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ABSTRACT  

Small molecules are the primary communication media of the microbial world. Recent 

bioinformatics studies, exploring the biosynthetic gene clusters (BGCs) which produce 

many small molecules, have highlighted the incredible biochemical potential of the 

signaling molecules encoded by the human microbiome. Thus far, most research efforts 

have focused on understanding the social language of the gut microbiome, leaving crucial 

signaling molecules produced by oral bacteria, and their connection to health versus 

disease, in need of investigation. In this study, a total of 4,915 BGCs were identified 

across 461 genomes representing a broad taxonomic diversity of oral bacteria.  Sequence 

similarity networking provided a putative product class for over 100 unclassified novel 

BGCs. The newly identified BGCs were cross-referenced against 254 metagenomes and 

metatranscriptomes derived from individuals with either good oral health, dental caries, 

or periodontitis. This analysis revealed 2,473 BGCs, which were differentially represented 

across the oral microbiomes associated with health versus disease. Co-abundance 

network analysis identified numerous inverse correlations between BGCs and specific 

oral taxa. These correlations were present in health, but greatly reduced in dental caries, 

which may suggest a defect in colonization resistance. Finally, corroborating mass 

spectrometry identified several compounds with homology to products of the predicted 

BGC classes. Together, these findings greatly expand the number of known biosynthetic 

pathways present in the oral microbiome and provide an atlas for experimental 

characterization of these abundant, yet poorly understood, molecules and socio-chemical 

relationships, which impact the development of caries and periodontitis, two of the world’s 

most common chronic diseases. 
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IMPORTANCE  

The healthy oral microbiome is symbiotic with the human host, importantly providing 

colonization resistance against potential pathogens. Dental caries and periodontitis are 

two of the world’s most common and costly chronic infectious diseases, and are caused 

by a localized dysbiosis of the oral microbiome. Bacterially produced small molecules, 

often encoded by BGCs, are the primary communication media of bacterial communities, 

and play a crucial, yet largely unknown, role in the transition from health to dysbiosis. This 

study provides a comprehensive mapping of the BGC repertoire of the human oral 

microbiome and identifies major differences in health compared to disease.  Furthermore, 

BGC representation and expression is linked to the abundance of particular oral bacterial 

taxa in health versus dental caries and periodontitis. Overall, this study provides a 

significant insight into the chemical communication network of the healthy oral 

microbiome, and how it devolves in the case of two prominent diseases.  
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INTRODUCTION 

The human body is inhabited by rich and diverse bacterial communities , which are 

intimately linked to the health of the human host (1). Small molecules, which are often 

encoded by biosynthetic gene clusters (BGCs), are the primary means of communication 

in this microbial world. Recent studies suggest that the human microbiota has the 

potential to synthesize a myriad of exquisite small molecules, and that these small 

molecules serve as mediators in a variety of microbe-microbe and host-microbe 

interactions (2-4). These include: antibacterial activity (5), bacterial signaling (6), immune 

modulation (7), biofilm formation (8, 9), host colonization (10), nutrient-scavenging (11) 

and stress protection (12). Disruption of the finely-tuned equilibrium of the bacterial 

ecosystems in the human microbiome, referred to as dysbiosis, is associated with a 

plethora of diseases. While the mechanistic underpinnings of a shift to a dysbiotic 

community remain poorly understood, there is little doubt that signaling via the small 

molecules produced by microbial BGCs plays a critical role in the transition to dysbiosis, 

and associated pathogenesis (13, 14). 

The human oral cavity contains an assortment of ecological niches, and as such, 

harbors one of the most diverse microbial populations in the human body (1, 15). Dental 

caries and periodontitis are two of the most common and costly chronic conditions 

afflicting humans, and are the result of localized dysbiosis in the oral cavity (16-20).  Unlike 

the rest of the human digestive tract, the oral cavity is consistently exposed to the exterior 

environment. Therefore, an indispensable portion of the first line of defense against 

invading pathogens is the colonization resistance provided by a healthy oral microbiome. 

Indeed, dysbiosis of the oral microbiome is not only directly linked to oral diseases, but is 
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also implicated in system-wide health (21), stressing the urgent need to unravel the 

underlying factors that shape and maintain a healthy human oral microbiome. 

Elucidating the transmissions relayed by oral bacterial small molecules could lead to 

a deeper understanding of key ecological factors that set the stage for oral community 

succession, in health and pathogenesis. A large and growing body of literature suggests 

that the microbial composition and metabolic potential of the saliva and dental plaque 

varies significantly in healthy versus disease states (22-28). Therefore, we hypothesize 

that the abundance and expression of BGCs, which produce small molecules, may drive 

crucial bacterial interactions which contribute to health or disease. To explore this further, 

the biosynthetic capacity of 461 well-annotated oral bacterial genomes was investigated, 

and an enormous diversity of BGCs was revealed. In addition, sequence reads from 294 

publicly available metagenomes and metatranscriptomes, which were associated with 

health, dental caries, or periodontitis, were mapped to these novel oral BGCs. This 

analysis identified 2,473 biosynthetic pathways which were differentially represented in 

health versus disease. In addition, the BGC content in salivary metagenomes obtained 

from 24 healthy children and 23 children with dental caries was analyzed. A Bayesian 

network approach was employed to identify both positive and inverse correlations 

between BGCs and bacterial taxa, which revealed differentially abundant signaling 

networks and species in health compared to dental caries. Overall, this study provides a 

significant insight into the chemical communication network of the healthy oral 

microbiome, and how it devolves in the case of dental caries and periodontitis. 
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RESULTS AND DISCUSSION 

The human oral microbiome encodes thousands of diverse BGCs from an array of 

species. To explore the metabolic capacity of the human oral microbiome in-depth, a 

comprehensive pipeline for mining bacterial genomes was established, utilizing 

antiSMASH infrastructure v4 (accessible at https://antismash.secondarymetabolites.org/) 

(29), including MultiGeneBlast (30). An oral bacterial genome sequence database was 

assembled to include a total of 461 well-curated and annotated bacterial genomes, 

representing 113 unique bacterial genera and 298 taxonomically unique species, as well 

as 72 taxa unclassified at the species level (Table S1). Genomes were selected based 

on their completeness and level of annotation. A single genome sequence for each 

bacterial species was included to circumvent the overrepresentation of BGCs from 

bacteria with a high number of genome representatives. Indeed, in a previous 

bioinformatics study of 169 S. mutans genomes, ~1,000 putative BGCs were identified, 

revealing an incredible potential to produce small molecules within one bacterial species 

(31). Therefore, it should be noted that the estimated BGC diversity reported here is likely 

underestimated.  Clearly, strain-level diversity is important to explore in future studies. 

However, this will require extensive genome sequencing, since to-date most oral bacterial 

species lack multiple reference genomes. By applying the genome-mining pipeline 

described above, a total of 4,915 BGCs of known and unknown types were identified 

(Table S1). BGCs annotated as fatty acid synthases, which are often involved in primary 

metabolism, were excluded.  Approximately 50% of the identified BGCs were of an 

unknown class, congruent with the observations of other efforts to identify BGCs (Table 

S1)(2).  The remaining 50% of BGCs (2,250) shared sequence similarities with an 
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extensive range of previously characterized BGC classes, which is likely reflective of the 

high taxonomic diversity observed within the oral cavity as compared to many other body 

sites (1) (Fig. 1A). 

Of the BGCs of a known class, a substantial fraction (1,398 BGCs, 62%) were 

annotated as oligosaccharides, making it the most abundant class of BGCs in the oral 

cavity. Oligosaccharide pathways are widely distributed across bacterial phyla and are 

predominant in Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria and 

Fusobacteria, with the highest number being identified in Firmicutes (Fig. 1B and C). Their 

ecological roles are largely underexplored, but studies show important functions such as 

capsule formation in virulence development (32) and attachment to surfaces, including 

neighboring bacterial species and host cells (33).  Furthermore, diffusible 

oligosaccharides are known to display antibacterial activities (34), for example a previous 

study showed that polysaccharide A from the human gut bacterium Bacteroides fragilis 

can modulate the gut mucosal immune response (35, 36). 

Another highly represented BGC class was ribosomally synthesized and post-

translationally modified peptides (RiPPs), for which 209 BGCs (9.3% of BGCs of a known 

class) were identified. RiPPs include molecules such as bacteriocins, lantipeptides, 

sactipeptides, cyanobactins, and proteusins (denoted as fluorescent green in Fig 1).  Of 

these RiPP types, bacteriocin-encoding BGCs were the most abundant as they 

contributed ~75% of the total RiPP diversity. Interestingly, although bacteriocin 

producing-BGCs were abundant in the oral microbiome overall, they were depleted in all 

Bacteroidetes genomes (Fig. 1C). The role of RiPPs, such as the bacteriocins, demands 

further exploration, as they exhibit antagonistic activities against other microbes sharing 
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the same ecological niche, and influence competition for persistence between 

commensals and pathogens (37, 38). Furthermore, multiple studies genetic 

transformation in Streptococcus show that competence is tightly linked to bacteriocin 

production (39), which suggests that these molecules also play important roles in the 

horizontal transfer of genes and ultimately in niche differentiation and population structure 

changes. 

BGCs encoding aryl polyene-like molecules in several Bacteroidetes and 

Proteobacteria genomes were identified (131 BGCs or 5.8% of BGCs of a known class). 

Aryl polyenes are predicted to function as protective agents against oxidative stress (40). 

However, only a few candidates have been experimentally characterized, leaving this 

group of small molecules highly underexplored. A diversity of non-ribosomal peptide 

synthetases (NRPSs), polyketide synthase (PKS), and NRPS-PKS hybrid BGCs (ranging 

between 0.9% and 4.4% of BGCs of a known class) were identified, in line with a prior 

study, which classified BGCs in the human microbiome in multiple body habitats (2). 

These compound classes are known for their antimicrobial activities and were previously 

characterized as possessing various nutrient-scavenging, immunosuppressant, 

surfactant, and cytotoxic properties  (41). BGCs of the terpene class were also identified 

(95 BGCs, 4.2% of BGCs of a known class). This diverse group of small molecules may 

also be of ecological and medicinal interest since their activities have been reported as 

both anti-inflammatory and antimicrobial (42). The class ‘other’ encompasses BGCs that 

fall outside the known categories of antiSMASH-annotation, includes rare classes found 

in only few species, and constituted 9.4% of the total BGCs identified (Fig. 1A). Taken 

together, these results show that the oral microbiome encodes a vast and highly diverse 
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array of small molecules that have largely unexplored, yet likely pivotal, roles in ecology 

and health. 

 

Sequence similarity networking reveals unexplored BGC diversity, even in well-

studied classes of BGCs. In order to assess the evolutionary relationships between 

conserved domains in the proteins encoded by BGCs, as well as to group BGCs of similar 

putative function to evaluate novelty, a sequence similarity network approach was applied 

(see File S1). Briefly, the BGCs that were identified from the bacterial genomes using 

antiSMASH were aligned to the MIBiG repository (43) of 1,409 experimentally validated 

reference BGCs using the BiG-SCAPE algorithm (https://git.wageningenur.nl/medema-

group/BiG-SCAPE). The resulting network comprised 4,242 nodes and 19,847 

connecting edges revealing both close and distant homology to characterized 

biosynthetic pathways (Fig. 2). Notably, a significant fraction of the previously unclassified 

BGCs did sub-network with BGCs predicted to be of a known class, particularly the 

oligosaccharide, RiPP and aryl polyene classes (Fig. 2). This data provides inferences as 

to the function of over 100 previously unclassified novel BGCs. 

The largest sub-network, comprised of mainly oligosaccharide-encoding BGCs, 

showed no significant homology with any experimentally validated BGCs in the MIBiG 

repository (Fig. 2). This may be due to the fact that oligosaccharide-producing BGCs are 

in at times categorized with primary metabolism, and not natural product-producing 

BGCs, as is the case in this study. The second-largest major sub-network was comprised 

of primarily unclassified BGCs. These may encompass distinct chemical scaffolds, and 

may represent a rich source of novel BGC types. The NRPS, PKS, NRPS-PKS hybrids, 
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and a few terpene BGCs, grouped together forming a subnetwork implying a set of 

common core domains involved in these biosynthetic assembly lines, as described 

previously (4, 41). The majority of NRPS, PKS, NRPS-PKS hybrids, and RiPPs (in 

particular thiopeptides and lantipeptides) showed strong associations with MIBiG 

reference BGC sequences. It should be noted that these are the most prevalent classes 

in the MIBiG repository (Table S2). Currently, only four experimentally characterized aryl 

polyene BGCs exist in the MIBiG database, therefore it was not surprising that none of 

the nodes in the aryl polyene cluster sub-networked with MIBiG reference BGCs. Given 

that aryl polyenes are thought to be the most abundant BGC class in the human 

microbiome (4), this indicates that this class of molecules is severely understudied (Fig. 

1 and Table S2). Several BGCs annotated as saccharides, other, unclassified, PKS and 

NRPS BGC types grouped with aryl polyene BGCs, which may represent novel hybrid 

classes of BGC. Other small sub-networks include biosynthesis of terpene phenazine, 

homoserine lactone, alkaloid, siderophore, and ectoine. These sub-networks did not 

associate with MIBiG reference BGCs, indicating that they also await experimental 

validation. Our implemented analysis approach, using the MIBiG/BiG-SCAPE pipeline, is 

powerful with regards to predicting the functions of novel BGCs. The annotations we 

generated here provide deeper insights of which BGCs and compound classes are most 

likely to be identified in futures studies, due to knowledge of their closest neighbor's 

biochemical properties. The BGCs remaining with completely unknown functions 

represent exciting future challenges, which could be addressed by generating large-insert 

BGC expression libraries. 
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While antiSMASH and network analysis were employed for broad classification of 

BGCs into known classes, MultiGeneBlast was also utilized at the level of the entire gene 

cluster to further annotate BGCs in-depth and identify homologs against the MIBiG 

repository (30). Using this approach, the 4,915 BGCs were classified into four major 

categories based upon the level of homology to known experimentally validated BGCs in 

the MIBiG repository. This categorization resulted in 1,146 (20%) BGCs closely 

homologous, 848 (15%) BGCs moderately homologous and 2,221 (40%) BGCs distantly 

homologous to well-characterized BGCs (Fig. S2).  1,393 (~25%) BGCs did not appear 

to have significant homology to BGCs in MIBiG, based upon the E-value (see Methods 

section for details). Such a detailed annotation of BGCs harbored by the human oral 

microbiome has not been accomplished previously.  

 

Specific BGCs are associated with periodontitis and dental caries. We next 

systematically examined the differential representation of bacterial BGCs in saliva and 

dental plaque across 294 human subjects with good oral health, dental caries, or 

periodontitis. The data from 247 subjects was obtained from eight previous studies, which 

represented all publicly available metagenomes and metatranscriptomes associated with 

caries or periodontal disease, compared to health, at the time of this study (Table S3). In 

addition, DNA from 47 saliva samples representing 23 children with caries and 24 healthy 

children was sequenced and putative BGCs were identified (see Fig S3 for workflow). 

Non-supervised exploratory ordination through PCoA revealed significant differences in 

the representation of BGCs between healthy and diseased subjects in five of the six 

metatranscriptome studies and six of the seven metagenome studies investigated (Fig. 
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S4). The 1,804 BGCs which were differentially represented in health versus disease in 

the metagenomes and metatranscriptomes are summarized in Table 1. 

The BGCs associated with disease in the metatranscriptome studies were related to 

the synthesis of a broad range of small molecule types. These particularly included BGCs 

of the oligosaccharide, aryl polyene, terpene, bacteriocin and NRPS classes (Fig. 3). 

BGCs encoding PKS, NRPS, and bacteriocins from Actinomyces, Rothia and 

Corynebacterium had increased expression in subjects with caries, while BGCs encoding 

terpenes and aryl polyenes from Neisseria spp. and Proteobacteria had increased 

expression in healthy subjects (Fig. 3). Previous studies illustrated that aryl polyenes act 

as protective agents against oxidative stress, and that terpenes function as anti-

inflammatory agents (40). Interestingly, high levels of Actinomyces were previously 

associated with severe early childhood caries (44). In the caries associated samples, 

known caries-associated species belonging to the Streptococcus, Veillonella, and 

Lactobacillus genera (45) showed notable changes in bacteriocins and oligosaccharides 

BGC expression profiles (Fig. 3). 

In periodontitis, a high number of differentially expressed BGCs (170 BGCs) were 

identified in community members belonging to the Bacteroidetes phylum. Interestingly, 

several BGCs encoded by periodontal pathogens of the red and orange complexes (e.g. 

Porphyromonas gingivalis) were differentially expressed in health compared to 

periodontal disease. Known red complex species had increased expression of BGCs 

belonging to the aryl polyene, oligosaccharide, homoserine lactone and resorcinol 

classes in diseased states. Neisseria spp. also showed interesting signatures, such as 

increased expression of BGCs belonging to the terpene, resorcinol, bacteriocin, and 
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homoserine lactone classes (Fig. 3). Homologs to specific BGC products in the MIBiG 

database which displayed differential expression in health and disease are detailed in 

Figure S5.  Analysis of the metagenomic studies yielded similar trends to those detailed 

above (Figs. S6 and Fig. S7). 

Next, a subset of differentially represented BGCs, which showed high expression 

in either healthy or diseased states, was examined to determine if they commonly occur 

across studies. The results were visualized as a binary occurrence matrix (Fig. S8). In all 

studies analyzed, only a minor fraction of the differential features (< 10 BGCs) were 

shared between any two studies. Besides high inter- and intra-individual variations in the 

microbial composition, the significant study-to-study variation can likely be attributed to 

differences in sequencing platforms (Table S3). This factor may have influenced the 

sequence composition and sequencing depth, particularly considering the metagenome 

and metatranscriptome complexity (Fig. S9 and Table S4). Based on the above 

comparisons, the authors suggest that differences between sequencing and 

computational platforms (e.g. alignment parameters and sequence read filtering) must be 

considered, and that future efforts to obtain high-quality, deep-coverage sequencing data 

will help alleviate the study-to-study noise observed here. 

 

Correlations between BGCs and oral taxa are depleted in dental caries as 

compared to health. To examine the relationship between BGCs and bacterial taxa 

during health and disease, a focused comparative analysis of the shotgun metagenomics 

data obtained in this study from healthy children and children with caries was performed. 

Interactions between BGCs and microbial taxa were examined by employing co-
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occurrence network analysis using the SparCC algorithm, which has the benefit of limiting 

the number of spurious correlations identified due to species data being compositional 

(46). While positive correlations were more evident among taxa-taxa relationships, (i.e. 

different taxa benefit from one another's presence), almost all significant correlations that 

were identified between specific BGCs and taxa were negative (Table S5 and Figs. S10 

and S11). This suggests that antagonistic relationships, modulated through BGC-

produced antimicrobial molecules, are highly significant to the ecology of the oral 

microbiome. 

All BGCs which had significant correlations to oral taxa (a total number of 36) were 

annotated as close homologs to previously characterized BGCs belonging to the PKS, 

NRPS, NRPS-PKS hybrid, oligosaccharide and aryl polyene classes (Fig. S10). In the 

oral microbiomes derived from healthy children, the interaction network was dominated 

by negative correlations between oral taxa and BGCs producing glycopeptidolipids, 

capsular polylsaccharides, as well as a homolog of flexirubin (Fig. S11A). The 

glycopeptidolipids were encoded by the opportunistic pathogens Kytococcus sedentarius 

and Mycobacterium neoaurum, and were primarily shown to vary inversely with the oral 

taxa Lactobacillus, Prevotella, Capnocytophaga and Enterococcus (Fig. S11A and Table 

S5). The flexirubin homolog BGCs were encoded by Actinomyces massiliensis and 

Prevotella oralis, and displayed antagonistic activity against 122 taxa, including 

Streptococcus mutans, historically considered the primary etiologic species of dental 

caries (Fig. S11A and Table S5). Homologs of the antibiotics bacillaene and pristinamycin 

(47, 48), harbored by genomes of the health-associated species Propionibacterium 

propionicum F0230a and Actinomyces timonensis DSM 23838 (Fig. S11A, Table S5), 
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displayed negative correlations with several pathogenic taxa:  Lactobacillus, Listeria, 

Lysinabacillus, Acinetobacter, Enterococcus, Neisseria, Staphylococcus, Kingella and S. 

mutans (49) (Table S5). These associations are reminiscent of a previous study which 

observed similar macrolide-encoding BGCs widely distributed amongst oral bacterial 

genomes (2). These macrolide structures were also reported to inhibit the growth of 

cariogenic Streptococci (50). This collective evidence indicates that the isolation and 

characterization of bacillaene- and pristinamycin-like molecules in future studies may be 

key to understanding important health-protective mechanisms in the oral cavity.  Finally, 

P. propionicum F0230a encoded a BGC with high sequence homology to a non-ribosomal 

peptide pathway encoding the genotoxin, colibactin (51). This BGC showed antagonistic 

associations with pathogenic genera: Haemophilus, Aggregatibacter, Parascardovia, 

Capnocytophaga and Streptococcus. 

Most intriguingly, the number of significant correlations between BGCs and 

microbial taxa was dramatically reduced in the samples derived from children with caries 

(Fig. S10A to C). This may indicate that in the oral cavities exhibiting disease, the well-

documented colonization resistance of the oral microbiome may be impaired. Of the few 

significant correlations between BGCs and taxa within the interaction network of the 

caries-associated microbiome, the vast majority involved BGCs encoding RiPPs with 

close homology to nosiheptide and hygromycin BGCs (Fig. S11B, Table S5). The 

nosiheptide-like BGC, encoded in the genome of C. matruchotii, was the most 

predominant, with antagonistic interactions against ~90 taxa. These included pathogens 

from the Klebsiella, Helicobacter, Filifactor, Haemophilus, Enterococcus, Fusobacterium 

genera (Fig. S11B, Table S5). The hygromycin-like BGC from P. propionicum negatively 
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correlated with several pathogens belonging to the genera Lactobacillus, Neisseria, 

Klebsiella, Anaerococcus and Pseudoramibacter. Interestingly, there were no significant 

correlations between S. mutans and BGCs in the caries-associated oral microbiomes, 

which may indicate that during disease, the community lacks the ability to limit the 

abundance of this keystone pathogen. Taken together, these results suggest that in the 

oral microbiome, exclusion of particular taxa via antagonistic interactions, mediated by 

the products of BGCs, is widespread (Table S5). Although such interactions were still 

present in the caries-associated oral microbiomes, they were much fewer in number. This 

underscores the importance of ecology, and the role of BGC-produced small molecules, 

in the balance between health and disease. 

 

Homologs of BGC-produced small molecules are present in oral metabolomes 

associated with caries and health.  To validate the production of small molecules by 

differentially abundant BGCs, untargeted liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) analysis of saliva samples was performed.  Utilizing the Global 

Natural Products Social Molecular Networking (GNPS) (52) analysis platform, a mass 

spectral molecular network consisting of 1,369 mass spectral features grouped into 69 

molecular families (two or more connected components of a graph) was obtained. 50 

matches were acquired between the query MS/MS spectra and characterized reference 

spectra from GNPS. To further enhance mass spectrometry annotations and to link 

annotations to known chemical structures encoded by BGCs, major chemical classes 

were putatively identified by integrating mass spectral molecular networking with in silico 

annotations and automated chemical classification approaches (53-55). This allowed 
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identification of approximately 38% of the nodes in the mass spectral molecular network 

at the chemical class level. The most predominant chemical classes within the network 

were carboxylic acids and derivatives, prenol lipids, fatty acyls, and flavonoids (Fig. S12). 

Substructures associated with macrolides, terpenoids, and macrolactams were also 

identified.  At the chemical class level, distinct relative abundance patterns between the 

health and disease-associated samples could be observed for carboxylic acids and 

derivatives. The PCoA analysis of the 1,369 unidentified MS features, showed clear 

separation of samples between healthy and diseased states (Fig. S13A), in agreement 

with the BGC abundance profiles (Fig. S4M). By employing a random forest importance 

model, 15 key metabolites, which were distinct between healthy and disease states (Fig. 

S13B), were identified. 12 of the 15 key metabolites were significantly more abundant in 

healthy subjects, while three were more abundant in the subjects with dental caries. Out 

of the three key metabolites that were significantly more abundant in the diseased 

subjects, two matches were obtained to lipid compounds from GNPS reference spectra 

resulting in a level-2 metabolite identification (56). These matches were N-Nervonoyl-D-

erythro-sphingophosphorylcholine and 13-Docosenamide.  These molecules are likely to 

originate from the human host and warrant further investigation. 

Using the in silico Network Annotation Propagation tool (NAP) (57), putative 

structural matches were obtained for 6 out of the 12 key metabolites that were more 

abundant in the healthy subjects, including terpenoids, phenylpropanoids as well as fatty 

alcohols. It should be noted however, that one of the limitations of in silico annotation is 

the uncertainty around the correct structure among the predicted candidate structures. 

Results should therefore be interpreted with care, and an accurate prediction of the 
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putative identity would require follow-up investigations, which is outside the scope of the 

present study. It should be also noted that both the genomics and metabolomics 

approaches employed identify putative homologs and not exact matches. Thus, using 

current techniques and databases, is it not possible to definitively determine if the small 

molecules identified by LC-MS/MS were in-fact produced by the specific BGCs predicted 

by antiSMASH.  However, the LC-MS/MS analyses largely support the results of the 

genomic analyses by detecting classes of small molecules and homologs which were 

similar to those discovered by the complementary BGC genomics analyses.   

 

Concluding remarks. This study significantly expands the number of identified BGCs 

encoded by bacteria of the human oral microbiome and designates putative products to 

many novel clusters. Representation and expression of the newly identified BGCs, as well 

as their relationship to the abundance of oral bacterial taxa was examined during health, 

dental caries, and periodontitis, revealing significant differences in microbial social 

ecology and communication among the three host outcomes. This work provides an atlas 

for further examination and experimental validation of the identified socio-chemical 

relationships and their role in the pathogenesis of dental caries and periodontal disease. 

A deeper elucidation of the social activities of the microbes residing in the oral cavity will 

significantly improve our understanding of the pathogenesis of oral (and extra-oral) 

diseases and will guide development of improved therapeutic strategies to maintain 

health. 
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MATERIALS AND METHODS 

 

The ethics statement is provided in the Supplementary Materials and Methods section 

of Supplementary Material File S1. 

 

Study inclusion/exclusion criteria and collection of saliva. Approximately 2 ml saliva 

was collected by spitting method in a 15 ml Falcon tube over a 20 min period. Whole 

saliva was immediately transferred to sterile 2 ml cryovial tubes and centrifuged at 6000 

x g for 5 minutes to remove eukaryotic cells and solid debris. Supernatants were collected, 

mixed with glycerol (20%), and snap-frozen for long term storage at -80˚C. For detailed 

protocol, see Supplementary Materials and Methods. 

 

DNA extraction and metagenomics sequencing.  For a detailed protocol, see 

Supplementary Materials and Methods. 

 

BGC identification and network analysis of known and putative oral BGCs. A list of 

1,362 described and curated human oral taxa (18th September 2017) was obtained from 

HOMD, Human Oral Microbiome Database (55). In order to identify small molecule and 

secondary metabolite-encoding BGCs in genomes of bacterial taxa representative of a 

broad oral bacterial diversity, 461 complete and high-quality draft genomic sequences, 

annotated as dynamic and static, were obtained from the National Center of 

Biotechnology Information genome database (http://www.ncbi.nlm.nih.gov/genome), as 

well as from an in-house database (Table S1). These were concatenated into a major 
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query-database and fed to antiSMASH, (Antibiotics & Secondary Metabolite Analysis 

Shell, version 4.0) (29). Multiple nucleotide FASTA sequences from BGCs were 

constructed. We excluded a list of 320 previously described non-biosynthetic genes 

commonly found in BGCs (2) (Table S6) based on text within an attribute using advanced 

filter settings in CLC Workbench software v. 9. (CLCbio, Aahus, Denmark). The resulting 

dataset contained a total of 192,283 gene sequences from 4,915 BGCs and can be 

downloaded from the MassIVE repository (https://massive.ucsd.edu/) with the accession 

ID MSV000081832. For more information, see Supplementary Materials and Methods. 

 

Comparison of BGCs with known biosynthetic pathways. A reference MIBiG 

database comprising multiple amino acid sequences for each BGC was constructed using 

MultiGeneBlast (30). To further compare BGCs derived (excluding the fatty acid synthase 

encoding BGCs) from oral bacterial genomes with those encoding the biosynthetic 

pathways for known compounds, we performed multi-gene homology searches using 

complete gene cluster sequences against the MIBiG database by using the stand-alone 

version of MultiGeneBlast (http://multigeneblast.sourceforge.net/) algorithm with default 

settings. Subsequently, for each queried BGC, we extracted information from the top hit 

(with the highest cumulative BLAST bit score) from an output of multiple BLAST hits using 

an in-house python script. For additional information, see Supplementary Materials and 

Methods. 

 

16S rRNA gene (16S) phylogenetic analysis. For a detailed protocol, see 

Supplementary Materials and Methods. 
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Metagenomic and metatranscriptomic data collection.  Shotgun metatranscriptomic 

and metagenomic sequencing data published previously by Duran-Pinedo et al. (22), 

Belda-Ferre et al. (23), Belstrøm et al. (24), Jorth et al. (58), Do et al. (25), Peterson et al. 

(26), Yost et al. (27), Wang et al. (28), and Shi et al. (59), as well as our own study of 

metagenomes from saliva obtained from children with good dental health, or children with 

dental caries was analyzed (sequence reads are accessible under BioProject 

PRJNA1234. Table S3). For detailed protocol, see Supplementary Materials and 

Methods. 

 

Differential abundance and expression analyses of BGCs. We employed a systematic 

workflow for analyzing abundance and expression profiles of the BGCs (see Fig. S3). 

Using SRA toolkit utilities, reads were extracted from metatranscriptome and 

metagenome shotgun sequenced libraries available via NCBI. For a detailed protocol, 

see Supplementary Materials and Methods. 

 

Principal Coordinate analysis. The differences between samples from healthy versus 

diseased individuals was investigated by applying Principal Coordinates Analysis (PCoA) 

on Manhattan distances generated on the DESeq2 normalized count file using the 

EMPeror (60) tool. For a detailed protocol, see Supplementary Materials and Methods. 

 

Correlation network analysis. The correlation network was constructed using the 

SparCC algorithm (46) python package (available at 
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https://bitbucket.org/yonatanf/sparcc) to represent both co-abundance and co-exclusion 

networks between species and corresponding BGCs. For a detailed protocol, see 

Supplementary Materials and Methods.  

 

Experimental small molecule metabolites detection. Approximately 150µl of saliva 

was lyophilized and ethyl acetate was added to extract non-polar molecules. Samples 

were then vortexed, centrifuged to remove the cell debris and submitted to untargetd LC-

MS/MS analysis. For a detailed protocol, see Supplementary Materials and Methods.  

 

Mass spectral molecular networking. LC-MS/MS spectra were preprocessed for 

feature extraction using MZmine2 (61) and submitted to mass spectral molecular 

networking through GNPS (43). For a detailed protocol, see Supporting Information. 

 

Putative chemical structure annotation. To putatively annotate chemical structures in 

our mass spectral molecular networks, we performed in silico structure annotation 

through Network Annotation Propagation (NAP) (57) both for [M+H]+ and [M+Na]+ 

adducts. For a detailed protocol, see Supporting Information. 
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Table legends 

 

Table 1 Number of differentially represented or expressed biosynthetic pathways in 

saliva, supra- and sub-gingival plaque samples, from shotgun metatranscriptomics and 

metagenomics libraries representing 231 subjects (oral health: n = 110, dental caries: n 

= 77, periodontitis: n = 44). 741 BGCs were differentially abundant in caries (515 enriched, 

and 226 less abundant) and 1,063 BGCs were periodontitis associated (670 enriched, 

and 393 less abundant). 355 BGCs were differentially expressed in caries (208 up-

regulated, and 147 down-regulated), while 421 BGCs were either up- or down-regulated 

in subjects with periodontitis (218 up-regulated, and 203 down-regulated). 

 
  Metatranscriptome (up/down) Metagenome (up/down) 
BGC type Caries  Periodontitis Caries Periodontitis 
Aryl polyene 4/11 29/4 26/5 25/3 
Bacteriocin 14/10 1/1 31/1 5/24 
Butyrolactone 2/0 1/1 3/0 1/1 
Homoserine lactone 0/4 3/4 10/0 1/1 
Lantipeptide 7/0 4/0 11/2 1/6 
Lassopeptide 0 0 0 0/3 
NRPS 7/0 2/8 11/7 10/14 
NRPS-PKS hybrid 1/0 0/1 5/0 0/1 
Oligosaccharide 66/68 100/40 116/118 287/132 
Other 7/0 2/11 36/3 16/15 
Phenazine 0 0/1 2/0 0/1 
PKS 3/0 1/0 8/0 1/4 
Proteusin 0 0 1/0 1/0 
Resorcinol 1/4 3/8 4/4 19/0 
Sactipeptide 0 0 0 1/0 
Siderophore 1/0 1/2 0 1/0 
Terpene 1/10 9/1 42/0 1/4 
Thiopeptide 1/0 0 0 0/7 
Unclassified 93/50 62/121 209/86 300/177 
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Figure legends 
 

FIG 1: The oral microbiome contains a massive diversity of BGCs encoded by a 

multitude of taxa. (A) Bar graph illustrating the most common BGC subtypes identified 

in this study. Bars are colored according to higher level BGC class. (B) Bar graph 

illustrating the distribution of eight major classes of BGCs by phyla. (C) Phylogenetic tree 

based on 16S rRNA gene sequences showing the distribution of BGCs encoded by oral 

bacteria. Nodes with bootstrap values higher than 80% are displayed in the tree. Numbers 

of BGC types identified within each genome are shown in the bar graph and colored by 

BGC type. Leaf labels are colored by phyla. antiSMASH often identifies BGCs that 

encompass multiple gene clusters of different types fused into a single large gene cluster. 

63 (~3%) of such unresolved BGCs and were encountered, and were categorized as the 

‘complex’ BGC type (For convenience, we combined these BGCs with BGC types ‘Other’ 

for subsequent analysis).  Distribution of BGCs is presented in more detail in Fig. S1.  

 

FIG 2: Similarity networking identified putative product classes for novel BGCs.  

Similarity network between the BGCs identified in the oral cavity and the experimentally 

characterized reference BGCs obtained from the MIBiG repository. Sub-networks 

representing major BGC classes, as determined by antiSMASH and BiG-SCAPE, are 

highlighted with different background colors to visualize BGCs as constellations within the 

biosynthetic landscape. Nodes (small circles) represent amino acid sequences of BGC 

domains and are colored by BGC class. Unfilled nodes represent reference BGCs from 

the MIBiG repository. Edges drawn between the nodes correspond to pairwise distances, 

computed by BiG-SCAPE as the weighted combination of the Jaccard, adjacency and 
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domain sequence similarity indices. For increased simplicity, only sub-clusters of 

unclassified and oligosaccharide BGCs with a minimum number of eight nodes are 

organized into given highlighted constellation.  

 

FIG 3: BGCs are differentially expressed in health and disease. Bar graphs illustrating 

phylogenetic distribution of biosynthetic pathways in health- and disease-associated oral 

microorganisms. Species with significant changes in BGC expression based on the 

analyzed metatranscriptomic data sets are shown in the phylogenetic tree on the left. Bar 

graphs at the leaf tips display number of BGCs either over or under expressed and 

colored according to the BGC type. It should be noted that the x-axis scales are different 

in left and right panels. Significant differences in the expression of BGCs were determined 

based on negative binomial distribution model using DESeq2 with FDR correction (p-

value < 0.05). 
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