
Improved Pathogenic Variant Localization using a Hierarchical Model of Sub-regional Intolerance 
Tristan J. Hayeck1, Nicholas Stong1, Charles J. Wolock1, Brett Copeland1, Sitharthan Kamalakaran1, 
David Goldstein1, Andrew Allen1,2 
1.Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA 
2.Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA. 
 
 
Different parts of a gene can be of differential importance to development and health. This regional 
heterogeneity is also apparent in the distribution of disease mutations which often cluster in particular 
regions of disease genes. The ability to precisely estimate functionally important sub-regions of genes 
will be key in correctly deciphering relationships between genetic variation and disease. Previous 
methods have had some success using standing human variation to characterize this variability in 
importance by measuring sub-regional intolerance, i.e., the depletion in functional variation from 
expectation within a given region of a gene. However, the ability to precisely estimate local intolerance 
was restricted by the fact that only information within a given sub-region is used, leading to instability in 
local estimates, especially for small regions. We show that borrowing information across regions using a 
Bayesian hierarchical model, stabilizes estimates, leading to lower variability and improved predictive 
utility. Specifically, our approach more effectively identifies regions enriched for ClinVar pathogenic 
variants. We also identify significant correlations between sub-region intolerance and the distribution of 
pathogenic variation in disease genes, with AUCs for classifying de novo missense variants in Online 
Mendelian Inheritance in Man (OMIM) genes of up to 0.86 using exonic sub-regions and 0.91 using sub-
regions defined by protein domains. This result immediately suggests that considering the intolerance of 
regions in which variants are found may improve diagnostic interpretation. We also illustrate the utility of 
integrating regional intolerance into gene-level disease association tests with a study of known disease 
genes for epileptic encephalopathy. 
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Introduction 
Accurate identification of pathogenic mutations is a central challenge in medical genetics and key 

to establishing accurate genotype-phenotype associations. Such an accurate classification requires one to 
consider not only the characteristics of the variants themselves, but also the genomic context in which 
they are found. Not all parts of a gene are of equal importance to viability and health. A variant that 
severely disrupts the function of one part of a gene may have a very different impact from a variant that 
severely disrupts another part of the same gene. This fact is also born out when one looks at distributions 
of disease mutations, which often cluster in specific sub-regions of genes.1,2 While variant level measures 
of functional impact are useful, their value can be increased by integration with information about the 
surrounding sequence context.  . 

Cross species conservation3 has often been used to quantify sequence importance. A genomic 
region that is strongly conserved across species is likely subject to purifying selection, and therefore more 
likely to result in disease when disrupted. However, the conservation approach breaks down when the 
functionality of the sequence is human specific. To overcome this, Petrovski et al4 advanced an empirical 
measure of purifying selection in the human lineage. Using standing variation in the human population, 
they quantified the “intolerance” of genes by the observed depletion of common functional variation 
relative to expectation given the total amount of variation in the gene. Others have advanced similar gene-
level scores, including “constraint”5  and “vulnerability”6 scores. These scores have proven useful in 
prioritizing genes by likelihood of being disease-related. However, they do not aid interpreting regions 
within genes, since they only score the entire gene and not its sub-units.  

Sub-regional versions of intolerance and constraint scores have been proposed.3–5,7,8  Sub-RVIS, 7 
for example, partitions genes into functional subunits (e.g., exons or domains), and then measures the 
depletion of common functional variation, relative to expectation, within them. However, a limitation of 
sub-RVIS is that it does not consider the fact that each sub-region lies within a gene and therefore has 
natural relationships to other sub-regions in the same gene. It is already difficult to detect functional 
depletion on a gene-wide level, so analyzing smaller regions of genes adds to the challenge.9 If a sub-
region is small, or the amount of variation is low, estimates of intolerance are highly variable and often 
inaccurate.  

Since domains and exons are nested within genes, it is natural to model the relationship between 
subunits using a hierarchical model. Here, we improve existing methods and develop a statistical 
intolerance framework that is able to jointly model genome-wide, genic, and sub-regional effects. The 
hierarchical model, a Localized Intolerance Model using Bayesian Regression (LIMBR), facilitates the 
borrowing of information across a gene, leading to stabilization of estimates, lower variability, and 
improved predictive utility. As a result of this approach LIMBR shows much less bias due sub-region size 
than previous methods.  To evaluate the utility of our approach we show that the intolerance scores are 
significantly associated with whether regions carry pathogenic mutations and are highly predictive, in 
particular, of de novo missense variants in Online Mendelian Inheritance in Man (OMIM) disease genes. 
Finally, we illustrate the utility of integrating regional intolerance into gene-level disease association tests 
with a study of known disease genes for epileptic encephalopathy, where results suggest that considering 
the intolerance of regions in which variants are found may improve power for gene discovery. 

 
Materials and Methods 
 
Bayesian Hierarchical Model 
 

We establish a Bayesian hierarchical model explicitly characterizing depletion in funtioanl 
variation at both the gene and sub-regional level.  As with sub-RVIS, we estimate intolerance within a 
genic sub-region by the departure, within the region, from the expected number of missense variants 
given the total number of variants (synonymous and functional) within the sub-region. However, unlike 
sub-RVIS, we use a hierarchical model that explicitly nests sub-regions within genes to further 
decompose this residual variation into gene-level and sub-region components. Figure 1 depicts the 
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approximate geometric interpretation of this approach. The hierarchical model allows information to be 
shared across sub-regions, stabilizing intolerance estimates.  

We use a two-level linear mixed effects model with a single intercept for the genetic effect and 
two levels of random effects. Specifically, we model the number of missense variants within the !th sub-
region of gene ", y%&, as a function of the total number of variants within the !th sub-region of gene ", '(), 
through the following regression model, 
 

y%& = µ + -) + -%(&) + 01'() + 23(), 
 
where µ is a genome-wide intercept, -) is the average deviation from µ for gene j, and -%(&) is a deviation 
for the ith sub-region nested within gene j and 23()~	6(0, 839).	 

We model -) and -%(&) as random effects within a Bayesian framework. We assume standard 
normal priors for -)	and	-%(&)	 but allow for separate prior variances for -%(&)	for each gene j. We begin by 
assuming an inverse gamma prior for the variances. Specifically, we choose -)~6(0, 89	) with hyper-
parameters 89~>?@-ABCCB(	D, D) and D~E?!FGHC(I, J), where I is a small positive constant and J is a 
large positive constant to induce a diffuse prior.  For the sub-region parameters, we use a similar structure 
but with a separate variance for each gene, i.e., we choose -(())~6K0, 8)9	L with hyper-parameters 
8)
9~>?@-ABCCB(	D), D)) and D)~E?!FGHC(I, J). Note that by allowing for a gene-level variance, the 
-()s can be shrunken back to the gene level intolerance when there are no large differences between sub-
region or when data is sparse. This will decrease the variability of the  -(())s, leading to more stable 
intolerance estimation. 

After initial testing the posteriors across different chains appeared to be volatile in certain 
settings, where the within versus across chain variance for some variables was above 1.1. To improve the 
ergodicity, -(())was set to zero for genes with 2 or fewer sub-regions, this is effectively just collapsing 
genes with only 2 sub-regions eliminating any inflated within versus across chain variance. Further, it is 
known that the hierarchical model can be augmented, sometimes referred to as noncentral15–17 or ancillary 
augmentation18, and similar methods are known to improve performance.19,20 So, we introduced an 
additional hyper parameter @~6(0,1) for -%&∗ = @8) to reduce autocorrelation.  

 
 y%& = µ + α& + -%(&)

∗ + 01'() + 23() 
 

(Eq 1) 

By introducing an auxiliary hyper parameter, the conditional variance structure is maintained while 
decoupling the random variables we wish to make inference on, PBH(-()|8)9) = PBH(-%&

∗ |@, 8)
9). The final 

score that is used for the analysis is the posterior mode of the combined genic and sub-region terms. 
The software was implemented in RStan21 interface of the Stan statistical modeling program, 

specifying the model in C++. Stan’s underlying software engine is a C++ program designed to be an 
efficient implementation of a Hamiltonian Monte Carlo (HMC) algorithm.22 HMC uses gradient 
information based on Hamiltonian dynamics, borrowing from physics, to better hone in on states of 
higher acceptance rates. Since the proposal step is leveraging more information it results in a faster 
convergence of the algorithm. A burn in of 1,000 with an additional 10,000 HMC steps across 5 chains 
was run for both domains and exons. 

 
Assessing Prediction of Pathogenic Variants and Sensitivity to Sub-region Length: 
 

After calculating the scores, we perform assessment of the methods ability to predict pathogenic 
variants in several different scenarios. We directly compare the LIMBR scores against sub-RVIS to better 
understand if extending from a frequentist model, to the more involved and computationally intensive 
Bayesian model, improves prediction of pathogenic variance. It is also important to assess how sensitive 
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the methods are to the relative sub-region lengths. For both sub-RVIS and LIMBR, the scores are 
regressed against the presence of ClinVar pathogenic mutations within each sub-region while controlling 
for mutation rate using logistics regression.   

 
 RGS!TK>(U() > 0)L = 03 + 01WJGH2() + 09 logK[()L + 0\]() 

 
(Eq 2) 

Where the sub-regions where considered pathogenic if they had at least one ClinVar pathogenic variant, 
>(U() > 0). The log mutation rate, [() , was included as a covariate and the model was fit both with and 
without sub-region length, ]() , as a covariate. The change in 01was observed fitting the models with and 
without the sub-region length term in the model to see the potential effects of sub-region size.  

Next, again using the calculated scores, a gene-by-gene assessment is run to test per-gene how 
well LIMBR predicts where within each gene pathogenic mutations are most likely to fall. For each gene 
the expected distribution of the pathogenic variants within the gene where calculated, based on the gene’s 
sub-regions’ mutation rates.  First, regressing pathogenic variant counts within the sub-regions of genes 
against LIMBR scores and note the observed slope.  

 
 U() = 03 + 01U[() +	09log	([()) (Eq 3) 

 
Regressing the model again but this time redistributing (permuting) the pathogenic variants into sub-
regions by multinomial sampling, where variants are allocated to sub-regions proportional to the 
cumulative mutation rate of the sub-region, (see Methods for details). This effectively breaks any 
association between the location of the pathogenic mutations and intolerance. We repeat this process 1e4 
times, characterizing the null distribution of the slope and thereby compute p-values by comparing the 
observed slope to permuted sets’ slopes.  

Finally, we assess LIMBR’s utility in case-control studies to improve ability to detect gene-
disease associations. The scores could be used as a weighting factor to increase power in disease related 
gene detection. A group-wise association test, similar to Madsen and Browning’s24 was constructed using 
the intolerance scores to weight the variants. An additive genetic model was used, where a genotype value 
of 0 corresponds to homozygous for the major allele, 1 to heterozygous, and 2 to homozygous for the 
minor allele. Assuming Hardy-Weinberg Equilibrium missing genotypes were imputed assigning each 
missing genotype a value of 2_, where _ is the frequency of the minor allele in the cohort. For a gene 
with ? exons, let `( be the intolerance score percentile of exon !. For all variants in exon !, the 
corresponding weight a(	is given by: 

 
 a( = 1 −	

`(

max	)e3
f ( )̀)

 

 

(Eq 4) 

For the weighted model each individual’s genotype vector was multiplied by the weight vector and 1 for 
the unweighted model. A weight of 1 to all LoF variants since the intolerance score applies only to 
missense variants and LoF variants are expected to have the greatest relative effect on protein function.  

The sum across each case individual’s weighted genotype vector yields an individual-level score, 
which is then summed to get the cohort wide score. Then 10 million permutations were generated of the 
score, where each time the case control status of each individual was permuted. The permutation p-value 
corresponds to the proportion of permutations that larger than the observed score with the true case 
control labels.  

 
Data and Quality control  
 

The model is fit using 123,136 whole exome sequences from the genome Aggregation Database 
(gnomAD) across 17,765 genes.10 Loss of Function (LoF) variants are excluded from this analysis since 
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LoFs can damage the resulting protein regardless of the sub-region in which they fall.5,11,12 Two sets of 
scores are calculated by fitting different definitions of sub-regions across genes, once with genic sub-
regions defined by 172,123 exon boundaries and then again with sub-regions defined by 82,265 
functional domains, both using the Conserved Domain Database (CDD).7,13 The filtered data from 
gnomAD first had to go through ‘PASS’ gnomAD criteria and further restricted to regions with at least 
10x coverage in at least 70% of the samples. The model was regressed on missense variation versus all 
classes of functionality. Variants causing loss-of-function (LoF) damage the resulting protein, regardless 
of the sub-region, so we removed those predicted to be LoF. Variants that were annotated as either: splice 
acceptor variant, splice donor variant, stop gained, or stop lost were considered LoF. Indels were ignored. 
Exons were defined based on consensus coding sequence project release 20 (CCDS20).25  All coding 
regions of a gene were considered across all possible CCDS transcripts of a gene.  Domains were defined 
in the Conserved Domain Database (CDD), and aligned to CCDS15.7,25 ClinVar14 pathogenic variants that 
were labeled as either pathogenic or likely pathogenic were used for the validation analysis and control 
variants were taken from 50,726 DiscovEHR26 samples, excluding variants also found in gnomAD and 
ClinVar.  

 
Results 
 
 
Exome Wide Predictive Ability of Intolerance Scores on Pathogenic Mutations  
 

To better understand the advantage of the hierarchical approach, we examine the top and bottom 
10% of the intolerance scores from both LIMBR and sub-RVIS and the number of bases spanned by these 
regions (Figure 2). For exon-level sub-RVIS, the average bases spanned for the top 10% intolerant exons 
is 452, compared to an average of 214 bases for the bottom 10% (Figure 2a: tdf=25397 = 44.01 and p < 2.2e-
16). For domains, the top intolerant domains average 1124 bases versus 559 bases for the most tolerant 
regions (Figure 2c: tdf=25397 = 40.9 and p < 2.2e-16). Using LIMBR, the top 10% intolerant exons average 
297 bases versus 286 bases for the most tolerant exons (Figure 2b: tdf=33322= 2.2, p-value = 0.034), and 717 
bases versus 654 bases for domains (Figure 2d: tdf=16145= 4.4, p-value = 1.3e-5).  LIMBR appears 
considerably less sensitive to sub-regional length; there is around a 10-base difference on average 
between the most and least intolerant exons, which is only marginally significant at an α = 0.05. In 
contrast, exon-level sub-RVIS has a highly significant difference of over 200 bases spanned between the 
most and least intolerant exons. As shown in separation of the sub-region length histograms for top 10% 
and bottom 10% scores points to a potential association between longer regions and higher intolerance 
scores in sub-RVIS. 

To explore whether LIMBR provides a benefit over sub-RVIS in terms of classification, we 
consider how well the resulting intolerance scores predict the presence of pathogenic mutations. 
Specifically, for both sub-RVIS and LIMBR, we regress the sub-region scores on the presence of ClinVar 
pathogenic mutations within these sub-regions while controlling for mutation rate using logistic 
regression (Eq 2). We see a significant association between exon-based intolerance scores and the 
presence of pathogenic variants for both LIMBR (p = 1.3e-29 ) and sub-RVIS (p = 2.8e-13), and less 
significant association for domains (LIMBR p = 1.6e-28, sub-RVIS p = 6.6e-67). Then we want to 
understand the scores ability to classify pathogenic regions in the context of region size and if there is 
some potential bias, as implied by Figure 2. To directly test for this, we fit a logistic regression model as 
described above, but with the addition of sub-region bases spanned as a covariate. An observed 49% 
(exons) and 11% (domains) changes in the estimate of sub-RVIS effect size after adding the sub-region 
length as a covariate, as opposed to around 14% (exons) and 2% (domains) changes for LIMBR. This 
indicates the possibility of strong influence of the size of the sub-region in the relative intolerance score 
using the sub-RVIS model.   

We then consider how well a given intolerance threshold captures pathogenic mutations. 
Specifically, a given intolerance threshold defines both the total number of pathogenic mutations found in 
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sub-regions as intolerant (or more) as the threshold as well as the total number of bases spanned by these 
same sub-regions. LIMBR appears to perform consistently better than sub-RVIS, capturing more 
pathogenic variants per base spanned (Figure 3). The analysis indicates similar results between exon-level 
LIMBR and domain-level LIMBR in terms of the number of pathogenic variants captured versus bases 
spanned (Figure 3).   
 
Evaluation of impact of incorporating sub-regions using ClinVar Pathogenic Variants  
 

We compare LIMBR to existing gene-level scores, including genic RVIS, pLI, and missense 
Z,5,10,27  beginning by focusing on OMIM genes. Since there is no explicit way of knowing if regions are 
benign we perform several comparisons against ClinVar pathogenic variants to help understand how well 
the methods classify variants.  First, the percentile-sorted scores are used as thresholds to assess the 
ability of the methods to capture ClinVar pathogenic de novo missense variants versus benign sub-regions 
(Figure 4a-c for exons and Figure 4d-f for domains). In this analysis, LIMBR has the highest AUC (0.86) 
followed by missense Z (0.81), RVIS (0.78), pLI (0.76), and sub-RVIS (0.59) (Figure 4a). Similarly, for 
domains LIMBR has the highest AUC (0. 91) followed by sub-RVIS (0.81), missense Z (0.81), pLI 
(0.78), RVIS (0.76) (Figure 4d). LIMBR demonstrates at least a 5% and up to 10% improvement in AUC 
for classification of pathogenic missense de novo versus other methods. We observe similar results when 
using epilepsy and neurodevelopmental AD gene sets. 

Then no longer restricting to de novo we classify sub-regions as pathogenic or benign, where a 
sub-region is pathogenic if it contains at least one ClinVar missense pathogenic variant and benign 
otherwise. Scores are sorted by percentile and use it as a threshold to examine the percentage of 
pathogenic sub-regions versus benign sub-regions captured. We examine all OMIM genes, then restrict to 
either epilepsy genes or neurodevelopmental autosomal dominant (AD) genes (Figure 5a-c and Figure 
S1a-c for domains). For exons across all OMIM genes, LIMBR has the highest AUC (0.58) followed by 
sub-RVIS (0.56), missense Z (0.54), pLI (0.52), and RVIS (0.49) (Figure 5a) whereas for domains sub-
RVIS performs best (0.62) followed by LIMBR (0.59), missense Z (0.56), RVIS (0.56) and pLI (0.53).  

Then the percentile-sorted scores are used as a threshold to examine the percentage of missense 
pathogenic ClinVar variants captured versus control variants, where control variants are defined as 
variants found in DiscovEHR26 control samples, excluding variants also found in gnomAD and ClinVar 
(Figure 5d-e and Figure S1d-e for domains). Despite sub-RVIS performing nearly as well as LIMR in 
terms of classifying sub-regions, when we examine the ability to classify pathogenic versus control 
variants, sub-RVIS performs the worst and LIMBR performs the best (Figure 5d and Figure S1d). We 
also considered the percent ClinVar pathogenic variants captured versus benign sub-regions (for exons 
Figure S2a-c and for domains Figure S31a-c) and the percent ClinVar pathogenic variants captured versus 
bases covered (for exonsFigure S2d-e and for domains Figure S3d-e). Similar results are observed when 
restricting to epilepsy genes (Figure 5b,Figure 5e,S1b,S1e,S2b, and S2e) and neurodevelopmental AD 
genes (Figure 5c,Figure 5f, S1c, S1f, S2c, and S2f), where LIMBR appears to demonstrate consistent 
improvement in capturing pathogenic variation. LIMBR results across different gene sets: epilepsy, 
neurodevelopmental, AD, neurodevelopmental AD, haploinsufficient, and recessive genes (Figure 6 for 
exons and Figure S4 for domains) are plotted for further comparisons of the gene groupings.  
 
Genes with Significant Association between Sub-Region Level Intolerance and Pathogenic Variant 
Placement 

 
To test if the intolerance scores are significantly predictive of where pathogenic mutations fall 

within a given gene a permutation test is constructed. Using this permutation test (Eq 3), there are 259 
genes that demonstrate significance at α = 0.05. Of the 259 significant genes, 41 are haploinsufficient, 76 
are recessive, 101 are AD, 103 are neurodevelopmental, 41 are both neurodevelopmental and AD, and 15 
are epilepsy genes (Table 1 and Figure 6). Examining gene sets in different organ groups from Database 
of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources (DECIPHER)28, for 
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face genes, 29 out of 252 demonstrate significant permutation tests (exact test p = 0.004), and for heart 
cardiovascular/lymphatic genes 32 out of 240 demonstrate significance (exact test p = 2.7e-4) (Table 1). 
This also includes 5 genes known to be associated with early-onset epilepsy: SCN1A (p-value <1e-5), 
SCN8A (p-value = 2e-4), CDKL5 (p-value=0.011), PCDH19 (p=4e-5), and KCNT1 (p-value=0.006) 
(Figure 7).  

To follow up on these results, we investigate whether the LIMBR scores can be used in a case-
control study to improve our ability to detect gene-disease associations. In practice, the scores could 
potentially be used as a weighting factor in order to increase power in disease related gene detection. 
Using a cohort of 488 epileptic encephalopathy cases and 12,151 unrelated controls from a previous rare 
variant collapsing analysis23, we performed a group-wise association test on the five epilepsy genes 
mentioned above (Eq 4).24 In the first set of tests, we assign equal weights to all variants; in the second, 
we weight the variants by the inverse percentile of their exon-level intolerance scores (details in 
Methods). Four out of the five genes appear to demonstrate lower p-values under the weighting scheme, 
while the weighted p-value for KCNT1 increases but has overlapping 95% confidence intervals with the 
unweighted p-value (Figure 7f). This serves as a proof of concept for the potential to use the scores to aid 
in identifying key genes associated with diseases.  
 
Discussion 
 

We demonstrate the approach to intolerance scoring implement in LIMBR results in a significant 
improvement over existing methods in the prediction of pathogenic variants.  We believe that the primary 
reason for this improvement is that LIMBR is able to capture patterns of variation in intolerance amongst 
genic regions while minimizing the noise introduce by sub-region size. Of particular relevance to 
diagnostic sequencing LIMBR also identifies a set of 259 genes in which there is a significant 
relationship between intolerance scores and the location of pathogenic missense mutations. This work 
therefore identifies a set of existing genes for which diagnostic labs should not only consider location in 
interpreting variants but should also consider the intolerance of the regions within which variants fall.  
We anticipate that more effective use of the location of missense variants in genes will help to address 
substantial challenge presented by variants of unknown significance.  Interestingly, some of the genes that 
have high rates of variants of unknown significance show significant regional variation in intolerance 
including one gene central to a high-profile court case resulting from misclassification of a pathogenic 
variant as a variant of unknown significance.29,30   

As with any analytical model, the analysis is only as good as the constraints of the data. As 
control data sets increase in size, so will the power to detect intolerance. Furthermore, improvement in 
genic sub-region definitions and the increasing availability of trait-specific data will also improve the 
ability to understand sub-regional intolerance.  

Beyond the immediate contribution to variant interpretation, the implicit sharing of information 
across lower levels in the hierarchy allows the statistical framework utilized here to be extended to 
address a number of topics that have not yet been investigated.  The regression formulation we propose is 
flexible and can accommodate additional covariates; for example, one can include additional levels in the 
hierarchy to model intolerance within and between populations or species. This would result in improved 
precision via the sharing of information across groups, but also the ability to estimate population specific 
effects. This creates exciting opportunities for example to develop an intolerance scoring system trained 
for example on human and mouse population genetic data which would identify genes that are under 
common and divergent patterns of purifying selection.  LIMBR provides a natural framework for such 
studies which could provide important insights in the use of animal models to study human genetic 
disease. The model could be adapt to jointly examine missense and LOF variants as different outcomes, 
or to incorporate prediction of how damaging individual variants are.31,32. We do not go into a detailed 
comparison of variant-level predictors of pathogenicity 11,33,34 in this paper because many of these 
methods use information on pathogenic variants to develop their scores, and they also may not account 
for gene-level effects. These scores may still be of interest in conjunction with LIMBR for variant 
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interpretation, especially by integrating methods that use orthogonal information to characterize how 
damaging a variant is. We are currently working on expanding our tests to explore these avenues, and as 
more data becomes available we will be able to directly address regional variation in more specialized 
settings.  

The Bayesian framework also allows for different priors to be put on the model, potentially 
leading to shrinkage of genes or sub-regions to improve classification of novel variants. Overall, the 
Bayesian hierarchical intolerance model is a flexible and robust way to model sub-regional intolerance to 
variation, showing strong classification of previously identified pathogenic variants while demonstrating 
less susceptibility to variability in estimates due to sub-region size.  

 
Online Resources: 
 

Online Mendelian Inheritance in Man (OMIM): http://www.ncbi.nlm.nih.gov/omim  
Genome Aggregation Database (gnomAD): http://gnomad.broadinstitute.org/ 
ClinVar aggregation of genomic variation: https://www.ncbi.nlm.nih.gov/clinvar/  
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Figure 1 Relative missense variation versus total variation across domains. In blue are the SCN1A domains as an 
example while the grey dots correspond to all the other domains, where the genome wide average missense 
variation versus total variation is plotted as a black solid line (A). The offset average gene level trend for SCN1A is 
plotted as a blue dotted line (B) and can be seen more clearly in the exploded panel. Fitting a Bayesian hierarchical 
model allows for sharing of information across sub-regions, pulling the sub-region level terms towards the genic 
average.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2018. ; https://doi.org/10.1101/431536doi: bioRxiv preprint 

https://doi.org/10.1101/431536
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 
Figure 2 Comparing sub-RVIS versus LIMBR length distributions looking at the top and bottom 10% intolerant 
sub-regions. The histograms show the distribution of the number of bases spanned in sub-regions in top and bottom 
10% of intolerance scores sets for sub-RVIS (exons A. and domains C.) and then the top and bottom intolerant 
LIMBR scores (exons B. and domains D.).   
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Figure 3 Comparing LIMBR and sub-RVIS ability to capture ClinVar pathogenic variants versus percent of 
bases spanned, restricting to OMIM genes. The genes are either broken up into exons (blue) or domains (black), 
thensub-regions are sorted based on either their sub-RVIS (dotted lines) or LIMBR scores(solid lines). At each 
percentile the percentage of ClinVar pathogenic variants captured relative to the percent of bases covered is 
compared between the two methods. 
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Figure 4 Performance of different methods’ ability to capture de novo pathogenicity across exons relative to benign variation. The methods are compared 
looking first at exons and the percent de novo missense variants versus benign exons restricting to a.) all OMIM genes  c.) epilepsy gene set d.) 
neurodevelopmental autosomal dominant genes. Then for domain groupings, the methods are compared again with the percent de novo missense variants versus 
benign exons restricting to d.) all OMIM genes  e.) epilepsy gene set f.) neurodevelopmental autosomal dominant genes. 
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Figure 5 Performance of different methods’ ability to capture pathogenicity across exons relative to benign variation. LIMBR is compared against the other 
methods to see how well it classifies pathogenic exons versus benign exons restricting to a.) all OMIM b.) epilepsy gene set c.) neurodevelopmental autosomal 
dominant gene set. Then the percent pathogenic variants versus control variants captured by the different methods is compared restricting to d.) all OMIM e.) 
epilepsy gene set f.) neurodevelopmental autosomal dominant gene set.  
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Figure 6 Performance of LIMBR across different gene sets. The LIMBR classification r a.) plotting exons with at 
least one pathogenic variant versus benign exons restricting to different OMIM genes sets (overlapping with set in 
Figure 4). Then similarly using to LIMBR percentile rankings of exons to see the b) percent pathogenic de novo 
variants relative to benign exons again restricting to different OMIM genes sets.  
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Figure 7 Localized genic intolerance to variation in key epileptic encephalopathy genes. The plots above are of 
the intolerance scores for, a.) SCN1A, b.) SC81A, c.) CDKL5 d.) PCDH19 and e.) KCNT1 with 95% credibility in 
grey across combined coding positions in all transcripts. The bar strip below that plot indicates when the start and 
end of a exon occurs. Below are the densities of ClinVar variants matched up at the corresponding genomic 
positions with the intolerance scores. Then f.) is a table that depicts a group-wise association test, both unweighted 
and weighted with the inverse percentile of the LIMBR intolerance, using a cohort of 488 epileptic encephalopathy 
cases and 12,151 unrelated controls from a previous rare variant collapsing analysis. 

Gene unweighted weighted 

SCN1A 2.00E-6 (1.12E-6,2.88 E-6) 7.00E-07 (1.81E-7, 1.22E-6) 

SCN8A 1.04E-05 (8.40E-06,1.24 E-5) 6.50E-06 (4.92E-6, 8.08E-6) 

CDKL5 0.2158 (0.2156, 0.2161) 0.1014 (0.1012, 0.1016) 

PCDH19 0.2313 (0.2310,0.2315) 0.1955 (0.1952, 0.1957) 

KCNT1 6.00E-07 (1.20E-7, 1.08E-6) 1.20E-06 (5.21E-7, 1.88E-6) 
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Gene Set Number of  

Genes In Set 
Number Genes 
Significant 
Permutation Test 

Exact 
p-Value 

Haploinsufficiency 175 41 2.04E-12* 
Recessive 817 76 0.027* 

Autosomal Dominant 1083 101 1.56E-11* 
Neurodevelopmental 1010 103 1.21E-07* 

Neurodevelopmental AD 252 41 2.08E-10* 
Epilepsy 100 15 2.66E-04* 

Bone Marrow/Immune 143 7 0.705 
Brain/Cognition 1314 96 0.131 

Ear 134 10 0.332 
Endocrine Metabolic 452 25 0.937 

Eye 347 17 0.924 
Face 252 29 0.004* 

GI tract 159 11 0.441 
Genitalia 67 8 0.062 

Heart Cardiovasculature/Lymphatic 240 32 2.62E-04* 
Kidney/Rena lTract 148 11 0.511 

Musculature 124 11 0.162 
Respiratory tract 33 2 0.291 

Skeleton 687 47 0.577 
Skin 241 23 0.054 

Spinal cord/Peripheral nerves 57 2 0.764 
Teeth and Dentition 50 0 0.966 

All OMIM 3433 259  
 
Table 1 Gene set enrichment of using gene level permutation test demonstrating significant 
association between exon level intolerance and pathogenic variant localization. The table above depicts 
different gene sets with the number of genes in each set, of those genes the number of them that are 
significant using the permutation test, and the exact test for observing that many significant genes in the 
sub-category relative to the total OMIM disease genes.  
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