the here-proposed orthographic prediction error (oPE), is 

meaningfully related to orthographic properties of words as derived from lexicon-based 

statistics. Crucially, this is achieved while (a) reducing the to-be-processed information 

content by more than 30% and (b) at the same time retaining the ability of discriminating 

the word identities, as indicated by a strong correlation of r = .87 between the 

representational similarity matrices (Edelman, 1998; Kriegeskorte et al., 2008) of the word 

and orthographic prediction error images (Fig. 2d). This latter result indicates that the 

representational similarity structure, or in other words the discriminability between items, 

is preserved after deriving the oPE from the sensory input as proposed by the PEMoR. 
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Figure 2. Comparison of orthographic prediction error to established lexicon-based word characteristics. (a) Overview of 
established word characteristics, exemplified for the word ‘read’: Coltheart’s neighborhood size (Coltheart N; Coltheart et 
al., 1977), orthographic Levenshtein distance (OLD20; Yarkoni et al., 2008), sub-lexical frequency measures (bi-, tri-, and 
quadri-gram frequencies, i.e. number of occurrences of two, three, and four-letter combinations from the target word, in 
the lexicon), and word frequency as calculated from established linguistic corpora (see Methods for details). (b) Clustered 
correlation matrix between the orthographic prediction error, the number of pixels per original image, which represents 
an estimate of the pure amount of physical bottom-up input in the present study, and the described word characteristics 
(cf. panel a for explanations), applied to a set of 3,110 German nouns. Red rectangles mark clusters (obtained from a 
standard hierarchical clustering algorithm using the dendrogram) and black crosses mark non-significant correlations (p 
< .05; Bonferroni corrected to p < .00179). Number of pixels refers to the original stimulus item and is used as a simplified 
model of the full bottom-up physical input (PixMoR; see text). (c) Correlations between the orthographic prediction error 
and number of pixels per word (Npixel), orthographic similarity (OLD20), and word frequency (WF), for four different 
languages. (d) Representational similarity matrices (RSM; cf. Ref. Kriegeskorte, Mur, & Bandettini, 2008) for original word 
images (left panel) and orthographic prediction error images (central panel). Each similarity matrix reflects the correlations 
among the gray values of all 3,110 words (in total 9,672,100 correlations per matrix), with words sorted alphabetically 
(color scale equivalent to the one used in panel b). The right panel shows the correlation between word- and orthographic 
prediction error-based RSMs. Each dot represents a position on the similarity matrix allowing to relate the similarity values 
derived from either the physical input or the prediction error image. The high correlation shown here indicates that the 
similarity structure, or in other words the discriminability, present in the physical input is still represented in the prediction 
error images. 
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In contrast, the orthographic prediction error is not correlated with the frequency 

of occurrence of a word in a language (Fig. 2b). The word frequency effect typically 

indicates the difficulty of accessing word meaning based on an already-decoded 

orthographic access code (Coltheart et al., 2001). This dissociation between the 

orthographic prediction error and word frequency replicates across languages (Fig. 2c) 

and is much more pronounced for the orthographic prediction error than for the so-far 

dominant measures of orthographic similarity and orthographic neighborhood (Fig. 2b). 

With the raw pixel count of the words (Fig. 2b), as a reflection of the PixMoR, only two 

standard orthographic measures (tri- and quadrigram frequency) were weakly correlated. 

This dissociation of the correlation structure of the prediction error and the pixel count 

provides the first evidence that the neurophysiologically inspired orthographic prediction 

error is more important for a mechanistic understanding of reading than the full physical 

input contained in a printed word as assumed in the PixMoR. 

 

Accounting for Word Recognition Behavior 
As a next empirical test of the visual-orthographic prediction model of reading, we 

evaluated how well the orthographic prediction error performs in accounting for behavior 

in an established and widely-used word recognition task, i.e., the lexical decision task. 

Thirty-five human participants were asked to decide as fast as possible by button press 

whether written letter-strings (presented on the computer screen; 1,600 items; 5 letters 

length; language: German) were words or not. Remember that the orthographic 

prediction error represents the deviance of a given letter-string from our knowledge-

based orthographic expectation, and thus how (un-)likely it is that the given letter-string 

is a word. Accordingly, participants should be fast in identifying letter-strings with low 

orthographic prediction error as words and fast in rejecting non-words with a high 

orthographic prediction error.  

Fig. 3a shows exactly this pattern of response times, i.e., a word/non-word by 

orthographic prediction error interaction (linear mixed model/LMM estimate: 0.03; SE = 

0.01; t = 5.0; see Methods for details on linear mixed effects modeling and Supplemental 

Table 1 for detailed results). No significant interaction or fixed effect of the number of 

pixels estimate (i.e. the sum of all pixels contained in a word), representing the PixMoR, 

was found (Fig. 3b; Interaction: estimate: 0.00; SE = 0.01; t = 0.0; Fixed effect: -0.01; SE 

= 0.00; t =1.8). To directly compare if the response times are more adequately described 

by the PEMoR or the PixMoR, we performed an explicit model comparison (see Methods 

for details) of four models. The full model, including as predictors the orthographic 
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prediction error and the number of pixels, a pure prediction error model, a pure number 

of pixels model, and a null model without any of the two predictors. Fig. 3c shows that, 

in contrast to the null model, the three alternative models showed higher model fits (all 

c2’s > 9.9; all p’s < .007; Bonferroni corrected p threshold: 0.0083), but this increase was 

significantly larger for the models including the orthographic prediction error. In addition, 

the model including only the orthographic prediction error explained substantially higher 

amounts of variance when compared to the model including only the number of pixels 

parameter (AIC difference: 34; c2(0) = 34.2; p < .001) with no substantial increase for the 

combined model (AIC difference: 3; c2(2) = 7.2; p = .02). This finding indicates that for 

German, the PixMoR explains substantially less variance in word recognition behavior 

than the PEMoR. 
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Figure 3. Word/non-word decision 
task behavior. (a) Orthographic 
prediction error (oPE) and (b) number 
of pixels (Npixel) effects on response 
times in a word/non-word decision 
task (German nouns, 5 letters length; 
overall error rate 7.4%; see 
Supplemental Table 1 for detailed 
statistical analysis). Green lines show 
the effects for words, blue lines for 
pseudowords (pronounceable non-
words), and red lines for consonant 
strings (unpronounceable non-
words). Dots represent mean reaction 
time estimates across all participants, 
separated into bins of oPE (width of 
10) and stimulus category, after 
excluding confounding effects. (c) 
Results from model comparisons. 
First, a null model was established 
with only word/non-word status and 
word frequency as predictors. 
Subsequently, a model adding only 
the oPE predictor, a model adding 
only the Npixel predictor, and one 
model adding both predictors to the 
null model, were compared to the null 
model. Note that also the interaction 
terms with the word/non-word 
parameter were included. The Akaike 
Information Criterion (AIC) for 
difference to the null model is shown 
for each model. A positive value 
represents an increase in model fit; 
asterisks mark significant differences 
(p < .05 Bonferroni corrected for 
multiple comparisons; 6 
comparisons, three in relation to the 
null model and three, marked with 
asterisks, comparing the alternative 
models; corrected significance 
threshold p < .0083). (d-f) Analogous 
results for English and (g-i) for French 
word/non-word decision tasks. Visual 
noise experiment: (j) Example stimuli 
representing the three visual noise 
levels. (k) Orthographic prediction 
error effect (oPE) when no noise was 
applied, replicating the first study 
presented in a (error rate: 6%). (l) 
Number of pixels effect (Npixel) in the 
condition where noise was strongest 
(error rate: 33%). (m-o) Model 
comparisons including the full 
models and the models with oPE and 

Npixels only for each of the noise levels. Note that for the noise study, AIC comparisons were Bonferroni corrected for 
nine comparisons (corrected significance threshold p < .0055). 
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Additionally including orthographic distance (OLD20 Yarkoni et al., 2008) as 

predictor improved the model fit further (AIC difference comparing the full model with 

and without OLD20: 104; c2(2) = 105.8; p < .001) but did not affect the significance of 

the word/non-word-by-orthographic prediction error interaction (Interaction effect 

estimate after including additional parameters: 0.03; SE = 0.01; t = 5.2). This finding 

indicates that despite its correlation with other orthographic measures (Fig. 2b, c), the 

orthographic prediction error accounts for unique variance components in word 

recognition behavior that cannot be explained by other word characteristics.  

We also replicate this interaction when calculating the orthographic prediction 

error using a length-unspecific visual-orthographic prediction (i.e., based on all ~190,000 

German words from the SUBTLEX database (Brysbaert et al., 2011); 2-36 letters length; 

cf. Fig. 1e; LMM estimate of interaction effect: 0.03; SE=0.01; t=4.5; for replication in 

English and a more extensive investigation of the interaction effect for multiple word 

lengths see Supplemental figure 1a). Interestingly, length-specific and length-unspecific 

orthographic prediction errors are highly correlated (e.g., German: r = .97), showing that 

the prediction-based word recognition process proposed by the PEMoR model is 

independent of word length constraints. This finding is in line with evidence from natural 

reading, which shows that one can extract low-level visual features like the number of 

letters from the parafoveal vision before fixating the word (Cutter, Drieghe, & Liversedge, 

2014; Gagl, Hawelka, Richlan, Schuster, & Hutzler, 2014; Schotter, Angele, & Rayner, 

2012). The use of a fixed of word length in our German lexical decision experiment is 

therefore not necessarily artificial since in natural reading word length is known before 

fixation. In sum, these results demonstrate that the orthographic prediction error is 

meaningfully related to word recognition behavior and independent of word length.   

 

Generalization across languages  
The interaction effect between lexicality (word/non-word status) and orthographic 

prediction error could be replicated in two open datasets from other languages, i.e., 

British English (Keuleers, Lacey, Rastle, & Brysbaert, 2012; 78 participants and 8,488 

words/non-words: Fig. 3d; estimate: 0.008; SE = 0.002; t = 4.2) and French (Ferrand et 

al., 2010; 974 participants and 5,368 words/non-words: Fig. 3g; estimate: 0.005; SE = 

0.002; t = 2.0); see also Supplemental Figure 2 for two further datasets from Dutch and 

Supplemental Table 1 for detailed results. However, in contrast to German, in both 

datasets we also found a significant effect of the number of pixels parameter (Fig. 3e,h; 

British: fixed effect: 0.008; SE = 0.001; t = 6.7; French: interaction with word/non-word 
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status: -0.007; SE = 0.002; t = 3.0). In terms of model comparison, the pattern derived 

from German, i.e., the greatest increase in model fit when including the orthographic 

prediction error, could not be recovered for English and French. Rather, we found that 

the role of the number of pixels parameter for describing the response times was larger 

than in German (see Fig. 3f,i). Still, the combined model showed the best model fit in all 

three languages (oPE only vs. full model: AIC difference English: 52; c2(2) = 56.5; p < 

.001; French: 6; c2(2) = 10.5; p = .005; Npixel only vs. full model: AIC difference English: 

24; c2(2) = 28.6; p < .001; French: 3; c2(2) = 7.8; p = .02; Bonferroni corrected p threshold: 

0.0083) indicating that both the orthographic prediction error and the number of pixels 

parameter are relevant in explaining word/non-word decision behavior. To summarize, 

for English and French, model comparisons showed that in addition to the prediction 

error, the parameter reflecting more directly the physical stimulus input explained a 

greater amount of variance than in German. Nevertheless, in all three languages, the 

orthographic prediction error explained unique variance components, which further 

supports its relevance for understanding visual word recognition. Future research should 

aim at clarifying the differential reliance on the bottom-up input itself in different 

languages but also see the next section for a potential explanation. 

 

Word recognition behavior under conditions of visual noise 
We speculated that the more significant role for bottom-up input in the British and French 

datasets might result from the presence of several sources of additional perceptual 

variability. For example, word length changed from trial to trial (English, 2-13 letters; 

French, 2-19 letters) and a proportional font (Times new roman) was used in the English 

dataset, while we had used only five-letter words presented in a monospaced font in both 

the German experiment and the implementation of the PEMoR (Fig. 1). Even though such 

unpredictable perceptual variation, without any doubt, is not the standard case in 

naturalistic reading (i.e., through the integration of visual information from parafoveal 

vision), in a single word reading paradigm it reduces the ability to predict visual features 

of upcoming stimuli and thus unnaturally decreases the performance of our model. For 

example, using a proportional-spaced font removes structure (e.g., the letter separation) 

both in the sensory input and the orthographic prior, which results in less precise 

predictions and more substantial prediction errors. This reduction in prediction strength, 

in turn, increases the correlation between the number of pixels in the input image and 

the derived orthographic prediction error (cp. Monospace font: r = .05 vs. proportional 

font: r = .49, both in German; see Supplement 2). In the face of this, it is particularly 
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noteworthy that the orthographic prediction error, as proposed here, remained a highly 

relevant predictor in the English and French data set. It should also be stressed again 

that in natural reading, low-level visual features like word length or letter position can be 

picked up in parafoveal vision, so that the visual system may be able to dynamically adapt 

its predictions to the upcoming word (Schotter et al., 2012). Future work will, therefore, 

have to specify in more detail the nature of orthographic priors in naturalistic reading. 

 To directly test if visual word recognition relies more firmly on the bottom-up input 

when visual word presentation includes unpredictable perceptual variations, we 

conducted a second lexical decision experiment. We presented visual word stimuli with 

an explicit manipulation of visual noise (0% vs. 20% vs. 40% noise level) to reduce the 

predictability of visual features (for details see Methods section). A noise manipulation, 

rather than, e.g., a comparison of different fonts, was applied since noise levels can be 

easily manipulated and quantified (i.e., in terms of the number of displaced pixels). In 

contrast, a direct comparison of fonts is more difficult because the contrast of 

proportional vs. mono-spaced font is confounded with many other visual differences like 

total stimulus width (Hautala, Hyönä, & Aro, 2011; Marinus et al., 2016). In addition, the 

0% noise stimuli allowed us to replicate our original behavioral finding. Figure 3j shows 

examples word stimuli. 

We found, in general, that response times and errors increased with the amount 

of noise that was applied to the visual-orthographic stimuli (0%: response time/RT: 613 

ms, 6% errors; 20%: RT: 739 ms, 12% errors; 40%: RT: 1,105 ms, 33% errors; compare 

also Fig. 3k and l). When no noise was applied we replicated our first study (cp. Fig. 3k 

and a) with a significant interaction between the orthographic prediction error and the 

word/non-word factor (estimate: 0.05; SE = 0.02; t = 2.3; see Supplemental Table 1 for 

detailed results). As in the first experiment, no effect or interaction was found for the 

number of pixels parameter. With 20% noise, we still could identify a fixed negative effect 

of the orthographic prediction error (estimate: -0.06; SE = 0.02; t = 3.3) however without 

a significant interaction pattern. Also, the fixed effect of the number of pixels was not 

significant. With 40% noise, however, no significant effect of the orthographic prediction 

error could be found but as expected from the above discussion of noise effects, we 

observed now a significant fixed effect of the number of pixels parameter, as well as an 

interaction with word/non-word status (Fig. 3l; estimate: 0.08; SE = 0.03; t = 2.9). A similar 

impression can be obtained from the model fit results showing that including the 

orthographic prediction error resulted in significantly higher model fits for 0% and 20% 

noise conditions compared to models in which only the number of pixels predictor was 
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included (see Fig. 3m-n; 0% AIC difference: 1; c2(0) = 1; p < .001; 20% AIC difference: 

13; c2(0) = 13.7; p < .001). With 40% noise, inclusion of the number of pixels parameter 

resulted in a higher model fit (see Fig. 3o; AIC difference: 13; c2(0) = 13.2; p < .001), but 

including the orthographic prediction error had essentially no effect.  

In sum, the behavioral experiments reported in this section demonstrate that the 

orthographic prediction error contributes substantially to visual word recognition. We 

find the PEMoR is highly relevant when the visual information presented in the lexical 

decision tasks is with a restricted variability and, therefore, high predictability (i.e., all 

words with the same number of letters), which is typically the case in natural reading 

situations (i.e., sentence reading). The predictability of visual features results in greater 

reliance on the orthographic prediction error compared to the pure bottom-up sensory 

input. In contrast, when the perceptual variability (i.e., complexity) increases, i.e., due to 

a variation of the number of letters, proportional fonts (e.g., as in the case of the English 

study) or visual noise the pure bottom-up signal, i.e., as assumed in the PixMoR, becomes 

the adequate parameter to explain visual word recognition behavior. Thus, the 

behavioral evidence indicates that one implements efficient neuronal coding when one 

can predict the perceptual properties of the letter strings. In case the perceptual 

properties are highly variable, predictive processing is hampered as only weak 

predictions can be formed suggesting the PixMoR as a “fallback” strategy as an 

approximation in effortful reading conditions. 

 

Cortical Representation of the Orthographic Prediction Error 
The PEMoR assumes that the orthographic prediction error is estimated at an early stage 

of the word recognition processes, i.e., in the visual-perceptual system and before word 

meaning is accessed and one can activate higher-level linguistic representations of the 

word. Note that also the end-stopping phenomenon was found up to middle temporal 

regions. We accordingly hypothesized that brain systems involved in computing or 

representing the orthographic prediction error should be driven by this optimized 

representation of the sensory input independent of the item’s word/non-word status (i.e., 

for words and non-words alike). Localizing the neural signature of the orthographic 

prediction error in the brain during word/non-word recognition, thus, is a further critical 

test of the PEMoR. Of note, a strict bottom-up model of word recognition (and 

perception in general, i.e., PixMoR) would make a different prediction, i.e., that activation 

in visual-sensory brain regions should be driven by the full amount of physical information 

in the percept (Goodyear & Menon, 1998; Henrie & Shapley, 2005). Processes that take 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/431726doi: bioRxiv preprint 

https://doi.org/10.1101/431726
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Gagl et al., An Orthographic Prediction Error as the basis for efficient Visual Word Recognition  

 Page 23 of 52 
 

place after word-identification, i.e., that involve higher levels of linguistic elaboration can 

only operate on mental representations of words, so that brain regions involved in these 

later stages of word processing should distinguish between words and non-words.  

 

 

 
Figure 4. fMRI results demonstrating the neuroanatomical localization of orthographic prediction error effects. BOLD 
activation during silent reading (see Methods for further details, and Table 1 for exact locations of activation effects): (a) 
Analysis demonstrating a positive orthographic prediction error (oPE) effect in bilateral occipital activation-clusters. This 
regression analysis used item-specific oPE values as covariate, independent of stimulus condition, and shows brain 
regions with greater activity for letter strings characterized by a higher oPE, independent of stimulus type. (b) Clusters of 
higher BOLD activation for words than for non-words. (c) Two frontal activation clusters showing a oPE by word/non-
word interaction, i.e. positive and negative oPE effects for words and non-words, respectively. Boxplots show individual 
beta weights; lines connect word and non-word betas from each individual. No effects of the number of pixels per word 
were found. Threshold voxel level: p<.001 uncorrected; cluster level: p<.05 family-wise error corrected. Boxplots represent 
the median (line), the data from the first to the third quartile (box) and ±1.5 times the interquartile range (i.e. quartile 3 
minus quartile 1; whiskers). 
 
 

We tested these hypotheses about the localization of the orthographic prediction 

error by measuring BOLD activation changes using functional MRI while 39 participants 

silently read words (German nouns) and pronounceable non-words (i.e., pseudowords), 

in randomized order (see Methods for details). We identified three left- and one right-

hemispheric brain regions in the occipital cortex that showed higher levels of activation 

when reading items with higher orthographic prediction error – both for words and non-

words (Fig. 4a and Supplemental Table 2). Prior research (Dehaene & Cohen, 2011; 

Dehaene et al., 2005) has identified a region in the mid-portion of the left occipito-
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temporal cortex as critical for reading: the visual word form area. Consistent with our 

hypothesis, all four activation clusters representing the orthographic prediction error are 

located posterior to this so-called visual word form area (Dehaene & Cohen, 2011), which 

supports our claim of an ‘early’ role for the orthographic prediction error signal before 

word identification. Importantly, no brain areas showed activity dependent on the pure 

amount of bottom-up information in the percept (i.e., the number of pixels parameter). 

Only brain regions involved in the activation of word meaning and subsequent 

processes should differentiate between words and non-words. We observed higher 

activity for words than non-words, independent of the orthographic prediction error, 

more anteriorly in left temporal and prefrontal cortex (Fig. 4b and Supplemental Table 

2). Third, the left inferior frontal gyrus (pars triangularis) and the medial portion of the 

superior frontal gyrus (mSFG) mirrored the word/non-word decision behavior reported 

above, in that higher prediction errors lead to increased activation for words but 

decreasing activation for non-words (Fig. 4c and Supplemental Table 2). The fMRI 

experiment, thus, supports our hypothesis that during the earliest stages of visual 

processing, i.e., presumably before accessing word meaning, an optimized perceptual 

signal, the orthographic prediction error, is generated and used as a basis for efficient 

visual-orthographic processing of written language. Only at later processing stages (in 

more anterior temporal and prefrontal cortices), the brain differentiates between words 

and non-words. 

 

Cortical timing of the Orthographic Prediction Error 
While of the fMRI results demonstrate a representation of the orthographic prediction 

error in presumably ‘early’ visual brain regions, the temporal resolution of fMRI precludes 

inferences concerning the temporal sequence of cognitive processes during word 

recognition. The millisecond time resolution of EEG has helped to consistently attribute 

the extraction of meaning from perceived words to a time window of around 300 to 600 

ms post word onset (N400 component of the event-related brain potential/ERP; Kutas & 

Federmeier, 2011). Visual-orthographic processes associated with the orthographic 

prediction error should thus temporally precede this time window, most likely to occur 

during the N170 component of the ERP (Barber & Kutas, 2007; Carreiras, Armstrong, 

Perea, & Frost, 2014; Grainger & Holcomb, 2009). To test this hypothesis, we measured 

EEG while 31 participants silently read words and non-words (including both 

pseudowords and consonant-only strings). We fitted a multiple regression model 

(analogous to the model used for the analysis of behavioral data) to the EEG data (Linzen 
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& Engemann, 2017) with the orthographic prediction error, the number of pixels, 

word/non-word-status, and their interactions as parameters (see Methods for details). 

Regression-estimated ERPs (see methods for details) show a significant effect of 

the orthographic prediction error on electrical brain activity between 150 and 250 ms 

after stimulus onset (Fig. 5a). In this early time window, letter-strings characterized by 

higher prediction errors elicited significantly more negative-going ERPs over posterior-

occipital sensors, for both words and non-words. In line with the temporal sequence of 

processes inferred from their neuroanatomical localizations (i.e., fMRI results), a 

significant word/non-word effect then emerged between 200-570 ms (Fig. 5b), followed 

by an interaction between word/non-word-status and orthographic prediction error at 

360-620 ms (Fig. 5c). In this interaction cluster, higher prediction errors led to more 

negative-going ERPs for non-words, as observed for all stimuli in the earlier time window, 

but showed a reverse effect for words, i.e., more positive-going ERPs for words with 

higher prediction errors (Fig. 5c). This pattern of opposite prediction error effects for 

words vs. non-words is analogous to the effects seen in word/non-word decision behavior 

and the frontal brain activation results obtain with fMRI. 

As in the fMRI study, we found no effect of the bottom-up input as such (pixel 

count), even though it is well-established that manipulations of physical input contrast (as 

determined, e.g., by the strength of luminance Johannes, Münte, Heinze, & Mangun, 

1995) can increase the amplitude of early ERP components starting at around 100 ms. 

We performed an explicit model comparison between statistical models including the 

orthographic prediction error compared to a model including the number of pixels 

parameter (analogous to the analysis of behavioral data), for both time windows in which 

the orthographic prediction error was relevant (early fixed effect and later interaction). In 

both time windows the model including the orthographic prediction error resulted in 

better fit (AIC difference: 16 at 230 ms at posterior sensors: c2(0) = 16.0; p < .001; and 5 

at 430 ms at frontal sensors: c2(0) = 5.0; p < .001) . Even when investigating the combined 

models, including both parameters, we found a tendency for a better fit in the oPE only 

model  (AIC difference: 3 at 230 ms at posterior sensors and 3 at 430 ms at frontal 

sensors). 

 

  
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/431726doi: bioRxiv preprint 

https://doi.org/10.1101/431726
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Gagl et al., An Orthographic Prediction Error as the basis for efficient Visual Word Recognition  

 Page 26 of 52 
 

 
 
 

 
Figure 5. EEG results: Timing of orthographic prediction error effects. Effect sizes from regression ERPs are presented 
as time courses for each sensor and time-point (left column; color coding reflects scalp position) with yellow areas 
marking time windows with significant activation clusters for silent reading of 200 words and 200 non-words (100 
pronouncable pseudowords, 100 consonant strings; see Supplemental Figure 3 for a more detailed visualization of the 
significance of spatio-temporal activation clusters). ERP results are shown for (a) the orthographic prediction error (oPE) 
main effect, (b) the word/non-word effect, and (c) the oPE by word/non-word interaction. Results indicate significant oPE, 
word/non-word, and oPE by word/non-word effects starting around, 150, 200, and 360 ms, respectively. The right panel 
shows the activation patterns related to the significant activation clusters (cf. Supplemental Figure 3) in more detail. Dots 
represent mean predicted µV across (a,c) all participants and items separated by oPE and stimulus category, and (b) all 
items separated by stimulus category, excluding confounding effects (see Methods). No significant activation clusters 
were found for the parameter representing the number of pixels. Boxplots represent the median (line), the data from the 
first to the third quartile (box) and ±1.5 times the interquartile range (i.e. quartile 3 minus quartile 1; whiskers). The frontal 
cluster includes the following sensors: AF3, AF4, AF7, AF8, F1, F2, F3, F4, F5, F6, F7, F8, SO1, SO2, FP1, FP2, Fz. The 
posterior cluster includes the following sensors: O2, O1, Oz, PO10, PO3, PO4, PO7, PO8, PO9, POz. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/431726doi: bioRxiv preprint 

https://doi.org/10.1101/431726
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Gagl et al., An Orthographic Prediction Error as the basis for efficient Visual Word Recognition  

 Page 27 of 52 
 

To summarize, EEG results converge with behavioral and fMRI results. They 

suggest that relatively early on in the cortical visual-perceptual processing cascade, the 

amount of perceptual processing devoted to the orthographic percept is smallest for 

letter-strings with highly expected visual features (i.e., low orthographic prediction error). 

100 to 200 ms later, i.e., in a time window strongly associated with semantic processing 

(Kutas & Federmeier, 2011), the prediction error effect was selectively reversed for words, 

and thus started to differentiate between the two stimulus categories. This finding mirrors 

behavioral results and activation patterns in the anterior temporal lobe and prefrontal 

cortex found in the fMRI dataset. In sum, these results support the PEMoR’s proposal that 

orthographic representations are optimized early during visual word recognition, and that 

the resulting orthographic prediction error is the basis for subsequent stages of word 

recognition.  

 

Applying the PEMoR to handwritten script.  
The electronic fonts used for all above-reported experiments introduce a highly regular 

structure that favors some of the PEMoR’s core processes, like the calculation of the 

orthographic prediction error (i.e., the prior). We showed above that when reducing the 

high regularity of computerized script by visual noise, reading performance decreases 

and the orthographic prediction error becomes less relevant for describing reading 

behavior. To demonstrate the ‘real world’ validity of the PEMoR with even less regular 

scripts, we applied a variant of this model to the reading of naturalistic handwritings 

obtained from 10 different writers. The extreme variability of different handwritings 

strongly influences their readability (compare Figs. 6a,b). The visual-orthographic 

predictions which have here been implemented based on single letters and separately 

for each handwriting, accordingly vary substantially in the strength and precision between 

individual handwritings (cp. ‘prediction’ of Fig. 6a,b). As in PEMoR for computer script, 

we once more define prediction strength in terms of the darkness of gray values of the 

prediction image, i.e., the mean gray value across pixels, and observe lower oPEs for 

handwritings that allow stronger predictions (Fig. 6c; linear mixed model statistics: 

Estimate: -0.05; SE = 0.01; t = 7.4). The precision of the prediction is represented by the 

inverse of the number of gray pixels included the prediction image; more precise 

predictions are more focused and less distributed, and also elicit lower orthographic 

prediction errors (Fig. 6d; 0.02; SE = 0.01; t = 2.1; see Supplemental Table 1 for full 

results). Finally, we obtained the rated readability of each handwriting based on ten 

written words and observed that the readability is higher for handwritings that produce 
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lower prediction errors (Fig. 6e; 38 raters; Estimate: -5.9; SE = 1.0; t = 6.2). These results 

demonstrate that (variants of) the PEMoR can account for reading processes not only in 

highly formalized stimuli but also in more naturalistic settings. 

 

 
Figure 6. Applying the PEMoR to the perception of handwritings. Examples for two (out of 10 empirically 
obtained) different handwritings. (a) A handwriting including single letters and the respective (letter-level) 
orthographic prediction estimated based on all 26 lower case letters (written in isolation). In addition, the word 
Identifikation (identification) is presented for both handwritings, as an example (out of 10). These words were 
used to acquire the readability rating. (c) Relationship between prediction strength and the mean orthographic 
prediction error across all letters for each script. Note that the oPE estimate for handwritings was normalized 
(i.e. divided) by the number of pixels since the number of pixels differed drastically between scripts (e.g. 
compare Examples in a and b). (d) Relationship between the precision of the prediction and the orthographic 
prediction error. Point color reflects each of 10 individual scripts, separately for upper- and lower-case letters. 
(e) Script readability ratings in relation to the orthographic prediction error (lower- and upper-case prediction 
error combined). Blue line reflects the overall relationship and thin lines represent each rater. 
 

Discussion  
Here we investigated if an efficient neuronal code representing the visual information in 

words, i.e., analogous to the neural representation underlying the end stopping 
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phenomenon for oriented lines, is the basis of proficient reading. We found that our 

Prediction Error Model of Reading (PEMoR) is a plausible account. Surprisingly, since the 

focus of the PEMoR is visual processing, the resulting prediction error, i.e., the non-

redundant and thus informative part of the visual percept, represents not only the visual 

but also orthographic word information. We concluded this from the correlations 

between various lexicon-based descriptors of words, associated with orthographic stages 

of visual word recognition, and the prediction error representation.  Our empirical 

observations also support this conclusion: We found that the orthographic prediction 

error (i) accounts for word identification behavior, (ii) explains brain activation in visual-

perceptual systems of the occipital cortex, (iii) explains brain activation as early as 150 ms 

after the onset of the letter-string, and (iv) is represented in high-level lexical processing 

in frontal regions as well as the N400 component as part of the processes that underlie 

behavior. We inferred the latter from the finding that both the brain activation (i.e., in 

frontal areas and the N400) and the behavioral evidence showed comparable interaction 

pattern. Also, the PEMoR provides a quantitative estimate of the amount of information 

reduction achieved by this mechanism (i.e., in our data between 31 and 37% on average 

depending on language, with an upper limit of 51% at the level of the individual word). 

Finally, we have provided the first evidence that the principles of predictive coding may 

also apply to more naturalistic reading situations, for example, to account for individual 

differences in the readability of handwriting. In sum, our findings indicate that the basis 

for fast access to the meaning of written words is an informationally optimized neuronal 

code representing visual-orthographic word information.  

We also found evidence that the reliance on the orthographic prediction error in 

word recognition is related to the perceptual quality of the stimulus. We showed that in 

case the visual occurrence of the stimulus is less predictable, e.g., due to visual noise, 

the amount of visual information (i.e., the number of pixels) predicted the behavioral 

performance better than the prediction error. As described previously (Rao & Ballard, 

1999), efficient coding in a predictive system relies on the structure present in the 

stimulus (i.e., more structured handwriting results in stronger and more precise 

predictions). If the structure is compromised, i.e., by visual noise, the predictive system 

breaks down as predictions become weaker and less precise (i.e., imagine when the 

images used as the basis for the prediction in the PEMoR would be noisy). As a 

consequence, word processing relies on less efficient neuronal codes under such 

conditions. 
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Most results reported here relied on experiments with fixed word lengths, while 

naturalistic reading involves considerably more variability at the level of the input. 

However, para-foveal vision provides information about word length to the visual system 

before the actual processing of the word (Schotter et al., 2012),  so that it can dynamically 

implement best-fitting visual-orthographic predictions (priors) online during reading. This 

would, in principle, allow for optimized sensory processing as described by the PEMoR 

in natural reading situations. This hypothesis must be tested in future studies but fits with 

previous theoretical proposals which have acknowledged the integration of top-down 

predictions from multiple linguistic domains (for example at the phonological, semantic, 

or syntactic level DeLong et al., 2005; Eisenhauer, Fiebach, & Gagl, 2019; Nieuwland et 

al., 2018; Price & Devlin, 2011). Critically, our results go beyond these earlier models by 

demonstrating that top-down guided expectations are implemented already onto early 

visual-orthographic processing stages.  

The so-far dominant model of visual word recognition in the brain (Dehaene & 

Cohen, 2011; Dehaene et al., 2005) postulates that words are ‘assembled’ bottom-up 

along the visual pathway, starting with symbolic representations of letter features up to 

successively more complex higher-order representations. In this and similar models 

(including computational accounts of visual word recognition, e.g., Coltheart et al., 2001) 

the symbolic letter representation is inferred from the visual input stimulus. Here we show 

that the representational spaces of our original word stimulus images (i.e., the visual 

input) and their derived orthographic prediction errors (Fig. 2d) correlate to a high 

degree, indicating that, in principle, the PEMoR does not contradict current models of 

visual word recognition. In contrast, PEMoR specifies explicitly and in a testable manner 

the neuronal code from which we infer symbolic representations like letters. Prediction-

based top-down optimization of the visual-orthographic input, as proposed here, is thus 

not necessarily incompatible with the current models of reading and visual word 

recognition, but offers a specification of a previously underspecified visual input 

representation. 

Predictive coding-based theories, in general, assume that higher-level processing 

is concerned with prediction error minimization as a core computation (K. Friston, 2005b; 

Price & Devlin, 2011). As described in the introduction, such an account would be 

fundamentally different from most assumptions in visual word recognition models. 

Accordingly, a future challenge for model development will be the incorporation of the 

orthographic prediction error and current model assumptions about orthographic 

processing.  One possibility here could be the inclusion of the orthographic prediction 
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error as partial evidence in an evidence accumulation process with the goal of word 

recognition (similar as previously described in Ref. Gagl, Richlan, Ludersdorfer, 

Sassenhagen, & Fiebach, 2016; Ratcliff, Gomez, & McKoon, 2004; Summerfield & de 

Lange, 2014).  

In sum, we demonstrate that during reading, visual information is optimized by 

‘explaining away’ redundant visual information based on top-down predictions. This 

study provides strong evidence that reading follows domain-general mechanisms of 

predictive coding during perception (Clark, 2013) and is also consistent with the 

influential hypothesis of a Bayesian brain, which during perception continuously 

combines prior knowledge and new sensory evidence (K. Friston, 2005a; Knill & Pouget, 

2004). We propose that the result of this optimization step, i.e., an orthographic 

prediction error signal, is the efficient neuronal access code to subsequent ‘higher’ levels 

of word processing, including the activation of word meaning. These data provide the 

basis for a new understanding of early, i.e., pre-lexical orthographic stages of visual word 

recognition, rooted in a strong and widely accepted, domain-general neurophysiological 

model –prediction-based perception (K. Friston, 2005a; Rao & Ballard, 1999). At the same 

time, our results provide crucial converging evidence in support of predictive coding 

theory. 
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Supplementary Materials 
 
Fig. S3.1. Behavioral evaluation, including stimuli with 4-8 letters. 
Fig. S3.2. Dutch lexical decision behavior and prediction using a proportional script. 
Table S3.3. Results from linear mixed model regression analysis 
Table S4. Reliable activation clusters from the fMRI evaluation with respective anatomical 
labels 
Fig. S5. Detailed description of significant activation clusters in the EEG study 
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Figure S3.1. Behaviroal evaluation including multiple word lengths. (a) Response times aggregated across 
participants from the British lexicon (BLP) project (Keuleers et al., 2012) for the word lengths 4-8. The left panel 
shows the word/non-word by orthographic prediction error (oPE) interaction and the right panel shows the 
word/non-word by number of pixels (Npixel) interaction for each word length separately. In addition, the upper 
panel shows letter strings that are correctly categorized in nearly all cases (accuracy > .95) and the lower panel 
shows the response times to the items, which were less accurately processed (i.e., accuracy < .95). The median 
split resulted in a subset of the BLP (i.e., the easy words) which are roughly comparable to words used in the 
previous experiments (e.g. see Fig. 3), as the BLP study includes a large number of very rare words (median 
log. word frequency per million is .3). Bluish colors represent non-words (N) and greenish colors represent 
words (W), while the hue of the colors reflects word length (i.e., bright to dark reflects short to long letter 
strings). For both effects, we first estimated linear regression models with either the oPE or the Npixel effect 
and allowing interactions with word/non-word status, word length, and accuracy. Note that the oPE in this first 
analysis was based on length-specific predictions (i.e., for the estimation of the oPE of four-letter words, all 
four-letter words of the lexicon were included in the prediction). For the oPE model, a significant four-way 
interaction was found (estimate = -1.078e-04; SE = 4.199e-05; t = -2.567). Separating hard vs. easy words 
allowed us to disentangle the four-way interaction: In easy words/non-words, we found a consistent (i.e., 
across length levels) oPE by word/non-word interaction (estimate = 1.530e-04; SE = 4.047e-05; t = 3.780) in the 
same direction as previously shown (positive effect for words and a negative effect for non-words). For hard 
words/non-words, we found that the oPE by word/non-word interaction was inconsistent across letter length 
levels, which was indicated by a significant oPE and letter length interaction (estimate = -3.530e-05; SE = 
8.092e-06; t = -4.363). In addition, for the hard words both the oPE by word/non-word interaction (estimate = -
1.685e-04; SE = 6.905e-05; t = -2.440) and the main effect of oPE were reversed (estimate = 2.828e-04; SE = 
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5.802e-05; t = 4.874 compare to estimate = -1.000e-04; SE = 2.440e-05; t = -4.101, for easy words). For the Npixel 
model, no four-way interaction and no Npixel interaction or main effect were found. In sum, in this analysis we 
showed that the oPE by word/non-word interaction shown previously for word lengths of five letters (see main 
text) is consistent for easy-to-process English items with word lengths from 4-8 letters. Secondly, the 
word/non-word by orthographic prediction error interaction was also reliable when the prediction included all 
words of all letter lengths from the English lexicon (see part b of this Figure) and the orthographic prediction 
error estimation was based on this length-unspecific prediction (estimate: 0.02; SE=0.007; t=3.349). (b) Letter-
length unspecific prediction for English based on ~60,000 English words from the SUBTLEX database (Heuven 
et al., 2014).  
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Figure S3.2. Dutch lexical decision behavior and prediction using a proportional script. (a) Effect of the 
orthographic prediction error parameter, (b) number of pixels parameter and (c) showing the same model 
comparisons as implemented in Figure 3 for the data from the first Dutch lexicon project (DLP1; (Keuleers, 
Diependaele, & Brysbaert, 2010); 4,305 five-letter stimuli; 39 participants) and the same effects and model 
comparisons for the second Dutch lexicon project (DLP2; (Brysbaert, Stevens, Mandera, & Keuleers, 2016); 
3,145 five-letter stimuli; 81 participants) are presented in (d,e,f). Before going into the details of the two studies 
one has to note that the patterns we have found in the data in relation to our parameters of interest do not 
replicated within these two Dutch studies and, in addition, do not replicate with the findings from German, 
English, and French shown in Figure 3. In general, this is difficult for the interpretations of the results. For the 
DLP1 pattern we found a significant interaction of the orthographic prediction error with word/non-words and 
no significant effect of number of pixels. The interaction pattern in contrast to the findings in other languages 
(Fig. 3a), however, was qualitatively different as it showed a negative orthographic prediction error effect for 
words and a positive effect for non-words. The pattern is exactly the inverse from all other languages. Still 
model comparisons highlighted that the orthographic prediction error was relevant for the model fit since the 
predictor increased the model fit with no further increase of fit when the number of pixel parameter was 
included. None of these findings could be replicated in the DLP2 dataset, showing no significant fixed effects 
or interactions and no substantial changes in model fit relation to the null model. (g) Prediction image from a 
PEMoR implementation using five-letter words with a proportional Times New Roman script.  
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/431726doi: bioRxiv preprint 

https://doi.org/10.1101/431726
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Gagl et al., An Orthographic Prediction Error as the basis for efficient Visual Word Recognition  

 Page 44 of 52 
 

Table S3.3. Results from linear mixed model regression analysis 
(with the exception of the British data including multiple word 
lengths was estimated based on word aggregated data) for the 
behavioral lexical decision tasks (LDT) and handwriting analyses. 
 E SE t  
German LDT N°1: Orthographic prediction error based on 
word length specific prediction  

Intercept 6.49 0.023 288  

Orthographic prediction error (oPE) -0.03    0.004 6.5  
Number of pixels (Npixel) -0.007 0.004 1.8  
Word/non-word (Lex) 0.33 0.009 33.1  
Word frequency -0.12 0.004 33.5  
Error -0.03 0.005 6.2  
oPE X Lex 0.03 0.006 5.0  
Npixel X Lex 0.000 0.006 0.1  
     
German LDT N°1: Orthographic prediction error based on 
word length general prediction 

 

Intercept 6.48 0.023 288.3  
Orthographic prediction error (oPE) -0.03    0.004 6.3  
Number of pixels (Npixel) -0.01 0.004 1.7  
Word/non-word (Lex) 0.33 0.010 33.2  
Word frequency -0.12 0.004 35.5  
Error -0.03 0.005 6.2  
oPE X Lex 0.03 0.006 4.5  
Npixel X Lex -0.00 0.006 0.0  
     
German LDT N°1: Orthographic prediction error based on 
word length specific prediction including orthographic 
Levenshtein distance and word frequency 

 

Intercept 6.66 0.023 237.1  
Orthographic prediction error (oPE) -0.02    0.004 4.3  
Number of pixel (Npixel) -0.00 0.004 0.2  
Word/non-word (Lex) 0.29 0.011 27.0  
Error -0.03 0.005 6.2  
Orthographic Levenshtein distance -0.08 0.008 10.5  
Word frequency -0.12 0.004 35.5  
oPE X Lex 0.03 0.006 5.2  
Npixel X Lex -0.00 0.005 0.6  
     

German LDT N°2 including noise: 0% 
 

Intercept 6.32 0.024 263.9  
Orthographic prediction error (oPE) -0.02    0.016 1.4  
Number of pixels (Npixel) -0.00 0.015 0.2  
Word/non-word (Lex) 0.27 0.05 5.4  
Word frequency -0.07 0.02 4.9  
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Error -0.07 0.010 6.8  
oPE X Lex 0.05 0.02 2.3  
Npixel X Lex -0.02 0.021 1.2  
     
German LDT N°2 including noise: 20%  
Intercept 6.45 0.026 245.4  
Orthographic prediction error (oPE) -0.06   0.017 3.3  
Number of pixels (Npixel) -0.00 0.013 0.3  
Word/non-word (Lex) 0.37 0.049 7.5  
Word frequency -0.14 0.02 6.1  
Error -0.14 0.010 5.4  
oPE X Lex 0.04 0.022 1.6  
Npixel X Lex 0.02 0.022 0.7  
     
German LDT N°2 including noise: 40%  
Intercept 6.84 0.042 162.9  
Orthographic prediction error (oPE) -0.02    0.021 1.0  
Number of pixels (Npixel) -0.08 0.018 4.1  
Word/non-word (Lex) 0.14 0.049 2.8  
Word frequency -0.11 0.06 1.9  
Error -0.00 0.010 0.1  
oPE X Lex -0.00 0.028 0.1  
Npixel X Lex 0.08 0.026 2.9  
     
British LDT   
Intercept 6.39 0.013 507.1  
Orthographic prediction error (oPE) -0.007    0.001 5.3  
Number of pixels (Npixel) 0.008 0.001 6.7  
Word/non-word (Lex) 0.12 0.003 46.2  
Word frequency -0.067    0.001 58.0  
oPE X Lex 0.008 0.002 4.2  
Npixel X Lex -0.003 0.002 1.9  
     
British LDT 4-8 Letters: Length specific prediction   
Intercept 6.26 0.157 39.7  
Orthographic prediction error (oPE) -0.001    0.000 5.0  
Number of letters (Nletters) 0.062 0.027 2.3  
Word/non-word (Lex) 0.155 0.162 0.3  
Error 0.043 0.165 0.8  
oPE X Lex -0.001 0.000 4.5  
oPE X Nletters 

-0.001 0.000 3.3 
 

oPE X Error 
-0.002 0.000 5.1 

 

Nletters X Lex 
-0.006 0.028 0.8 

 

Nletters X Error 
-0.245 0.172 1.4 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/431726doi: bioRxiv preprint 

https://doi.org/10.1101/431726
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Gagl et al., An Orthographic Prediction Error as the basis for efficient Visual Word Recognition  

 Page 46 of 52 
 

Lex X Error 
-0.036 0.028 1.3 

 

oPE X Lex X Nletters 
0.001 0.000 2.4 

 

oPE X Lex X Error 
0.002 0.000 5.0 

 

oPE X Nletters X Error 
0.001 0.000 3.2 

 

Nletters X Lex X Error 
0.003 0.030 0.1 

 

oPE X Lex X Nletters X Error 
-0.001 0.000 2.6 

 

 
   

 

British LDT 4-8 Letters: Length general prediction  
 

Intercept 
5.25 0.421 12.5  

Orthographic prediction error (oPE) 
0.002    0.000 3.7  

Number of letters (Nletters) 
0.250 0.061 4.1 

 

Word/non-word (Lex) 
1.064 0.438 2.4 

 

Error 
1.264 0.443 2.9 

 

oPE X Lex 
-0.002 0.001 3.1 

 

oPE X Nletters 
-0.000 0.000 3.6 

 

oPE X Error 
-0.002 0.001 4.0 

 

Nletters X Lex 
-0.183 0.065 2.9 

 

Nletters X Error 
-0.002 0.001 4.0 

 

Lex X Error 
-1.426 0.467 3.1 

 

oPE X Lex X Nletters 
0.001 0.000 2.9 

 

oPE X Lex X Error 
0.002 0.001 3.6 

 

oPE X Nletters X Error 
0.001 0.000 4.0 

 

Nletters X Lex X Error 
0.228 0.068 3.5 

 

oPE X Lex X Nletters X Error 
-0.001 0.000 3.3 

 

 
   

 

British LDT 4-8 Letters: Number of pixel  

Intercept 6.590  0.157 42.0  
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Number of pixel (Npixel) 0.000   0.001 0.3 
 

Number of letters (Nletters) 
0.092   0.028 3.2 

 

Word/non-word (Lex) 
-0.124   0.162 0.8 

 

Error 
-0.309  0.165 1.9 

 

Npixel X Lex 
0.000 0.001 0.2 

 

Npixel X Nletters 
0.000 0.001 1.4 

 

Npixel X Error 
0.000 0.001 0.4 

 

Nletters X Lex 
-0.059 0.029 2.0 

 

Nletters X Error 
-0.090   0.030 3.0 

 

Lex X Error 
0.035  0.171 0.2 

 

Npixel X Lex X Nletters 
0.000 0.001 0.9 

 

Npixel X Lex X Error 
0.000 0.001 0.1 

 

Npixel X Nletters X Error 
0.000 0.001 1.2 

 

Nletters X Lex X Error 
0.069 0.031 2.2 

 

Npixel X Lex X Nletters X Error 
0.000 0.001 1.2 

 

 
   

 

French LDT  

Intercept 6.63 0.005 1,333  
Orthographic prediction error (oPE) -0.002    0.001 2.0  
Number of pixels (Npixel) 0.002 0.001 1.3  
Word/non-word (Lex) -0.040 0.003 11.6  
Word frequency -0.042 0.001 34.1  
oPE X Lex 0.005 0.002 2.0  
Npixel X Lex -0.007 0.002 3.0  
     
Dutch LDT   
Intercept 6.45 0.019 348.1  
Orthographic prediction error (oPE) 0.005    0.002 3.2  
Number of pixels (Npixel) 0.001 0.002 0.6  
Word/non-word (Lex) 0.101 0.004 23.8  
Word frequency -0.061 0.002 36.9  
oPE X Lex -0.016 0.002 6.6  
Npixel X Lex 0.002 0.002 1.0  
     
Dutch LDT2   
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Intercept 6.35 0.016 391.1  
Orthographic prediction error (oPE) 0.002    0.002 1.1  
Number of pixels (Npixel) -0.001 0.002 0.6  
Word/non-word (Lex) 0.048 0.005 9.4  
Word frequency -0.023 0.001 26.9  
oPE X Lex -0.003 0.003 1.3  
Npixel X Lex 0.003 0.003 0.5  
     
Handwriting: Script based orthographic prediction error   
Intercept 1.465 0.010 154.3  
Mean prediction strength 0.052 0.007 7.4  
Number of pixels with a prediction 0.015 0.008 2.1  
Letter case 0.039 0.012 3.2  
     
Handwriting: Readability ratings   
Intercept 11.5 1.4 8.1  
Mean prediction strength -5.9 1.0 6.2  
Note. E: Estimate; SE: Standard error; t: t-value. All t’s >2 are 
considered a significant effect. 
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Table S4. Reliable activation clusters from the fMRI evaluation with respective anatomical labels 
(most likely regions from the Harvard-Oxford atlas; order of brain regions is relative to the order 
of peak components), cluster size (in voxels of size 2x2x2), and peak voxel coordinates (MNI 
space). 

Hemisphere 
Cluster 
extent 
[N 
voxels] 

T x y z 

Orthographic prediction error based analysis (positive relationship) 

Occipital fusiform gyrus / Lateral 
occipital gyrus 

L 95 6.6* -24 -90 -12 

   4.3 -34 -88 -10 

Lateral occipital gyrus L 81 4.8 -28 -84 6 

   4.3 -34 -76 6 

   3.8 -38 -86 4 

Lateral occipital gyrus / Occipital 
fusiform gyrus 

R 104 5.1 48 -76 -12 

   4.1 44 -64 -18 

   4.0 34 -64 -14 

Occipital fusiform gyrus / Lateral 
occipital gyrus 

L 170 4.9 -36 -68 -12 

   4.2 -48 -76 -10 

   4.0 -24 -68 -12 

Words > Pseudowords 

Frontal orbital cortex / Inferior 
frontal gyrus, pars triangularis 

L 1347 6.6 -36 34 -18 

   6.3 -40 28 -8 

   6.1 -54 26 -4 
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Superior frontal gyrus / Frontal 
pole 

L/R 427 5.5 -6 52 28 

   3.9 -10 62 22 

   3.7 10 56 26 

Temporal Fusiform Cortex, 
posterior division 

L 120 5.2 -40 -36 -18 

   5.2 -34 -42 -24 

Middle Temporal Gyrus, posterior 
division / Superior Temporal 
Gyrus, posterior division / Middle 
Temporal Gyrus, temporooccipital 
part 

R 113 4.5 60 -34 -2 

   4.0 50 -26 -2 

   3.8 52 -38 0 

Inferior Frontal Gyrus, pars 
triangularis / Frontal Pole  

R 164 4.3 56 32 10 

   3.9 48 34 -12 

   3.4 50 34 -4 

Precentral Gyrus / Inferior Frontal 
Gyrus, pars opercularis 

R 98 3.9 44 10 28 

   3.9 38 4 32 

   3.7 42 16 22 

Orthographic prediction error by word/non-word interaction (positive relationship for words and 
negative for non-words) 

Inferior frontal gyrus, pars 
triangularis / Frontal operculum 
cortex 

L 125 5.5 -52 32 -4 

   4.6 -48 20 -4 
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Paracingulate gyrus / Superior 
frontal gyrus 

L/R 90 4.4 -4 48 28 

   4.2 4 48 30 

Note. Cluster-level FWE-corrected at p < .05, peak-level uncorrected at p < .001; * Significant 
after FWE-correction on the voxel level. Order of regions presented per cluster corresponds to the 
order retrieved from the probabilistic Harvard-Oxford atlas. 
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Figure S5. Detailed description of significant activation clusters in the EEG study for (a) the orthographic 
prediction error; (b) word/non-word effect; (c) interaction of word/non-word and the orthographic prediction 
error. On the left, the effect sizes from regression ERPs are presented as time courses for each sensor and 
time-point (color coding reflects scalp position). This part of the Figure reproduces Figure 5. The right column 
displays time courses with one line per channel, masked by significance using cluster statistics (see Methods 
for details; Maris & Oostenveld, 2007). 
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