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Abstract

Crassulacean acid metabolism (CAM) photosynthesis is a modification of the core Cs
photosynthetic pathway that improves the ability of plantsto assimilate carbon in water-limited
environments. CAM plants fix CO, mostly at night, when transpiration rates are low. All of the
CAM pathway genes exist in ancestral Cz species, but the timing and magnitude of expression
are gresatly altered between C; and CAM species. Understanding these regulatory changesis key
to elucidating the mechanism by which CAM evolved from Cs. Here we use two closely related
species in the Orchidaceae, Erycina pusilla (CAM) and Erycina crista-galli (Cs), to conduct
comparative transcriptomic analyses across multiple time points. Clustering of genes with
expression variation across the diel cycle revealed some canonical CAM pathway genes similarly
expressed in both species, regardless of photosynthetic pathway. However, gene network
construction indicated that 149 gene families had significant differences in network connectivity
and were further explored for these functional enrichments. Genes involved in light sensing and
ABA signaling were some of the most differently connected genes between the C; and CAM
Erycina species, in agreement with the contrasting didl patterns of stomatal conductancein C;
and CAM plants. Our results suggest changes to transcriptional cascades are important for the
transition from C3 to CAM photosynthesisin Erycina.

Keywor ds. RNA-seq, transcriptomics, photosynthesis, time-course, gene network
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I ntroduction

Crassulacean acid metabolism (CAM) is a carbon concentrating mechanism that evolved
multiple times in response to CO; limitation caused by water stress. In C; species, ssomata
remain open during the day to assimilate atmospheric CO,, but water limitation can force
stomata to close, resulting in impaired CO; fixation at the expense of growth. When water stress
isprolonged, stomatal closure in C; plants can become debilitating. CAM species circumvent
prolonged stomatal closure by opening stomata at night and fix CO, nocturnally, when
evapotranspiration rates are on average lower. CO; istemporarily stored as malic acid in the
vacuoles until day time, when stomata close and malic acid is moved back into the cytosol for
decarboxylation. The resulting increase of CO, levels near ribuslose-1,5-bi sphosphate
carboxylase/oxygenase (RuBisCO) resultsin highly efficient CO, reduction via Cs
photosynthesis CAM is associated with a number of anatomical, physiological and genetic
change, including alterationsto leaf anatomy (Nelson and Sage, 2008; Zambrano et al., 2014),
stomatal opening at night, and tight regulation of metabolic genes within day/night cycles.
Despite the complexity of these evolutionary novelties, CAM plants are found in a wide range of
plant families, including eudicot species in the Euphorbiaceae (Horn et al., 2014) and
Caryophyllales (Guralnick et al., 1984; Moore et a., 2017; Winter and Holtum, 2011) and
monocot lineages in Agavoideae (Abraham et al., 2016; Heyduk et al., 2016), Orchidaceae
(Slveraet a., 2009, 2010), and Bromeliaceae (Crayn et al., 2004).

The CAM pathway is well-described biochemically (Holtum et al., 2005) and
contemporary genomics approaches are beginning to shed light on the genetic basis of CAM
(Abraham et al., 2016; Cushman et a., 2008; Dever et al., 2015) (Fig. 1). As CO, entersthe
chloroplast-containing cells as night, it isinitially converted to HCOs' facilitated by a carbonic
anhydrase (CA). HCOs' isthen fixed by phosphoenolpyruvate carboxylase (PEPC) using
phosphoenol pyruvate (PEP) as the substrate. Carboxylation of PEP results in oxal oacetate
(OAA), which is subsequently converted to malic acid by malate dehydrogenase (MDH). Malic
acid isthen moved into the vacuole for storage. The vacuolar transporter of malic acid is not
known for certain, although previous studies have pointed to aluminum-activated malate
transporters (ALMT) as a candidate (Kovermann et al., 2007; Yang et al., 2017). During the day,
the malic acid is released from the vacuoles either via a passve process or through as-yet
undescribed transporter. The malic acid is then decarboxylated to CO, and PEP using two
decarboxylation pathways. NAD and/or NADP malic enzymes together with pyruvate,
phosphate dikinase (PPDK), or MDH and phosphoenol pyruvate carboxykinase (PEPCK)

While the roles of canonical CAM enzymes are considered novel in CAM species, they
are all present in C3 ancestral speciesaswell. Asaresult, the evolution of CAM likely involved
alterations to gene copies, including changes to protein sequences and regulatory motifs. For
example, PEPC in C; species can play severa roles depending on tissue type and developmental
stage, including providing carbon backbones to the citric acid cycle and providing malate for
cellular pH balance (Aubry et al., 2011; Winter et al., 2015), but its core function asa
carboxylating enzyme remains unchanged in C3 and CAM species. Studies of molecular
evolution of PEPC in CAM species have largely determined that there are CAM-specific copies
of the enzyme that are differentially expressed in C; and CAM species (Gehrig et al., 2001;
Lepiniec et al., 1994; Ming et al., 2015; Silvera et a., 2014). In some cases, these CAM-specific
PEPC gene copies have been shown to share sequence similarity across closely related but
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independently derived CAM taxa (Christin et al., 2014; Silvera et al., 2014). Additionally,
genomic screens across many canonical CAM gene promoters have revealed an enrichment of
circadian clock motifs (Ming et al., 2015), implicating alterations to transcription factor binding
sites during CAM evolution. Because of the strong influence of the internal circadian clock on
CAM (Hartwell, 2005), we might expect that genes involved in the CAM regulatory pathway
should be controlled by a co-expressed circadian master regulator (Borland et al., 1999; Nimmo,
2000; Taybi et al., 2000b).

Elucidation of regulatory changes requires comparative analysis between closely related
Cs and CAM species, and this can be accomplished through RNA-Seq analyses. One of the
largest plant families with multiple origins of CAM is the Orchidaceae; known for floral
diversity and inhabiting a broad range of habitats, the evolution of CAM in predominantly
epiphytic lineages may have also contributed to orchid diversity (Silvera et a., 2009). Epiphytic
species constitute more than 70% of the Orchidaceae (Chase et a., 2015; Gravended et al.,
2004), and many exhibit different degrees of CAM (Silveraet al., 2005). In alarge proportion of
these, CAM isweakly expressed relative to C;. Weakly expressed CAM may represent an
evolutionary end point, or may be an important intermediate step on the evolutionary path
between constitutive Cz and congtitutive CAM. Because many genera within the Orchidaceae
include both C; and weak/strong CAM species, the orchids are an attractive family to study the
evolution of CAM photosynthesis. The subtribe Oncidiinae is one of the most diverse subtribes
within Orchidaceae and it is part of a large epiphytic subfamily (Epidendroideae) in which CAM
may have facilitated the expansion into the epiphytic habitat (Silvera et al., 2009). Despite the
prevalence of CAM within the subtribe, the genus Erycina is particularly interesting because it
has both CAM and C; species. Erycina pusilla isafast-growing CAM species with
transformation capability and has the potential to be amodel species for studying CAM
photosynthesis in monocots (Lee et al., 2015). Comparative investigations of E. pusilla and its Cs
relative, E. crista-galli, can therefore offer valuable insight into studying the evolution and
regulation of CAM photosynthesisin the Orchidaceae. Through comparative, time-course RNA-
Seq analysis of E. pusilla and E. crista-galli, we aim to understand 1) the changes in expression
of core CAM genes between Cz; and CAM Erycina species and 2) which regulatory changes are
required for the evolution of CAM.

Materialsand Methods
Plant growth and RNA-Seq tissue collection

Erycina pusilla (L.) N.H.Williams & M.W.Chase (CAM) seedlings were cultivated on
solid PSY P medium comprising 2 g/L Hyponex No. 1, 2 g/L tryptone, 20 g/L sucrose, 0.1 g/L
citric acid, and 1 g/L active charcoal in flasks. The pH of the medium is adjusted to 5.4 before
autoclaving and gelling with 3 g/L Phytagel. Plants were grown in 12-hour day and 12-hour
night conditions over three independent dates in a growth chamber at the University at Buffalo,
with temperatures set to 22-25C and lights on at 6 am for a 12 hour photoperiod. Light intensity
was between 95-110 pmol m? s™. Leaf samples for RNA-sequencing were collected every 4
hours directly from plants grown on sealed flasks for the first two experiments (January and
February 2015, Set 1 and Set 2 respectively) and every 2 hours from the final experiment
(October 2015, Set 3), where both medium-sized and large plants were collected. Because
Erycina species are considered miniatures and are therefore relatively small for destructive leaf
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137  sampling, we use individual genets as biological replicates at each time point. Leaf samples were
138  flash frozenin liquid N, and stored at -80°C.

139

140 Erycina crista-galli (Rchb.f.) N.H.Williams & M.W,Chase (C3) plants were wild-

141  collected from Pefia Blanca, Digtrict of Capira, Republic of Panama at 858m above sea level,
142 then grown and propagated in acommercial orchid greenhouse in Bajo Bonito, District of

143  Capira, Republic of Panama. Plants were fertilized once a week week alternatively with a 20-20-
144 20 or 16-32-16 N-P-K fertilizer. Similarly sized and aged plants were moved into an

145  environmental growth chamber at the Smithsonian Tropical Research Institute laboratories

146  (Panama City, Panama) in April 2016, where they were allowed to acclimate for 48 hours to the
147  following conditions: 12 hour light/dark cycle (lightson 6 am.), 25°C/22°C day/night

148  temperatures, 60% humidity, and a light intensity of 30 umol m? s*, which is similar to the light
149  intensity this species would experience naturally. Biological replicates (consisting of entire

150  shoots without root tissue) were sampled every 4 hours over a 24-hour period, starting at ZTO
151  (lightson, 6 am.) with 4 replicates per time point. Tissue was flash frozen in liquid nitrogen and
152  stored as described above for E. pusillia.

153

154 RNA was isolated from leaf tissue of both Erycina species using the RNeasy Plant Mini
155  Kit (Qiagen). RNA samples were subsequently quantified via Nanodrop and checked for

156 integrity with a Bioanalyzer v2100. RNA libraries were constructed using the Kapa mRNA

157  stranded kit with a combinatorial barcoding scheme (Glenn et al., 2016). Libraries were

158  sequenced on an Illumina NextSeg500 with PE75 reads, pooling 30-32 samples per run. A

159  summary of the data can be found in Supplemental Table 1.

160
161 Gasexchange
162 Individual shoots (leaves emerging from a common base) of E. pusilla and E. crista-galli

163  specieswereindividually sealed within a CQP 130 porometer gas-exchange cuvette (Walz,

164  Effdtrich, Germany), located inside an environmental chamber (Environmental Growth

165 Chambers, OH, USA) operating on 12h light (6AM to 6PM) at 28°C, and 12h dark (6PM to

166  6AM) cycleat 22°C. Light intensity inside the chamber was 230 umol m?s™*. Plants were

167  watered 3-4 times daily and humidity inside the chamber was maintained at near 60%.

168  Continuous net CO, exchange was measured for each plant for up to 8 day/night cycles with data
169  points obtained every 4 minutes. For E. pusilla, water was withheld from one of the three plants
170  measured (drought stress) between the fifth and the eighth day; regarding E. crista-galli, water
171  waswithheld from the third to the fifth day for one plant of the three measured. Datais presented
172 for all 3 replicates of each of the two Erycina speciesin Supplemental Figure 1.

173

174  Titratable Acidity

175 Erycina crista-galli plants were too small for both transcriptomic and titratable acidity
176  analysis, therefore leaf tissue from this species was collected only for RNA-Seq. Leaf samples
177  from E. pusilla were collected from the same plant and at the same time such that half the plant
178  was used for RNA-sequencing and the other half was used for titratable acidity assays. Leaves
179  from mature plants were collected every 4 hours, flash frozen in liquid N2, weighed, and boiled
180 in 20% ethanol and deionized water. Titratable acidity was measured as the amount of 0.002M
181  NaOH required to neutralize the extract to apH of 7. Because leaf tissue was limited for E.

182  crista-galli plants, we conducted titrations on three plants that were not sampled for RNAseq to
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confirm their status as Cz. Samples were collected in greenhouse conditions at dawn and dusk
with three replicates at each time. Titratable acidity was measured asfor E. pusilla but using
0.001M KOH.

Transcriptome assembly

An initial de novo transcriptome was assembled from Sets 1 and 2 for E. pusilla
sequences and from all samples sequenced for E. crista-galli using Trinity v2.0.6 (Haas et al.,
2013). Reads were cleaned using Trimmomatic (Bolger et al., 2014) asimplemented in Trinity,
and assemblies were made on in-silico normalized reads. An initial evaluation of read mapping
results from E. pusilla Sets 1, 2, and 3 showed alarge degree of variation among replicates; to
reduce this variation, we used only reads from Sets 1 and 2, aswell as medium sized plants from
Set 3. All readsfor E. crista-galli wereincluded in the analysis. These data were further reduced
to include only 4 replicates per time points for atotal of 24 samples. Replicates were chosen
randomly. Read mapping and abundance estimation for transcripts was conducted separately in
each speciesusing RSEM v1.3.0 (Li and Dewey, 2011) and Kallisto (Bray et a., 2016).
Transcripts with a transcripts per kilobase million mapped (TPM) < 2 were removed and the
reads were re-mapped to the filtered assemblies.

Ortholog circumscription and isoformfiltering

To determine gene family circumscription and annotation, all transcripts were sorted into
14 orthogroup gene families from the genomes of the following: Amborella trichopoda, Ananas
comosus, Arabidopsisthaliana, Asparagus officinalis, Brachypodium distachyon, Carica
papaya, Dendrobium catenatum, Elaeis guineensis, Musa acuminata, Oryza sativa,
Phalaenopsis equestris, Solanum lycopersicum , Sorghum bicolor, Spirodella polyrrhiza , Vitis
vinifera , and Zostera marina. Assembled transcripts were first used to query the genome
database using blastx and sorted to gene families (orthogroups) based on best BLAST hit. The
gene families were annotated by Arabidopsis members, using TAIR 10 (www.arabidopsis.org)
classifications. Transcripts were retained only if they 1) had alength less than the maximum
sequence of agene family based on the sequenced genomes and 2) had a length no less than 50%
of the minimum sequence length based on sequenced genome members of that gene family.

Trinity produces both gene components and subsidiary isoforms, which may represent
true alternative splice isoforms or alelic or paralogous sequence variants. To mitigate dilution of
read mappings to multiple isoforms, we instead used gene components (hereafter referred to as
transcripts) for all further analyses (including gene level read mapping from RSEM). For gene
tree estimation we took the longest isoform per component per orthogroup, using our
mi nimum/maximum orthogroup filtered data set. Scripts for orthogroup sorting and filtering can
be found at www.github.com/kheyduk/Erycina.

Time-dependent clustering

To incorporate time into our clustering analysis, we used R software package maSigPro
v1.46.0 (Conesa et al., 2006; Nueda et al., 2014), which analyzes expression data for patterns
across time by fitting each gene' s expression pattern to a polynomial using stepwise regression.
Cross-normalized read counts and a negative binomial distribution for the generalized linear
models were used. For each transcript, maSigPro estimated up to a 4" degree polynomial and
tested the fit via ANOV A. Transcripts that had significantly time-structured expression
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(Benjamini & Hochberg adjusted p < 0.05) were retained while all others were removed from
further analysis. Additionally, any genes considered overly influential based on DFBETAS
diagnostic (how much an observation affects the estimate of a regression coefficient) (Beldey et
al., 1980) were also removed. In total, 1,515 transcripts from E. pusilla and 505 transcripts from
E. crista-galli were removed as influential genes.

The remaining transcripts that did show time-dependent expression (n=7,066 in E. pusilla
and n=7,127 in E. crista-galli) were clustered by fuzzy clustering based on similarity in
expression profiles. An optimal fuzzifier m, a parameter that determines how much clusters can
overlap, was calculated in the Mfuzz package (Kumar and E Futschik, 2007) of R for each
species (m=1.09 for both E. pusilla and E. crista-galli). The number of groups k for each species
was determined by choosing a value which minimizes the within-group variance (Supplemental
Figure 2); ak of 6 was used for both E. pusilla and E. crista-galli. Z-scores of normalized counts
were calculated for each gene in each cluster, aswell as a median cluster expression, for each
Species separately.

Gene trees and expression

Gene trees were estimated for phosphoenol pyruvate carboxylase (PEPC) and its kinase
(PPCK) by first aligning nucleotide sequences from Erycina transcripts and their associated gene
family members from the sequenced genomes using PASTA (Mirarab et a., 2014), then
estimating trees using RAXML (Stamatakis, 2006). Gene expression for genes of interest was
plotted based on averaged transcripts per million mapped (TPM) for each replicate.

Network analysis

To identify regulatory candidates possibly involved in CAM and examine the
relationships between genes within clusters, we used the ARACNe-AP v1.4 (Lachmann et al.,
2016) algorithm to create networks of co-expressed transcripts from both species separately.
Briefly, the algorithm randomly samples gene pairs and uses an adaptive partitioning approach to
infer a pairwise mutual information (M1) statistic, or measure of statistical dependence, between
them. This processis repeated iteratively for a specified number of bootstraps, while at each step
removing indirect interactions. A final network is built based on the consensus of all bootstrap
runs. Although ARACNe provides an option to specify transcription factors to generate a
directed network by only considering interactions with a transcription factor source, we chose to
generate an undirected gene co-expression network of genes that were significantly time-
structured based on our maSigPro analysis, using 100 bootstrap replicatesin ARACNe.

We imported network data into Cytoscape (Shannon et al., 2003) to generate
visualizations and calculate network statistics. Nodes were color coded by their cluster
membership and scaled to represent number of connections. Network statistics were exported
and further analyzed at the orthogroup level. We calculated which orthogroups had the largest
average difference in connectivity between the two species. Wefirst calculated the average
connectivity (number of directed edges, output from Cytoscape Network Analysis) for each
orthogroup per species, then normalized these via Z-scores and subtracted the Z-score of the
orthogroup in E. pusilla from that in E. crista-galli. Outliers — those orthogroups with the largest
difference between species in connectivity — had Z-score differences above and bel ow the upper
and lower quantiles (Supplemental Figure 3).


https://doi.org/10.1101/431460
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/431460; this version posted October 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

8

275

276 The outlier orthogroups with large changes to connectivity between species

277  (Supplemental Table 3) were explored for genes of interest. The largest differencein

278  connectivity was found in a E3 ubiquitin ligase gene family shown to play arolein ABA

279  signaling, with the Arabidopss homolog known as ring finger of seed longevityl (RSL1). To
280 exploredifferencesin network connections of RSL1 between the two species, we employed the
281  diffusion algorithm (Carlin et al., 2017) in Cytoscape which finds strongly interactive nodes to a
282  target of interest. For both species, we found the diffusion network for the RSL1 gene. Only a
283  single gene copy of RSL1 was time-structured in E. crista-galli, but E. pusilla had two copies
284  found in the ARACNe network. One gene copy had only a single connection to any other genein
285  the network and was not analyzed further. The other copy in E. pusilla, which had 72 directed
286  connections, was used as the center of the diffusion network. Diffusion networks were compared
287  for orthogroup content between species using a hypergeometric test. Gene Ontology (GO) terms
288  were compared for the two RSL1 subnetworks and checked for enrichment using hypergeometric
289  test (using al GO termsfound in either ARACNe network as the universe), correcting for

290 multiple testing with Bonferroni-Holm significance correction.

291

292  Results

293  Gas exchange patterns and titratable acidity

294 Gas exchange data collected continuously showed net nighttime CO, uptakein CAM E.

295  pusilla under both well-watered conditions and while drought stressed (Fig. 2a). C; Erycina

296 crista-galli displayed net CO, uptake during the light period only. There was no net uptake of
297  CO; at night. Nonetheless, under drought stress, a slight decrease in respiratory loss of CO; at
298  night may indicate low levels of CAM cycling. Titration data collected from the same plants and
299 at thetime of RNA-sampling in E. pusilla confirms CAM function in the plants used for gene
300 expression analysis, with asignificant increase in leaf titratable acids occurring towards the end
301 of thedark period (Fig. 2A, 6AM), and areduction in total acids during the day period. Although
302 the Gz E. crista-galli had higher overall levels of leaf acids, there was no significant diurnal

303 fluctuation (Fig. 2b).

304
305 Clustering of genes with time-structured expression profiles
306 After filtering by minimum/maximum length each transcript’s orthogroup, 23,596 and

307 26,437 geneswereretained in E. pusilla and E. crista-galli, respectively. Both species had a

308 similar number of genes that were significantly time-structured (~7,000) according to maSigPro.
309 Each species had best fit to k=6 clusters, with three clusters showing nighttime biased expression
310 andthreewith daytime bias (Fig. 3). Expression of PEPC, theinitial carboxylating enzymein the
311 COq;fixation pathway at night, increased in expression just before the onset of darknessin the
312 CAM speciesE. pusilla (Fig. 4A). In contrast, there was a low, but significant, time-structured
313  expression pattern of PEPC in the C; species E. crista-galli (Fig. 4B). The dedicated kinase,

314  PPCK, which phosphorylates PEPC and allows it to function in the presence of malate, likewise
315 showed a strong nocturnal increase in expression in the CAM species, with similar levels of

316  expression in the C; species (Fig. 4B).

317
318 Network Comparisons
319 The network for C; E. crista-galli had 119,338 directed connections between 4,828

320 nodes, whereas the CAM E. pusilla network was notably |ess connected, with only 76,071
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connections between 4,591 nodes. Although the number of genes in each network was similar,
overall connectivity of E. pusillais easily seen in both the fewer number of connections as well
as the mean number of connections (34.3 in E. pusilla vs. 50.3 in E. crista-galli). As expected,
genes from the same co-expressed cluster (Fig. 3) were grouped within the larger ARACNe
network for each species (Fig. 5A,C).

Comparison of network connectivity of the time-structured genes found 149 outlier
transcripts that had large species differences in the number of connected directed edges
(Additional file 4); these were largely skewed toward increased connectivity in E. crista-galli
(n=90). Annotations of these outliers revealed a number of genesinvolved in ssomatal
opening/closing and ABA signaling. GO term enrichment indicates that outliers that skew
toward more connectivity in Cs E. crista-galli were enriched for vacuolar and tonoplast
membrane proteins and potassium and calcium transport. Genes that were more connected in
CAM E. pusilla were enriched for genes involved in aldehyde dehydrogenase activity, among
other functions (Supplemental Table 4).

A E3 ubiquitin ligase aso known as ring finger of seed longevityl (RSL1) had the
greatest difference in connectivity between the two species. RSL1 has been shown to bea
negative regulator of ABA signaling (Bueso et al., 2014) and was chosen as a center node for
comparison between the two species. The diffusion algorithm used to create subnetworks
defaults to producing a subnetwork that is 10% of the total nodes in the larger network; asa
result, both species subnetworks were roughly the same size, containing about 400 genes.
However, the connectivity of those subnetworks differed greatly (Fig. 5B,D); the Cs E. crista-
galli RSL1 subnetwork contained 30,392 connections, whereas the CAM E. pusilla network had
only 9,244. The subnetworks differed in their gene content as well. There contained 429 and 427
orthogroupsin E. pusilla and E. crista-galli, respectively, but only 57 orthogroups were shared
between the two (this was not significantly under-enriched via a hypergeometric test (p=1)).
While all of the genesin the E. crista-galli RSL1 subnetwork were in night-biased expression
clusters (485), E. pusilla had more subnetwork genesin day-biased clusters (298) than in night
biased ones (162). GO term enrichment indicates both subnetworks are enriched for chloroplast,
chloroplast stroma, and photosynthesis (Supplemental Table 5).

While both subnetworks were centered on RSL1 and generally were enriched for similar
types of genesinvolved in chloroplast functions and photosynthesis, there were substantial
differences in gene content between the networks. The focal gene RSL1 acts as a master negative
regulator of ABA signaling pathway by targeting pyrabactin resistance 1 (PY R1) and PYR-like
(PYL) ABA receptors for degradation. More generaly itsrole in protein ubiquitination is
relatively unknown. RSL1 was the third most connected node in the Cs E. crista-galli
subnetwork (419 directed connections; most connected node had 423 connections). In CAM E.
pusilla, RSL1 was 173" out of 460 genesin connectivity. E. pusilla had a number of ABA
responsive genesin its RSL1 subnetwork that E. crista-galli did not, including protein
phosphatase 2C (PP2C), a gene encoding a member of the Snfl-related kinase family, plus a
homolog of ABA Overly Sensitive 5. Recent work has shown that ABA responses in stomata
including PYR/PYL and downstream genes are responsible for constitutive stomatal aperture, as
well as stomatal responses to drought stress (Gonzalez-Guzman et al., 2012).
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Erycina crista-galli, on the other hand, had a number of light sensing and circadian clock
genesthat CAM E. pusilla did not have in the RSL1 subnetwork, including lov kelch protein 2
(LKP2/ZTL gene family), time for coffee (TIC), phytochrome B/D (PHYB), and protein
phosphatase 2A (PP2A). LKP2/ZTL and PHY B are both involved in light sensing (blue and
red/far-red, respectively). Specifically, LKP2/ZTL genes are thought to regulate light induced
protein degradation viatheir function as E3 ligases (Demarsy and Fankhauser, 2009; Ito et al.,
2012), and ztl mutants in Arabidopsis show a prolonged clock period under constant light due to
the lack of degradation of clock componentsviaZTL (Méaset a., 2003; Somers et al., 2000). TIC
has been found to be responsible for the amplitude of the circadian clock but is not thought to be
directly involved in light signaling (Hall et al., 2003). TIC is aso implicated in daytime
transcriptional induction via its association with the central circadian oscillator |late el ongated
hypocotyl (LHY) (Ding et al., 2007). Finally, PP2A isamember of alarge family of plant
phosphoprotein phosphatases (PPP) with several cellular roles (Uhrig et al., 2013). PP2A
specifically has been implicated in brassinosteroid signaling, light signaling via
dephosphorylation of phototropin2 (Tseng and Briggs, 2010), flowering time control (Kim et al.,
2002), as well as the induction of CAM under certain abiotic stresses (Cushman and Bohnert,
1999).

Although the C; E. crista-galli RSL1 subnetwork contained circadian and light sensing
transcripts that were absent in the E. pusilla RSL1 subnetwork, these transcripts largely did not
have different expression patterns between the two species with the exception of PHYB (Fig.
6B). The contrasting gene content of the RSL1 subnetwork suggests light sensing and circadian
regulatory cascades comprise large differences between C; and CAM species, rather than levels
of gene expression, which were quite similar.

Discussion
Shared gene expression patterns

While traditionally it was thought that canonical CAM genes should have large
differences in timing and magnitude of expression between C; and CAM species, recent work
has highlighted that between closely related C; and CAM species, that may not always be the
case (Heyduk et al., 2018b). In Erycina, it appears that asimilar pattern holds. Both the CAM
and Cj3 species have time-structured expression of PEPC albeit at very different expression
levels. While this alone says little about PEPC’ s function in both species, the high nocturnal
expression of PEPC’ s dedicated kinase, PPCK, in both E. pusilla and E. crista-galli suggests that
PEPC is being phosphorylated in both species and therefore has the need to function in the
presence of malate.

It isworth noting that all Cs species have the genesinvolved in the CAM cycle. Many,
including PEPC, function in anaplerotic reactions of the TCA cycle. PEPC has aso been shown
to have arole in malate production for osmotic regulation of stomatal aperture and in CO,
fixation in guard cells of tobacco (Asai et al., 2000; Daloso et al., 2015). Because most RNA-seq
or gene expression studies to date in C3 species sample during the day, understanding how
common nocturnal PEPC expression is across flowering plants will require more nighttime gene
expression studiesin C; species, especialy in lineages closely related to CAM species. While
nearly all the genesin the CAM CO; fixation pathway have known functionsin Cs species,
PPCK is anotable exception. Phosphorylation of PEPC by PPCK in CAM and C, speciesis
well-described (Jiao and Chollet, 1989; Nimmo et al., 1986; Taybi et al., 2000a); malate and
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other organic acids act as negative regulators of PEPC, but phosphorylation of PEPC renders it
immune to these negative effects. Thus, phosphorylated PEPC via PPCK isrequired for high
levels of CAM and C, malic acid production. In C; species, however, there isno clear need for
heavily phosphorylated PEPC, especially at night, making the expression of PEPC and PPCK in
Cs E. crista-galli intriguing (though see Sullivan et al., 2004 and Fukayama et al., 2006 for work
on nocturnal PPCK expression in soybean and rice, respectively).

Alterationsin regulatory pathways between C; and CAM orchids

Network analysis of co-expressed genes and subsequent compari sons between species
can giveinsights not only into the changes in expression, but also the degree to which agiven
gene changes in connectivity between species. Extensive connectivity for a gene has long
thought to be asignal of a*“hub” or master regulatory gene — one that cannot experience large
changes in timing or magnitude of expression without significant perturbations to the entire
network. A major assumption of co-expression networks is that they rely on mRNA as an
accurate predictor of downstream processes; while thisis not always the case, recent work
showed that although mRNA and protein networks differed in their gene content, they
overlapped in gene ontologies and were predictive of pathway regulation in maize (Walley et al.,
2016). Additionally, it has been shown that a correlation exists between connectivity of a gene
within a network and the evolutionary conservation of the gene’ s sequence across a number of
flowering plant species (Masalia et al., 2017). It is therefore somewhat surprising to observe that
as many as 149 gene families have large changes in connectivity between the two closely related
Erycina species.

The 149 outlier gene familiesin Erycina were enriched for functionsin protein
degradation via phosphorylation and ubiquitination. While typically differences in phenotype are
considered the result of changes in the abundance of gene products, our data highlight the
importance of considering protein degradation aswell. The differencesin connectivity of protein
degradation pathway genes were unbiased between species—in other words, genesinvolved in
protein degradation have increased connectivity in both species. More interestingly, genes that
had increased connectivity in Cs E. crista-galli were enriched for GO termsinvolved in
potassium and chloride channels and membrane proteins associated with chloroplasts and
vacuoles. Greater connectivity of such genesin the C; species indicates an increased reliance on
ion and metabolite fluxes. In stomatal guard cells, which make up a smaller portion of the whole-
leaf transcriptome, these fluxes directly affect stomatal aperture and may play arolein
alternative regulation of stomatal opening in Cz and CAM species.

Regulatory changesin ABA, light, and clock perception

Stomatal opening in CAM species has been vastly understudied, despite the opportunities
it presents for understanding a fundamental biological process. In C; species, stomatal opening is
thought to be regulated by blue and red light inputs, whereas stomatal closing is driven by efflux
of potassium cations. It remains largely unknown how stomata sense darkness, but experimental
data have suggested a large role of CO, concentrations on stomatal aperture (Cockburn et al.,
1979). Draw down of CO, concentrations at night in the intercellular airspace would result in
stomatal opening, whereas high concentrations of CO, from decarboxylation during the day may
promote stomatal closure. CO, concentrations undoubtedly play somerole in the inverted
stomatal aperture of CAM species, but more contemporary genomic work has implicated
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additional levels of regulation in CAM stomata (Abraham et al., 2016; Cushman and Bohnert,
1997; Wai et al., 2017). For example, ABA may be one signaling molecule for nocturnal
stomatal closure (Desikan et al., 2004; Gonzalez-Guzman et a., 2012; Merilo et al., 2013). Gene
expression results coupled with network analysis in Erycina indicate that both ABA signaling
and light sensing are likely to be altered. Indeed, the gene with the largest differencein
connectivity between speciesis RSL1, which encodes a E3 ubiquitin ligase known to function in
stomatal responseto ABA. Expression of RSL1 ishigher in CAM E. pusilla and is clustered with
day-biased genes (Fig. 6A), whereasin C; E. crista-galli expression is about half that in E.
pusilla and dlightly increases in expression during the dark period. These expression patterns are
consistent with stomatal regulation between C; and CAM species. In E. crista-galli nighttime
ABA may play alarger role in drought-induced or nighttime stomatal closure than in the CAM
E. pusilia, where the nocturnal stomatal closure driven by ABA signaling must be repressed to
alow for nighttime CO, acquisition. It is also unknown what causes daytime stomatal closurein
CAM species; while high intracellular CO, concentrations may play arole, so might ABA
signaling. RSL1’s high connectivity to other genes in the subnetwork of E. crista-galli suggests
that alterations to regulatory networks are also important for fully functional CAM.

Stomata, while highly responsive to ABA, are also strongly regulated by light inputs. The
gene encoding phytochrome B (phyB), a photoreceptor that both regulates transcriptional
responses to red and far-red light as well as entrains the circadian clock (Goosey et al., 1997;
Maset al., 2000; Ni et al., 1999), was differentially regulated and expressed in the two Erycina
species (Fig. 6B). While both species had copies of phyB that showed time-structured expression,
only E. crista-galli had a copy that was in the same network as RSL1 and had many connections
to other genes in the same network. A single copy of phyB was time-structured in CAM E.
pusilla, and the expression level relative to copiesin Cs E. crista-galli was quite low. Instead, the
constitutively expressed copy of phyB in E. pusilla had the highest expression, but what it’srole
might be given constant expression across timeis unclear. The stark difference in both
connectivity and expression levels of phyB in E. pusilla and E. crista-galli suggests that light-
induced transcriptional regulation has a greater role in the Cz species, and that phyB mediated
transcriptional regulation in CAM species may be significantly reduced. Additionally, the
presence of PP2A in the C; E. crista-galli RSL1 subnetwork, but not in E. pusilla, further
indicates that light induced responses are differentialy regulated (although expression was
similar between the two species, Fig. 6D). PP2A is, anong many other tasks, responsible for
dephosphorylation of photoropin 2, which subsequently promotes stomatal opening (Tseng and
Briggs, 2010; Uhrig et a., 2013).

Differencesin light input sensing and signaling between C; and CAM speciesis not
surprising, but relatively little work has focused on this aspect of CAM biology. Previous work
assessed light responses in the facultative CAM species Portulacaria afra (Lee and Assmann,
1992) and Mesembryanthemum crystallinum (Tallman et al., 1997) and showed that both species
had reduced stomatal response to blue light signals when relying on the CAM cycle for carbon
fixation (though see Ceusters et al., 2014). Additionally, M. crystallinum had reduced guard cell
zeaxanthin production during the day in the CAM state compared to the C; state. The reduction
in zeaxanthin in the CAM state was shown to be aresult of the downregulation of the pathway,
rather than an aberration in guard cell chloroplasts. Changes to regulation and expression of


https://doi.org/10.1101/431460
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/431460; this version posted October 5, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

13
504  phyB in Erycina further support significantly altered light-induced pathways in CAM species
505 relativeto Cs.
506
507 TIME FOR COFFEE (TIC) also stood out in its altered connectivity between the Cz and

508 CAM species. In Cs E. crista-galli, TIC was present in the RSL1 diffusion network whereas it
509 wasnot for E. pusilla. TIC has been shown to be involved in maintaining the amplitude of the
510 circadian clock in Arabidopsis (Ding et al., 2007; Hall et al., 2003), as well as regulating

511  metabolic homeostasis and response to environmental cues (Sanchez-Villarreal et al., 2013). tic
512  mutantsin Arabidopsis showed large phenotypic effects ranging from late flowering to

513  anatomical abnormalities. The tic mutants also showed extreme tolerance to drought, likely due
514  toincreased amounts of osmolytes such as proline and myo-inositol, aswell as an accumulation
515 of starch. Asaresult of the pleiotropic effects of TIC, altered network status of TIC in CAM E.
516 pusilla compared to C3 E. crista-galli likely results a complex alteration in phenotype. In

517  general, the mechanism that link the circadian clock and CAM photosynthesis are unknown

518 (Boxal et al., 2005), and research to uncover circadian regulation of CAM islimited to

519 transcriptomic studies. Gene expression comparisons between CAM Agave and C3 Arabidopsis
520 revedled changesto the timing of expression of REVEILLE 1, aclock output gene that integrates
521 thecircadian network to metabolic activity (Yin et a., 2018). While it’ s possible that changes to
522  thetiming of REVEILLE 1 are required for CAM evolution, expression differences may also be a
523  result of lineage-specific changes to expression unrelated to CAM. Comparisons of closely

524  related C3 and CAM species of Erycina suggest that alteration of transcriptional cascades from
525 circadian oscillators may play arole in the evolution of CAM, rather than large scale changes to
526 thetiming or abundance of expression, but additional work to link clock outputs to the CAM
527  phenotype are necessary.

528
529 Implicationsfor the evolution of CAM in Oncidiinae
530 Both CAM and C, photosynthesis have evolved multiple times across the flowering plant

531 phylogeny, suggesting that the evolution of these complex traits cannot be insurmountably

532 difficult. Recent physiological work demonstrates that the evolution of anatomical traits required
533 for CAM or C, often predates the emergence of strong, constitutive carbon concentrating

534  mechanisms (Christin et al., 2013; Heyduk et al., 2016). Other transcriptomic work has shown
535 that closdly related C; and CAM species share the expression of canonical CAM genes,

536 especially PEPC and PPCK as seen herein Erycina (Heyduk et al., 2018b). It has even been

537  suggested that many C; plants already have the nocturnal CAM cycle in place for fixation of

538 respired CO, and generation of amino acids (Brautigam et al., 2017), but this aloneisunlikely to
539 entiredy explain the repeated and relatively frequent emergence of CAM on the angiosperm

540 phylogeny.

541

542 Indeed it appears that gene expression alone would not facilitate the large-scale transition
543  from C;to CAM. Recent comparative work across multiple Cs and C, transcriptomes highlighted
544  the recurrent co-option of highly expressed genes from C; speciesinto C, (Moreno-Villenaet a.,
545 2018). Theinitial co-option of highly expressed gene copies happened early in the evolutionary
546  trgectory between C; and C4, and later steps included the refinement of Cs enzymes, including
547  kinetic and tissue specificity. It isquite likely that a smilar model of evolution holdsfor CAM,
548 inthat C;relatives of CAM lineages have been shown to have similar expression patterns of

549 canonical CAM genes (though, it isworth noting, they are not typically highly expressed in the
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C; species). In Erycina, both C; and CAM species share similar expression profiles for PEPC
and PPCK, with the latter having nearly identical levels of expression in both taxa. It is possible
that low levels of nocturnal CO, fixation via PEPC evolved in the ancestor of both species for
non-photosynthetic reasons; for example, tobacco leaves (Kunitake et al., 1959) and cotton
ovules (Dhindsa et al., 1975) show various levels of carbon concentration, and fixation of
cytosolic CO, via PEPC is required to replenish the citric acid cycle (Aubry et al., 2011).
Because these pathways already exist, slight upregulation of some componentsin a shared
ancestor may have enabled the origins of CAM in certain lineages (Brautigam et al., 2017).

However, gene expression alone clearly does not make a species CAM, and further
refinement is necessary. Refinement of CAM may take the form of improving secondary
metabolic processes or genomic characteristics that allow for strong and constitutive CAM to
exist. For example, fine tuning of carbohydrate turnover is necessary for CAM function (Borland
et a., 2016; Ceusters et al., 2014). Experiments placing Mesembryanthemum crystallinumin
CO.-freeair at night resulted in adampened CAM cycle (Dodd et al., 2003) and comparative
RNA-seq in facultative CAM and Cz/CAM comparisons has shown increased reliance on
carbohydrate breakdown as CAM function increases (Brilhaus et al., 2016; Heyduk et al.,
2018a). Circadian regulation of CAM genes in pineapple was shown to be the result of promoters
that induce evening expression (Ming et al., 2015), and genes that link the clock to metabolic
outputs had shiftsin expression phasing between Agave (CAM) and Arabidopsis (C3) (Yinet al.,
2018). Variation in timing and magnitude of expression of various light sensing and clock genes
has been described not only here in Erycina, but also in Agave (Abraham et al., 2016). In all, the
growing evidence suggests that the secondary processes that make a CAM plant, including
stomatal regulation, light sensing and downstream transcriptional responses, and carbohydrate
metabolism feedbacks, undergo fine-tuning along the evolutionary trajectory between C; and
CAM. Further work that characterizes closely related C; and CAM species has the potential to
greatly advance our understanding of the integration of nighttime CO, acquisition with more
complex regulatory pathways.

Data Availability

Raw sequence reads are available on NCBI Short Read Archive, under the BioProject
PRJINA483943. All scripts used that are not part of existing programs are available at
www.github.com/kheyduk.
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890 Figurel- A smplified diagram of the Crassalucean acid metabolism (CAM) pathway under day
891  and night conditions. ALMT9 — aluminum activated malate transporter; CA — carbonic

892  anhydrase; MDH — malate dehydrogenase; OAA — oxal oacetate; ME — malic enzyme (NAD or
893 NADP); PEPC — phosphoenolypyruvate; PEPCK — PEP carboxykinase; PPCK — PEPC kinase;
894  PPDK — pyruvate, phosphate dikinase.

895

896  Figure 2 — Gas exchange and titratable acidity for A) Erycina pusilla and B) Erycina crista-
897  galli. Gas exchange is shown for a single plant; replicate plant gas exchange plots can be found
898 in Supplemental Figure 1. Drought induction isindicated with ared arrow. Titrations are shown
899  for dawn and dusk; full titratable acidity values are in Supplemental Table 2.

900 Figure 3 - Expression z-scores for each gene in each cluster for both A) E. pusilla and B) E.

901 crista-galli, with median expression shown in the black line. Clusters represent co-expressed

902  geneswithin each species’ time-structured transcripts. Cool colors (blue and purple) are clusters
903  with nighttime biased expression, whereas warmer colors (orange and yellow) are clusters whose
904 transcriptsincrease in expression during the day.

905

906 Figure4 —Expression of A) phosphoenolpyruvate carboxylase (PEPC) and B) PEPC kinase in
907 E. pudlla (squares, blue tones) and E. crista-galli (circles, purple tones). Different shades of

908 color represent different assembled gene copies, and only transcripts that were found to be

909 significantly time-structured are shown. Average TPM and standard deviation, scaled to the

910 maximum mean TPM value across al copies and species, is plotted for all 6 time points, with the
911  grey background indicating nighttime samples.

912  Figure5— Network constructions of A) E. pusilla and C) E. crista-galli based on ARACNe
913 network analysis, and the ring finger seed longevityl (RSL1) subnetworks for B) E. pusilla and
914 D) E. crista-galli calculated viathe diffusion algorithm in Cytoscape. Colors correspond to
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915 Figure 3 cluster colors— cooler colors (bluesin A and B and purplesin C and D) are clusters that
916 havean increasein expression at night and warmer colors (orangesin A and B and yellowsin C
917 and D) are clusters that have increases in expression during the day. Dots represent genes, scaled
918 by the number of edges (maximum number of directed edges=435).

919 Figure6 - Expression of A) ring finger of seed longevity 1 (RSL1), B) phytochrome B/D

920 (PHYB) C) timefor coffee (TIC), and D) protein phosphatase 2A in E. pusilla (squares) and E.
921  crista-galli (circles). Points are colored by which category of cluster they belong to: blues and
922  purples are genes with increases in expression in the dark in E. pusilla and E. crista-galli,

923  respectively, while oranges and yellows are genes with increases in daytime expression in E.
924 pusillaand E. crista-galli, respectively (see Fig. 3). Time-structured genes are marked with an
925  asterisk, while those that were not significantly time-structured are shown in greys. Number of
926  directed edges per geneis shown if they belonged to the RSL1-subnetwork. Average TPM and
927  standard deviation, scaled to the maximum mean TPM value across all copies and species, is
928 plotted for all 6 time points, with the grey background indicating nighttime samples.
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