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ABSTRACT

Small molecules are the primary communication media of the microbial world. Recent
bioinformatics studies, exploring the biosynthetic gene clusters (BGCs) which produce
many small molecules, have highlighted the incredible biochemical potential of the
signaling molecules encoded by the human microbiome. Thus far, most research efforts
have focused on understanding the social language of the gut microbiome, leaving crucial
signaling molecules produced by oral bacteria, and their connection to health versus
disease, in need of investigation. In this study, a total of 4,915 BGCs were identified
across 461 genomes representing a broad taxonomic diversity of oral bacteria. Sequence
similarity networking provided a putative product class for over 100 unclassified novel
BGCs. The newly identified BGCs were cross-referenced against 254 metagenomes and
metatranscriptomes derived from individuals with either good oral health, dental caries,
or periodontitis. This analysis revealed 2,473 BGCs, which were differentially represented
across the oral microbiomes associated with health versus disease. Co-abundance
network analysis identified numerous inverse correlations between BGCs and specific
oral taxa. These correlations were present in health, but greatly reduced in dental caries,
which may suggest a defect in colonization resistance. Finally, corroborating mass
spectrometry identified several compounds with homology to products of the predicted
BGC classes. Together, these findings greatly expand the number of known biosynthetic
pathways present in the oral microbiome and provide an atlas for experimental
characterization of these abundant, yet poorly understood, molecules and socio-chemical
relationships, which impact the development of caries and periodontitis, two of the world’s

most common chronic diseases.
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IMPORTANCE

The healthy oral microbiome is symbiotic with the human host, importantly providing
colonization resistance against potential pathogens. Dental caries and periodontitis are
two of the world’s most common and costly chronic infectious diseases, and are caused
by a localized dysbiosis of the oral microbiome. Bacterially produced small molecules,
often encoded by BGCs, are the primary communication media of bacterial communities,
and play a crucial, yet largely unknown, role in the transition from health to dysbiosis. This
study provides a comprehensive mapping of the BGC repertoire of the human oral
microbiome and identifies major differences in health compared to disease. Furthermore,
BGC representation and expression is linked to the abundance of particular oral bacterial
taxa in health versus dental caries and periodontitis. Overall, this study provides a
significant insight into the chemical communication network of the healthy oral

microbiome, and how it devolves in the case of two prominent diseases.
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INTRODUCTION

The human body is inhabited by rich and diverse bacterial communities , which are
intimately linked to the health of the human host (1). Small molecules, which are often
encoded by biosynthetic gene clusters (BGCs), are the primary means of communication
in this microbial world. Recent studies suggest that the human microbiota has the
potential to synthesize a myriad of exquisite small molecules, and that these small
molecules serve as mediators in a variety of microbe-microbe and host-microbe
interactions (2-4). These include: antibacterial activity (5), bacterial signaling (6), immune
modulation (7), biofilm formation (8, 9), host colonization (10), nutrient-scavenging (11)
and stress protection (12). Disruption of the finely-tuned equilibrium of the bacterial
ecosystems in the human microbiome, referred to as dysbiosis, is associated with a
plethora of diseases. While the mechanistic underpinnings of a shift to a dysbiotic
community remain poorly understood, there is little doubt that signaling via the small
molecules produced by microbial BGCs plays a critical role in the transition to dysbiosis,
and associated pathogenesis (13, 14).

The human oral cavity contains an assortment of ecological niches, and as such,
harbors one of the most diverse microbial populations in the human body (1, 15). Dental
caries and periodontitis are two of the most common and costly chronic conditions
afflicting humans, and are the result of localized dysbiosis in the oral cavity (16-20). Unlike
the rest of the human digestive tract, the oral cavity is consistently exposed to the exterior
environment. Therefore, an indispensable portion of the first line of defense against
invading pathogens is the colonization resistance provided by a healthy oral microbiome.

Indeed, dysbiosis of the oral microbiome is not only directly linked to oral diseases, but is
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also implicated in system-wide health (21), stressing the urgent need to unravel the
underlying factors that shape and maintain a healthy human oral microbiome.
Elucidating the transmissions relayed by oral bacterial small molecules could lead to
a deeper understanding of key ecological factors that set the stage for oral community
succession, in health and pathogenesis. A large and growing body of literature suggests
that the microbial composition and metabolic potential of the saliva and dental plaque
varies significantly in healthy versus disease states (22-28). Therefore, we hypothesize
that the abundance and expression of BGCs, which produce small molecules, may drive
crucial bacterial interactions which contribute to health or disease. To explore this further,
the biosynthetic capacity of 461 well-annotated oral bacterial genomes was investigated,
and an enormous diversity of BGCs was revealed. In addition, sequence reads from 294
publicly available metagenomes and metatranscriptomes, which were associated with
health, dental caries, or periodontitis, were mapped to these novel oral BGCs. This
analysis identified 2,473 biosynthetic pathways which were differentially represented in
health versus disease. In addition, the BGC content in salivary metagenomes obtained
from 24 healthy children and 23 children with dental caries was analyzed. A Bayesian
network approach was employed to identify both positive and inverse correlations
between BGCs and bacterial taxa, which revealed differentially abundant signaling
networks and species in health compared to dental caries. Overall, this study provides a
significant insight into the chemical communication network of the healthy oral

microbiome, and how it devolves in the case of dental caries and periodontitis.
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RESULTS AND DISCUSSION

The human oral microbiome encodes thousands of diverse BGCs from an array of
species. To explore the metabolic capacity of the human oral microbiome in-depth, a
comprehensive pipeline for mining bacterial genomes was established, utilizing
antiSMASH infrastructure v4 (accessible at https://antismash.secondarymetabolites.org/)
(29), including MultiGeneBlast (30). An oral bacterial genome sequence database was
assembled to include a total of 461 well-curated and annotated bacterial genomes,
representing 113 unique bacterial genera and 298 taxonomically unique species, as well
as 72 taxa unclassified at the species level (Table S1). Genomes were selected based
on their completeness and level of annotation. A single genome sequence for each
bacterial species was included to circumvent the overrepresentation of BGCs from
bacteria with a high number of genome representatives. Indeed, in a previous
bioinformatics study of 169 S. mutans genomes, ~1,000 putative BGCs were identified,
revealing an incredible potential to produce small molecules within one bacterial species
(31). Therefore, it should be noted that the estimated BGC diversity reported here is likely
underestimated. Clearly, strain-level diversity is important to explore in future studies.
However, this will require extensive genome sequencing, since to-date most oral bacterial
species lack multiple reference genomes. By applying the genome-mining pipeline
described above, a total of 4,915 BGCs of known and unknown types were identified
(Table S1). BGCs annotated as fatty acid synthases, which are often involved in primary
metabolism, were excluded. Approximately 50% of the identified BGCs were of an
unknown class, congruent with the observations of other efforts to identify BGCs (Table

S1)(2). The remaining 50% of BGCs (2,250) shared sequence similarities with an
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extensive range of previously characterized BGC classes, which is likely reflective of the
high taxonomic diversity observed within the oral cavity as compared to many other body
sites (1) (Fig. 1A).

Of the BGCs of a known class, a substantial fraction (1,398 BGCs, 62%) were
annotated as oligosaccharides, making it the most abundant class of BGCs in the oral
cavity. Oligosaccharide pathways are widely distributed across bacterial phyla and are
predominant in Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria and
Fusobacteria, with the highest number being identified in Firmicutes (Fig. 1B and C). Their
ecological roles are largely underexplored, but studies show important functions such as
capsule formation in virulence development (32) and attachment to surfaces, including
neighboring bacterial species and host cells (33). Furthermore, diffusible
oligosaccharides are known to display antibacterial activities (34), for example a previous
study showed that polysaccharide A from the human gut bacterium Bacteroides fragilis
can modulate the gut mucosal immune response (35, 36).

Another highly represented BGC class was ribosomally synthesized and post-
translationally modified peptides (RiPPs), for which 209 BGCs (9.3% of BGCs of a known
class) were identified. RiPPs include molecules such as bacteriocins, lantipeptides,
sactipeptides, cyanobactins, and proteusins (denoted as fluorescent green in Fig 1). Of
these RIPP types, bacteriocin-encoding BGCs were the most abundant as they
contributed ~75% of the total RiPP diversity. Interestingly, although bacteriocin
producing-BGCs were abundant in the oral microbiome overall, they were depleted in all
Bacteroidetes genomes (Fig. 1C). The role of RiPPs, such as the bacteriocins, demands

further exploration, as they exhibit antagonistic activities against other microbes sharing
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the same ecological niche, and influence competition for persistence between
commensals and pathogens (37, 38). Furthermore, multiple studies genetic
transformation in Streptococcus show that competence is tightly linked to bacteriocin
production (39), which suggests that these molecules also play important roles in the
horizontal transfer of genes and ultimately in niche differentiation and population structure
changes.

BGCs encoding aryl polyene-like molecules in several Bacteroidetes and
Proteobacteria genomes were identified (131 BGCs or 5.8% of BGCs of a known class).
Aryl polyenes are predicted to function as protective agents against oxidative stress (40).
However, only a few candidates have been experimentally characterized, leaving this
group of small molecules highly underexplored. A diversity of non-ribosomal peptide
synthetases (NRPSs), polyketide synthase (PKS), and NRPS-PKS hybrid BGCs (ranging
between 0.9% and 4.4% of BGCs of a known class) were identified, in line with a prior
study, which classified BGCs in the human microbiome in multiple body habitats (2).
These compound classes are known for their antimicrobial activities and were previously
characterized as possessing various nutrient-scavenging, immunosuppressant,
surfactant, and cytotoxic properties (41). BGCs of the terpene class were also identified
(95 BGCs, 4.2% of BGCs of a known class). This diverse group of small molecules may
also be of ecological and medicinal interest since their activities have been reported as
both anti-inflammatory and antimicrobial (42). The class ‘other’ encompasses BGCs that
fall outside the known categories of antiSMASH-annotation, includes rare classes found
in only few species, and constituted 9.4% of the total BGCs identified (Fig. 1A). Taken

together, these results show that the oral microbiome encodes a vast and highly diverse
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array of small molecules that have largely unexplored, yet likely pivotal, roles in ecology

and health.

Sequence similarity networking reveals unexplored BGC diversity, even in well-
studied classes of BGCs. In order to assess the evolutionary relationships between
conserved domains in the proteins encoded by BGCs, as well as to group BGCs of similar
putative function to evaluate novelty, a sequence similarity network approach was applied
(see File S1). Briefly, the BGCs that were identified from the bacterial genomes using
antiSMASH were aligned to the MIBIG repository (43) of 1,409 experimentally validated
reference BGCs using the BiG-SCAPE algorithm (https://git.wageningenur.nl/medema-
group/BiG-SCAPE). The resulting network comprised 4,242 nodes and 19,847
connecting edges revealing both close and distant homology to characterized
biosynthetic pathways (Fig. 2). Notably, a significant fraction of the previously unclassified
BGCs did sub-network with BGCs predicted to be of a known class, particularly the
oligosaccharide, RiPP and aryl polyene classes (Fig. 2). This data provides inferences as
to the function of over 100 previously unclassified novel BGCs.

The largest sub-network, comprised of mainly oligosaccharide-encoding BGCs,
showed no significant homology with any experimentally validated BGCs in the MIBIiG
repository (Fig. 2). This may be due to the fact that oligosaccharide-producing BGCs are
in at times categorized with primary metabolism, and not natural product-producing
BGCs, as is the case in this study. The second-largest major sub-network was comprised
of primarily unclassified BGCs. These may encompass distinct chemical scaffolds, and

may represent a rich source of novel BGC types. The NRPS, PKS, NRPS-PKS hybrids,
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and a few terpene BGCs, grouped together forming a subnetwork implying a set of
common core domains involved in these biosynthetic assembly lines, as described
previously (4, 41). The majority of NRPS, PKS, NRPS-PKS hybrids, and RiPPs (in
particular thiopeptides and lantipeptides) showed strong associations with MIBIG
reference BGC sequences. It should be noted that these are the most prevalent classes
in the MIBIG repository (Table S2). Currently, only four experimentally characterized aryl
polyene BGCs exist in the MIBiIG database, therefore it was not surprising that none of
the nodes in the aryl polyene cluster sub-networked with MIBiG reference BGCs. Given
that aryl polyenes are thought to be the most abundant BGC class in the human
microbiome (4), this indicates that this class of molecules is severely understudied (Fig.
1 and Table S2). Several BGCs annotated as saccharides, other, unclassified, PKS and
NRPS BGC types grouped with aryl polyene BGCs, which may represent novel hybrid
classes of BGC. Other small sub-networks include biosynthesis of terpene phenazine,
homoserine lactone, alkaloid, siderophore, and ectoine. These sub-networks did not
associate with MIBIiG reference BGCs, indicating that they also await experimental
validation. Our implemented analysis approach, using the MIBiG/BiG-SCAPE pipeline, is
powerful with regards to predicting the functions of novel BGCs. The annotations we
generated here provide deeper insights of which BGCs and compound classes are most
likely to be identified in futures studies, due to knowledge of their closest neighbor's
biochemical properties. The BGCs remaining with completely unknown functions
represent exciting future challenges, which could be addressed by generating large-insert

BGC expression libraries.
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While antiSMASH and network analysis were employed for broad classification of
BGCs into known classes, MultiGeneBlast was also utilized at the level of the entire gene
cluster to further annotate BGCs in-depth and identify homologs against the MIBIG
repository (30). Using this approach, the 4,915 BGCs were classified into four major
categories based upon the level of homology to known experimentally validated BGCs in
the MIBIG repository. This categorization resulted in 1,146 (20%) BGCs closely
homologous, 848 (15%) BGCs moderately homologous and 2,221 (40%) BGCs distantly
homologous to well-characterized BGCs (Fig. S2). 1,393 (~25%) BGCs did not appear
to have significant homology to BGCs in MIBiG, based upon the E-value (see Methods
section for details). Such a detailed annotation of BGCs harbored by the human oral

microbiome has not been accomplished previously.

Specific BGCs are associated with periodontitis and dental caries. We next
systematically examined the differential representation of bacterial BGCs in saliva and
dental plaque across 294 human subjects with good oral health, dental caries, or
periodontitis. The data from 247 subjects was obtained from eight previous studies, which
represented all publicly available metagenomes and metatranscriptomes associated with
caries or periodontal disease, compared to health, at the time of this study (Table S3). In
addition, DNA from 47 saliva samples representing 23 children with caries and 24 healthy
children was sequenced and putative BGCs were identified (see Fig S3 for workflow).
Non-supervised exploratory ordination through PCoA revealed significant differences in
the representation of BGCs between healthy and diseased subjects in five of the six

metatranscriptome studies and six of the seven metagenome studies investigated (Fig.
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S4). The 1,804 BGCs which were differentially represented in health versus disease in
the metagenomes and metatranscriptomes are summarized in Table 1.

The BGCs associated with disease in the metatranscriptome studies were related to
the synthesis of a broad range of small molecule types. These particularly included BGCs
of the oligosaccharide, aryl polyene, terpene, bacteriocin and NRPS classes (Fig. 3).
BGCs encoding PKS, NRPS, and bacteriocins from Actinomyces, Rothia and
Corynebacterium had increased expression in subjects with caries, while BGCs encoding
terpenes and aryl polyenes from Neisseria spp. and Proteobacteria had increased
expression in healthy subjects (Fig. 3). Previous studies illustrated that aryl polyenes act
as protective agents against oxidative stress, and that terpenes function as anti-
inflammatory agents (40). Interestingly, high levels of Actinomyces were previously
associated with severe early childhood caries (44). In the caries associated samples,
known caries-associated species belonging to the Streptococcus, Veillonella, and
Lactobacillus genera (45) showed notable changes in bacteriocins and oligosaccharides
BGC expression profiles (Fig. 3).

In periodontitis, a high number of differentially expressed BGCs (170 BGCs) were
identified in community members belonging to the Bacteroidetes phylum. Interestingly,
several BGCs encoded by periodontal pathogens of the red and orange complexes (e.g.
Porphyromonas gingivalis) were differentially expressed in health compared to
periodontal disease. Known red complex species had increased expression of BGCs
belonging to the aryl polyene, oligosaccharide, homoserine lactone and resorcinol
classes in diseased states. Neisseria spp. also showed interesting signatures, such as

increased expression of BGCs belonging to the terpene, resorcinol, bacteriocin, and
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homoserine lactone classes (Fig. 3). Homologs to specific BGC products in the MIBIiG
database which displayed differential expression in health and disease are detailed in
Figure S5. Analysis of the metagenomic studies yielded similar trends to those detailed
above (Figs. S6 and Fig. S7).

Next, a subset of differentially represented BGCs, which showed high expression
in either healthy or diseased states, was examined to determine if they commonly occur
across studies. The results were visualized as a binary occurrence matrix (Fig. S8). In all
studies analyzed, only a minor fraction of the differential features (< 10 BGCs) were
shared between any two studies. Besides high inter- and intra-individual variations in the
microbial composition, the significant study-to-study variation can likely be attributed to
differences in sequencing platforms (Table S3). This factor may have influenced the
sequence composition and sequencing depth, particularly considering the metagenome
and metatranscriptome complexity (Fig. S9 and Table S4). Based on the above
comparisons, the authors suggest that differences between sequencing and
computational platforms (e.g. alignment parameters and sequence read filtering) must be
considered, and that future efforts to obtain high-quality, deep-coverage sequencing data

will help alleviate the study-to-study noise observed here.

Correlations between BGCs and oral taxa are depleted in dental caries as
compared to health. To examine the relationship between BGCs and bacterial taxa
during health and disease, a focused comparative analysis of the shotgun metagenomics
data obtained in this study from healthy children and children with caries was performed.

Interactions between BGCs and microbial taxa were examined by employing co-
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occurrence network analysis using the SparCC algorithm, which has the benefit of limiting
the number of spurious correlations identified due to species data being compositional
(46). While positive correlations were more evident among taxa-taxa relationships, (i.e.
different taxa benefit from one another's presence), almost all significant correlations that
were identified between specific BGCs and taxa were negative (Table S5 and Figs. S10
and S11). This suggests that antagonistic relationships, modulated through BGC-
produced antimicrobial molecules, are highly significant to the ecology of the oral
microbiome.

All BGCs which had significant correlations to oral taxa (a total number of 36) were
annotated as close homologs to previously characterized BGCs belonging to the PKS,
NRPS, NRPS-PKS hybrid, oligosaccharide and aryl polyene classes (Fig. S10). In the
oral microbiomes derived from healthy children, the interaction network was dominated
by negative correlations between oral taxa and BGCs producing glycopeptidolipids,
capsular polylsaccharides, as well as a homolog of flexirubin (Fig. S11A). The
glycopeptidolipids were encoded by the opportunistic pathogens Kytococcus sedentarius
and Mycobacterium neoaurum, and were primarily shown to vary inversely with the oral
taxa Lactobacillus, Prevotella, Capnocytophaga and Enterococcus (Fig. S11A and Table
S5). The flexirubin homolog BGCs were encoded by Actinomyces massiliensis and
Prevotella oralis, and displayed antagonistic activity against 122 taxa, including
Streptococcus mutans, historically considered the primary etiologic species of dental
caries (Fig. S11A and Table S5). Homologs of the antibiotics bacillaene and pristinamycin
(47, 48), harbored by genomes of the health-associated species Propionibacterium

propionicum F0230a and Actinomyces timonensis DSM 23838 (Fig. S11A, Table S5),
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displayed negative correlations with several pathogenic taxa: Lactobacillus, Listeria,
Lysinabacillus, Acinetobacter, Enterococcus, Neisseria, Staphylococcus, Kingella and S.
mutans (49) (Table S5). These associations are reminiscent of a previous study which
observed similar macrolide-encoding BGCs widely distributed amongst oral bacterial
genomes (2). These macrolide structures were also reported to inhibit the growth of
cariogenic Streptococci (50). This collective evidence indicates that the isolation and
characterization of bacillaene- and pristinamycin-like molecules in future studies may be
key to understanding important health-protective mechanisms in the oral cavity. Finally,
P. propionicum F0230a encoded a BGC with high sequence homology to a non-ribosomal
peptide pathway encoding the genotoxin, colibactin (51). This BGC showed antagonistic
associations with pathogenic genera: Haemophilus, Aggregatibacter, Parascardovia,
Capnocytophaga and Streptococcus.

Most intriguingly, the number of significant correlations between BGCs and
microbial taxa was dramatically reduced in the samples derived from children with caries
(Fig. S10A to C). This may indicate that in the oral cavities exhibiting disease, the well-
documented colonization resistance of the oral microbiome may be impaired. Of the few
significant correlations between BGCs and taxa within the interaction network of the
caries-associated microbiome, the vast majority involved BGCs encoding RiPPs with
close homology to nosiheptide and hygromycin BGCs (Fig. S11B, Table S5). The
nosiheptide-like BGC, encoded in the genome of C. matruchotii, was the most
predominant, with antagonistic interactions against ~90 taxa. These included pathogens
from the Klebsiella, Helicobacter, Filifactor, Haemophilus, Enterococcus, Fusobacterium

genera (Fig. S11B, Table S5). The hygromycin-like BGC from P. propionicum negatively
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correlated with several pathogens belonging to the genera Lactobacillus, Neisseria,
Klebsiella, Anaerococcus and Pseudoramibacter. Interestingly, there were no significant
correlations between S. mutans and BGCs in the caries-associated oral microbiomes,
which may indicate that during disease, the community lacks the ability to limit the
abundance of this keystone pathogen. Taken together, these results suggest that in the
oral microbiome, exclusion of particular taxa via antagonistic interactions, mediated by
the products of BGCs, is widespread (Table S5). Although such interactions were still
present in the caries-associated oral microbiomes, they were much fewer in number. This
underscores the importance of ecology, and the role of BGC-produced small molecules,

in the balance between health and disease.

Homologs of BGC-produced small molecules are present in oral metabolomes
associated with caries and health. To validate the production of small molecules by
differentially abundant BGCs, untargeted liquid chromatography-tandem mass
spectrometry (LC-MS/MS) analysis of saliva samples was performed. Utilizing the Global
Natural Products Social Molecular Networking (GNPS) (52) analysis platform, a mass
spectral molecular network consisting of 1,369 mass spectral features grouped into 69
molecular families (two or more connected components of a graph) was obtained. 50
matches were acquired between the query MS/MS spectra and characterized reference
spectra from GNPS. To further enhance mass spectrometry annotations and to link
annotations to known chemical structures encoded by BGCs, major chemical classes
were putatively identified by integrating mass spectral molecular networking with in silico

annotations and automated chemical classification approaches (53-55). This allowed
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identification of approximately 38% of the nodes in the mass spectral molecular network
at the chemical class level. The most predominant chemical classes within the network
were carboxylic acids and derivatives, prenol lipids, fatty acyls, and flavonoids (Fig. S12).
Substructures associated with macrolides, terpenoids, and macrolactams were also
identified. At the chemical class level, distinct relative abundance patterns between the
health and disease-associated samples could be observed for carboxylic acids and
derivatives. The PCoA analysis of the 1,369 unidentified MS features, showed clear
separation of samples between healthy and diseased states (Fig. S13A), in agreement
with the BGC abundance profiles (Fig. S4M). By employing a random forest importance
model, 15 key metabolites, which were distinct between healthy and disease states (Fig.
S13B), were identified. 12 of the 15 key metabolites were significantly more abundant in
healthy subjects, while three were more abundant in the subjects with dental caries. Out
of the three key metabolites that were significantly more abundant in the diseased
subjects, two matches were obtained to lipid compounds from GNPS reference spectra
resulting in a level-2 metabolite identification (56). These matches were N-Nervonoyl-D-
erythro-sphingophosphorylcholine and 13-Docosenamide. These molecules are likely to
originate from the human host and warrant further investigation.

Using the in silico Network Annotation Propagation tool (NAP) (57), putative
structural matches were obtained for 6 out of the 12 key metabolites that were more
abundant in the healthy subjects, including terpenoids, phenylpropanoids as well as fatty
alcohols. It should be noted however, that one of the limitations of in silico annotation is
the uncertainty around the correct structure among the predicted candidate structures.

Results should therefore be interpreted with care, and an accurate prediction of the
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putative identity would require follow-up investigations, which is outside the scope of the
present study. It should be also noted that both the genomics and metabolomics
approaches employed identify putative homologs and not exact matches. Thus, using
current techniques and databases, is it not possible to definitively determine if the small
molecules identified by LC-MS/MS were in-fact produced by the specific BGCs predicted
by antiSMASH. However, the LC-MS/MS analyses largely support the results of the
genomic analyses by detecting classes of small molecules and homologs which were

similar to those discovered by the complementary BGC genomics analyses.

Concluding remarks. This study significantly expands the number of identified BGCs
encoded by bacteria of the human oral microbiome and designates putative products to
many novel clusters. Representation and expression of the newly identified BGCs, as well
as their relationship to the abundance of oral bacterial taxa was examined during health,
dental caries, and periodontitis, revealing significant differences in microbial social
ecology and communication among the three host outcomes. This work provides an atlas
for further examination and experimental validation of the identified socio-chemical
relationships and their role in the pathogenesis of dental caries and periodontal disease.
A deeper elucidation of the social activities of the microbes residing in the oral cavity will
significantly improve our understanding of the pathogenesis of oral (and extra-oral)
diseases and will guide development of improved therapeutic strategies to maintain

health.
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MATERIALS AND METHODS

The ethics statement is provided in the Supplementary Materials and Methods section

of Supplementary Material File S1.

Study inclusion/exclusion criteria and collection of saliva. Approximately 2 ml saliva
was collected by spitting method in a 15 ml Falcon tube over a 20 min period. Whole
saliva was immediately transferred to sterile 2 ml cryovial tubes and centrifuged at 6000
x g for 5 minutes to remove eukaryotic cells and solid debris. Supernatants were collected,
mixed with glycerol (20%), and snap-frozen for long term storage at -80°C. For detailed

protocol, see Supplementary Materials and Methods.

DNA extraction and metagenomics sequencing. For a detailed protocol, see

Supplementary Materials and Methods.

BGC identification and network analysis of known and putative oral BGCs. A list of
1,362 described and curated human oral taxa (18" September 2017) was obtained from
HOMD, Human Oral Microbiome Database (55). In order to identify small molecule and
secondary metabolite-encoding BGCs in genomes of bacterial taxa representative of a
broad oral bacterial diversity, 461 complete and high-quality draft genomic sequences,
annotated as dynamic and static, were obtained from the National Center of
Biotechnology Information genome database (http://www.ncbi.nlm.nih.gov/genome), as

well as from an in-house database (Table S1). These were concatenated into a major
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query-database and fed to antiSMASH, (Antibiotics & Secondary Metabolite Analysis
Shell, version 4.0) (29). Multiple nucleotide FASTA sequences from BGCs were
constructed. We excluded a list of 320 previously described non-biosynthetic genes
commonly found in BGCs (2) (Table S6) based on text within an attribute using advanced
filter settings in CLC Workbench software v. 9. (CLCbio, Aahus, Denmark). The resulting
dataset contained a total of 192,283 gene sequences from 4,915 BGCs and can be
downloaded from the MassIVE repository (https://massive.ucsd.edu/) with the accession

ID MSV000081832. For more information, see Supplementary Materials and Methods.

Comparison of BGCs with known biosynthetic pathways. A reference MIBIG
database comprising multiple amino acid sequences for each BGC was constructed using
MultiGeneBlast (30). To further compare BGCs derived (excluding the fatty acid synthase
encoding BGCs) from oral bacterial genomes with those encoding the biosynthetic
pathways for known compounds, we performed multi-gene homology searches using
complete gene cluster sequences against the MIBIG database by using the stand-alone
version of MultiGeneBlast (http://multigeneblast.sourceforge.net/) algorithm with default
settings. Subsequently, for each queried BGC, we extracted information from the top hit
(with the highest cumulative BLAST bit score) from an output of multiple BLAST hits using
an in-house python script. For additional information, see Supplementary Materials and

Methods.

16S rRNA gene (16S) phylogenetic analysis. For a detailed protocol, see

Supplementary Materials and Methods.
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Metagenomic and metatranscriptomic data collection. Shotgun metatranscriptomic
and metagenomic sequencing data published previously by Duran-Pinedo et al. (22),
Belda-Ferre et al. (23), Belstrgm et al. (24), Jorth et al. (58), Do et al. (25), Peterson et al.
(26), Yost et al. (27), Wang et al. (28), and Shi et al. (59), as well as our own study of
metagenomes from saliva obtained from children with good dental health, or children with
dental caries was analyzed (sequence reads are accessible under BioProject
PRJUNA1234. Table S3). For detailed protocol, see Supplementary Materials and

Methods.

Differential abundance and expression analyses of BGCs. \We employed a systematic
workflow for analyzing abundance and expression profiles of the BGCs (see Fig. S3).
Using SRA toolkit utilities, reads were extracted from metatranscriptome and
metagenome shotgun sequenced libraries available via NCBI. For a detailed protocol,

see Supplementary Materials and Methods.

Principal Coordinate analysis. The differences between samples from healthy versus
diseased individuals was investigated by applying Principal Coordinates Analysis (PCoA)
on Manhattan distances generated on the DESeq2 normalized count file using the

EMPeror (60) tool. For a detailed protocol, see Supplementary Materials and Methods.

Correlation network analysis. The correlation network was constructed using the

SparCC algorithm (46) python package (available at
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https://bitbucket.org/yonatanf/sparcc) to represent both co-abundance and co-exclusion
networks between species and corresponding BGCs. For a detailed protocol, see

Supplementary Materials and Methods.

Experimental small molecule metabolites detection. Approximately 150ul of saliva
was lyophilized and ethyl acetate was added to extract non-polar molecules. Samples
were then vortexed, centrifuged to remove the cell debris and submitted to untargetd LC-

MS/MS analysis. For a detailed protocol, see Supplementary Materials and Methods.

Mass spectral molecular networking. LC-MS/MS spectra were preprocessed for
feature extraction using MZmine2 (61) and submitted to mass spectral molecular

networking through GNPS (43). For a detailed protocol, see Supporting Information.

Putative chemical structure annotation. To putatively annotate chemical structures in
our mass spectral molecular networks, we performed in silico structure annotation
through Network Annotation Propagation (NAP) (57) both for [M+H]+ and [M+Na]+

adducts. For a detailed protocol, see Supporting Information.
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Table legends

Table 1 Number of differentially represented or expressed biosynthetic pathways in
saliva, supra- and sub-gingival plague samples, from shotgun metatranscriptomics and
metagenomics libraries representing 231 subjects (oral health: n = 110, dental caries: n
=77, periodontitis: n = 44). 741 BGCs were differentially abundant in caries (515 enriched,
and 226 less abundant) and 1,063 BGCs were periodontitis associated (670 enriched,
and 393 less abundant). 355 BGCs were differentially expressed in caries (208 up-
regulated, and 147 down-regulated), while 421 BGCs were either up- or down-regulated

in subjects with periodontitis (218 up-regulated, and 203 down-regulated).

Metatranscriptome (up/down) Metagenome (up/down)

BGC type Caries Periodontitis Caries Periodontitis
Aryl polyene 4/11 29/4 26/5 25/3
Bacteriocin 14/10 1/1 31/1 5/24
Butyrolactone 2/0 1/1 3/0 1/1
Homoserine lactone 0/4 3/4 10/0 1/1
Lantipeptide 7/0 4/0 11/2 1/6
Lassopeptide 0 0 0 0/3
NRPS 7/0 2/8 11/7 10/14
NRPS-PKS hybrid 1/0 0/1 5/0 0/1
Oligosaccharide 66/68 100/40 116/118 287/132
Other 7/0 2/11 36/3 16/15
Phenazine 0 0N 2/0 0N
PKS 3/0 1/0 8/0 1/4
Proteusin 0 0 1/0 1/0
Resorcinol 1/4 3/8 4/4 19/0
Sactipeptide 0 0 0 1/0
Siderophore 1/0 1/2 0 1/0
Terpene 1/10 9/1 42/0 1/4
Thiopeptide 1/0 0 0 0/7
Unclassified 93/50 62/121 209/86 300/177
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Figure legends

FIG 1: The oral microbiome contains a massive diversity of BGCs encoded by a
multitude of taxa. (A) Bar graph illustrating the most common BGC subtypes identified
in this study. Bars are colored according to higher level BGC class. (B) Bar graph
illustrating the distribution of eight major classes of BGCs by phyla. (C) Phylogenetic tree
based on 16S rRNA gene sequences showing the distribution of BGCs encoded by oral
bacteria. Nodes with bootstrap values higher than 80% are displayed in the tree. Numbers
of BGC types identified within each genome are shown in the bar graph and colored by
BGC type. Leaf labels are colored by phyla. antiSMASH often identifies BGCs that
encompass multiple gene clusters of different types fused into a single large gene cluster.
63 (~3%) of such unresolved BGCs and were encountered, and were categorized as the
‘complex’ BGC type (For convenience, we combined these BGCs with BGC types ‘Other’

for subsequent analysis). Distribution of BGCs is presented in more detail in Fig. S1.

FIG 2: Similarity networking identified putative product classes for novel BGCs.
Similarity network between the BGCs identified in the oral cavity and the experimentally
characterized reference BGCs obtained from the MIBIG repository. Sub-networks
representing major BGC classes, as determined by antiSMASH and BiG-SCAPE, are
highlighted with different background colors to visualize BGCs as constellations within the
biosynthetic landscape. Nodes (small circles) represent amino acid sequences of BGC
domains and are colored by BGC class. Unfilled nodes represent reference BGCs from
the MIBIG repository. Edges drawn between the nodes correspond to pairwise distances,

computed by BiG-SCAPE as the weighted combination of the Jaccard, adjacency and
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domain sequence similarity indices. For increased simplicity, only sub-clusters of
unclassified and oligosaccharide BGCs with a minimum number of eight nodes are

organized into given highlighted constellation.

FIG 3: BGCs are differentially expressed in health and disease. Bar graphs illustrating
phylogenetic distribution of biosynthetic pathways in health- and disease-associated oral
microorganisms. Species with significant changes in BGC expression based on the
analyzed metatranscriptomic data sets are shown in the phylogenetic tree on the left. Bar
graphs at the leaf tips display number of BGCs either over or under expressed and
colored according to the BGC type. It should be noted that the x-axis scales are different
in left and right panels. Significant differences in the expression of BGCs were determined
based on negative binomial distribution model using DESeqg2 with FDR correction (p-

value <0.05).
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Figure S12
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