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Abstract

Most current models assume that the perceptual and cognitive processes of visual word
recognition and reading operate upon neuronally coded domain-general low-level visual
representations — typically oriented line representations. We here demonstrate,
consistent with neurophysiological theories of Bayesian-like predictive neural
computations, that prior visual knowledge of words is utilized to ‘explain away’ redundant
and highly expected parts of the visual percept. Subsequent processing stages,
accordingly, operate upon an optimized representation of the visual input, the
orthographic prediction error, highlighting only information relevant for word
identification. We show that this informationally optimized representation is related to
orthographic word characteristics, accounts for word recognition behavior, and is
processed early in the visual processing stream, i.e., in occipital cortex and before 200
ms after word-onset. Based on these findings, we propose that prior visual-orthographic
knowledge is used to optimize the representation of visually presented words, which in
turn allows for highly efficient reading processes.
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Introduction

Written language — script — developed over the last ~8,000 years in many different
variants (Haarmann, 2007). It is a symbolic representation of meaning, based on the
combination of simple high contrast visual features (oriented lines) that our brains
translate efficiently into linguistically meaningful units. Cognitive-psychological models
of reading specify the perceptual and cognitive processes involved in activating
orthographic, phonological, and lexico-semantic representations of perceived words
from such low-level visual-perceptual features (for a review see Norris, 2013). While some
models — consistent with other domains of perception (e.g., Riesenhuber & Poggio, 1999
for object recognition) — indeed assume oriented line representations as the lowest-level
visual feature involved in visual word recognition (e.g., Coltheart, Rastle, Perry, Langdon,
& Ziegler, 2001; Davis, 2010; Dehaene, Cohen, Sigman, & Vinckier, 2005; McClelland &
Rumelhart, 1981; Perry, Ziegler, & Zorzi, 2007; Whitney & Cornelissen, 2008), other
cognitive models use as starting point a more integrated, domain-specific
representations, i.e., letters (Engbert, Nuthmann, Richter, & Kliegl, 2005; Reichle, Rayner,
& Pollatsek, 2003; Sibley, Kello, Plaut, & Elman, 2008).

Interestingly, this does not take into account findings from visual neuroscience
indicating that already the neuronal representation of an oriented line is an abstraction
of the visual input: The phenomenon of end-stopping describes that an oriented line (i.e.,
the frequently-assumed low-level input into the visual word recognition system) is not
represented in the brain by many neurons with receptive fields along the length of the
line, but by only two neurons that have their receptive fields at the beginning and end of
the line (Bolz & Gilbert, 1986; D. H. Hubel & Livingstone, 1987; David H. Hubel & Wiesel,
1965). While preserving the representation of line length and angle, this neuronal
representation can be more efficient by several orders of magnitude. Given these results,
we hypothesized that early perceptual stages of visual word recognition should also
operate upon informationally optimized representations of the visual-orthographic input.

To provide a computationally explicit account for explaining end-stopping, Rao
and Ballard (Rao & Ballard, 1999) successfully adapted the computational principles of
predictive coding (Srinivasan, Laughlin, & Dubs, 1982). Predictive coding postulates that
perceived regularities in the world are used to build up internal models of the (hidden)
causes of sensory events, and that these internal predictions are imprinted in a top-down
manner upon the hierarchically lower sensory systems, thereby increasing processing
efficiency by inhibiting the processing of correctly predicted input (K. Friston, 2005a; Rao
& Ballard, 1999). When sensory input violates these expectations or is not fully predicted,
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a prediction error signal is generated and propagated up the cortical processing
hierarchy in a bottom-up fashion (e.g. Todorovic, van Ede, Maris, & de Lange, 2011),
where it is used for model updating and thus serves to optimize future predictions (Clark,
2013; Rao & Ballard, 1999). In the case of line representations and end-stopping, neurons
with receptive fields at the beginning and end of the line fire and this information is
propagated to higher areas where they activate abstract line representations, which in
turn in a recursive, top-down manner ‘predict away’ the activity of the receptive fields
between the two endpoints of the line (Rao & Ballard, 1999). Predictive coding has by
now received support in many domains of perceptual neuroscience, from retinal coding
(Srinivasan et al., 1982), auditory (Todorovic et al., 2011, Wacongne, Changeux, &
Dehaene, 2012) and speech perception (Arnal, Wyart, & Giraud, 2011; Gagnepain,
Henson, & Davis, 2012) to object (Kersten, Mamassian, & Yuille, 2004) and face
recognition (Schwiedrzik & Freiwald, 2017), indicating that this framework is likely a
generalized computational principle of the brain.

Most readers can process written language at a remarkably high speed. We
reasoned that the high efficiency of visual-orthographic processing necessary for efficient
reading makes it likely that the visual system also optimizes the ‘low-level’ perceptual
representations used for orthographic processing during reading. Inspired by the wide
applicability of the principles of predictive coding (see previous paragraph), the present
model-based study explores whether computational principles of predictive coding may
contribute to the informational optimization of perceived written words already at the
earliest neurocognitive stages of reading. In an influential theoretical paper, Price and
Devlin (Price & Devlin, 2011) have proposed that principles of predictive coding may be
involved in visual word recognition. Their ‘Interactive Account’ model focuses explicitly
on ‘intermediate-level’ stages of visual word processing that are attributed to the left
ventral occipito-temporal cortex (vOT; often also referred to as ‘visual word form area’,
e.g., Dehaene & Cohen, 2011; Dehaene et al., 2005). The Interactive Account model
postulates that at the level of IVOT, visual-perceptual information that is propagated
bottom-up from early visual to higher areas when reading a string of letters, is integrated
with phonological and semantic information fed to IvVOT from higher cortical areas in a
top-down manner. Empirical support for this proposal comes from a study by Kherif et
al. (2011) demonstrating semantic priming effects between words and pictures of objects,
in IvOT.

However, predictive coding as a general model of cortical processing should, in

principle, not be restricted to a specific level of processing, but rather apply to all sensory-
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perceptual stages of the reading process - including also reading-related visual
processes in lower level visual areas (i.e., that take place before the integrative processes
attributed to the vOT/visual word form area in the Interactive Account model; see, e.g.,
also Fig. 2 of Price & Devlin, 2011). We thus hypothesized here that ‘higher level’
linguistic expectations — either in the form of contextual constraint from preceding input
or in the form of our knowledge of the orthography of a language — should be imprinted
upon the earliest stages of visual-orthographic processing, thereby ‘optimizing’ earlier,
i.e., pre-lexical processing stages that are typically associated with brain processes
located posterior to the visual word form area (e.g., Dehaene et al., 2005) and temporally
earlier than 250 ms (Grainger & Holcomb, 2009).

Interestingly, the feature-configurations that constitute letters and words, i.e., that
are part of our orthographic knowledge of language, contain highly redundant
information (Changizi, Zhang, Ye, & Shimojo, 2006) - like vertical lines often occurring at
the same position (e.g., the left vertical line in E, R, N, P, B, D, F, H, K, L, M) or letters
often positioned at the same location in a word (e.g., s or y as final letters in English). As
such redundancies contribute very little to unique letter and word identification, using
prior orthographic knowledge to subtract the redundant part of the percept is a plausible
strategy of our brain to reduce the amount of to-be-processed information — and thus a
plausible way of increasing the efficiency of the neuronal code that is fundamental to
visual word recognition.

We here propose that during the earliest stages of visual word recognition,
following the principles of predictive coding, the visual-orthographic input signal is
‘optimized’ on the basis of our knowledge and expectations about the redundancies of
the respective script. In other words, we propose that our orthographic knowledge of
language is literally used to ‘predict away’ the uninformative part of visual input during
reading. As a result, the subsequent stages of visual word recognition (as described in
several models of reading; see above and (Norris, 2013) for review) can proceed upon an
informationally optimized representation of the input. As this informationally optimized
input representation highlights the unexpected (and thus more informative) part of the
stimulus, we termed it the orthographic prediction error (oPE). In the following, we
describe one possible, computationally explicit implementation of this proposal, which
we refer to as the Prediction Error Model of Reading (PEMoR), and we report quantitative
evaluations of the PEMoR using lexicon-based, behavioral, EEG, und functional MRI data.
To compare the PEMoR with an alternative account that implements early visual

processing stages without top-down predictions and prediction errors, we also
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conducted most of the reported analyses for a full pixel-based representation of the
perceived stimuli (Pixel based Model of Reading; PixMoR). As a result, for most model
evaluations, we compare two parameters, one reflecting strictly bottom-up visual
processing without a prediction-based optimization step and one based on a top-down-

/prediction-based optimization of the sensory representation of the perceived word.

The Prediction Error Model of Reading (PEMoR)

The Prediction Error Model of Reading postulates that one identifies words not on the
basis of the full physical input into the visual system contained in a string of letters, but
rather based on an optimized (and thus more efficient) neuronal code representing only
the informative part of the percept (while redundant and expected information is
cancelled out at earliest-possible processing stages; Rao & Ballard, 1999). In the
predictive coding framework, this non-redundant portion of a stimulus is formalized as a
prediction error; we apply this principle to visual word recognition, and propose that
internal (i.e., knowledge- or context-dependent) visual-orthographic expectations are
subtracted from the sensory input, so that further processing stages operate upon an
orthographic prediction error (oPE) signal (Fig. 1a). It is commonly believed that higher
level linguistic representations can initiate specific expectations about upcoming words
(DelLong, Urbach, & Kutas, 2005; Kliegl, Nuthmann, & Engbert, 2006; Nieuwland et al.,
2018; Price & Devlin, 2011) — e.g., about the class (noun or verb) and meaning of the next
word in a sentence like “The scientists made an unexpected ... (discovery)”. The
fundamental difference between these psycholinguistic assumptions about semantic and
syntactic predictions and the proposed visual-orthographic prediction in PEMoR, is that

we postulate predictive processes already at much earlier stages of visual processing.
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Here, we quantitatively test the assumptions of the PEMoR for the most frequently
investigated paradigm in reading research, single word recognition. In the absence of
sentence context, the redundant visual information (i.e., the visual-orthographic
prediction or, in Bayesian terms, the prior) is a function of our orthographic knowledge
of words. We approximate this prior knowledge quantitatively as the pixel-by-pixel mean
over image representations of all words derived from a psycholinguistic database
(Brysbaert et al., 2011; see Fig. 1b and Methods). Interestingly, the resulting visual-
orthographic predictions look similar across different languages sharing the same writing
system (compare Fig. 1c) and correlate highly with each other (i.e., based on the
individual gray values of the pixels from the prediction image; r ranging from .95 to .99).

We estimate the orthographic prediction error as a pixel-by-pixel subtraction of
this visual-orthographic prediction (or prior in Bayesian terms) from each perceived word
(Fig. 1d). This step of ‘predicting away’ the redundant part of written words reduces the
amount of to-be-processed information by up to 51% (on average 33%, 37%, and 31%
for English, French, and German, respectively; see Methods, Formula 4), thereby
optimizing the visual input signal in the sense of highlighting only its informative parts
(Fig. 1d). According to the PEMOoR, the resulting orthographic prediction error is a critical
early (i.e., pre-lexical) stage of word identification, representing (part of) the access code
that our brain uses to activate word meaning.

We test this model by calculating for each stimulus item a numeric prediction error
(oPE) value, which equates the sum of all gray scale values in the respective (200 by 40
pixel) stimulus image to represent the PEMoR. While this per-item summary oPE value
does not take into account the spatial layout of the stimulus item, it represents an
estimate of the amount of neuronal activation needed to represent the specific stimulus.
Importantly, representing the oPE as a single value allows us to compare it directly to
other typical word characteristics that are closely tied to different psychological models,
like word frequency (Brysbaert et al., 2011) or orthographic familiarity (Coltheart,
Davelaar, Jonasson, & Besner, 1977; Yarkoni, Balota, & Yap, 2008). In the following, we
provide empirical support for this model by demonstrating that our orthographic
prediction error (i) is correlated with orthographic familiarity of words measured as a
property of lexicon statistics, (ii) accounts for response times in three languages, (iii) is
represented in occipital brain regions, and (iv) electrophysiological signals from 150-250
ms after word onset.

As there exists — to the best of our knowledge — no generally accepted null model

against which to compare the PEMoR, we also quantified the information contained in
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each stimulus item prior to prediction-based optimization, by calculating the sum of all
pixels in each original stimulus image. We used this pixel count parameter as an estimate
of the full bottom-up information that would have to be processed in the absence of
prediction-/top down-based optimization of the percept. For most empirical model
evaluations reported in the following, we thus compare the performance of the pixel
count parameter with the orthographic prediction error since current models of visual
word recognition do not specify processing down to the level of individual pixels of a

word image

Materials and Methods

Implementation of the PEMoR

The estimation of the orthographic prediction error as assumed in PEMoR was
implemented by image-based computations. Using the EBImage package in R (Pau,
Fuchs, Sklyar, Boutros, & Huber, 2010), letter-strings were transformed into gray scale
images (size for, e.g., 5-letter words: 140x40 pixels) that can be represented by a 2-
dimensional matrix in which white is represented as 1, black as 0, and gray as
intermediate values. This matrix representation allows an easy implementation of the

subtraction computation presented in Fig. 1a, i.e.,

SLy  wo Sligos
| o~ |-

511,4-0 5114-0,4-0

OPE;; .. OPEj4,

Pl,l P14—0,1 “

Piao o Pragao OPE 40 ... OPEi404

where Sl indicates the sensory input at each pixel. Py, reflects the prediction matrix
which is in the present study calculated as an average across all words (or a subset
thereof) in a lexical database e.g., the example shown in Fig. 1b is based on 5,896 nouns
of five letters length from the English SUBTLEX database (Heuven et al., 2014). This
orthographic prediction was estimated by transforming each of n words into a matrix as

described above and then averaging the values included in these matrices:

SLiy .. Sy,
) B

511,4-0 51140,40

(2) =

Pl,l P14O,1 “

P1,4-0 P14-0,4—0
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The PEMoR model postulates that during word processing, Sl is reduced by the
prediction matrix P, resulting in an orthographic prediction error matrix (oPE) as shown
above in formula (1). The resulting orthographic predication error is therefore black (i.e.
value 0) at pixels were the prediction was perfect and gray to white (i.e. value > 0) where
the visual information was not predicted perfectly. As a last step, a numeric value for the
orthographic prediction error of each stimulus was determined by summing all values of
its prediction error matrix. This numeric representation of the prediction error is used as

parameter for all empirical evaluations.

OPE;; .. OPEj4,
©) :

OPE; 40 .. OPEj4040

‘ = oPE.m

The amount of information reduction (I,e4uc.q) achieved by this predictive computation
can then be calculated by relating the numeric representation of the prediction error to

an analogous numeric representation of the respective word Slsum:

oPE,
(4)1- Tsum *100 = Lrequcea

sum

Participants.

35, 54, 39, 31, and 38 healthy volunteers (age from 18 to 39) participated in the two
German lexical decision studies, the fMRI, the EEG, and the handwriting experiments,
respectively. All had normal reading speed (reading scores above 20th percentile
estimated by a standardized screening; unpublished adult version of Mayringer &
Wimmer, 2014), reported absence of speech difficulties, had no history of neurological
diseases, and normal or corrected-to-normal vision. Participants gave written informed
consent and received student credit or financial compensation (10€/h) as incentive for
participating. The research was approved by the ethics board of the University of
Salzburg (EK-GZ: 20/2014; fMRI study) and Goethe University Frankfurt (#2015-229; EEG
study, lexical decision studies). Behavioral results for English, and French were obtained
from publicly available data sets, whose samples are described elsewhere (Ferrand et al.,
2010; Keuleers et al., 2012).
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Materials, experimental procedures, and statistical analyses.

Lexicon-based Characterization of the Orthographic Prediction Error. We calculated the
number of pixels per word, the orthographic prediction error, and established word
characteristics (Orthographic Levenshtein distance (Yarkoni et al., 2008), word frequency)
for 3,110 German (Brysbaert et al., 2011) nouns (i.e., the subset used for the empirical
evaluations later on; with uppercase first letters), for 5,896 English (Heuven et al., 2014)
words, 5,638 French (New, Pallier, Brysbaert, & Ferrand, 2004) words, and 4,418 Dutch
(Keuleers, Brysbaert, et al., 2010) words. All items had a length of five letters. For the
German nouns, we additionally estimated a more comprehensive set of orthographic
word characteristics, including bi-, tri-, quadirgram-frequencies (i.e., occurrences of 2, 3,
4 letter combinations), and Coltheart's N (Coltheart et al., 1977); see Fig. 2b).
Orthographic Levenshtein distance and Coltheart's N were estimated with the vwr
Package in R (Keuleers, 2013).

Accounting for Word Recognition Behavior. German lexical decision task 1: 800 five-
letter nouns and 800 five-letter nonwords (400 pronouncable pseudowords, 400
unpronouncable non-words/consonant clusters) were presented in pseudorandomized
order (Experiment Builder software, SR-Research, Ontario, Canada; black on white
background; Courier-New font; .3° of visual angle per letter; 21” LCD monitor with 1,024
x 768 resolution and 60Hz refresh rate), preceded by 10 practice trials. Participants
judged for each letter string whether it was a word or not using a regular PC keyboard,
with left and right arrow keys for words and non-words, respectively. Before stimulus
presentation, two black vertical bars (one above and one below the vertical position of
the letter string) were presented for 500 ms, and letter strings were displayed until a
button was pressed. Response times were measured in relation to the stimulus onset.
German lexical decision task 2 including noisy stimuli reports a replication in German with
70 five-letter words and 70 nonwords (36 pseudowords, 34 consonant clusters) with no
noise with identical procedures except that data were acquired in small groups of up to
8 participants. In addition, words with 20% or 40% noise added (i.e. 20% or 40% of pixels
were displaced; for details see Gagl et al., 2014) were presented in blocks of 140 (70 five-
letter words and 70 nonwords).

Linear mixed model (LMM) analysis implemented in the Ime4 package (Bates,
Machler, Bolker, & Walker, 2015) of the R statistics software were used for analyzing
lexical decision data as LMMs are optimized for estimating statistical models with crossed

random effects for items. These analyses result in effect size estimates with confidence
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intervals (SE) and a t-value. Following standard procedures, t-values larger than 2 are
considered significant since this indicates that the effect size £2 SE does not include zero
(Kliegl, Wei, Dambacher, Yan, & Zhou, 2011). For the presentation in Fig. 3a,b,d,e,g,h k!
co-varying effects were removed by the keepef function of the remef package
(Hohenstein & Kliegl, 2014/2017). All response times were log-transformed, which
accounts for the ex-Gaussian distribution of response times. In addition, orthographic
prediction error, and number of pixels were centered and normalized by R’s scale()

function in order to optimize LMM analysis.

Cortical Representation of the Orthographic Prediction Error. 60 five-letter words and
180 pseudowords were presented in pseudorandom order (yellow Courier New font on
gray background; 800 ms per stimulus; ISI 2,150 ms) as well as 30 catch trials consisting
of the German word Taste (button), indicating participants to press the response button.
Catch trials were excluded from the analyses. All items consisted of two syllables and
were matched on OLD20 (Yarkoni et al., 2008) and mean bigram frequency between
conditions. To facilitate estimation of the hemodynamic response, an asynchrony
between the TR (2,250 ms) and stimulus presentation (onset asynchrony: 2,150 + 800 ms)
was established and 60 null events were interspersed among trials; a fixation cross was
shown during inter-stimulus intervals and null events. The sequence of presentation was
determined by a genetic algorithm (Wager & Nichols, 2003), which optimized for maximal
statistical power and psychological validity. The fMRI session was divided into 2 runs with
a duration of approximately 8 min each.

A Siemens Magnetom TRIO 3-Tesla scanner (Siemens AG, Erlangen, Germany)
equipped with a 32-channel head-coil was used for functional and anatomical image
acquisition. The BOLD signal was acquired with a T.*-weighted gradient echo echo-
planar imaging sequence (TR = 2,250 ms; TE = 30 ms; Flip angle = 70°; 86 x 86 matrix;
FoV = 192 mm). Thirty-six descending axial slices with a slice thickness of 3 mm and a
slice gap of 0.3 mm were acquired within each TR. In addition, for each participant a
gradient echo field map (TR = 488 ms; TE 1 = 4.49 ms; TE 2 = 6.95 ms) and a high-
resolution structural scan (Ti-weighted MPRAGE sequence; 1 x 1 x 1.2 mm) were
acquired. Stimuli were presented using an MR-compatible LCD screen (NordicNeuroLab,

Bergen, Norway) with a refresh rate of 60 Hz and a resolution of 1,024x768 pixels.

SPM8 software (http://www.fil.ion.ucl.ac.uk/spm), running on Matlab 7.6
(Mathworks, Inc., MA, USA), was used for preprocessing and statistical analysis.

Functional images were realigned, unwarped, corrected for geometric distortions by use
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of the FieldMap toolbox, and slice-time corrected. The high-resolution structural image
was pre-processed and normalized using the VBMS8 toolbox (http://dbm.neuro.uni-
jena.de/vbm8). The image was segmented into gray matter, white matter, and CSF
compartments, denoised, and warped into MNI space by registering it to the DARTEL
template of the VBM8 toolbox using the high-dimensional DARTEL registration algorithm
(Ashburner, 2007). Functional images were co-registered to the high-resolution structural
image, which was normalized to the MNI T; template image, and resulting normalization
parameters were applied to the functional data, which were then resampled to a
resolution of 2x2x2 mm and smoothed with a 6 mm FWHM Gaussian kernel.

For statistical analysis, we first modeled stimulus onsets with a canonical
hemodynamic response function and its temporal derivative, including movement
parameters from the realignment step and catch trials as covariates of no interest, a high-
pass filter with a cut off of 128 s, and an AR(1) model (K. J. Friston et al., 2002) to correct
for autocorrelation. For the group level statistics, t-tests were implemented with a voxel
level threshold of p < .001 uncorrected and a cluster level correction for multiple
comparisons (p < .05 family-wise error corrected).

Cortical timing of the Orthographic Prediction Error. 200 five-letter words, 100
pseudowords, and 100 consonant strings (nonwords) were presented for 800 ms (black
on white background; Courier-New font, .3° of visual angle per letter), followed by an
800 ms blank screen and a 1,500 ms hash mark presentation, which marked an interval
in which the participants were instructed to blink if necessary. In addition, 60 catch trials
(procedure as described for fMRI study) were included in the experiment. Stimuli were
presented on a 19" CRT monitor (resolution 1,024 x 768 pixels, refresh rate 150Hz), and
were preceded by two black vertical bars presented for 500 - 1,000 ms to reduce stimulus
onset expectancies.

EEG was recorded from 64 active Ag/Ag-Cl electrodes (extended 10-20 system)
using an actiCAP system (BrainProducts, Germany). FCz served as common reference
and the EOG was recorded from the outer canthus of each eye as well as from below the
left eye. A 64-channel Brainamp (BrainProducts, Germany) amplifier with a 0.1-1,000 Hz
band pass filter sampled the amplified signal with 500Hz. Electrode impedances were
kept below 5kQ. Offline, the EEG data were re-referenced to the average of all channels.
EEG data were preprocessed using MNE-Python (Gramfort et al., 2014), including high
(.1 Hz) and low pass (30 Hz) filtering and removal of ocular artifacts using ICA (Delorme,

Sejnowski, & Makeig, 2007). For each subject, epochs from 0.5 s before to 0.8 s after
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word onset were extracted and baselined by subtracting the pre-stimulus mean, after
rejecting trials with extreme (>50 BV peak-to-peak variation) values. Multiple regression
analysis, with the exact same parameters as for the behavioral evaluation (orthographic
prediction error, number of pixels, word/non-word, and the interactions with the
word/non-word distinction), was conducted and a cluster-based permutation test (Maris
& Oostenveld, 2007) was used for significance testing. 1,024 label permutations were
conducted to estimate the distribution of thresholded clusters of spatially and temporally
(i.e., across electrodes and time) adjacent time points under the null hypothesis. All
clusters with a probability of less than an assumed alpha value of 0.05 under this
simulated null hypothesis were considered statistically significant. The presentation of
effect patterns (line and box-plots) in Fig. 6 co-varying effects were removed by the

keepef function of the remef package (Hohenstein & Kliegl, 2014/2017).

Application to handwriting. We obtained handwriting samples (26 upper and 26 lower
case letters; 10 common German compound words, 10-24 letters long) from 10 different
writers (see Fig. 6a,b for examples). The single letters were scanned and centered within
a 50x50 pixels image. These images were used to estimate, for each script separately,
pixel-by-pixel predictions for upper and lower-case letters (see also Fig. 6a,b), analogous
to the procedures described above and in Fig. 1b. Subsequently, these predictions were
subtracted from each letter of the alphabet, within the respective script sample (matrix
subtraction; Formula 1). In contrast to computer fonts the correlation of the orthographic
prediction error and the respective item’s number of pixels was high (r = .98). To
compensate this, the orthographic prediction error was normalized by a division with the
respective pixel count. Readability ratings (5-point Likert scale) were obtained from 38
participants (27 females; mean age 25 years) by presenting all ten versions of all ten
handwritten compound words, in addition to the identical word in computerized script.

For the handwriting data, we implemented a LMM analysis that predicted the
orthographic prediction error (Fig. 6c-d) from the following parameters: mean prediction
strength (i.e., mean of the values extracted from the prediction matrix), number of all
non-white pixels (both scaled), and letter case. The random effect on the intercept was
estimated for each script. In addition, a second LMM was estimated for readability ratings
with the orthographic prediction error as the only predictor and participants as random

effect on the intercept and as random effect of the orthographic prediction error slope.
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Results

Lexicon-based Characterization of the Orthographic Prediction Error

Cognitive psychologists have developed several quantitative measures to characterize
words (Brysbaert et al., 2011; Coltheart et al., 1977; Yarkoni et al., 2008), mostly derived
from large text corpora and psycholinguistic word databases (Heuven, Mandera,
Keuleers, & Brysbaert, 2014; Keuleers, Brysbaert, & New, 2010; see Fig. 2a for most
essential characteristics and examples). Abundant empirical research demonstrates that
these lexicon-based word characteristics are predictive of different aspects of reading
behavior (Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004; Rayner, 2009).
Accordingly, understanding how the orthographic prediction error, derived from the
implemented PEMoR (see Fig. 1), relates to these measures provides an essential first
indication that this informationally optimized and supposedly pre-lexical perceptual
signal is indeed involved in word recognition.

Across all words, the orthographic prediction error (i.e., the sum of all gray values
after subtracting the knowledge-based prior from the actual stimulus image; cf. Fig. 1d
and Methods) clusters with several measures that are commonly interpreted as
orthographic (Fig. 2b): These widely-used (psycho-) linguistic characteristics reflect the
(non-) uniqueness of words in terms of their orthographic similarity to other words (e.g.,
the number of Coltheart neighbors (Coltheart et al., 1977) or the orthographic distance
(OLD20; (Yarkoni et al., 2008); cf. Fig. 2a) and letter co-occurrences (e.g., bi- and trigram
frequencies; cf. Fig. 2a). Note that these measures describe the statistics of letters and
letter combinations in all words retrieved from a lexicon database (Keuleers, Brysbaert,
et al.,, 2010). In cognitive psychological research, one associates these measures
consistently with the first, i.e., orthographic, stages of processing written words before
lexical access (Coltheart et al., 2001; Grainger & Jacobs, 1996). These correlations are an
impressive result as it demonstrates that a neurophysiologically inspired transformation
of the visual stimulus, i.e., the here-proposed orthographic prediction error (oPE), is
meaningfully related to orthographic properties of words as derived from lexicon-based
statistics. Crucially, this is achieved while (a) reducing the to-be-processed information
content by more than 30% and (b) at the same time retaining the ability of discriminating
the word identities, as indicated by a strong correlation of r = .87 between the
representational similarity matrices (Edelman, 1998; Kriegeskorte et al., 2008) of the word
and orthographic prediction error images (Fig. 2d). This latter result indicates that the
representational similarity structure, or in other words the discriminability between items,

is preserved after deriving the oPE from the sensory input as proposed by the PEMoR.
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a Orthographic measure Example: read Value
Coltheart neighbors (N) real, head, road, lead, rear ... 11
Orthographic Levenshtein distance (OLD) real: 1, ready: 1, red: 1, great: 2, bad: 2, ...; Mean distance over the 20 nearest words 1
Bigram frequency re, ea, ad; summed occurrences in lexicon of all bigrams in the word 29951
Trigram frequency rea, ead; summed occurrences in lexicon of all trigrams in the word 4528
Quadrigram frequency read; summed occurrences in lexicon of all quadrigrams in the word 90
Word frequency Log. occurrences per million in a subtitles text corpus (SUBTLEX) 4.1

b Cc

Orthographic prediction error >< X Orthographic prediction error
Coltheart neighbors (N) X 0.4
OLD >< 0.3 Language
Dutch

Bigram frequency X ~ 0.2 Enoseh
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Quadrigram frequency 03 0.0 é German
w
=

Word frequency

OLD

X 02
Number of pixels >< X X X X 0.1

[0
X
Q

=z

Word image similarity Orthographic prediction error image similarity

}' ’m;;g 5 ’ﬁﬁl‘»‘
i T

=3
S

0.75

o
N
o

0.00
0.00 025 050 075 1.0
Word image based similarity [r]

oPE image based similarity [r]
g

"i %k‘
Figure 2. Comparlson of orthographlc predlctlon error to establlshed IeX|con based word characteristics. (a) Overview of
established word characteristics, exemplified for the word ‘read’: Coltheart’s neighborhood size (Coltheart N; Coltheart et
al., 1977), orthographic Levenshtein distance (OLD20; Yarkoni et al., 2008), sub-lexical frequency measures (bi-, tri-, and
quadri-gram frequencies, i.e. number of occurrences of two, three, and four-letter combinations from the target word, in
the lexicon), and word frequency as calculated from established linguistic corpora (see Methods for details). (b) Clustered
correlation matrix between the orthographic prediction error, the number of pixels per original image, which represents
an estimate of the pure amount of physical bottom-up input in the present study, and the described word characteristics
(cf. panel a for explanations), applied to a set of 3,110 German nouns. Red rectangles mark clusters (obtained from a
standard hierarchical clustering algorithm using the dendrogram) and black crosses mark non-significant correlations (p
<.05; Bonferroni corrected to p <.00179). Number of pixels refers to the original stimulus item and is used as a simplified
model of the full bottom-up physical input (PixMoR; see text). (c) Correlations between the orthographic prediction error
and number of pixels per word (Npixel), orthographic similarity (OLD20), and word frequency (WF), for four different
languages. (d) Representational similarity matrices (RSM; cf. Ref. Kriegeskorte, Mur, & Bandettini, 2008) for original word
images (left panel) and orthographic prediction error images (central panel). Each similarity matrix reflects the correlations
among the gray values of all 3,110 words (in total 9,672,100 correlations per matrix), with words sorted alphabetically
(color scale equivalent to the one used in panel b). The right panel shows the correlation between word- and orthographic
prediction error-based RSMs. Each dot represents a position on the similarity matrix allowing to relate the similarity values
derived from either the physical input or the prediction error image. The high correlation shown here indicates that the
similarity structure, or in other words the discriminability, present in the physical input is still represented in the prediction
error images.
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In contrast, the orthographic prediction error is not correlated with the frequency
of occurrence of a word in a language (Fig. 2b). The word frequency effect typically
indicates the difficulty of accessing word meaning based on an already-decoded
orthographic access code (Coltheart et al., 2001). This dissociation between the
orthographic prediction error and word frequency replicates across languages (Fig. 2¢)
and is much more pronounced for the orthographic prediction error than for the so-far
dominant measures of orthographic similarity and orthographic neighborhood (Fig. 2b).
With the raw pixel count of the words (Fig. 2b), as a reflection of the PixMoR, only two
standard orthographic measures (tri- and quadrigram frequency) were weakly correlated.
This dissociation of the correlation structure of the prediction error and the pixel count
provides the first evidence that the neurophysiologically inspired orthographic prediction
error is more important for a mechanistic understanding of reading than the full physical

input contained in a printed word as assumed in the PixMoR.

Accounting for Word Recognition Behavior

As a next empirical test of the visual-orthographic prediction model of reading, we
evaluated how well the orthographic prediction error performs in accounting for behavior
in an established and widely-used word recognition task, i.e., the lexical decision task.
Thirty-five human participants were asked to decide as fast as possible by button press
whether written letter-strings (presented on the computer screen; 1,600 items; 5 letters
length; language: German) were words or not. Remember that the orthographic
prediction error represents the deviance of a given letter-string from our knowledge-
based orthographic expectation, and thus how (un-)likely it is that the given letter-string
is a word. Accordingly, participants should be fast in identifying letter-strings with low
orthographic prediction error as words and fast in rejecting non-words with a high
orthographic prediction error.

Fig. 3a shows exactly this pattern of response times, i.e., a word/non-word by
orthographic prediction error interaction (linear mixed model/LMM estimate: 0.03; SE =
0.01; t = 5.0; see Methods for details on linear mixed effects modeling and Supplemental
Table 1 for detailed results). No significant interaction or fixed effect of the number of
pixels estimate (i.e. the sum of all pixels contained in a word), representing the PixMoR,
was found (Fig. 3b; Interaction: estimate: 0.00; SE = 0.01; t = 0.0; Fixed effect: -0.01; SE
= 0.00; t =1.8). To directly compare if the response times are more adequately described
by the PEMoR or the PixMoR, we performed an explicit model comparison (see Methods

for details) of four models. The full model, including as predictors the orthographic
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prediction error and the number of pixels, a pure prediction error model, a pure number
of pixels model, and a null model without any of the two predictors. Fig. 3c shows that,
in contrast to the null model, the three alternative models showed higher model fits (all
x¥'s > 9.9; all p's < .007; Bonferroni corrected p threshold: 0.0083), but this increase was
significantly larger for the models including the orthographic prediction error. In addition,
the model including only the orthographic prediction error explained substantially higher
amounts of variance when compared to the model including only the number of pixels
parameter (AIC difference: 34; y*0) = 34.2; p < .001) with no substantial increase for the
combined model (AIC difference: 3; y*2) = 7.2; p = .02). This finding indicates that for
German, the PixMoR explains substantially less variance in word recognition behavior
than the PEMoR.
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German Figure 3. Word/non-word decision
task behavior. (a) Orthographic
prediction error (oPE) and (b) number
of pixels (Npixel) effects on response
times in a word/non-word decision
task (German nouns, 5 letters length;
10 overall error rate 7.4%; see
, Il Supplemental Table 1 for detailed
Npix OPE Both statistical analysis). Green lines show

400 500 600 700 700 800 .900 1000 only  only the effects fOf WOI'dS, blue lines for
OPE Npixel Model pseudowords (pronounceable non-
English words), and red lines for consonant
strings  (unpronounceable  non-

* words). Dots represent mean reaction
60 time estimates across all participants,
separated into bins of oPE (width of
10) and stimulus category, after
20 excluding confounding effects. (c)
- Results from model comparisons.

Npix OoPE Both First, a null model was established
500 600 700 700 800. 900 1000 only only Wlth only word/non-word Status and
oPE Npixel Model word frequency as predictors.
French Subsequently, a model adding only
15 the oPE predictor, a model adding
* only the Npixel predictor, and one

10 model adding both predictors to the
— null model, were compared to the null

5 model. Note that also the interaction
. terms with the word/non-word

0 parameter were included. The Akaike
6.57 Npix OPE  Both Information  Criterion  (AIC) for
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0% 40% represents an increase in model fit;
T oo asterisks mark significant differences
700 (p < .05 Bonferroni corrected for
multiple comparisons; 6

6.75 comparisons, three in relation to the
6.50 null model and three, marked with
asterisks, comparing the alternative

6.25 models;  corrected significance
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g ?;?ﬁ,%‘;@ oPE Npixel results for English a_n_d (g-i) for Frgnch
word/non-word decision tasks. Visual

40% noise experiment: (j) Example stimuli
representing the three visual noise
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10 error effect (oPE) when no noise was
applied, replicating the first study
presented in a (error rate: 6%). (1)
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Npixels only for each of the noise levels. Note that for the noise study, AIC comparisons were Bonferroni corrected for
nine comparisons (corrected significance threshold p <.0055).
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Additionally including orthographic distance (OLD20 Yarkoni et al., 2008) as
predictor improved the model fit further (AIC difference comparing the full model with
and without OLD20: 104; x%2) = 105.8; p < .001) but did not affect the significance of
the word/non-word-by-orthographic prediction error interaction (Interaction effect
estimate after including additional parameters: 0.03; SE = 0.01; t = 5.2). This finding
indicates that despite its correlation with other orthographic measures (Fig. 2b, ¢), the
orthographic prediction error accounts for unique variance components in word
recognition behavior that cannot be explained by other word characteristics.

We also replicate this interaction when calculating the orthographic prediction
error using a length-unspecific visual-orthographic prediction (i.e., based on all ~190,000
German words from the SUBTLEX database (Brysbaert et al., 2011); 2-36 letters length;
cf. Fig. Te; LMM estimate of interaction effect: 0.03; SE=0.01; t=4.5; for replication in
English and a more extensive investigation of the interaction effect for multiple word
lengths see Supplemental figure 1a). Interestingly, length-specific and length-unspecific
orthographic prediction errors are highly correlated (e.g., German: r = .97), showing that
the prediction-based word recognition process proposed by the PEMoR model is
independent of word length constraints. This finding is in line with evidence from natural
reading, which shows that one can extract low-level visual features like the number of
letters from the parafoveal vision before fixating the word (Cutter, Drieghe, & Liversedge,
2014; Gagl, Hawelka, Richlan, Schuster, & Hutzler, 2014; Schotter, Angele, & Rayner,
2012). The use of a fixed of word length in our German lexical decision experiment is
therefore not necessarily artificial since in natural reading word length is known before
fixation. In sum, these results demonstrate that the orthographic prediction error is

meaningfully related to word recognition behavior and independent of word length.

Generalization across languages

The interaction effect between lexicality (word/non-word status) and orthographic
prediction error could be replicated in two open datasets from other languages, i.e.,
British English (Keuleers, Lacey, Rastle, & Brysbaert, 2012; 78 participants and 8,488
words/non-words: Fig. 3d; estimate: 0.008; SE = 0.002; t = 4.2) and French (Ferrand et
al., 2010; 974 participants and 5,368 words/non-words: Fig. 3g; estimate: 0.005; SE =
0.002; t = 2.0); see also Supplemental Figure 2 for two further datasets from Dutch and
Supplemental Table 1 for detailed results. However, in contrast to German, in both
datasets we also found a significant effect of the number of pixels parameter (Fig. 3e,h;
British: fixed effect: 0.008; SE = 0.001; t = 6.7; French: interaction with word/non-word
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status: -0.007; SE = 0.002; t = 3.0). In terms of model comparison, the pattern derived
from German, i.e., the greatest increase in model fit when including the orthographic
prediction error, could not be recovered for English and French. Rather, we found that
the role of the number of pixels parameter for describing the response times was larger
than in German (see Fig. 3f,i). Still, the combined model showed the best model fit in all
three languages (oPE only vs. full model: AIC difference English: 52; ¥%(2) = 56.5; p <
.001; French: 6; x*(2) = 10.5; p = .005; Npixel only vs. full model: AIC difference English:
24; y4(2) = 28.6; p < .001; French: 3; x*2) = 7.8; p = .02; Bonferroni corrected p threshold:
0.0083) indicating that both the orthographic prediction error and the number of pixels
parameter are relevant in explaining word/non-word decision behavior. To summarize,
for English and French, model comparisons showed that in addition to the prediction
error, the parameter reflecting more directly the physical stimulus input explained a
greater amount of variance than in German. Nevertheless, in all three languages, the
orthographic prediction error explained unique variance components, which further
supports its relevance for understanding visual word recognition. Future research should
aim at clarifying the differential reliance on the bottom-up input itself in different

languages but also see the next section for a potential explanation.

Word recognition behavior under conditions of visual noise

We speculated that the more significant role for bottom-up input in the British and French
datasets might result from the presence of several sources of additional perceptual
variability. For example, word length changed from trial to trial (English, 2-13 letters;
French, 2-19 letters) and a proportional font (Times new roman) was used in the English
dataset, while we had used only five-letter words presented in a monospaced font in both
the German experiment and the implementation of the PEMoR (Fig. 1). Even though such
unpredictable perceptual variation, without any doubt, is not the standard case in
naturalistic reading (i.e., through the integration of visual information from parafoveal
vision), in a single word reading paradigm it reduces the ability to predict visual features
of upcoming stimuli and thus unnaturally decreases the performance of our model. For
example, using a proportional-spaced font removes structure (e.g., the letter separation)
both in the sensory input and the orthographic prior, which results in less precise
predictions and more substantial prediction errors. This reduction in prediction strength,
in turn, increases the correlation between the number of pixels in the input image and
the derived orthographic prediction error (cp. Monospace font: r = .05 vs. proportional

font: r = .49, both in German; see Supplement 2). In the face of this, it is particularly
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noteworthy that the orthographic prediction error, as proposed here, remained a highly
relevant predictor in the English and French data set. It should also be stressed again
that in natural reading, low-level visual features like word length or letter position can be
picked up in parafoveal vision, so that the visual system may be able to dynamically adapt
its predictions to the upcoming word (Schotter et al., 2012). Future work will, therefore,
have to specify in more detail the nature of orthographic priors in naturalistic reading.

To directly test if visual word recognition relies more firmly on the bottom-up input
when visual word presentation includes unpredictable perceptual variations, we
conducted a second lexical decision experiment. We presented visual word stimuli with
an explicit manipulation of visual noise (0% vs. 20% vs. 40% noise level) to reduce the
predictability of visual features (for details see Methods section). A noise manipulation,
rather than, e.g., a comparison of different fonts, was applied since noise levels can be
easily manipulated and quantified (i.e., in terms of the number of displaced pixels). In
contrast, a direct comparison of fonts is more difficult because the contrast of
proportional vs. mono-spaced font is confounded with many other visual differences like
total stimulus width (Hautala, Hyona, & Aro, 2011; Marinus et al., 2016). In addition, the
0% noise stimuli allowed us to replicate our original behavioral finding. Figure 3j shows
examples word stimuli.

We found, in general, that response times and errors increased with the amount
of noise that was applied to the visual-orthographic stimuli (0%: response time/RT: 613
ms, 6% errors; 20%: RT: 739 ms, 12% errors; 40%: RT: 1,105 ms, 33% errors; compare
also Fig. 3k and ). When no noise was applied we replicated our first study (cp. Fig. 3k
and a) with a significant interaction between the orthographic prediction error and the
word/non-word factor (estimate: 0.05; SE = 0.02; t = 2.3; see Supplemental Table 1 for
detailed results). As in the first experiment, no effect or interaction was found for the
number of pixels parameter. With 20% noise, we still could identify a fixed negative effect
of the orthographic prediction error (estimate: -0.06; SE = 0.02; t = 3.3) however without
a significant interaction pattern. Also, the fixed effect of the number of pixels was not
significant. With 40% noise, however, no significant effect of the orthographic prediction
error could be found but as expected from the above discussion of noise effects, we
observed now a significant fixed effect of the number of pixels parameter, as well as an
interaction with word/non-word status (Fig. 3I; estimate: 0.08; SE = 0.03; t = 2.9). A similar
impression can be obtained from the model fit results showing that including the
orthographic prediction error resulted in significantly higher model fits for 0% and 20%

noise conditions compared to models in which only the number of pixels predictor was
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included (see Fig. 3m-n; 0% AIC difference: 1; x%0) = 1; p < .001; 20% AIC difference:
13; x%0) = 13.7; p < .001). With 40% noise, inclusion of the number of pixels parameter
resulted in a higher model fit (see Fig. 3o0; AIC difference: 13; y*0) = 13.2; p < .001), but
including the orthographic prediction error had essentially no effect.

In sum, the behavioral experiments reported in this section demonstrate that the
orthographic prediction error contributes substantially to visual word recognition. We
find the PEMoR is highly relevant when the visual information presented in the lexical
decision tasks is with a restricted variability and, therefore, high predictability (i.e., all
words with the same number of letters), which is typically the case in natural reading
situations (i.e., sentence reading). The predictability of visual features results in greater
reliance on the orthographic prediction error compared to the pure bottom-up sensory
input. In contrast, when the perceptual variability (i.e., complexity) increases, i.e., due to
a variation of the number of letters, proportional fonts (e.g., as in the case of the English
study) or visual noise the pure bottom-up signal, i.e., as assumed in the PixMoR, becomes
the adequate parameter to explain visual word recognition behavior. Thus, the
behavioral evidence indicates that one implements efficient neuronal coding when one
can predict the perceptual properties of the letter strings. In case the perceptual
properties are highly variable, predictive processing is hampered as only weak
predictions can be formed suggesting the PixMoR as a “fallback” strategy as an

approximation in effortful reading conditions.

Cortical Representation of the Orthographic Prediction Error

The PEMoR assumes that the orthographic prediction error is estimated at an early stage
of the word recognition processes, i.e., in the visual-perceptual system and before word
meaning is accessed and one can activate higher-level linguistic representations of the
word. Note that also the end-stopping phenomenon was found up to middle temporal
regions. We accordingly hypothesized that brain systems involved in computing or
representing the orthographic prediction error should be driven by this optimized
representation of the sensory input independent of the item’s word/non-word status (i.e.,
for words and non-words alike). Localizing the neural signature of the orthographic
prediction error in the brain during word/non-word recognition, thus, is a further critical
test of the PEMoR. Of note, a strict bottom-up model of word recognition (and
perception in general, i.e., PixMoR) would make a different prediction, i.e., that activation
in visual-sensory brain regions should be driven by the full amount of physical information

in the percept (Goodyear & Menon, 1998; Henrie & Shapley, 2005). Processes that take
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place after word-identification, i.e., that involve higher levels of linguistic elaboration can
only operate on mental representations of words, so that brain regions involved in these

later stages of word processing should distinguish between words and non-words.

a Orthographic prediction error (oPE) ¢ oPE X Word/non-word
z=-4 2 s 0.050 [\
i<}
g K
£ o002 0025
5 H )
(]
o
E 0.000 N 0.000
S 1% |
o) ~0.025
Q -0025 !
w
o
[s]
W PW 0102030
Density
b V\{grds > non-words Z 006 008
z=- =
: \
5 oo 0.04 \
[
o, \
aé 0.02 002 [\ \
2
o
A 0.00 0.00
-
(o]
o
W 002 -0.02
°© W PW 0102030
Density

Figure 4. fMRI results demonstrating the neuroanatomical localization of orthographic prediction error effects. BOLD
activation during silent reading (see Methods for further details, and Table 1 for exact locations of activation effects): (a)
Analysis demonstrating a positive orthographic prediction error (oPE) effect in bilateral occipital activation-clusters. This
regression analysis used item-specific oPE values as covariate, independent of stimulus condition, and shows brain
regions with greater activity for letter strings characterized by a higher oPE, independent of stimulus type. (b) Clusters of
higher BOLD activation for words than for non-words. (c) Two frontal activation clusters showing a oPE by word/non-
word interaction, i.e. positive and negative oPE effects for words and non-words, respectively. Boxplots show individual
beta weights; lines connect word and non-word betas from each individual. No effects of the number of pixels per word
were found. Threshold voxel level: p<.001 uncorrected; cluster level: p<.05 family-wise error corrected. Boxplots represent
the median (line), the data from the first to the third quartile (box) and 1.5 times the interquartile range (i.e. quartile 3
minus quartile 1; whiskers).

We tested these hypotheses about the localization of the orthographic prediction
error by measuring BOLD activation changes using functional MRI while 39 participants
silently read words (German nouns) and pronounceable non-words (i.e., pseudowords),
in randomized order (see Methods for details). We identified three left- and one right-
hemispheric brain regions in the occipital cortex that showed higher levels of activation
when reading items with higher orthographic prediction error — both for words and non-
words (Fig. 4a and Supplemental Table 2). Prior research (Dehaene & Cohen, 2011;
Dehaene et al., 2005) has identified a region in the mid-portion of the left occipito-
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temporal cortex as critical for reading: the visual word form area. Consistent with our
hypothesis, all four activation clusters representing the orthographic prediction error are
located posterior to this so-called visual word form area (Dehaene & Cohen, 2011), which
supports our claim of an ‘early’ role for the orthographic prediction error signal before
word identification. Importantly, no brain areas showed activity dependent on the pure
amount of bottom-up information in the percept (i.e., the number of pixels parameter).
Only brain regions involved in the activation of word meaning and subsequent
processes should differentiate between words and non-words. We observed higher
activity for words than non-words, independent of the orthographic prediction error,
more anteriorly in left temporal and prefrontal cortex (Fig. 4b and Supplemental Table
2). Third, the left inferior frontal gyrus (pars triangularis) and the medial portion of the
superior frontal gyrus (mSFG) mirrored the word/non-word decision behavior reported
above, in that higher prediction errors lead to increased activation for words but
decreasing activation for non-words (Fig. 4c and Supplemental Table 2). The fMRI
experiment, thus, supports our hypothesis that during the earliest stages of visual
processing, i.e., presumably before accessing word meaning, an optimized perceptual
signal, the orthographic prediction error, is generated and used as a basis for efficient
visual-orthographic processing of written language. Only at later processing stages (in
more anterior temporal and prefrontal cortices), the brain differentiates between words

and non-words.

Cortical timing of the Orthographic Prediction Error

While of the fMRI results demonstrate a representation of the orthographic prediction
error in presumably “early’ visual brain regions, the temporal resolution of fMRI precludes
inferences concerning the temporal sequence of cognitive processes during word
recognition. The millisecond time resolution of EEG has helped to consistently attribute
the extraction of meaning-from perceived words to a time window of around 300 to 600
ms post word onset (N400 component of the event-related brain potential/ERP; Kutas &
Federmeier, 2011). Visual-orthographic processes associated with the orthographic
prediction error should thus temporally precede this time window, most likely to occur
during the N170 component of the ERP (Barber & Kutas, 2007; Carreiras, Armstrong,
Perea, & Frost, 2014; Grainger & Holcomb, 2009). To test this hypothesis, we measured
EEG while 31 participants silently read words and non-words (including both
pseudowords and consonant-only strings). We fitted a multiple regression model

(analogous to the model used for the analysis of behavioral data) to the EEG data (Linzen
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& Engemann, 2017) with the orthographic prediction error, the number of pixels,
word/non-word-status, and their interactions as parameters (see Methods for details).

Regression-estimated ERPs (see methods for details) show a significant effect of
the orthographic prediction error on electrical brain activity between 150 and 250 ms
after stimulus onset (Fig. 5a). In this early time window, letter-strings characterized by
higher prediction errors elicited significantly more negative-going ERPs over posterior-
occipital sensors, for both words and non-words. In line with the temporal sequence of
processes inferred from their neuroanatomical localizations (i.e., fMRI results), a
significant word/non-word effect then emerged between 200-570 ms (Fig. 5b), followed
by an interaction between word/non-word-status and orthographic prediction error at
360-620 ms (Fig. 5c). In this interaction cluster, higher prediction errors led to more
negative-going ERPs for non-words, as observed for all stimuli in the earlier time window,
but showed a reverse effect for words, i.e., more positive-going ERPs for words with
higher prediction errors (Fig. 5c). This pattern of opposite prediction error effects for
words vs. non-words is analogous to the effects seen in word/non-word decision behavior
and the frontal brain activation results obtain with fMRI.

As in the fMRI study, we found no effect of the bottom-up input as such (pixel
count), even though it is well-established that manipulations of physical input contrast (as
determined, e.g., by the strength of luminance Johannes, Miinte, Heinze, & Mangun,
1995) can increase the amplitude of early ERP components starting at around 100 ms.
We performed an explicit model comparison between statistical models including the
orthographic prediction error compared to a model including the number of pixels
parameter (analogous to the analysis of behavioral data), for both time windows in which
the orthographic prediction error was relevant (early fixed effect and later interaction). In
both time windows the model including the orthographic prediction error resulted in
better fit (AIC difference: 16 at 230 ms at posterior sensors: x*0) = 16.0; p < .001; and 5
at 430 ms at frontal sensors: ¥*(0) = 5.0; p < .001) . Even when investigating the combined
models, including both parameters, we found a tendency for a better fit in the oPE only
model (AIC difference: 3 at 230 ms at posterior sensors and 3 at 430 ms at frontal

sensors).
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Figure 5. EEG results: Timing of orthographic prediction error effects. Effect sizes from regression ERPs are presented
as time courses for each sensor and time-point (left column; color coding reflects scalp position) with yellow areas
marking time windows with significant activation clusters for silent reading of 200 words and 200 non-words (100
pronouncable pseudowords, 100 consonant strings; see Supplemental Figure 3 for a more detailed visualization of the
significance of spatio-temporal activation clusters). ERP results are shown for (a) the orthographic prediction error (oPE)
main effect, (b) the word/non-word effect, and (c) the oPE by word/non-word interaction. Results indicate significant oPE,
word/non-word, and oPE by word/non-word effects starting around, 150, 200, and 360 ms, respectively. The right panel
shows the activation patterns related to the significant activation clusters (cf. Supplemental Figure 3) in more detail. Dots
represent mean predicted pV across (a,c) all participants and items separated by oPE and stimulus category, and (b) all
items separated by stimulus category, excluding confounding effects (see Methods). No significant activation clusters
were found for the parameter representing the number of pixels. Boxplots represent the median (line), the data from the
first to the third quartile (box) and £1.5 times the interquartile range (i.e. quartile 3 minus quartile 1; whiskers). The frontal
cluster includes the following sensors: AF3, AF4, AF7, AF8, F1, F2, F3, F4, F5, F6, F7, F8, SO1, SO2, FP1, FP2, Fz. The
posterior cluster includes the following sensors: 02, 01, Oz, PO10, PO3, PO4, PO7, PO8, PO9, POz.
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To summarize, EEG results converge with behavioral and fMRI results. They
suggest that relatively early on in the cortical visual-perceptual processing cascade, the
amount of perceptual processing devoted to the orthographic percept is smallest for
letter-strings with highly expected visual features (i.e., low orthographic prediction error).
100 to 200 ms later, i.e., in a time window strongly associated with semantic processing
(Kutas & Federmeier, 2011), the prediction error effect was selectively reversed for words,
and thus started to differentiate between the two stimulus categories. This finding mirrors
behavioral results and activation patterns in the anterior temporal lobe and prefrontal
cortex found in the fMRI dataset. In sum, these results support the PEMoR’s proposal that
orthographic representations are optimized early during visual word recognition, and that
the resulting orthographic prediction error is the basis for subsequent stages of word

recognition.

Applying the PEMoR to handwritten script.

The electronic fonts used for all above-reported experiments introduce a highly regular
structure that favors some of the PEMoR'’s core processes, like the calculation of the
orthographic prediction error (i.e., the prior). We showed above that when reducing the
high regularity of computerized script by visual noise, reading performance decreases
and the orthographic prediction error becomes less relevant for describing reading
behavior. To demonstrate the ‘real world’ validity of the PEMoR with even less regular
scripts, we applied a variant of this model to the reading of naturalistic handwritings
obtained from 10 different writers. The extreme variability of different handwritings
strongly influences their readability (compare Figs. 6a,b). The visual-orthographic
predictions which have here been implemented based on single letters and separately
for each handwriting, accordingly vary substantially in the strength and precision between
individual handwritings (cp. ‘prediction’ of Fig. 6a,b). As in PEMoR for computer script,
we once more define prediction strength in terms of the darkness of gray values of the
prediction image, i.e., the mean gray value across pixels, and observe lower oPEs for
handwritings that allow stronger predictions (Fig. é6c; linear mixed model statistics:
Estimate: -0.05; SE = 0.01; t = 7.4). The precision of the prediction is represented by the
inverse of the number of gray pixels included the prediction image; more precise
predictions are more focused and less distributed, and also elicit lower orthographic
prediction errors (Fig. 6d; 0.02; SE = 0.01; t = 2.1; see Supplemental Table 1 for full
results). Finally, we obtained the rated readability of each handwriting based on ten

written words and observed that the readability is higher for handwritings that produce
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lower prediction errors (Fig. 6e; 38 raters; Estimate: -5.9; SE = 1.0; t = 6.2). These results
demonstrate that (variants of) the PEMoR can account for reading processes not only in

highly formalized stimuli but also in more naturalistic settings.
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Figure 6. Applying the PEMoR to the perception of handwritings. Examples for two (out of 10 empirically
obtained) different handwritings. (a) A handwriting including single letters and the respective (letter-level)
orthographic prediction estimated based on all 26 lower case letters (written in isolation). In addition, the word
Identifikation (identification) is presented for both handwritings, as an example (out of 10). These words were
used to acquire the readability rating. (c) Relationship between prediction strength and the mean orthographic
prediction error across all letters for each script. Note that the oPE estimate for handwritings was normalized
(i.e. divided) by the number of pixels since the number of pixels differed drastically between scripts (e.g.
compare Examples in a and b). (d) Relationship between the precision of the prediction and the orthographic
prediction error. Point color reflects each of 10 individual scripts, separately for upper- and lower-case letters.
(e) Script readability ratings in relation to the orthographic prediction error (lower- and upper-case prediction
error combined). Blue line reflects the overall relationship and thin lines represent each rater.

Discussion
Here we investigated if an efficient neuronal code representing the visual information in

words, i.e., analogous to the neural representation underlying the end stopping
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phenomenon for oriented lines, is the basis of proficient reading. We found that our
Prediction Error Model of Reading (PEMoR) is a plausible account. Surprisingly, since the
focus of the PEMoR is visual processing, the resulting prediction error, i.e., the non-
redundant and thus informative part of the visual percept, represents not only the visual
but also orthographic word information. We concluded this from the correlations
between various lexicon-based descriptors of words, associated with orthographic stages
of visual word recognition, and the prediction error representation. Our empirical
observations also support this conclusion: We found that the orthographic prediction
error (i) accounts for word identification behavior, (ii) explains brain activation in visual-
perceptual systems of the occipital cortex, (iii) explains brain activation as early as 150 ms
after the onset of the letter-string, and (iv) is represented in high-level lexical processing
in frontal regions as well as the N400 component as part of the processes that underlie
behavior. We inferred the latter from the finding that both the brain activation (i.e., in
frontal areas and the N400) and the behavioral evidence showed comparable interaction
pattern. Also, the PEMoR provides a quantitative estimate of the amount of information
reduction achieved by this mechanism (i.e., in our data between 31 and 37% on average
depending on language, with an upper limit of 51% at the level of the individual word).
Finally, we have provided the first evidence that the principles of predictive coding may
also apply to more naturalistic reading situations, for example, to account for individual
differences in the readability of handwriting. In sum, our findings indicate that the basis
for fast access to the meaning of written words is an informationally optimized neuronal
code representing visual-orthographic word information.

We also found evidence that the reliance on the orthographic prediction error in
word recognition is related to the perceptual quality of the stimulus. We showed that in
case the visual occurrence of the stimulus is less predictable, e.g., due to visual noise,
the amount of visual information (i.e., the number of pixels) predicted the behavioral
performance better than the prediction error. As described previously (Rao & Ballard,
1999), efficient coding in a predictive system relies on the structure present in the
stimulus (i.e., more structured handwriting results in stronger and more precise
predictions). If the structure is compromised, i.e., by visual noise, the predictive system
breaks down as predictions become weaker and less precise (i.e., imagine when the
images used as the basis for the prediction in the PEMoR would be noisy). As a
consequence, word processing relies on less efficient neuronal codes under such

conditions.

Page 29 of 52


https://doi.org/10.1101/431726
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/431726; this version posted October 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Most results reported here relied on experiments with fixed word lengths, while
naturalistic reading involves considerably more variability at the level of the input.
However, para-foveal vision provides information about word length to the visual system
before the actual processing of the word (Schotter et al., 2012), so that it can dynamically
implement best-fitting visual-orthographic predictions (priors) online during reading. This
would, in principle, allow for optimized sensory processing as described by the PEMoR
in natural reading situations. This hypothesis must be tested in future studies but fits with
previous theoretical proposals which have acknowledged the integration of top-down
predictions from multiple linguistic domains (for example at the phonological, semantic,
or syntactic level DelLong et al., 2005; Eisenhauer, Fiebach, & Gagl, 2019; Nieuwland et
al., 2018; Price & Devlin, 2011). Ciritically, our results go beyond these earlier models by
demonstrating that top-down guided expectations are implemented already onto early
visual-orthographic processing stages.

The so-far dominant model of visual word recognition in the brain (Dehaene &
Cohen, 2011; Dehaene et al., 2005) postulates that words are ‘assembled’ bottom-up
along the visual pathway, starting with symbolic representations of letter features up to
successively more complex higher-order representations. In this and similar models
(including computational accounts of visual word recognition, e.g., Coltheart et al., 2001)
the symbolic letter representation is inferred from the visual input stimulus. Here we show
that the representational spaces of our original word stimulus images (i.e., the visual
input) and their derived orthographic prediction errors (Fig. 2d) correlate to a high
degree, indicating that, in principle, the PEMoR does not contradict current models of
visual word recognition. In contrast, PEMoR specifies explicitly and in a testable manner
the neuronal code from which we infer symbolic representations like letters. Prediction-
based top-down optimization of the visual-orthographic input, as proposed here, is thus
not necessarily incompatible with the current models of reading and visual word
recognition, but offers a specification of a previously underspecified visual input
representation.

Predictive coding-based theories, in general, assume that higher-level processing
is concerned with prediction error minimization as a core computation (K. Friston, 2005b;
Price & Devlin, 2011). As described in the introduction, such an account would be
fundamentally different from most assumptions in visual word recognition models.
Accordingly, a future challenge for model development will be the incorporation of the
orthographic prediction error and current model assumptions about orthographic

processing. One possibility here could be the inclusion of the orthographic prediction
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error as partial evidence in an evidence accumulation process with the goal of word
recognition (similar as previously described in Ref. Gagl, Richlan, Ludersdorfer,
Sassenhagen, & Fiebach, 2016; Ratcliff, Gomez, & McKoon, 2004; Summerfield & de
Lange, 2014).

In sum, we demonstrate that during reading, visual information is optimized by
‘explaining away’ redundant visual information based on top-down predictions. This
study provides strong evidence that reading follows domain-general mechanisms of
predictive coding during perception (Clark, 2013) and is also consistent with the
influential hypothesis of a Bayesian brain, which during perception continuously
combines prior knowledge and new sensory evidence (K. Friston, 2005a; Knill & Pouget,
2004). We propose that the result of this optimization step, i.e., an orthographic
prediction error signal, is the efficient neuronal access code to subsequent ‘higher’ levels
of word processing, including the activation of word meaning. These data provide the
basis for a new understanding of early, i.e., pre-lexical orthographic stages of visual word
recognition, rooted in a strong and widely accepted, domain-general neurophysiological
model —prediction-based perception (K. Friston, 2005a; Rao & Ballard, 1999). At the same
time, our results provide crucial converging evidence in support of predictive coding
theory.
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Supplementary Materials

Fig. S3.1. Behavioral evaluation, including stimuli with 4-8 letters.

Fig. S3.2. Dutch lexical decision behavior and prediction using a proportional script.
Table S3.3. Results from linear mixed model regression analysis

Table S4. Reliable activation clusters from the fMRI evaluation with respective anatomical
labels

Fig. S5. Detailed description of significant activation clusters in the EEG study
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Figure S3.1. Behaviroal evaluation including multiple word lengths. (a) Response times aggregated across
participants from the British lexicon (BLP) project (Keuleers et al., 2012) for the word lengths 4-8. The left panel
shows the word/non-word by orthographic prediction error (oPE) interaction and the right panel shows the
word/non-word by number of pixels (Npixel) interaction for each word length separately. In addition, the upper
panel shows letter strings that are correctly categorized in nearly all cases (accuracy > .95) and the lower panel
shows the response times to the items, which were less accurately processed (i.e., accuracy < .95). The median
split resulted in a subset of the BLP (i.e., the easy words) which are roughly comparable to words used in the
previous experiments (e.g. see Fig. 3), as the BLP study includes a large number of very rare words (median
log. word frequency per million is .3). Bluish colors represent non-words (N) and greenish colors represent
words (W), while the hue of the colors reflects word length (i.e., bright to dark reflects short to long letter
strings). For both effects, we first estimated linear regression models with either the oPE or the Npixel effect
and allowing interactions with word/non-word status, word length, and accuracy. Note that the oPE in this first
analysis was based on length-specific predictions (i.e., for the estimation of the oPE of four-letter words, all
four-letter words of the lexicon were included in the prediction). For the oPE model, a significant four-way
interaction was found (estimate = -1.078e-04; SE = 4.199e-05; t = -2.567). Separating hard vs. easy words
allowed us to disentangle the four-way interaction: In easy words/non-words, we found a consistent (i.e.,
across length levels) oPE by word/non-word interaction (estimate = 1.530e-04; SE = 4.047¢-05; t = 3.780) in the
same direction as previously shown (positive effect for words and a negative effect for non-words). For hard
words/non-words, we found that the oPE by word/non-word interaction was inconsistent across letter length
levels, which was indicated by a significant oPE and letter length interaction (estimate = -3.530e-05; SE =
8.092¢-06; t = -4.363). In addition, for the hard words both the oPE by word/non-word interaction (estimate = -
1.685e-04; SE = 6.905e-05; t = -2.440) and the main effect of oPE were reversed (estimate = 2.828e-04; SE =
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5.802e-05; t = 4.874 compare to estimate = -1.000e-04; SE = 2.440e-05; t = -4.101, for easy words). For the Npixel
model, no four-way interaction and no Npixel interaction or main effect were found. In sum, in this analysis we
showed that the oPE by word/non-word interaction shown previously for word lengths of five letters (see main
text) is consistent for easy-to-process English items with word lengths from 4-8 letters. Secondly, the
word/non-word by orthographic prediction error interaction was also reliable when the prediction included all
words of all letter lengths from the English lexicon (see part b of this Figure) and the orthographic prediction
error estimation was based on this length-unspecific prediction (estimate: 0.02; SE=0.007; t=3.349). (b) Letter-
length unspecific prediction for English based on ~60,000 English words from the SUBTLEX database (Heuven
etal., 2014).
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Figure S3.2. Dutch lexical decision behavior and prediction using a proportional script. (a) Effect of the
orthographic prediction error parameter, (b) number of pixels parameter and (c) showing the same model
comparisons as implemented in Figure 3 for the data from the first Dutch lexicon project (DLP1; (Keuleers,
Diependaele, & Brysbaert, 2010); 4,305 five-letter stimuli; 39 participants) and the same effects and model
comparisons for the second Dutch lexicon project (DLP2; (Brysbaert, Stevens, Mandera, & Keuleers, 2016);
3,145 five-letter stimuli; 81 participants) are presented in (d,e,f). Before going into the details of the two studies
one has to note that the patterns we have found in the data in relation to our parameters of interest do not
replicated within these two Dutch studies and, in addition, do not replicate with the findings from German,
English, and French shown in Figure 3. In general, this is difficult for the interpretations of the results. For the
DLP1 pattern we found a significant interaction of the orthographic prediction error with word/non-words and
no significant effect of number of pixels. The interaction pattern in contrast to the findings in other languages
(Fig. 3a), however, was qualitatively different as it showed a negative orthographic prediction error effect for
words and a positive effect for non-words. The pattern is exactly the inverse from all other languages. Still
model comparisons highlighted that the orthographic prediction error was relevant for the model fit since the
predictor increased the model fit with no further increase of fit when the number of pixel parameter was
included. None of these findings could be replicated in the DLP2 dataset, showing no significant fixed effects
or interactions and no substantial changes in model fit relation to the null model. (g) Prediction image from a
PEMoR implementation using five-letter words with a proportional Times New Roman script.

Page 43 of 52


https://doi.org/10.1101/431726
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/431726; this version posted October 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Table S3.3. Results from linear mixed model regression analysis
(with the exception of the British data including multiple word
lengths was estimated based on word aggregated data) for the
behavioral lexical decision tasks (LDT) and handwriting analyses.

E SE t
German LDT N°I: Orthographic prediction error based on
word length specific prediction

6.49  0.023 288
-0.03  0.004 6.5

Intercept

Orthographic prediction error (oPE)

Number of pixels (Npixel) -0.007 0.004 1.8
Word/non-word (Lex) 0.33 0.009 33.1
Word frequency -0.12  0.004 335
Error -0.03  0.005 6.2
oPE X Lex 0.03  0.006 5.0
Npixel X Lex 0.000 0.006 0.1

German LDT N°I: Orthographic prediction error based on
word length general prediction

Intercept 6.48 0.023  288.3
Orthographic prediction error (0PE) -0.03  0.004 6.3
Number of pixels (Npixel) -0.01  0.004 1.7
Word/non-word (Lex) 0.33 0.010 33.2
Word frequency -0.12  0.004 355
Error -0.03  0.005 6.2
oPE X Lex 0.03 0.006 4.5
Npixel X Lex -0.00  0.006 0.0

German LDT N°I: Orthographic prediction error based on
word length specific prediction including orthographic
Levenshtein distance and word frequency

Intercept 6.66 0.023 237.1
Orthographic prediction error (0PE) -0.02  0.004 4.3
Number of pixel (Npixel) -0.00 0.004 0.2
Word/non-word (Lex) 0.29 0.011 27.0
Error -0.03  0.005 6.2
Orthographic Levenshtein distance  -0.08  0.008  10.5
Word frequency -0.12  0.004 355
oPE X Lex 0.03 0.006 5.2
Npixel X Lex -0.00 0.005 0.6

German LDT N°2 including noise: 0%

Intercept 6.32 0.024 263.9
Orthographic prediction error (oPE) -0.02  0.016 1.4
Number of pixels (Npixel) -0.00 0.015 0.2
Word/non-word (Lex) 0.27 0.05 54
Word frequency -0.07 0.02 49
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Error -0.07 0.010 6.8
oPE X Lex 005 002 23
Npixel X Lex -0.02 0.021 1.2
German LDT N°2 including noise: 20%
Intercept 6.45 0.026 245.4
Orthographic prediction error (0PE) -0.06  0.017 3.3
Number of pixels (Npixel) -0.00 0.013 03
Word/non-word (Lex) 0.37 0.049 7.5
Word frequency -0.14  0.02 6.1
Error -0.14 0.010 54
oPE X Lex 0.04 0.022 1.6
Npixel X Lex 0.02 0.022 0.7
German LDT N°2 including noise: 40%
Intercept 6.84 0.042 162.9
Orthographic prediction error (0PE) -0.02  0.021 1.0
Number of pixels (Npixel) -0.08 0.018 4.1
Word/non-word (Lex) 0.14 0.049 2.8
Word frequency -0.11  0.06 1.9
Error -0.00 0.010 0.1
oPE X Lex -0.00 0.028 0.1
Npixel X Lex 0.08 0.026 29
British LDT
Intercept 6.39 0.013 507.1
Orthographic prediction error (oPE) -0.007 0.001 5.3
Number of pixels (Npixel) 0.008 0.001 6.7
Word/non-word (Lex) 0.12 0.003 46.2
Word frequency -0.067 0.001 58.0
oPE X Lex 0.008 0.002 4.2
Npixel X Lex -0.003 0.002 1.9
British LDT 4-8 Letters: Length specific prediction
Intercept 6.26 0.157 39.7
Orthographic prediction error (0PE) -0.001 0.000 5.0
Number of letters (Nletters) 0.062 0.027 2.3
Word/non-word (Lex) 0.155 0.162 0.3
Error 0.043 0.165 0.8
oPE X Lex -0.001 0.000 4.5
oPE X Niletters

-0.001 0.000 3.3
oPE X Error

-0.002 0.000 5.1
Niletters X Lex

-0.006 0.028 0.8
Niletters X Error

-0245 0.172 14
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Lex X Error

-0.036 0.028 1.3
oPE X Lex X Nletters

0.001 0.000 24
oPE X Lex X Error

0.002 0.000 5.0
oPE X Niletters X Error

0.001 0.000 3.2
Nletters X Lex X Error

0.003 0.030 0.1

oPE X Lex X Nletters X Error
-0.001 0.000 2.6

British LDT 4-8 Letters: Length general prediction

5.25 0421 125
Intercept

0.002 0.000 3.7
Orthographic prediction error (oPE)
Number of letters (Nletters)

0.250 0.061 4.1

Word/non-word (Lex)
1.064 0438 24

Error

1.264 0443 29
oPE X Lex

-0.002 0.001 3.1
oPE X Nletters

-0.000 0.000 3.6
oPE X Error

-0.002 0.001 4.0
Nletters X Lex

-0.183 0.065 29
Nletters X Error

-0.002 0.001 4.0
Lex X Error

-1.426 0.467 3.1
oPE X Lex X Nletters

0.001 0.000 29
oPE X Lex X Error

0.002 0.001 3.6
oPE X Niletters X Error

0.001 0.000 4.0
Nletters X Lex X Error

0.228 0.068 3.5

oPE X Lex X Nletters X Error
-0.001 0.000 33

British LDT 4-8 Letters: Number of pixel

Intercept 6.590 0.157 42.0
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Number of pixel (Npixel) 0.000 0.001 0.3

Number of letters (Nletters)
0.092 0.028 3.2

Word/non-word (Lex)
-0.124 0.162 0.8

Error

-0.309 0.165 1.9
Npixel X Lex

0.000 0.001 0.2
Npixel X Nletters

0.000 0.001 1.4
Npixel X Error

0.000 0.001 0.4
Niletters X Lex

-0.059 0.029 2.0
Niletters X Error

-0.090 0.030 3.0
Lex X Error

0.035 0.171 0.2
Npixel X Lex X Nletters

0.000 0.001 0.9
Npixel X Lex X Error

0.000 0.001 0.1

Npixel X Nletters X Error
0.000 0.001 1.2

Nletters X Lex X Error
0.069 0.031 2.2

Npixel X Lex X Nletters X Error
0.000 0.001 1.2

French LDT

Intercept 6.63 0.005 1,333
Orthographic prediction error (0PE) -0.002 0.001 2.0
Number of pixels (Npixel) 0.002 0.001 1.3
Word/non-word (Lex) -0.040 0.003 11.6
Word frequency -0.042 0.001 34.1
oPE X Lex 0.005 0.002 2.0
Npixel X Lex -0.007 0.002 3.0
Dutch LDT

Intercept 6.45 0.019 348.1
Orthographic prediction error (oPE) 0.005 0.002 3.2
Number of pixels (Npixel) 0.001 0.002 0.6
Word/non-word (Lex) 0.101 0.004 23.8
Word frequency -0.061 0.002 36.9
oPE X Lex -0.016 0.002 6.6
Npixel X Lex 0.002 0.002 1.0
Dutch LDT2
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Intercept 6.35 0.016 391.1
Orthographic prediction error (oPE) 0.002 0.002 1.1
Number of pixels (Npixel) -0.001 0.002 0.6
Word/non-word (Lex) 0.048 0.005 94
Word frequency -0.023 0.001 26.9
oPE X Lex -0.003 0.003 1.3
Npixel X Lex 0.003 0.003 0.5
Handwriting: Script based orthographic prediction error
Intercept 1.465 0.010 1543
Mean prediction strength 0.052 0.007 74
Number of pixels with a prediction  0.015 0.008 2.1
Letter case 0.039 0.012 3.2
Handwriting: Readability ratings

Intercept 11.5 1.4 8.1
Mean prediction strength -5.9 1.0 6.2

Note. E: Estimate; SE: Standard error; #: t-value. All #’s >2 are
considered a significant effect.
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Table S4. Reliable activation clusters from the fMRI evaluation with respective anatomical labels
(most likely regions from the Harvard-Oxford atlas; order of brain regions is relative to the order
of peak components), cluster size (in voxels of size 2x2x2), and peak voxel coordinates (MNI

space).
Cluster

Hemisphere F;\(Itent T X y z
voxels]

Orthographic prediction error based analysis (positive relationship)

L 95 6.6* -24 -90 -12
Occipital fusiform gyrus / Lateral
occipital gyrus
43 -34 -88 -10
Lateral occipital gyrus L 81 4.8 -28 -84 6
43 -34 -76 6
3.8 -38 -86 4
R 104 5.1 48 -76 -12
Lateral occipital gyrus / Occipital
fusiform gyrus
4.1 44 -64 -18
4.0 34 -64 -14
L 170 4.9 -36 -68 -12
Occipital fusiform gyrus / Lateral
occipital gyrus
4.2 -48 -76 -10
4.0 -24 -68 -12
Words > Pseudowords
L 1347 6.6 -36 34 -18
Frontal orbital cortex / Inferior
frontal gyrus, pars triangularis
6.3 -40 28 -8
6.1 -54 26 -4
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L/R 427 5.5 -6 52 28
Superior frontal gyrus / Frontal
pole
3.9 -10 62 22
3.7 10 56 26
L 120 52 -40 -36 -18
Temporal Fusiform Cortex,
posterior division
52 -34 -42 -24
R 113 4.5 60 -34 -2
Middle Temporal Gyrus, posterior
division / Superior Temporal
Gyrus, posterior division / Middle
Temporal Gyrus, temporooccipital
part
4.0 50 -26 -2
3.8 52 -38 0
R 164 43 56 32 10
Inferior Frontal Gyrus, pars
triangularis / Frontal Pole
3.9 48 34 -12
3.4 50 34 -4
R 98 3.9 44 10 28
Precentral Gyrus / Inferior Frontal
Gyrus, pars opercularis
3.9 38 4 32
3.7 42 16 22

Orthographic prediction error by word/non-word interaction (positive relationship for words and

negative for non-words)

L 125 5.5 -52 32 -4
Inferior frontal gyrus, pars
triangularis / Frontal operculum
cortex
4.6 -48 20 -4
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L/R 90 4.4 -4 48 28
Paracingulate gyrus / Superior

frontal gyrus

4.2 4 48 30

Note. Cluster-level FWE-corrected at p < .05, peak-level uncorrected at p < .001; * Significant
after FWE-correction on the voxel level. Order of regions presented per cluster corresponds to the
order retrieved from the probabilistic Harvard-Oxford atlas.
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Figure S5. Detailed description of significant activation clusters in the EEG study for (a) the orthographic
prediction error; (b) word/non-word effect; (c) interaction of word/non-word and the orthographic prediction
error. On the left, the effect sizes from regression ERPs are presented as time courses for each sensor and
time-point (color coding reflects scalp position). This part of the Figure reproduces Figure 5. The right column
displays time courses with one line per channel, masked by significance using cluster statistics (see Methods
for details; Maris & Oostenveld, 2007).
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