

1 Altered Gene Regulatory Networks are Associated with the Transition
2 from C₃ to Crassulacean Acid Metabolism in *Erycina* (Oncidiinae:
3 Orchidaceae)

4
5 Karolina Heyduk (karohey@gmail.com)^{1*}, Michelle Hwang (Mxhwang@gmail.com)¹, Victor A.
6 Albert (vaalbert@buffalo.edu)^{2,3}, Katia Silvera (katia.silvera@ucr.edu)^{4,5}, Tianying Lan
7 (tianying@buffalo.edu)², Kimberly M. Farr (kmfarr@buffalo.edu)², Tien-Hao Chang
8 (cardiandra@gmail.com)², Ming-Tsair Chan (mbmtchan@gate.sinica.edu.t)⁶, Klaus Winter
9 (winterk@si.edu)⁵, and Jim Leebens-Mack (jleebensmack@uga.edu)¹

10
11 1 – Department of Plant Biology, University of Georgia, Athens, GA, USA
12 2 – Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
13 3 – School of Biological Sciences, Nanyang Technological University, Singapore
14 4 – Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA,
15 USA
16 5 – Smithsonian Tropical Research Institute, Panama City, Panama
17 6 – Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei, Taiwan,
18 ROC

19
20 **Correspondence:**

21 Dr. Karolina Heyduk
22 karohey@gmail.com

23

24 **Abstract**

25 Crassulacean acid metabolism (CAM) photosynthesis is a modification of the core C₃
26 photosynthetic pathway that improves the ability of plants to assimilate carbon in water-limited
27 environments. CAM plants fix CO₂ mostly at night, when transpiration rates are low. All of the
28 CAM pathway genes exist in ancestral C₃ species, but the timing and magnitude of expression
29 are greatly altered between C₃ and CAM species. Understanding these regulatory changes is key
30 to elucidating the mechanism by which CAM evolved from C₃. Here we use two closely related
31 species in the Orchidaceae, *Erycina pusilla* (CAM) and *Erycina crista-galli* (C₃), to conduct
32 comparative transcriptomic analyses across multiple time points. Clustering of genes with
33 expression variation across the diel cycle revealed some canonical CAM pathway genes similarly
34 expressed in both species, regardless of photosynthetic pathway. However, gene network
35 construction indicated that 149 gene families had significant differences in network connectivity
36 and were further explored for these functional enrichments. Genes involved in light sensing and
37 ABA signaling were some of the most differently connected genes between the C₃ and CAM
38 *Erycina* species, in agreement with the contrasting diel patterns of stomatal conductance in C₃
39 and CAM plants. Our results suggest changes to transcriptional cascades are important for the
40 transition from C₃ to CAM photosynthesis in *Erycina*.

41

42 **Keywords:** RNA-seq, transcriptomics, photosynthesis, time-course, gene network

43

44

45

46 **Introduction**

47 Crassulacean acid metabolism (CAM) is a carbon concentrating mechanism that evolved
48 multiple times in response to CO₂ limitation caused by water stress. In C₃ species, stomata
49 remain open during the day to assimilate atmospheric CO₂, but water limitation can force
50 stomata to close, resulting in impaired CO₂ fixation at the expense of growth. When water stress
51 is prolonged, stomatal closure in C₃ plants can become debilitating. CAM species circumvent
52 prolonged stomatal closure by opening stomata at night and fix CO₂ nocturnally, when
53 evapotranspiration rates are on average lower. CO₂ is temporarily stored as malic acid in the
54 vacuoles until day time, when stomata close and malic acid is moved back into the cytosol for
55 decarboxylation. The resulting increase of CO₂ levels near ribulose-1,5-bisphosphate
56 carboxylase/oxygenase (RuBisCO) results in highly efficient CO₂ reduction via C₃
57 photosynthesis CAM is associated with a number of anatomical, physiological and genetic
58 change, including alterations to leaf anatomy (Nelson and Sage, 2008; Zambrano et al., 2014),
59 stomatal opening at night, and tight regulation of metabolic genes within day/night cycles.
60 Despite the complexity of these evolutionary novelties, CAM plants are found in a wide range of
61 plant families, including eudicot species in the Euphorbiaceae (Horn et al., 2014) and
62 Caryophyllales (Guralnick et al., 1984; Moore et al., 2017; Winter and Holtum, 2011) and
63 monocot lineages in Agavoideae (Abraham et al., 2016; Heyduk et al., 2016), Orchidaceae
64 (Silvera et al., 2009, 2010), and Bromeliaceae (Crayn et al., 2004).

65
66 The CAM pathway is well-described biochemically (Holtum et al., 2005) and
67 contemporary genomics approaches are beginning to shed light on the genetic basis of CAM
68 (Abraham et al., 2016; Cushman et al., 2008; Dever et al., 2015) (Fig. 1). As CO₂ enters the
69 chloroplast-containing cells as night, it is initially converted to HCO₃⁻ facilitated by a carbonic
70 anhydrase (CA). HCO₃⁻ is then fixed by phosphoenolpyruvate carboxylase (PEPC) using
71 phosphoenolpyruvate (PEP) as the substrate. Carboxylation of PEP results in oxaloacetate
72 (OAA), which is subsequently converted to malic acid by malate dehydrogenase (MDH). Malic
73 acid is then moved into the vacuole for storage. The vacuolar transporter of malic acid is not
74 known for certain, although previous studies have pointed to aluminum-activated malate
75 transporters (ALMT) as a candidate (Kovermann et al., 2007; Yang et al., 2017). During the day,
76 the malic acid is released from the vacuoles either via a passive process or through as-yet
77 undescribed transporter. The malic acid is then decarboxylated to CO₂ and PEP using two
78 decarboxylation pathways: NAD and/or NADP malic enzymes together with pyruvate,
79 phosphate dikinase (PPDK), or MDH and phosphoenolpyruvate carboxykinase (PEPCK)

80
81 While the roles of canonical CAM enzymes are considered novel in CAM species, they
82 are all present in C₃ ancestral species as well. As a result, the evolution of CAM likely involved
83 alterations to gene copies, including changes to protein sequences and regulatory motifs. For
84 example, PEPC in C₃ species can play several roles depending on tissue type and developmental
85 stage, including providing carbon backbones to the citric acid cycle and providing malate for
86 cellular pH balance (Aubry et al., 2011; Winter et al., 2015), but its core function as a
87 carboxylating enzyme remains unchanged in C₃ and CAM species. Studies of molecular
88 evolution of PEPC in CAM species have largely determined that there are CAM-specific copies
89 of the enzyme that are differentially expressed in C₃ and CAM species (Gehrig et al., 2001;
90 Lepiniec et al., 1994; Ming et al., 2015; Silvera et al., 2014). In some cases, these CAM-specific
91 PEPC gene copies have been shown to share sequence similarity across closely related but

92 independently derived CAM taxa (Christin et al., 2014; Silvera et al., 2014). Additionally,
93 genomic screens across many canonical CAM gene promoters have revealed an enrichment of
94 circadian clock motifs (Ming et al., 2015), implicating alterations to transcription factor binding
95 sites during CAM evolution. Because of the strong influence of the internal circadian clock on
96 CAM (Hartwell, 2005), we might expect that genes involved in the CAM regulatory pathway
97 should be controlled by a co-expressed circadian master regulator (Borland et al., 1999; Nimmo,
98 2000; Taybi et al., 2000b).

99
100 Elucidation of regulatory changes requires comparative analysis between closely related
101 C₃ and CAM species, and this can be accomplished through RNA-Seq analyses. One of the
102 largest plant families with multiple origins of CAM is the Orchidaceae; known for floral
103 diversity and inhabiting a broad range of habitats, the evolution of CAM in predominantly
104 epiphytic lineages may have also contributed to orchid diversity (Silvera et al., 2009). Epiphytic
105 species constitute more than 70% of the Orchidaceae (Chase et al., 2015; Gravendeel et al.,
106 2004), and many exhibit different degrees of CAM (Silvera et al., 2005). In a large proportion of
107 these, CAM is weakly expressed relative to C₃. Weakly expressed CAM may represent an
108 evolutionary end point, or may be an important intermediate step on the evolutionary path
109 between constitutive C₃ and constitutive CAM. Because many genera within the Orchidaceae
110 include both C₃ and weak/strong CAM species, the orchids are an attractive family to study the
111 evolution of CAM photosynthesis. The subtribe Oncidiinae is one of the most diverse subtribes
112 within Orchidaceae and it is part of a large epiphytic subfamily (Epidendroideae) in which CAM
113 may have facilitated the expansion into the epiphytic habitat (Silvera et al., 2009). Despite the
114 prevalence of CAM within the subtribe, the genus *Erycina* is particularly interesting because it
115 has both CAM and C₃ species. *Erycina pusilla* is a fast-growing CAM species with
116 transformation capability and has the potential to be a model species for studying CAM
117 photosynthesis in monocots (Lee et al., 2015). Comparative investigations of *E. pusilla* and its C₃
118 relative, *E. crista-galli*, can therefore offer valuable insight into studying the evolution and
119 regulation of CAM photosynthesis in the Orchidaceae. Through comparative, time-course RNA-
120 Seq analysis of *E. pusilla* and *E. crista-galli*, we aim to understand 1) the changes in expression
121 of core CAM genes between C₃ and CAM *Erycina* species and 2) which regulatory changes are
122 required for the evolution of CAM.

123

124 Materials and Methods

125 Plant growth and RNA-Seq tissue collection

126 *Erycina pusilla* (L.) N.H.Williams & M.W.Chase (CAM) seedlings were cultivated on
127 solid PSYP medium comprising 2 g/L Hyponex No. 1, 2 g/L tryptone, 20 g/L sucrose, 0.1 g/L
128 citric acid, and 1 g/L active charcoal in flasks. The pH of the medium is adjusted to 5.4 before
129 autoclaving and gelling with 3 g/L Phytagel. Plants were grown in 12-hour day and 12-hour
130 night conditions over three independent dates in a growth chamber at the University at Buffalo,
131 with temperatures set to 22-25C and lights on at 6 am for a 12 hour photoperiod. Light intensity
132 was between 95-110 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Leaf samples for RNA-sequencing were collected every 4
133 hours directly from plants grown on sealed flasks for the first two experiments (January and
134 February 2015, Set 1 and Set 2 respectively) and every 2 hours from the final experiment
135 (October 2015, Set 3), where both medium-sized and large plants were collected. Because
136 *Erycina* species are considered miniatures and are therefore relatively small for destructive leaf

137 sampling, we use individual genets as biological replicates at each time point. Leaf samples were
138 flash frozen in liquid N₂ and stored at -80°C.
139

140 *Erycina crista-galli* (Rchb.f.) N.H.Williams & M.W.Chase (C₃) plants were wild-
141 collected from Peña Blanca, District of Capira, Republic of Panama at 858m above sea level,
142 then grown and propagated in a commercial orchid greenhouse in Bajo Bonito, District of
143 Capira, Republic of Panama. Plants were fertilized once a week week alternatively with a 20-20-
144 20 or 16-32-16 N-P-K fertilizer. Similarly sized and aged plants were moved into an
145 environmental growth chamber at the Smithsonian Tropical Research Institute laboratories
146 (Panama City, Panama) in April 2016, where they were allowed to acclimate for 48 hours to the
147 following conditions: 12 hour light/dark cycle (lights on 6 a.m.), 25°C/22°C day/night
148 temperatures, 60% humidity, and a light intensity of 30 $\mu\text{mol m}^{-2} \text{s}^{-1}$, which is similar to the light
149 intensity this species would experience naturally. Biological replicates (consisting of entire
150 shoots without root tissue) were sampled every 4 hours over a 24-hour period, starting at ZT0
151 (lights on, 6 a.m.) with 4 replicates per time point. Tissue was flash frozen in liquid nitrogen and
152 stored as described above for *E. pusilla*.
153

154 RNA was isolated from leaf tissue of both *Erycina* species using the RNeasy Plant Mini
155 Kit (Qiagen). RNA samples were subsequently quantified via Nanodrop and checked for
156 integrity with a Bioanalyzer v2100. RNA libraries were constructed using the Kapa mRNA
157 stranded kit with a combinatorial barcoding scheme (Glenn et al., 2016). Libraries were
158 sequenced on an Illumina NextSeq500 with PE75 reads, pooling 30-32 samples per run. A
159 summary of the data can be found in Supplemental Table 1.
160

161 *Gas exchange*

162 Individual shoots (leaves emerging from a common base) of *E. pusilla* and *E. crista-galli*
163 species were individually sealed within a CQP 130 porometer gas-exchange cuvette (Walz,
164 Effeltrich, Germany), located inside an environmental chamber (Environmental Growth
165 Chambers, OH, USA) operating on 12h light (6AM to 6PM) at 28°C, and 12h dark (6PM to
166 6AM) cycle at 22°C. Light intensity inside the chamber was 230 $\mu\text{mol m}^{-2} \text{s}^{-1}$. Plants were
167 watered 3-4 times daily and humidity inside the chamber was maintained at near 60%.
168 Continuous net CO₂ exchange was measured for each plant for up to 8 day/night cycles with data
169 points obtained every 4 minutes. For *E. pusilla*, water was withheld from one of the three plants
170 measured (drought stress) between the fifth and the eighth day; regarding *E. crista-galli*, water
171 was withheld from the third to the fifth day for one plant of the three measured. Data is presented
172 for all 3 replicates of each of the two *Erycina* species in Supplemental Figure 1.
173

174 *Titratable Acidity*

175 *Erycina crista-galli* plants were too small for both transcriptomic and titratable acidity
176 analysis, therefore leaf tissue from this species was collected only for RNA-Seq. Leaf samples
177 from *E. pusilla* were collected from the same plant and at the same time such that half the plant
178 was used for RNA-sequencing and the other half was used for titratable acidity assays. Leaves
179 from mature plants were collected every 4 hours, flash frozen in liquid N₂, weighed, and boiled
180 in 20% ethanol and deionized water. Titratable acidity was measured as the amount of 0.002M
181 NaOH required to neutralize the extract to a pH of 7. Because leaf tissue was limited for *E.*
182 *crista-galli* plants, we conducted titrations on three plants that were not sampled for RNAseq to

183 confirm their status as C₃. Samples were collected in greenhouse conditions at dawn and dusk
184 with three replicates at each time. Titratable acidity was measured as for *E. pusilla* but using
185 0.001M KOH.

186

187 *Transcriptome assembly*

188 An initial *de novo* transcriptome was assembled from Sets 1 and 2 for *E. pusilla*
189 sequences and from all samples sequenced for *E. crista-galli* using Trinity v2.0.6 (Haas et al.,
190 2013). Reads were cleaned using Trimmomatic (Bolger et al., 2014) as implemented in Trinity,
191 and assemblies were made on *in-silico* normalized reads. An initial evaluation of read mapping
192 results from *E. pusilla* Sets 1, 2, and 3 showed a large degree of variation among replicates; to
193 reduce this variation, we used only reads from Sets 1 and 2, as well as medium sized plants from
194 Set 3. All reads for *E. crista-galli* were included in the analysis. These data were further reduced
195 to include only 4 replicates per time points for a total of 24 samples. Replicates were chosen
196 randomly. Read mapping and abundance estimation for transcripts was conducted separately in
197 each species using RSEM v1.3.0 (Li and Dewey, 2011) and Kallisto (Bray et al., 2016).
198 Transcripts with a transcripts per kilobase million mapped (TPM) < 2 were removed and the
199 reads were re-mapped to the filtered assemblies.

200

201 *Ortholog circumscription and isoform filtering*

202 To determine gene family circumscription and annotation, all transcripts were sorted into
203 14 orthogroup gene families from the genomes of the following: *Amborella trichopoda*, *Ananas*
204 *comosus*, *Arabidopsis thaliana*, *Asparagus officinalis*, *Brachypodium distachyon*, *Carica*
205 *papaya*, *Dendrobium catenatum*, *Elaeis guineensis*, *Musa acuminata*, *Oryza sativa*,
206 *Phalaenopsis equestris*, *Solanum lycopersicum*, *Sorghum bicolor*, *Spirodella polyrrhiza*, *Vitis*
207 *vinifera*, and *Zostera marina*. Assembled transcripts were first used to query the genome
208 database using blastx and sorted to gene families (orthogroups) based on best BLAST hit. The
209 gene families were annotated by *Arabidopsis* members, using TAIR 10 (www.arabidopsis.org)
210 classifications. Transcripts were retained only if they 1) had a length less than the maximum
211 sequence of a gene family based on the sequenced genomes and 2) had a length no less than 50%
212 of the minimum sequence length based on sequenced genome members of that gene family.

213

214 Trinity produces both gene components and subsidiary isoforms, which may represent
215 true alternative splice isoforms or allelic or paralogous sequence variants. To mitigate dilution of
216 read mappings to multiple isoforms, we instead used gene components (hereafter referred to as
217 transcripts) for all further analyses (including gene level read mapping from RSEM). For gene
218 tree estimation we took the longest isoform per component per orthogroup, using our
219 minimum/maximum orthogroup filtered data set. Scripts for orthogroup sorting and filtering can
220 be found at [www.github.com/kheyduk/Erycina](https://github.com/kheyduk/Erycina).

221

222 *Time-dependent clustering*

223 To incorporate time into our clustering analysis, we used R software package maSigPro
224 v1.46.0 (Conesa et al., 2006; Nueda et al., 2014), which analyzes expression data for patterns
225 across time by fitting each gene's expression pattern to a polynomial using stepwise regression.
226 Cross-normalized read counts and a negative binomial distribution for the generalized linear
227 models were used. For each transcript, maSigPro estimated up to a 4th degree polynomial and
228 tested the fit via ANOVA. Transcripts that had significantly time-structured expression

229 (Benjamini & Hochberg adjusted $p < 0.05$) were retained while all others were removed from
230 further analysis. Additionally, any genes considered overly influential based on DFBETAS
231 diagnostic (how much an observation affects the estimate of a regression coefficient) (Belsley et
232 al., 1980) were also removed. In total, 1,515 transcripts from *E. pusilla* and 505 transcripts from
233 *E. crista-galli* were removed as influential genes.

234

235 The remaining transcripts that did show time-dependent expression ($n=7,066$ in *E. pusilla*
236 and $n=7,127$ in *E. crista-galli*) were clustered by fuzzy clustering based on similarity in
237 expression profiles. An optimal fuzzifier m , a parameter that determines how much clusters can
238 overlap, was calculated in the Mfuzz package (Kumar and E Futschik, 2007) of R for each
239 species ($m=1.09$ for both *E. pusilla* and *E. crista-galli*). The number of groups k for each species
240 was determined by choosing a value which minimizes the within-group variance (Supplemental
241 Figure 2); a k of 6 was used for both *E. pusilla* and *E. crista-galli*. Z-scores of normalized counts
242 were calculated for each gene in each cluster, as well as a median cluster expression, for each
243 species separately.

244

245 *Gene trees and expression*

246 Gene trees were estimated for phosphoenolpyruvate carboxylase (PEPC) and its kinase
247 (PPCK) by first aligning nucleotide sequences from *Erycina* transcripts and their associated gene
248 family members from the sequenced genomes using PASTA (Mirarab et al., 2014), then
249 estimating trees using RAxML (Stamatakis, 2006). Gene expression for genes of interest was
250 plotted based on averaged transcripts per million mapped (TPM) for each replicate.

251

252 *Network analysis*

253 To identify regulatory candidates possibly involved in CAM and examine the
254 relationships between genes within clusters, we used the ARACNe-AP v1.4 (Lachmann et al.,
255 2016) algorithm to create networks of co-expressed transcripts from both species separately.
256 Briefly, the algorithm randomly samples gene pairs and uses an adaptive partitioning approach to
257 infer a pairwise mutual information (MI) statistic, or measure of statistical dependence, between
258 them. This process is repeated iteratively for a specified number of bootstraps, while at each step
259 removing indirect interactions. A final network is built based on the consensus of all bootstrap
260 runs. Although ARACNe provides an option to specify transcription factors to generate a
261 directed network by only considering interactions with a transcription factor source, we chose to
262 generate an undirected gene co-expression network of genes that were significantly time-
263 structured based on our maSigPro analysis, using 100 bootstrap replicates in ARACNe.

264

265 We imported network data into Cytoscape (Shannon et al., 2003) to generate
266 visualizations and calculate network statistics. Nodes were color coded by their cluster
267 membership and scaled to represent number of connections. Network statistics were exported
268 and further analyzed at the orthogroup level. We calculated which orthogroups had the largest
269 average difference in connectivity between the two species. We first calculated the average
270 connectivity (number of directed edges, output from Cytoscape Network Analysis) for each
271 orthogroup per species, then normalized these via Z-scores and subtracted the Z-score of the
272 orthogroup in *E. pusilla* from that in *E. crista-galli*. Outliers – those orthogroups with the largest
273 difference between species in connectivity – had Z-score differences above and below the upper
274 and lower quantiles (Supplemental Figure 3).

275

276 The outlier orthogroups with large changes to connectivity between species
277 (Supplemental Table 3) were explored for genes of interest. The largest difference in
278 connectivity was found in a E3 ubiquitin ligase gene family shown to play a role in ABA
279 signaling, with the *Arabidopsis* homolog known as ring finger of seed longevity1 (RSL1). To
280 explore differences in network connections of RSL1 between the two species, we employed the
281 diffusion algorithm (Carlin et al., 2017) in Cytoscape which finds strongly interactive nodes to a
282 target of interest. For both species, we found the diffusion network for the RSL1 gene. Only a
283 single gene copy of RSL1 was time-structured in *E. crista-galli*, but *E. pusilla* had two copies
284 found in the ARACNe network. One gene copy had only a single connection to any other gene in
285 the network and was not analyzed further. The other copy in *E. pusilla*, which had 72 directed
286 connections, was used as the center of the diffusion network. Diffusion networks were compared
287 for orthogroup content between species using a hypergeometric test. Gene Ontology (GO) terms
288 were compared for the two RSL1 subnetworks and checked for enrichment using hypergeometric
289 test (using all GO terms found in either ARACNe network as the universe), correcting for
290 multiple testing with Bonferroni-Holm significance correction.

291

292 Results

293 Gas exchange patterns and titratable acidity

294 Gas exchange data collected continuously showed net nighttime CO₂ uptake in CAM *E.*
295 *pusilla* under both well-watered conditions and while drought stressed (Fig. 2a). C₃ *Erycina*
296 *crista-galli* displayed net CO₂ uptake during the light period only. There was no net uptake of
297 CO₂ at night. Nonetheless, under drought stress, a slight decrease in respiratory loss of CO₂ at
298 night may indicate low levels of CAM cycling. Titration data collected from the same plants and
299 at the time of RNA-sampling in *E. pusilla* confirms CAM function in the plants used for gene
300 expression analysis, with a significant increase in leaf titratable acids occurring towards the end
301 of the dark period (Fig. 2A, 6AM), and a reduction in total acids during the day period. Although
302 the C₃ *E. crista-galli* had higher overall levels of leaf acids, there was no significant diurnal
303 fluctuation (Fig. 2b).

304

305 Clustering of genes with time-structured expression profiles

306 After filtering by minimum/maximum length each transcript's orthogroup, 23,596 and
307 26,437 genes were retained in *E. pusilla* and *E. crista-galli*, respectively. Both species had a
308 similar number of genes that were significantly time-structured (~7,000) according to maSigPro.
309 Each species had best fit to k=6 clusters, with three clusters showing nighttime biased expression
310 and three with daytime bias (Fig. 3). Expression of PEPC, the initial carboxylating enzyme in the
311 CO₂ fixation pathway at night, increased in expression just before the onset of darkness in the
312 CAM species *E. pusilla* (Fig. 4A). In contrast, there was a low, but significant, time-structured
313 expression pattern of PEPC in the C₃ species *E. crista-galli* (Fig. 4B). The dedicated kinase,
314 PPCK, which phosphorylates PEPC and allows it to function in the presence of malate, likewise
315 showed a strong nocturnal increase in expression in the CAM species, with similar levels of
316 expression in the C₃ species (Fig. 4B).

317

318 Network Comparisons

319 The network for C₃ *E. crista-galli* had 119,338 directed connections between 4,828
320 nodes, whereas the CAM *E. pusilla* network was notably less connected, with only 76,071

321 connections between 4,591 nodes. Although the number of genes in each network was similar,
322 overall connectivity of *E. pusilla* is easily seen in both the fewer number of connections as well
323 as the mean number of connections (34.3 in *E. pusilla* vs. 50.3 in *E. crista-galli*). As expected,
324 genes from the same co-expressed cluster (Fig. 3) were grouped within the larger ARACNe
325 network for each species (Fig. 5A,C).

326

327 Comparison of network connectivity of the time-structured genes found 149 outlier
328 transcripts that had large species differences in the number of connected directed edges
329 (Additional file 4); these were largely skewed toward increased connectivity in *E. crista-galli*
330 (n=90). Annotations of these outliers revealed a number of genes involved in stomatal
331 opening/closing and ABA signaling. GO term enrichment indicates that outliers that skew
332 toward more connectivity in C₃ *E. crista-galli* were enriched for vacuolar and tonoplast
333 membrane proteins and potassium and calcium transport. Genes that were more connected in
334 CAM *E. pusilla* were enriched for genes involved in aldehyde dehydrogenase activity, among
335 other functions (Supplemental Table 4).

336

337 A E3 ubiquitin ligase also known as ring finger of seed longevity1 (RSL1) had the
338 greatest difference in connectivity between the two species. RSL1 has been shown to be a
339 negative regulator of ABA signaling (Bueso et al., 2014) and was chosen as a center node for
340 comparison between the two species. The diffusion algorithm used to create subnetworks
341 defaults to producing a subnetwork that is 10% of the total nodes in the larger network; as a
342 result, both species subnetworks were roughly the same size, containing about 400 genes.
343 However, the connectivity of those subnetworks differed greatly (Fig. 5B,D); the C₃ *E. crista-*
344 *galli* RSL1 subnetwork contained 30,392 connections, whereas the CAM *E. pusilla* network had
345 only 9,244. The subnetworks differed in their gene content as well. There contained 429 and 427
346 orthogroups in *E. pusilla* and *E. crista-galli*, respectively, but only 57 orthogroups were shared
347 between the two (this was not significantly under-enriched via a hypergeometric test (p=1)).
348 While all of the genes in the *E. crista-galli* RSL1 subnetwork were in night-biased expression
349 clusters (485), *E. pusilla* had more subnetwork genes in day-biased clusters (298) than in night
350 biased ones (162). GO term enrichment indicates both subnetworks are enriched for chloroplast,
351 chloroplast stroma, and photosynthesis (Supplemental Table 5).

352

353 While both subnetworks were centered on RSL1 and generally were enriched for similar
354 types of genes involved in chloroplast functions and photosynthesis, there were substantial
355 differences in gene content between the networks. The focal gene RSL1 acts as a master negative
356 regulator of ABA signaling pathway by targeting pyrabactin resistance 1 (PYR1) and PYR-like
357 (PYL) ABA receptors for degradation. More generally its role in protein ubiquitination is
358 relatively unknown. RSL1 was the third most connected node in the C₃ *E. crista-galli*
359 subnetwork (419 directed connections; most connected node had 423 connections). In CAM *E.*
360 *pusilla*, RSL1 was 173rd out of 460 genes in connectivity. *E. pusilla* had a number of ABA
361 responsive genes in its RSL1 subnetwork that *E. crista-galli* did not, including protein
362 phosphatase 2C (PP2C), a gene encoding a member of the Snf1-related kinase family, plus a
363 homolog of ABA *Overly Sensitive 5*. Recent work has shown that ABA responses in stomata
364 including PYR/PYL and downstream genes are responsible for constitutive stomatal aperture, as
365 well as stomatal responses to drought stress (Gonzalez-Guzman et al., 2012).

366

367 *Erycina crista-galli*, on the other hand, had a number of light sensing and circadian clock
368 genes that CAM *E. pusilla* did not have in the RSL1 subnetwork, including *lov kelch protein 2*
369 (LKP2/ZTL gene family), *time for coffee (TIC)*, *phytochrome B/D (PHYB)*, and *protein*
370 *phosphatase 2A (PP2A)*. LKP2/ZTL and PHYB are both involved in light sensing (blue and
371 red/far-red, respectively). Specifically, LKP2/ZTL genes are thought to regulate light induced
372 protein degradation via their function as E3 ligases (Demarsy and Fankhauser, 2009; Ito et al.,
373 2012), and *ztl* mutants in *Arabidopsis* show a prolonged clock period under constant light due to
374 the lack of degradation of clock components via ZTL (Más et al., 2003; Somers et al., 2000). TIC
375 has been found to be responsible for the amplitude of the circadian clock but is not thought to be
376 directly involved in light signaling (Hall et al., 2003). TIC is also implicated in daytime
377 transcriptional induction via its association with the central circadian oscillator late elongated
378 hypocotyl (LHY) (Ding et al., 2007). Finally, PP2A is a member of a large family of plant
379 phosphoprotein phosphatases (PPP) with several cellular roles (Uhrig et al., 2013). PP2A
380 specifically has been implicated in brassinosteroid signaling, light signaling via
381 dephosphorylation of phototropin2 (Tseng and Briggs, 2010), flowering time control (Kim et al.,
382 2002), as well as the induction of CAM under certain abiotic stresses (Cushman and Bohnert,
383 1999).

384

385 Although the C₃ *E. crista-galli* RSL1 subnetwork contained circadian and light sensing
386 transcripts that were absent in the *E. pusilla* RSL1 subnetwork, these transcripts largely did not
387 have different expression patterns between the two species with the exception of *PHYB* (Fig.
388 6B). The contrasting gene content of the RSL1 subnetwork suggests light sensing and circadian
389 regulatory cascades comprise large differences between C₃ and CAM species, rather than levels
390 of gene expression, which were quite similar.

391

392 Discussion

393 Shared gene expression patterns

394 While traditionally it was thought that canonical CAM genes should have large
395 differences in timing and magnitude of expression between C₃ and CAM species, recent work
396 has highlighted that between closely related C₃ and CAM species, that may not always be the
397 case (Heyduk et al., 2018b). In *Erycina*, it appears that a similar pattern holds. Both the CAM
398 and C₃ species have time-structured expression of PEPC albeit at very different expression
399 levels. While this alone says little about PEPC's function in both species, the high nocturnal
400 expression of PEPC's dedicated kinase, PPCK, in both *E. pusilla* and *E. crista-galli* suggests that
401 PEPC is being phosphorylated in both species and therefore has the need to function in the
402 presence of malate.

403 It is worth noting that all C₃ species have the genes involved in the CAM cycle. Many,
404 including PEPC, function in anaplerotic reactions of the TCA cycle. PEPC has also been shown
405 to have a role in malate production for osmotic regulation of stomatal aperture and in CO₂
406 fixation in guard cells of tobacco (Asai et al., 2000; Daloso et al., 2015). Because most RNA-seq
407 or gene expression studies to date in C₃ species sample during the day, understanding how
408 common nocturnal PEPC expression is across flowering plants will require more nighttime gene
409 expression studies in C₃ species, especially in lineages closely related to CAM species. While
410 nearly all the genes in the CAM CO₂ fixation pathway have known functions in C₃ species,
411 PPCK is a notable exception. Phosphorylation of PEPC by PPCK in CAM and C₄ species is
412 well-described (Jiao and Chollet, 1989; Nimmo et al., 1986; Taybi et al., 2000a); malate and

413 other organic acids act as negative regulators of PEPC, but phosphorylation of PEPC renders it
414 immune to these negative effects. Thus, phosphorylated PEPC via PPCK is required for high
415 levels of CAM and C₄ malic acid production. In C₃ species, however, there is no clear need for
416 heavily phosphorylated PEPC, especially at night, making the expression of *PEPC* and *PPCK* in
417 C₃ *E. crista-galli* intriguing (though see Sullivan et al., 2004 and Fukayama et al., 2006 for work
418 on nocturnal *PPCK* expression in soybean and rice, respectively).

419

420 *Alterations in regulatory pathways between C₃ and CAM orchids*

421 Network analysis of co-expressed genes and subsequent comparisons between species
422 can give insights not only into the changes in expression, but also the degree to which a given
423 gene changes in connectivity between species. Extensive connectivity for a gene has long
424 thought to be a signal of a “hub” or master regulatory gene – one that cannot experience large
425 changes in timing or magnitude of expression without significant perturbations to the entire
426 network. A major assumption of co-expression networks is that they rely on mRNA as an
427 accurate predictor of downstream processes; while this is not always the case, recent work
428 showed that although mRNA and protein networks differed in their gene content, they
429 overlapped in gene ontologies and were predictive of pathway regulation in maize (Walley et al.,
430 2016). Additionally, it has been shown that a correlation exists between connectivity of a gene
431 within a network and the evolutionary conservation of the gene’s sequence across a number of
432 flowering plant species (Masilia et al., 2017). It is therefore somewhat surprising to observe that
433 as many as 149 gene families have large changes in connectivity between the two closely related
434 *Erycina* species.

435

436 The 149 outlier gene families in *Erycina* were enriched for functions in protein
437 degradation via phosphorylation and ubiquitination. While typically differences in phenotype are
438 considered the result of changes in the abundance of gene products, our data highlight the
439 importance of considering protein degradation as well. The differences in connectivity of protein
440 degradation pathway genes were unbiased between species – in other words, genes involved in
441 protein degradation have increased connectivity in both species. More interestingly, genes that
442 had increased connectivity in C₃ *E. crista-galli* were enriched for GO terms involved in
443 potassium and chloride channels and membrane proteins associated with chloroplasts and
444 vacuoles. Greater connectivity of such genes in the C₃ species indicates an increased reliance on
445 ion and metabolite fluxes. In stomatal guard cells, which make up a smaller portion of the whole-
446 leaf transcriptome, these fluxes directly affect stomatal aperture and may play a role in
447 alternative regulation of stomatal opening in C₃ and CAM species.

448

449 *Regulatory changes in ABA, light, and clock perception*

450 Stomatal opening in CAM species has been vastly understudied, despite the opportunities
451 it presents for understanding a fundamental biological process. In C₃ species, stomatal opening is
452 thought to be regulated by blue and red light inputs, whereas stomatal closing is driven by efflux
453 of potassium cations. It remains largely unknown how stomata sense darkness, but experimental
454 data have suggested a large role of CO₂ concentrations on stomatal aperture (Cockburn et al.,
455 1979). Draw down of CO₂ concentrations at night in the intercellular airspace would result in
456 stomatal opening, whereas high concentrations of CO₂ from decarboxylation during the day may
457 promote stomatal closure. CO₂ concentrations undoubtedly play some role in the inverted
458 stomatal aperture of CAM species, but more contemporary genomic work has implicated

459 additional levels of regulation in CAM stomata (Abraham et al., 2016; Cushman and Bohnert,
460 1997; Wai et al., 2017). For example, ABA may be one signaling molecule for nocturnal
461 stomatal closure (Desikan et al., 2004; Gonzalez-Guzman et al., 2012; Merilo et al., 2013). Gene
462 expression results coupled with network analysis in *Erycina* indicate that both ABA signaling
463 and light sensing are likely to be altered. Indeed, the gene with the largest difference in
464 connectivity between species is *RSL1*, which encodes a E3 ubiquitin ligase known to function in
465 stomatal response to ABA. Expression of *RSL1* is higher in CAM *E. pusilla* and is clustered with
466 day-biased genes (Fig. 6A), whereas in C₃ *E. crista-galli* expression is about half that in *E.*
467 *pusilla* and slightly increases in expression during the dark period. These expression patterns are
468 consistent with stomatal regulation between C₃ and CAM species. In *E. crista-galli* nighttime
469 ABA may play a larger role in drought-induced or nighttime stomatal closure than in the CAM
470 *E. pusilla*, where the nocturnal stomatal closure driven by ABA signaling must be repressed to
471 allow for nighttime CO₂ acquisition. It is also unknown what causes daytime stomatal closure in
472 CAM species; while high intracellular CO₂ concentrations may play a role, so might ABA
473 signaling. *RSL1*'s high connectivity to other genes in the subnetwork of *E. crista-galli* suggests
474 that alterations to regulatory networks are also important for fully functional CAM.
475

476 Stomata, while highly responsive to ABA, are also strongly regulated by light inputs. The
477 gene encoding phytochrome B (*phyB*), a photoreceptor that both regulates transcriptional
478 responses to red and far-red light as well as entrains the circadian clock (Goosey et al., 1997;
479 MÁS et al., 2000; Ni et al., 1999), was differentially regulated and expressed in the two *Erycina*
480 species (Fig. 6B). While both species had copies of *phyB* that showed time-structured expression,
481 only *E. crista-galli* had a copy that was in the same network as *RSL1* and had many connections
482 to other genes in the same network. A single copy of *phyB* was time-structured in CAM *E.*
483 *pusilla*, and the expression level relative to copies in C₃ *E. crista-galli* was quite low. Instead, the
484 constitutively expressed copy of *phyB* in *E. pusilla* had the highest expression, but what it's role
485 might be given constant expression across time is unclear. The stark difference in both
486 connectivity and expression levels of *phyB* in *E. pusilla* and *E. crista-galli* suggests that light-
487 induced transcriptional regulation has a greater role in the C₃ species, and that *phyB* mediated
488 transcriptional regulation in CAM species may be significantly reduced. Additionally, the
489 presence of PP2A in the C₃ *E. crista-galli* RSL1 subnetwork, but not in *E. pusilla*, further
490 indicates that light induced responses are differentially regulated (although expression was
491 similar between the two species, Fig. 6D). PP2A is, among many other tasks, responsible for
492 dephosphorylation of photropin 2, which subsequently promotes stomatal opening (Tseng and
493 Briggs, 2010; Uhrig et al., 2013).
494

495 Differences in light input sensing and signaling between C₃ and CAM species is not
496 surprising, but relatively little work has focused on this aspect of CAM biology. Previous work
497 assessed light responses in the facultative CAM species *Portulacaria afra* (Lee and Assmann,
498 1992) and *Mesembryanthemum crystallinum* (Tallman et al., 1997) and showed that both species
499 had reduced stomatal response to blue light signals when relying on the CAM cycle for carbon
500 fixation (though see Ceusters et al., 2014). Additionally, *M. crystallinum* had reduced guard cell
501 zeaxanthin production during the day in the CAM state compared to the C₃ state. The reduction
502 in zeaxanthin in the CAM state was shown to be a result of the downregulation of the pathway,
503 rather than an aberration in guard cell chloroplasts. Changes to regulation and expression of

504 *phyB* in *Erycina* further support significantly altered light-induced pathways in CAM species
505 relative to C₃.
506

507 *TIME FOR COFFEE (TIC)* also stood out in its altered connectivity between the C₃ and
508 CAM species. In C₃ *E. crista-galli*, TIC was present in the RSL1 diffusion network whereas it
509 was not for *E. pusilla*. TIC has been shown to be involved in maintaining the amplitude of the
510 circadian clock in *Arabidopsis* (Ding et al., 2007; Hall et al., 2003), as well as regulating
511 metabolic homeostasis and response to environmental cues (Sanchez-Villarreal et al., 2013). *tic*
512 mutants in *Arabidopsis* showed large phenotypic effects ranging from late flowering to
513 anatomical abnormalities. The *tic* mutants also showed extreme tolerance to drought, likely due
514 to increased amounts of osmolytes such as proline and myo-inositol, as well as an accumulation
515 of starch. As a result of the pleiotropic effects of TIC, altered network status of TIC in CAM *E.*
516 *pusilla* compared to C₃ *E. crista-galli* likely results a complex alteration in phenotype. In
517 general, the mechanism that link the circadian clock and CAM photosynthesis are unknown
518 (Boxall et al., 2005), and research to uncover circadian regulation of CAM is limited to
519 transcriptomic studies. Gene expression comparisons between CAM *Agave* and C₃ *Arabidopsis*
520 revealed changes to the timing of expression of *REVEILLE 1*, a clock output gene that integrates
521 the circadian network to metabolic activity (Yin et al., 2018). While it's possible that changes to
522 the timing of *REVEILLE 1* are required for CAM evolution, expression differences may also be a
523 result of lineage-specific changes to expression unrelated to CAM. Comparisons of closely
524 related C₃ and CAM species of *Erycina* suggest that alteration of transcriptional cascades from
525 circadian oscillators may play a role in the evolution of CAM, rather than large scale changes to
526 the timing or abundance of expression, but additional work to link clock outputs to the CAM
527 phenotype are necessary.
528

529 *Implications for the evolution of CAM in Oncidiinae*

530 Both CAM and C₄ photosynthesis have evolved multiple times across the flowering plant
531 phylogeny, suggesting that the evolution of these complex traits cannot be insurmountably
532 difficult. Recent physiological work demonstrates that the evolution of anatomical traits required
533 for CAM or C₄ often predates the emergence of strong, constitutive carbon concentrating
534 mechanisms (Christin et al., 2013; Heyduk et al., 2016). Other transcriptomic work has shown
535 that closely related C₃ and CAM species share the expression of canonical CAM genes,
536 especially *PEPC* and *PPCK* as seen here in *Erycina* (Heyduk et al., 2018b). It has even been
537 suggested that many C₃ plants already have the nocturnal CAM cycle in place for fixation of
538 respired CO₂ and generation of amino acids (Bräutigam et al., 2017), but this alone is unlikely to
539 entirely explain the repeated and relatively frequent emergence of CAM on the angiosperm
540 phylogeny.
541

542 Indeed it appears that gene expression alone would not facilitate the large-scale transition
543 from C₃ to CAM. Recent comparative work across multiple C₃ and C₄ transcriptomes highlighted
544 the recurrent co-option of highly expressed genes from C₃ species into C₄ (Moreno-Villena et al.,
545 2018). The initial co-option of highly expressed gene copies happened early in the evolutionary
546 trajectory between C₃ and C₄, and later steps included the refinement of C₃ enzymes, including
547 kinetic and tissue specificity. It is quite likely that a similar model of evolution holds for CAM,
548 in that C₃ relatives of CAM lineages have been shown to have similar expression patterns of
549 canonical CAM genes (though, it is worth noting, they are not typically highly expressed in the

550 C₃ species). In *Erycina*, both C₃ and CAM species share similar expression profiles for *PEPC*
551 and *PPCK*, with the latter having nearly identical levels of expression in both taxa. It is possible
552 that low levels of nocturnal CO₂ fixation via *PEPC* evolved in the ancestor of both species for
553 non-photosynthetic reasons; for example, tobacco leaves (Kunitake et al., 1959) and cotton
554 ovules (Dhindsa et al., 1975) show various levels of carbon concentration, and fixation of
555 cytosolic CO₂ via *PEPC* is required to replenish the citric acid cycle (Aubry et al., 2011).
556 Because these pathways already exist, slight upregulation of some components in a shared
557 ancestor may have enabled the origins of CAM in certain lineages (Bräutigam et al., 2017).
558

559 However, gene expression alone clearly does not make a species CAM, and further
560 refinement is necessary. Refinement of CAM may take the form of improving secondary
561 metabolic processes or genomic characteristics that allow for strong and constitutive CAM to
562 exist. For example, fine tuning of carbohydrate turnover is necessary for CAM function (Borland
563 et al., 2016; Ceusters et al., 2014). Experiments placing *Mesembryanthemum crystallinum* in
564 CO₂-free air at night resulted in a dampened CAM cycle (Dodd et al., 2003) and comparative
565 RNA-seq in facultative CAM and C₃/CAM comparisons has shown increased reliance on
566 carbohydrate breakdown as CAM function increases (Brilhaus et al., 2016; Heyduk et al.,
567 2018a). Circadian regulation of CAM genes in pineapple was shown to be the result of promoters
568 that induce evening expression (Ming et al., 2015), and genes that link the clock to metabolic
569 outputs had shifts in expression phasing between *Agave* (CAM) and *Arabidopsis* (C₃) (Yin et al.,
570 2018). Variation in timing and magnitude of expression of various light sensing and clock genes
571 has been described not only here in *Erycina*, but also in *Agave* (Abraham et al., 2016). In all, the
572 growing evidence suggests that the secondary processes that make a CAM plant, including
573 stomatal regulation, light sensing and downstream transcriptional responses, and carbohydrate
574 metabolism feedbacks, undergo fine-tuning along the evolutionary trajectory between C₃ and
575 CAM. Further work that characterizes closely related C₃ and CAM species has the potential to
576 greatly advance our understanding of the integration of nighttime CO₂ acquisition with more
577 complex regulatory pathways.
578

579 **Data Availability**

580 Raw sequence reads are available on NCBI Short Read Archive, under the BioProject
581 PRJNA483943. All scripts used that are not part of existing programs are available at
582 www.github.com/kheyduk.
583

584 **Acknowledgements**

585 The authors would like to sincerely thank Orquideas Tropicales in Panama for generously
586 donating *Erycina crista-galli* plants. Additional gratitude goes to Saravanaraj Ayyampalayam for
587 assistance with data processing, Jeremy Ray for assistance with RNA preparation, and Rishi
588 Masalia for giving feedback on figures. This work was supported by NSF grants to J.L.M, V.A,
589 and K.S (DEB #1442199 and 1442190) and the by Smithsonian Tropical Research Institute.
590

591 **Author Contributions Statement**

592 JLM and VAA conceived and led the project; KS and KW collected, phenotyped plants, and
593 conducted continuous gas exchange measurements, and KS additionally sampled *E. crista-galli*
594 for RNA-seq; VAA and TL grew and sampled *Erycina pusilla* individuals for RNA and
595 physiology; KH and MH sequenced and analyzed the data and prepared the manuscript; JLM

596 oversaw general experimental design, and all authors contributed to the final version of this
597 manuscript.

598

599 **Conflict of Interest**

600 The authors declare no personal, professional, or financial conflicts of interest.

601

602 **References**

603

604 Abraham, P. E., Yin, H., Borland, A. M., Weighill, D., Lim, S. D., De Paoli, H. C., et al. (2016).
605 Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. *Nat. Plants*
606 2, 16178. doi:10.1038/nplants.2016.178.

607 Asai, N., Nakajima, N., Tamaoki, M., Kamada, H., and Kondo, N. (2000). Role of Malate
608 Synthesis Mediated by Phosphoenolpyruvate Carboxylase in Guard Cells in the Regulation
609 of Stomatal Movement. *Plant Cell Physiol.* 41, 10–15. doi:10.1093/pcp/41.1.10.

610 Aubry, S., Brown, N. J., and Hibberd, J. M. (2011). The role of proteins in C3 plants prior to
611 their recruitment into the C4 pathway. *J. Exp. Bot.* 62, 3049–3059. doi:10.1093/jxb/err012.

612 Belsley, D. A., Kuhu, E., and E., W. R. (1980). *Wiley Series in Probability and Statistics.*
613 doi:10.1002/9780470316559.oth1.

614 Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
615 sequence data. *Bioinformatics* 30, 2114–20. doi:10.1093/bioinformatics/btu170.

616 Borland, A. M., Guo, H.-B., Yang, X., and Cushman, J. C. (2016). Orchestration of carbohydrate
617 processing for crassulacean acid metabolism. *Curr. Opin. Plant Biol.* 31, 118–124.
618 doi:10.1016/j.pbi.2016.04.001.

619 Borland, A. M., Hartwell, J., Jenkins, G. I., Wilkins, M. B., Nimmo, H. G., Borland, A. M., et al.
620 (1999). Metabolite Control Overrides Circadian Regulation of Phosphoenolpyruvate
621 Carboxylase Kinase and CO₂ Fixation in Crassulacean Acid Metabolism. *Plant Physiol.*
622 121, 889–896.

623 Boxall, S. F., Foster, J. M., Bohnert, H. J., Cushman, J. C., Nimmo, H. G., and Hartwell, J.
624 (2005). Conservation and Divergence of Circadian Clock Operation in a Stress-Inducible
625 Crassulacean Acid Metabolism Species Reveals Clock Compensation against Stress.
626 *PLANT Physiol.* 137, 969–982. doi:10.1104/pp.104.054577.

627 Bräutigam, A., Schlüter, U., Eisenhut, M., and Gowik, U. (2017). On the Evolutionary Origin of
628 CAM Photosynthesis. *Plant Physiol.* 174, 473–477. doi:10.1104/pp.17.00195.

629 Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-
630 seq quantification. *Nat. Biotechnol.* 34, 525–527. doi:10.1038/nbt.3519.

631 Brilhaus, D., Bräutigam, A., Mettler-Altmann, T., Winter, K., and Weber, A. P. M. (2016).
632 Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid
633 Metabolism in *Talinum triangulare*. *Plant Physiol.* 170, 102–22. doi:10.1104/pp.15.01076.

634 Bueso, E., Rodriguez, L., Lorenzo-Orts, L., Gonzalez-Guzman, M., Sayas, E., Muñoz-Bertomeu,
635 J., et al. (2014). The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and
636 PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. *Plant J.* 80,
637 1057–1071. doi:10.1111/tpj.12708.

638 Carlin, D. E., Demchak, B., Pratt, D., Sage, E., and Ideker, T. (2017). Network propagation in
639 the cytoscape cyberinfrastructure. *PLOS Comput. Biol.* 13, e1005598.
640 doi:10.1371/journal.pcbi.1005598.

641 Ceusters, J., Borland, A. M., Taybi, T., Frans, M., Godts, C., and De Proft, M. P. (2014). Light

642 quality modulates metabolic synchronization over the diel phases of crassulacean acid
643 metabolism. *J. Exp. Bot.* 65, 3705–3714. doi:10.1093/jxb/eru185.

644 Chase, M. W., Cameron, K. M., Freudenstein, J. V., Pridgeon, A. M., Salazar, G., van den Berg,
645 C., et al. (2015). An updated classification of Orchidaceae. *Bot. J. Linn. Soc.* 177, 151–174.
646 doi:10.1111/boj.12234.

647 Christin, P.-A., Arakaki, M., Osborne, C. P., Bräutigam, A., Sage, R. F., Hibberd, J. M., et al.
648 (2014). Shared origins of a key enzyme during the evolution of C4 and CAM metabolism. *J.*
649 *Exp. Bot.* 65, 3609–3621. doi:10.1093/jxb/eru087.

650 Christin, P.-A., Osborne, C. P., Chatelet, D. S., Columbus, J. T., Besnard, G., Hodkinson, T. R.,
651 et al. (2013). Anatomical enablers and the evolution of C4 photosynthesis in grasses. *Proc.*
652 *Natl. Acad. Sci. U. S. A.* 110, 1381–6. doi:10.1073/pnas.1216777110.

653 Cockburn, W., Ting, I. P., and Sternberg, L. O. (1979). Relationships between Stomatal Behavior
654 and Internal Carbon Dioxide Concentration in Crassulacean Acid Metabolism Plants. *Plant*
655 *Physiol.* 63, 1029–32. doi:10.1104/PP.63.6.1029.

656 Conesa, A., Nueda, M. J., Ferrer, A., and Talón, M. (2006). maSigPro: a method to identify
657 significantly differential expression profiles in time-course microarray experiments.
658 *Bioinformatics* 22, 1096–1102. doi:10.1093/bioinformatics/btl056.

659 Crayn, D. M., Winter, K., and Smith, J. A. C. (2004). Multiple origins of crassulacean acid
660 metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. *Proc. Natl.*
661 *Acad. Sci. U. S. A.* 101, 3703–8. doi:10.1073/pnas.0400366101.

662 Cushman, J. C., and Bohnert, H. J. (1997). Molecular Genetics of Crassulacean Acid
663 Metabolism. *Plant Physiol.* 113, 667–676. Available at:
664 <http://www.ncbi.nlm.nih.gov/pubmed/15012212>.

665 Cushman, J. C., and Bohnert, H. J. (1999). CRASSULACEAN ACID METABOLISM:
666 Molecular Genetics. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 50, 305–332.
667 doi:10.1146/annurev.arplant.50.1.305.

668 Cushman, J. C., Tillett, R. L., Wood, J. A., Branco, J. M., and Schlauch, K. A. (2008). Large-
669 scale mRNA expression profiling in the common ice plant, *Mesembryanthemum*
670 *crystallinum*, performing C3 photosynthesis and Crassulacean acid metabolism (CAM). *J.*
671 *Exp. Bot.* 59, 1875–94. doi:10.1093/jxb/ern008.

672 Daloso, D. M., Antunes, W. C., Pinheiro, D. P., Waquim, J. P., AraÚJo, W. L., Loureiro, M. E.,
673 et al. (2015). Tobacco guard cells fix CO₂ by both Rubisco and PEPcase while sucrose acts
674 as a substrate during light-induced stomatal opening. *Plant. Cell Environ.* 38, 2353–2371.
675 doi:10.1111/pce.12555.

676 Demarsy, E., and Fankhauser, C. (2009). Higher plants use LOV to perceive blue light. *Curr.*
677 *Opin. Plant Biol.* 12, 69–74. doi:10.1016/J.PBI.2008.09.002.

678 Desikan, R., Cheung, M.-K., Clarke, A., Golding, S., Sagi, M., Fluhr, R., et al. (2004). Hydrogen
679 peroxide is a common signal for darkness- and ABA-induced stomatal closure in *Pisum*
680 *sativum*. *Funct. Plant Biol.* 31, 913. doi:10.1071/FP04035.

681 Dever, L. V., Boxall, S. F., Kneřová, J., and Hartwell, J. (2015). Transgenic perturbation of the
682 decarboxylation phase of Crassulacean acid metabolism alters physiology and metabolism
683 but has only a small effect on growth. *Plant Physiol.* 167, 44–59.
684 doi:10.1104/pp.114.251827.

685 Dhindsa, R. S., Beasley, C. A., and Ting, I. P. (1975). Osmoregulation in Cotton Fiber:
686 Accumulation of Potassium and Malate during Growth. *Plant Physiol.* 56, 394–8. Available
687 at: <http://www.ncbi.nlm.nih.gov/pubmed/16659311> [Accessed September 21, 2018].

688 Ding, Z., Millar, A. J., Davis, A. M., and Davis, S. J. (2007). TIME FOR COFFEE encodes a
689 nuclear regulator in the *Arabidopsis thaliana* circadian clock. *Plant Cell* 19, 1522–36.
690 doi:10.1105/tpc.106.047241.

691 Dodd, A. N., Griffiths, H., Taybi, T., Cushman, J. C., and Borland, A. M. (2003). Integrating diel
692 starch metabolism with the circadian and environmental regulation of Crassulacean acid
693 metabolism in *Mesembryanthemum crystallinum*. *Planta* 216, 789–797.
694 doi:10.1007/s00425-002-0930-2.

695 Fukayama, H., Tamai, T., Taniguchi, Y., Sullivan, S., Miyao, M., and Nimmo, H. G. (2006).
696 Characterization and functional analysis of phospho *enol* pyruvate carboxylase kinase genes
697 in rice. *Plant J.* 47, 258–268. doi:10.1111/j.1365-313X.2006.02779.x.

698 Gehrig, H., Heute, V., and Kluge, M. (2001). New partial sequences of phosphoenolpyruvate
699 carboxylase as molecular phylogenetic markers. *Mol. Phylogenet. Evol.* 20, 262–274.
700 doi:10.1006/mpev.2001.0973.

701 Glenn, T. C., Nilsen, R., Kieran, T. J., Finger, J. W., Pierson, T. W., Bentley, K. E., et al. (2016).
702 Adapterama I: Universal stubs and primers for thousands of dual-indexed Illumina libraries
703 (iTru & iNext). *bioRxiv*. Available at:
704 <http://biorxiv.org/content/early/2016/06/15/049114> [Accessed May 31, 2017].

705 Gonzalez-Guzman, M., Pizzio, G. A., Antoni, R., Vera-Sirera, F., Merilo, E., Bassel, G. W., et
706 al. (2012). *Arabidopsis* PYR/PYL/RCAR receptors play a major role in quantitative
707 regulation of stomatal aperture and transcriptional response to abscisic acid. *Plant Cell* 24,
708 2483–96. doi:10.1105/tpc.112.098574.

709 Goosey, L., Palecanda, L., and Sharrock, R. A. (1997). Differential patterns of expression of the
710 *Arabidopsis* PHYB, PHYD, and PHYE phytochrome genes. *Plant Physiol.* 115, 959–69.
711 doi:10.1104/PP.115.3.959.

712 Gravendeel, B., Smithson, A., Slik, F. J. W., and Schuiteman, A. (2004). Epiphytism and
713 pollinator specialization: drivers for orchid diversity? *Philos. Trans. R. Soc. Lond. B. Biol.*
714 *Sci.* 359, 1523–1535. doi:10.1098/rstb.2004.1529.

715 Guralnick, L. J., Rorabaugh, P. A., and Hanscom, Z. (1984). Seasonal Shifts of Photosynthesis in
716 *Portulacaria afra* (L.) Jacq. *Plant Physiol.* 76, 643–646. doi:10.1104/pp.76.3.643.

717 Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Philip, D., Bowden, J., et al. (2013).
718 *De novo transcript sequence reconstruction from RNA-Seq: reference generation and*
719 *analysis with Trinity*. *Nature Protocols* doi:10.1038/nprot.2013.084.De.

720 Hall, A., Bastow, R. M., Davis, S. J., Hanano, S., McWatters, H. G., Hibberd, V., et al. (2003).
721 The TIME FOR COFFEE gene maintains the amplitude and timing of *Arabidopsis*
722 circadian clocks. *Plant Cell* 15, 2719–29. doi:10.1105/tpc.013730.

723 Hartwell, J. (2005). The co-ordination of central plant metabolism by the circadian clock.
724 *Biochem. Soc. Trans.* 33, 945–8. doi:10.1042/BST20050945.

725 Heyduk, K., McKain, M. R., Lalani, F., and Leebens-Mack, J. (2016). Evolution of CAM
726 anatomy predates the origins of Crassulacean acid metabolism in the Agavoideae
727 (Asparagaceae). *Mol. Phylogenet. Evol.* 105, 102–113.

728 Heyduk, K., Ray, J. N., Ayyampalayam, S., and Leebens-Mack, J. (2018a). Shifts in gene
729 expression profiles are associated with weak and strong Crassulacean acid metabolism. *Am.*
730 *J. Bot.* doi:10.1002/ajb2.1017.

731 Heyduk, K., Ray, J. N., Ayyampalayam, S., Moledina, N., Borland, A., Harding, S., et al.
732 (2018b). Nocturnal expression of Crassulacean acid metabolism (CAM) genes predates the
733 origin of CAM in the genus *Yucca*. *bioRxiv*, 371344. doi:10.1101/371344.

734 Holtum, J. A. M., Smith, J. A. C., and Neuhaus, H. E. (2005). Intracellular transport and
735 pathways of carbon flow in plants with crassulacean acid metabolism. *Funct. Plant Biol.* 32,
736 429. doi:10.1071/FP04189.

737 Horn, J. W., Xi, Z., Riina, R., Peirson, J. A., Yang, Y., Dorsey, B. L., et al. (2014). Evolutionary
738 bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway. *Evolution (N.*
739 *Y.*) 68, 3485–3504. doi:10.1111/evo.12534.

740 Ito, S., Song, Y. H., and Imaizumi, T. (2012). LOV Domain-Containing F-Box Proteins: Light-
741 Dependent Protein Degradation Modules in Arabidopsis. *Mol. Plant* 5, 573–582.
742 doi:10.1093/MP/SSS013.

743 Jiao, J.-A., and Chollet, R. (1989). Regulatory seryl-phosphorylation of C4 phosphoenolpyruvate
744 carboxylase by a soluble protein kinase from maize leaves. *Arch. Biochem. Biophys.* 269,
745 526–535. doi:10.1016/0003-9861(89)90136-7.

746 Kim, D.-H., Kang, J.-G., Yang, S.-S., Chung, K.-S., Song, P.-S., and Park, C.-M. (2002). A
747 phytochrome-associated protein phosphatase 2A modulates light signals in flowering time
748 control in Arabidopsis. *Plant Cell* 14, 3043–56. doi:10.1105/TPC.005306.

749 Kovermann, P., Meyer, S., Hörtensteiner, S., Picco, C., Scholz-Starke, J., Ravera, S., et al.
750 (2007). The Arabidopsis vacuolar malate channel is a member of the ALMT family. *Plant*
751 *J.* 52, 1169–1180. doi:10.1111/j.1365-313X.2007.03367.x.

752 Kumar, L., and E Futschik, M. (2007). Mfuzz: a software package for soft clustering of
753 microarray data. *Bioinformation* 2, 5–7. Available at:
754 <http://www.ncbi.nlm.nih.gov/pubmed/18084642> [Accessed September 20, 2016].

755 Kunitake, G., Stitt, C., and Saltman, P. (1959). Dark Fixation of CO(2) by Tobacco Leaves.
756 *Plant Physiol.* 34, 123–7. doi:10.1104/PP.34.2.123.

757 Lachmann, A., Giorgi, F. M., Lopez, G., and Califano, A. (2016). ARACNe-AP: Gene network
758 reverse engineering through adaptive partitioning inference of mutual information.
759 *Bioinformatics* 32, 2233–2235. doi:10.1093/bioinformatics/btw216.

760 Lee, D. M., and Assmann, S. M. (1992). Stomatal responses to light in the facultative
761 Crassulacean acid metabolism species, Portulacaria afra. *Physiol. Plant.* 85, 35–42.
762 doi:10.1111/j.1399-3054.1992.tb05260.x.

763 Lee, S. H., Li, C. W., Liau, C. H., Chang, P. Y., Liao, L. J., Lin, C. S., et al. (2015).
764 Establishment of an Agrobacterium-mediated genetic transformation procedure for the
765 experimental model orchid Erycina pusilla. *Plant Cell. Tissue Organ Cult.* 120, 211–220.
766 doi:10.1007/s11240-014-0596-z.

767 Lepiniec, L., Vidal, J., Chollet, R., Gadal, P., and Cretin, C. (1994). Phosphoenolpyruvate
768 carboxylase: structure, regulation and evolution. *Plant Sci.* 99, 111–124. doi:10.1016/0168-
769 9452(94)90168-6.

770 Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data
771 with or without a reference genome. *BMC Bioinformatics* 12, 323. doi:10.1186/1471-2105-
772 12-323.

773 Más, P., Devlin, P. F., Panda, S., and Kay, S. A. (2000). Functional interaction of phytochrome B
774 and cryptochrome 2. *Nature* 408, 207–211. doi:10.1038/35041583.

775 Más, P., Kim, W.-Y., Somers, D. E., and Kay, S. A. (2003). Targeted degradation of TOC1 by
776 ZTL modulates circadian function in Arabidopsis thaliana. *Nature* 426, 567–570.
777 doi:10.1038/nature02163.

778 Masalia, R. R., Bewick, A. J., Burke, J. M., Irizarry, R., Bertranpetti, J., and Laayouni, H.
779 (2017). Connectivity in gene coexpression networks negatively correlates with rates of

780 molecular evolution in flowering plants. *PLoS One* 12, e0182289.
781 doi:10.1371/journal.pone.0182289.

782 Merilo, E., Laanemets, K., Hu, H., Xue, S., Jakobson, L., Tulva, I., et al. (2013). PYR/RCAR
783 receptors contribute to ozone-, reduced air humidity-, darkness-, and CO₂-induced stomatal
784 regulation. *Plant Physiol.* 162, 1652–68. doi:10.1104/pp.113.220608.

785 Ming, R., VanBuren, R., Wai, C. M., Tang, H., Schatz, M. C., Bowers, J. E., et al. (2015). The
786 pineapple genome and the evolution of CAM photosynthesis. *Nat. Genet.* 47, 1435–42.
787 doi:10.1038/ng.3435.

788 Mirarab, S., Nguyen, N., and Warnow, T. (2014). “PASTA: Ultra-Large Multiple Sequence
789 Alignment,” in *Research in Computational Molecular Biology: 18th Annual International
790 Conference, RECOMB 2014, Pittsburgh, PA, USA, April 2-5, 2014, Proceedings*, ed. R.
791 Sharan (Cham: Springer International Publishing), 177–191. doi:10.1007/978-3-319-05269-
792 4_15.

793 Moore, A., de Vos, J. M., Hancock, L. P., Goolsby, E., and Edwards, E. J. (2017). Targeted
794 Enrichment of Large Gene Families for Phylogenetic Inference: Phylogeny and Molecular
795 Evolution of Photosynthesis Genes in the Portullugo (Caryophyllales). *bioRxiv*. Available
796 at: <http://biorxiv.org/content/early/2017/06/04/145995> [Accessed June 19, 2017].

797 Moreno-Villena, J. J., Dunning, L. T., Osborne, C. P., and Christin, P.-A. (2018). Highly
798 Expressed Genes Are Preferentially Co-Opted for C4 Photosynthesis. *Mol. Biol. Evol.* 35,
799 94–106. doi:10.1093/molbev/msx269.

800 Nelson, E. A., and Sage, R. F. (2008). Functional constraints of CAM leaf anatomy: tight cell
801 packing is associated with increased CAM function across a gradient of CAM expression. *J.
802 Exp. Bot.* 59, 1841–50. doi:10.1093/jxb/erm346.

803 Ni, M., Tepperman, J. M., and Quail, P. H. (1999). Binding of phytochrome B to its nuclear
804 signalling partner PIF3 is reversibly induced by light. *Nature* 400, 781–784.
805 doi:10.1038/23500.

806 Nimmo, G. A., Nimmo, H. G., Hamilton, I. D., Fewson, C. A., and Wilkins, M. B. (1986).
807 Purification of the phosphorylated night form and dephosphorylated day form of
808 phosphoenolpyruvate carboxylase from *Bryophyllum fedtschenkoi*. *Biochem. J.* 239, 213–
809 20. doi:10.1042/BJ2390213.

810 Nimmo, H. G. (2000). The regulation of phosphoenolpyruvate carboxylase in CAM plants.
811 *Trends Plant Sci.* 5, 75–80. doi:10.1016/S1360-1385(99)01543-5.

812 Nueda, M. J., Tarazona, S., and Conesa, A. (2014). Next maSigPro: updating maSigPro
813 bioconductor package for RNA-seq time series. *Bioinformatics* 30, 2598–2602.
814 doi:10.1093/bioinformatics/btu333.

815 Sanchez-Villarreal, A., Shin, J., Bujdoso, N., Obata, T., Neumann, U., Du, S.-X., et al. (2013).
816 *TIME FOR COFFEE* is an essential component in the maintenance of metabolic
817 homeostasis in *Arabidopsis thaliana*. *Plant J.* 76, n/a-n/a. doi:10.1111/tpj.12292.

818 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003).
819 Cytoscape: a software environment for integrated models of biomolecular interaction
820 networks. *Genome Res.* 13, 2498–504. doi:10.1101/gr.1239303.

821 Silvera, K., Santiago, L. S., Cushman, J. C., and Winter, K. (2009). Crassulacean Acid
822 Metabolism and Epiphytism Linked to Adaptive Radiations in the Orchidaceae. *Plant
823 Physiol.* 149. Available at: <http://www.plantphysiol.org/content/149/4/1838.short> [Accessed
824 June 21, 2017].

825 Silvera, K., Santiago, L. S., Cushman, J. C., and Winter, K. (2010). The incidence of

826 crassulacean acid metabolism in Orchidaceae derived from carbon isotope ratios: a checklist
827 of the flora of Panama and Costa Rica. *Bot. J. Linn. Soc.* 163, 194–222. doi:10.1111/j.1095-
828 8339.2010.01058.x.

829 Silvera, K., Santiago, L. S., and Winter, K. (2005). Distribution of crassulacean acid metabolism
830 in orchids of Panama: evidence of selection for weak and strong modes. *Funct. Plant Biol.*
831 32, 397. doi:10.1071/FP04179.

832 Silvera, K., Winter, K., Rodriguez, B. L., Albion, R. L., and Cushman, J. C. (2014). Multiple
833 isoforms of phosphoenolpyruvate carboxylase in the Orchidaceae (subtribe Oncidiinae):
834 implications for the evolution of crassulacean acid metabolism. *J. Exp. Bot.* 65, 3623–36.
835 doi:10.1093/jxb/eru234.

836 Somers, D. E., Schultz, T. F., Milnamow, M., and Kay, S. A. (2000). ZEITLUPE Encodes a
837 Novel Clock-Associated PAS Protein from Arabidopsis. *Cell* 101, 319–329.
838 doi:10.1016/S0092-8674(00)80841-7.

839 Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
840 thousands of taxa and mixed models. *Bioinformatics* 22, 2688–90.
841 doi:10.1093/bioinformatics/btl446.

842 Sullivan, S., Jenkins, G. I., and Nimmo, H. G. (2004). Roots, Cycles and Leaves. Expression of
843 the Phosphoenolpyruvate Carboxylase Kinase Gene Family in Soybean. *Plant Physiol.* 135.
844 Available at: <http://www.plantphysiol.org/content/135/4/2078.full> [Accessed September 14,
845 2017].

846 Tallman, G., Zhu, J., Mawson, B. T., Amodeo, G., Nouhi, Z., Levy, K., et al. (1997). Induction
847 of CAM in *Mesembryanthemum crystallinum* Abolishes the Stomatal Response to Blue
848 Light and Light-Dependent Zeaxanthin Formation in Guard Cell Chloroplasts. *Plant Cell
849 Physiol.* 38, 236–242. doi:10.1093/oxfordjournals.pcp.a029158.

850 Taybi, T., Patil, S., Chollet, R., and Cushman, J. C. (2000a). A minimal serine/threonine protein
851 kinase circadianly regulates phosphoenolpyruvate carboxylase activity in crassulacean acid
852 metabolism-induced leaves of the common ice plant. *Plant Physiol.* 123, 1471–82.
853 Available at:
854 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1700033/> [Accessed October 10, 2015].

855 Taybi, T., Patil, S., Chollet, R., Cushman, J. C., Taybi, T., Patil, S., et al. (2000b). A Minimal
856 Serine / Threonine Protein Kinase Circadianly Regulates Phosphoenolpyruvate Carboxylase
857 Activity in Crassulacean Acid Metabolism-Induced Leaves of the Common Plant. *Plant
858 Physiol.* 123, 1471–1481.

859 Tseng, T.-S., and Briggs, W. R. (2010). The *Arabidopsis* *rcn1-1* mutation impairs
860 dephosphorylation of *Phot2*, resulting in enhanced blue light responses. *Plant Cell* 22, 392–
861 402. doi:10.1105/tpc.109.066423.

862 Uhrig, R. G., Labandera, A.-M., and Moorhead, G. B. (2013). *Arabidopsis* PPP family of
863 serine/threonine protein phosphatases: many targets but few engines. *Trends Plant Sci.* 18,
864 505–513. doi:10.1016/J.TPLANTS.2013.05.004.

865 Wai, C. M., VanBuren, R., Zhang, J., Huang, L., Miao, W., Edger, P. P., et al. (2017). Temporal
866 and spatial transcriptomic and microRNA dynamics of CAM photosynthesis in pineapple.
867 *Plant J.* doi:10.1111/tpj.13630.

868 Walley, J. W., Sartor, R. C., Shen, Z., Schmitz, R. J., Wu, K. J., Urich, M. A., et al. (2016).
869 Integration of omic networks in a developmental atlas of maize. *Science* 353, 814–8.
870 doi:10.1126/science.aag1125.

871

872 Winter, K., and Holtum, J. A. M. (2011). Induction and reversal of crassulacean acid metabolism
873 in *Calandrinia polyandra*: effects of soil moisture and nutrients. *Funct. Plant Biol.* 38, 576–
874 582. Available at: <https://doi.org/10.1071/FP11028>.

875 Winter, K., Holtum, J. A. M., and Smith, J. A. C. (2015). Crassulacean acid metabolism: a
876 continuous or discrete trait? *New Phytol.* doi:10.1111/nph.13446.

877 Yang, X., Hu, R., Yin, H., Jenkins, J., Shu, S., Tang, H., et al. (2017). The Kalanchoë genome
878 provides insights into convergent evolution and building blocks of crassulacean acid
879 metabolism. *Nat. Commun.* 8. doi:10.1038/s41467-017-01491-7.

880 Yin, H., Guo, H.-B., Weston, D. J., Borland, A. M., Ranjan, P., Abraham, P. E., et al. (2018).
881 Diel rewiring and positive selection of ancient plant proteins enabled evolution of CAM
882 photosynthesis in *Agave*. *BMC Genomics* 19, 588. doi:10.1186/s12864-018-4964-7.

883 Zambrano, V. A. B., Lawson, T., Olmos, E., Fernández-García, N., and Borland, A. M. (2014).
884 Leaf anatomical traits which accommodate the facultative engagement of crassulacean acid
885 metabolism in tropical trees of the genus *Clusia*. *J. Exp. Bot.* 65, 3513–23.
886 doi:10.1093/jxb/eru022.

887

888

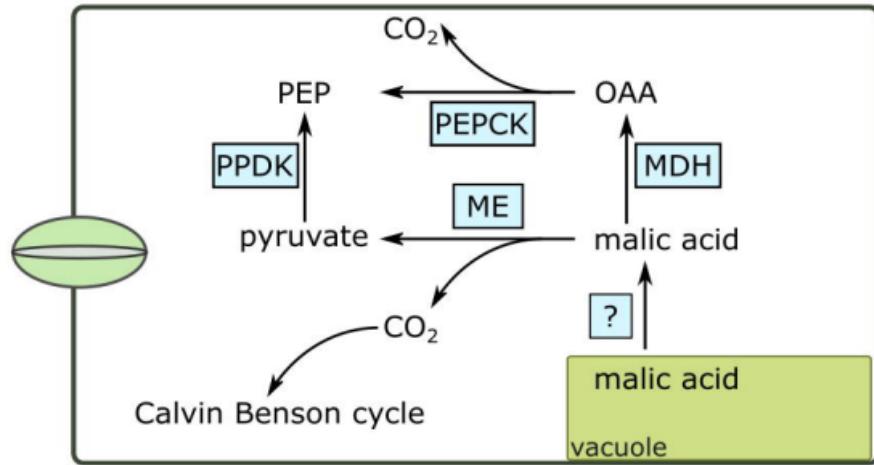
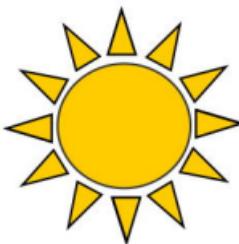
889

890 **Figure 1** - A simplified diagram of the Crassulacean acid metabolism (CAM) pathway under day
891 and night conditions. ALMT9 – aluminum activated malate transporter; CA – carbonic
892 anhydrase; MDH – malate dehydrogenase; OAA – oxaloacetate; ME – malic enzyme (NAD or
893 NADP); PEPC – phosphoenolpyruvate; PEPCK – PEP carboxykinase; PPCK – PEPC kinase;
894 PPDK – pyruvate, phosphate dikinase.

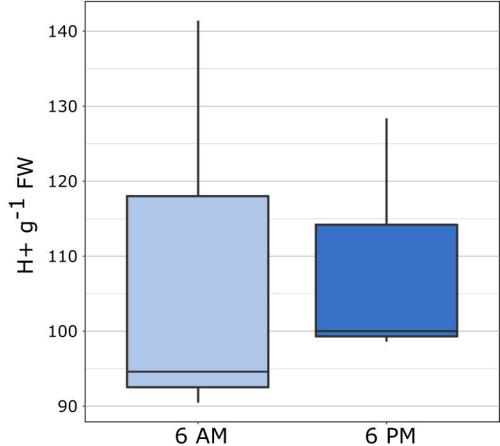
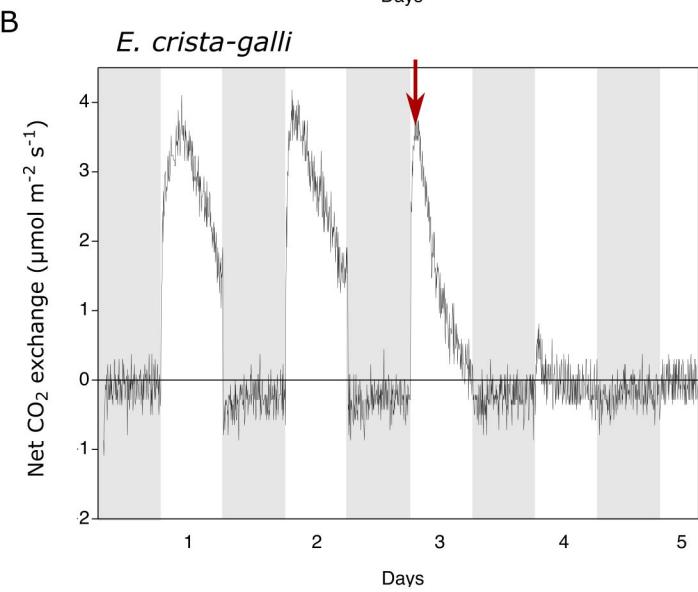
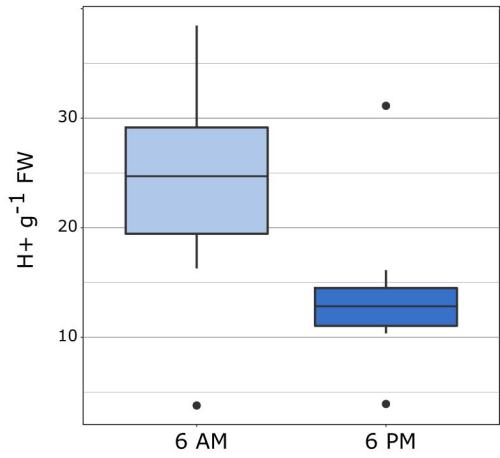
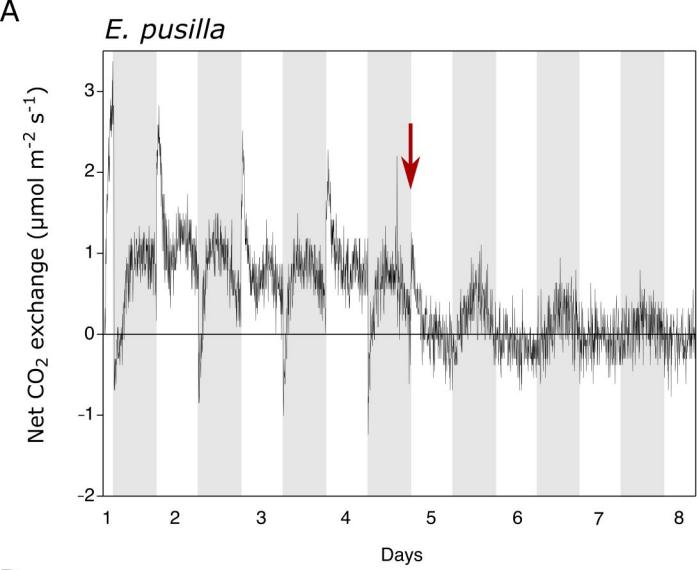
895

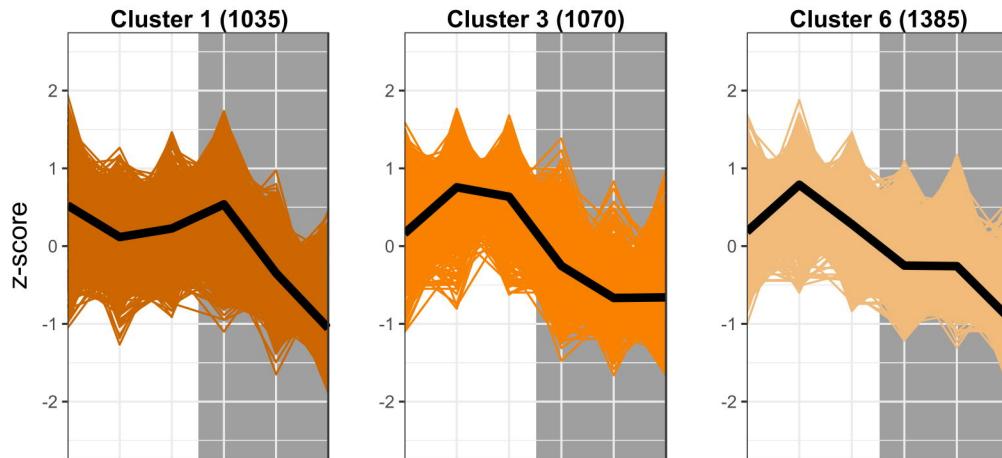
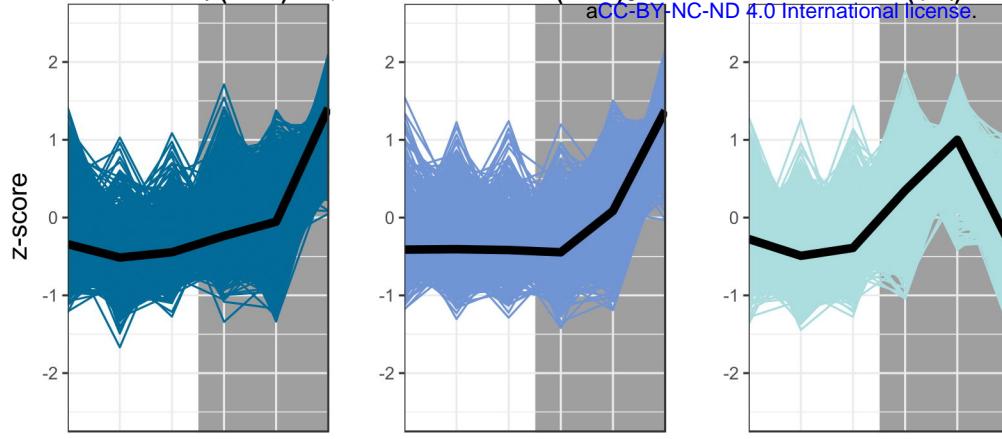
896 **Figure 2** – Gas exchange and titratable acidity for A) *Erycina pusilla* and B) *Erycina crista-*
897 *galli*. Gas exchange is shown for a single plant; replicate plant gas exchange plots can be found
898 in Supplemental Figure 1. Drought induction is indicated with a red arrow. Titrations are shown
899 for dawn and dusk; full titratable acidity values are in Supplemental Table 2.

900 **Figure 3** – Expression z-scores for each gene in each cluster for both A) *E. pusilla* and B) *E.*
901 *crista-galli*, with median expression shown in the black line. Clusters represent co-expressed
902 genes within each species' time-structured transcripts. Cool colors (blue and purple) are clusters
903 with nighttime biased expression, whereas warmer colors (orange and yellow) are clusters whose
904 transcripts increase in expression during the day.

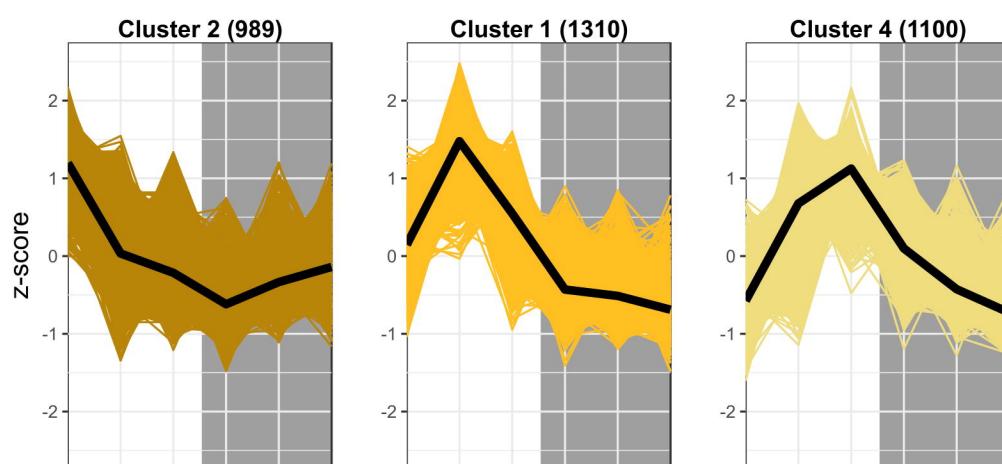
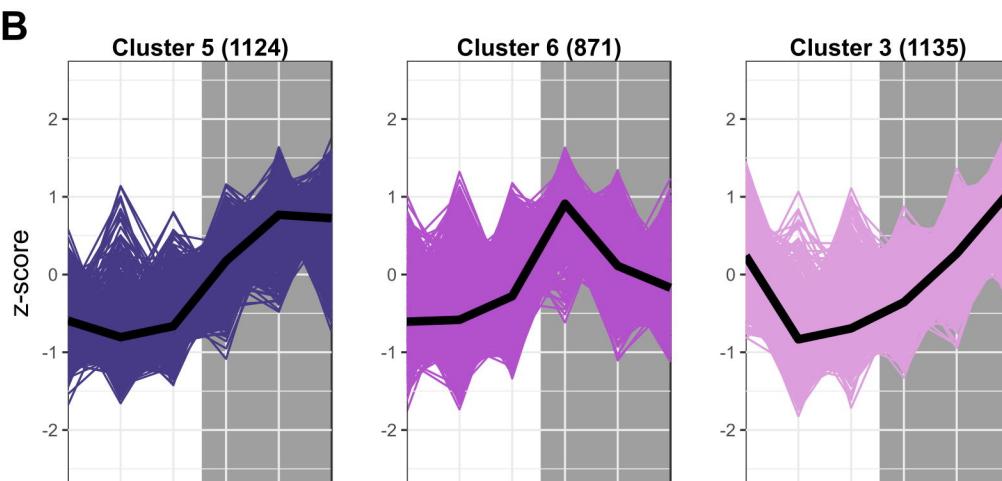



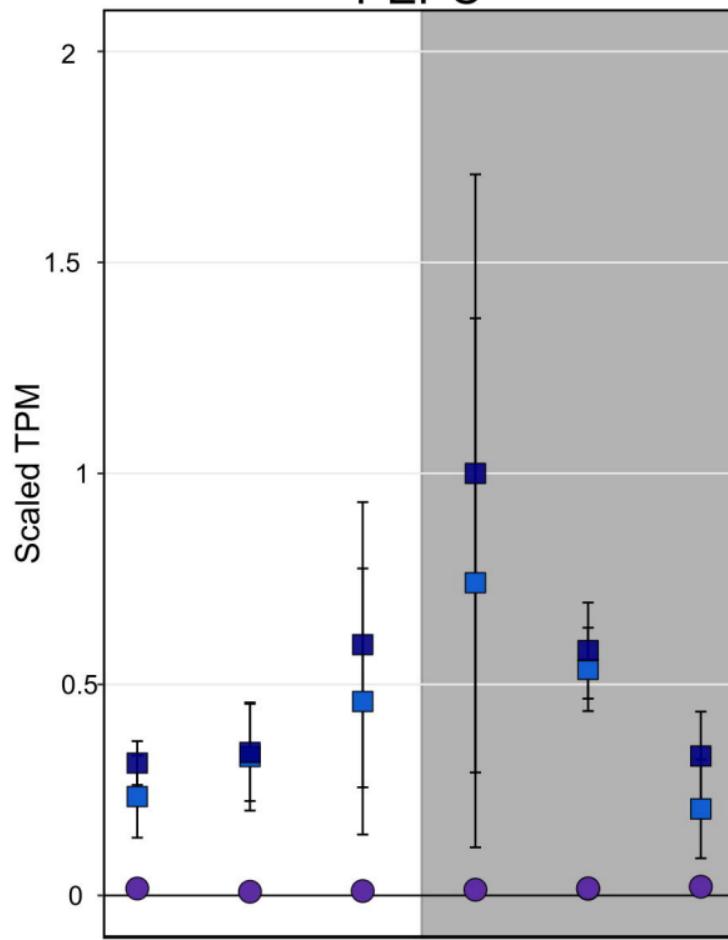
905

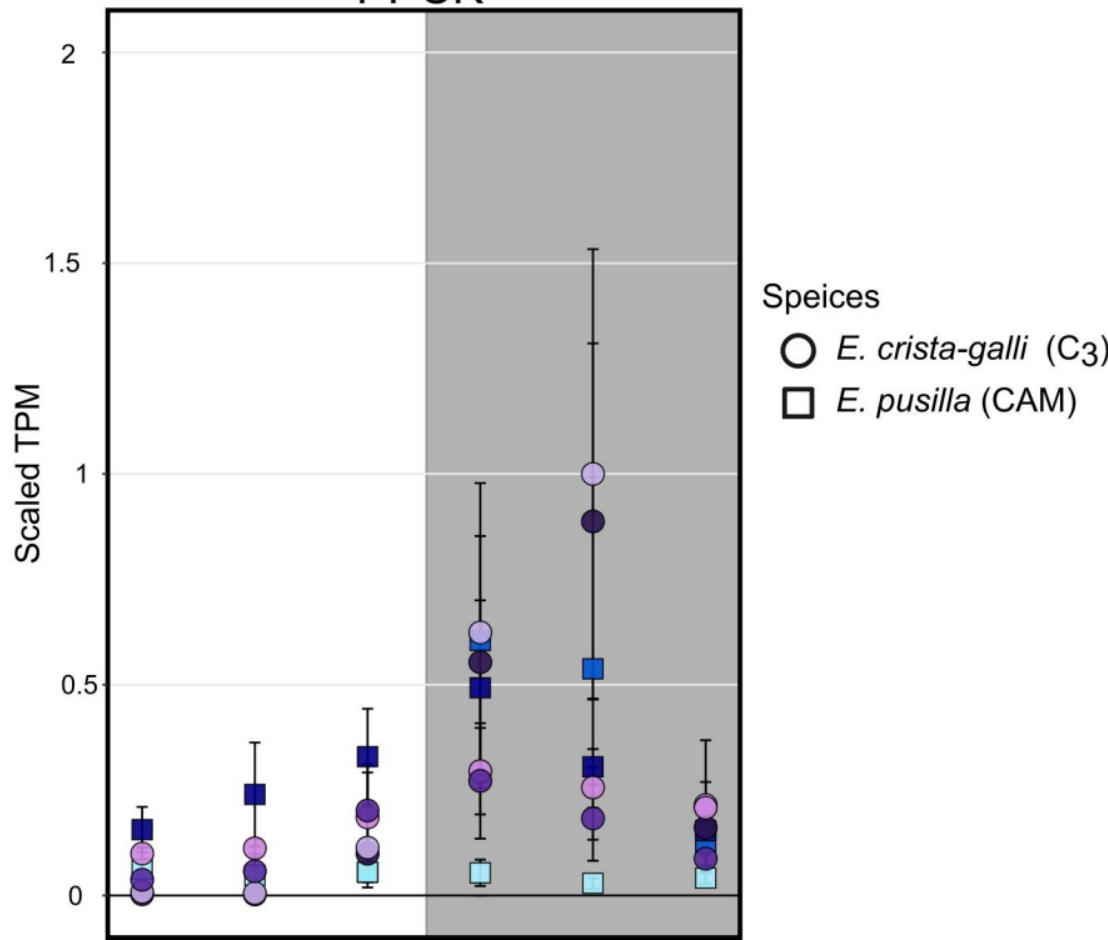




906 **Figure 4** – Expression of A) phosphoenolpyruvate carboxylase (PEPC) and B) PEPC kinase in
907 *E. pusilla* (squares, blue tones) and *E. crista-galli* (circles, purple tones). Different shades of
908 color represent different assembled gene copies, and only transcripts that were found to be
909 significantly time-structured are shown. Average TPM and standard deviation, scaled to the
910 maximum mean TPM value across all copies and species, is plotted for all 6 time points, with the
911 grey background indicating nighttime samples.



912 **Figure 5** – Network constructions of A) *E. pusilla* and C) *E. crista-galli* based on ARACNe
913 network analysis, and the ring finger seed longevity1 (RSL1) subnetworks for B) *E. pusilla* and
914 D) *E. crista-galli* calculated via the diffusion algorithm in Cytoscape. Colors correspond to

915 Figure 3 cluster colors – cooler colors (blues in A and B and purples in C and D) are clusters that
916 have an increase in expression at night and warmer colors (oranges in A and B and yellows in C
917 and D) are clusters that have increases in expression during the day. Dots represent genes, scaled
918 by the number of edges (maximum number of directed edges=435).

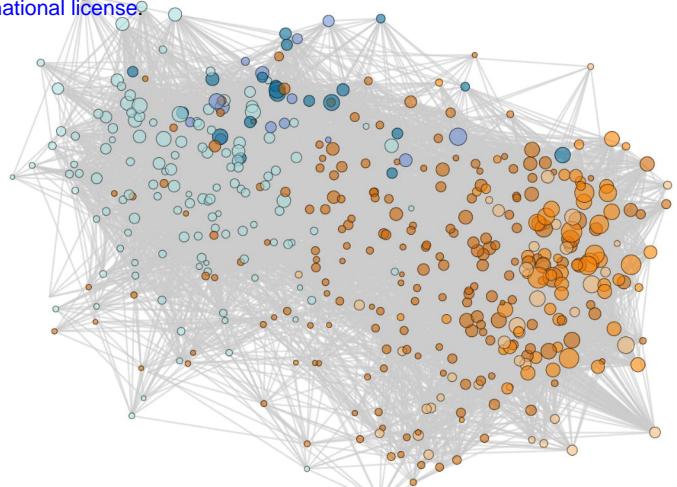
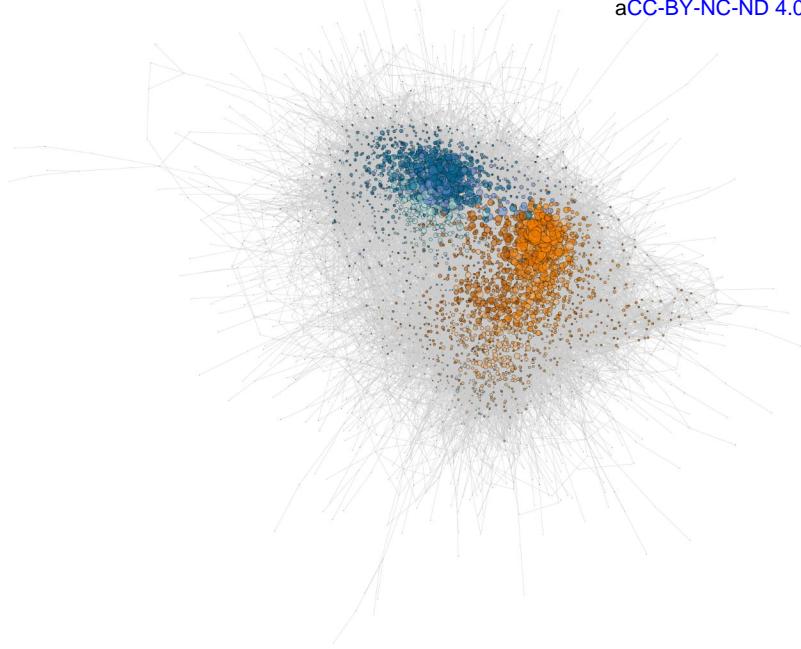
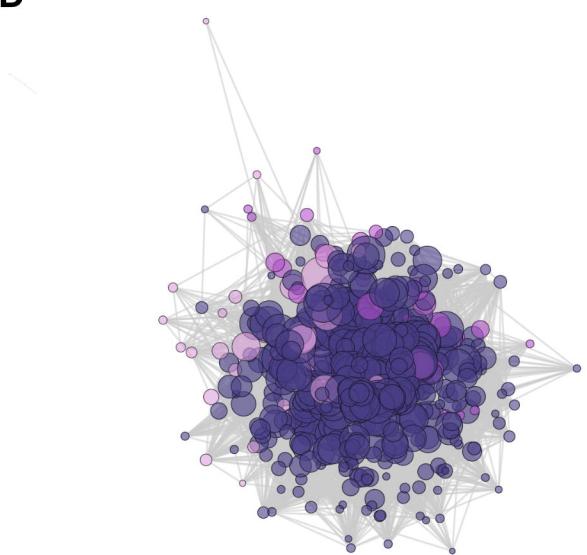
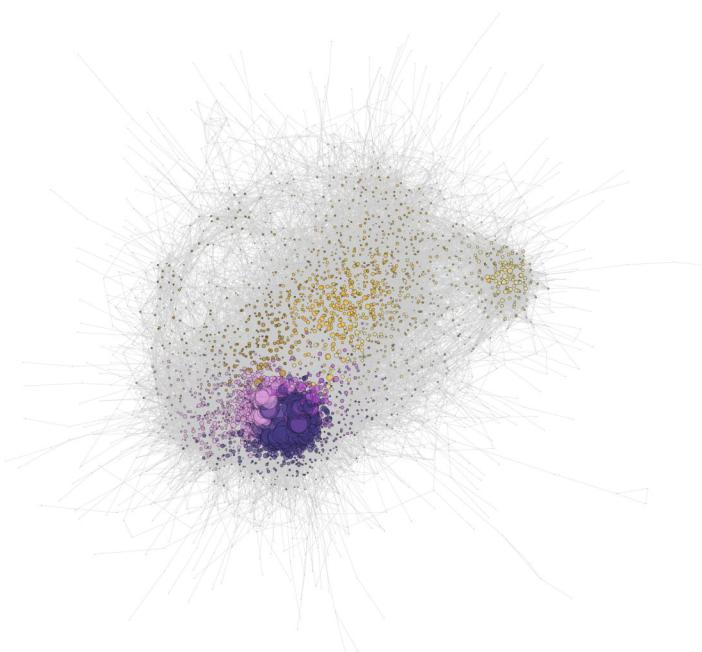


919 **Figure 6** - Expression of A) ring finger of seed longevity 1 (RSL1), B) phytochrome B/D
920 (PHYB) C) time for coffee (TIC), and D) protein phosphatase 2A in *E. pusilla* (squares) and *E.*
921 *crista-galli* (circles). Points are colored by which category of cluster they belong to: blues and
922 purples are genes with increases in expression in the dark in *E. pusilla* and *E. crista-galli*,
923 respectively, while oranges and yellows are genes with increases in daytime expression in *E.*
924 *pusilla* and *E. crista-galli*, respectively (see Fig. 3). Time-structured genes are marked with an
925 asterisk, while those that were not significantly time-structured are shown in greys. Number of
926 directed edges per gene is shown if they belonged to the RSL1-subnetwork. Average TPM and
927 standard deviation, scaled to the maximum mean TPM value across all copies and species, is
928 plotted for all 6 time points, with the grey background indicating nighttime samples.


Erycina pusilla (CAM)


Erycina crista-galli (C₃)

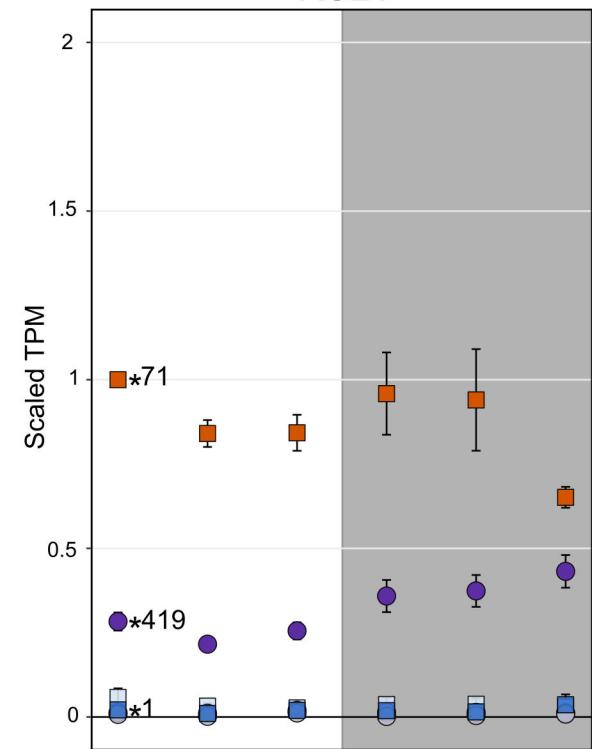
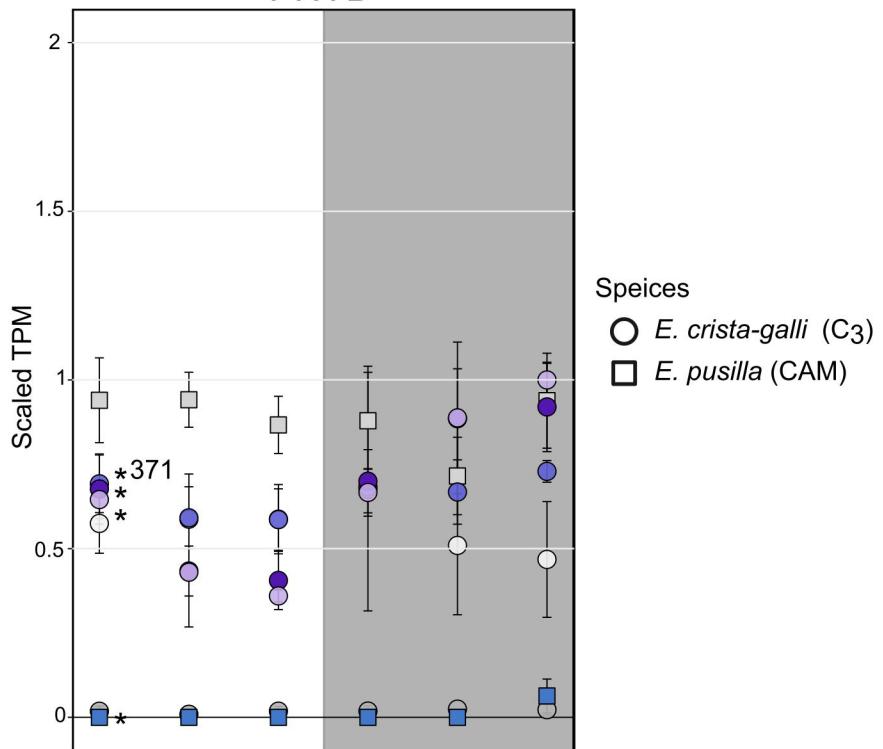
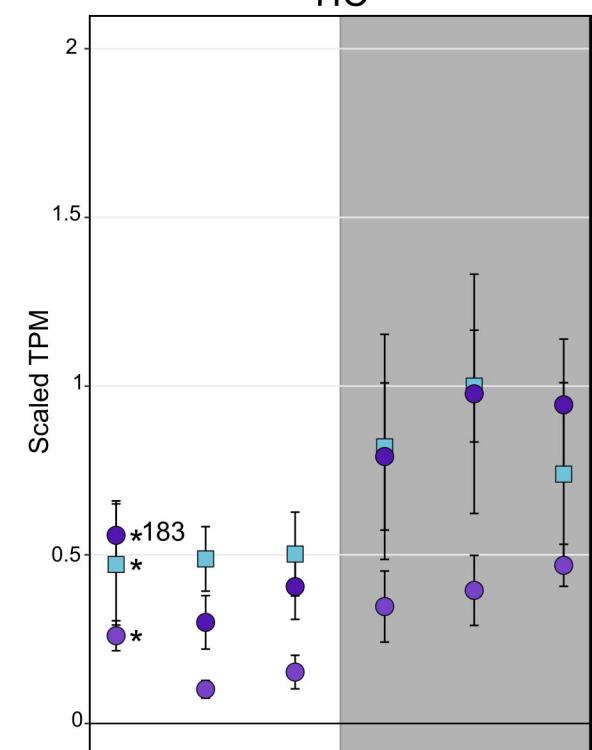
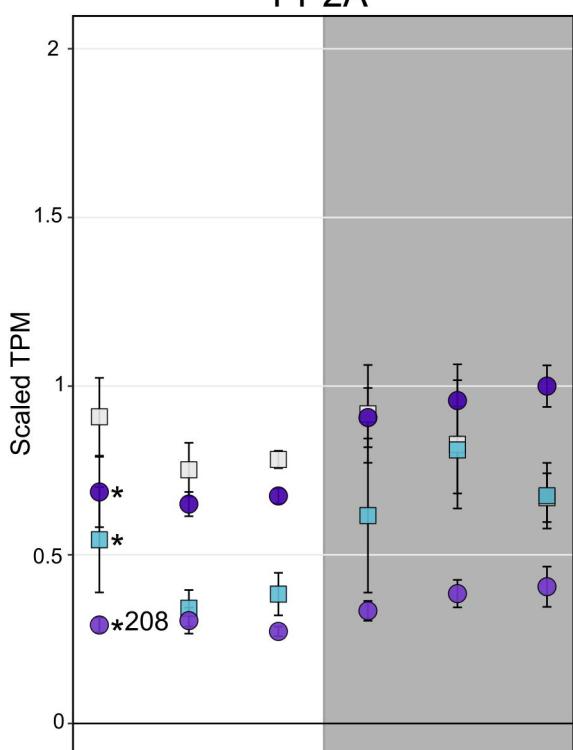
A

PEPC





B

PPCK

A**B**





bioRxiv preprint doi: <https://doi.org/10.1101/431460>; this version posted October 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

C**D**

A

bioRxiv preprint doi: <https://doi.org/10.1101/431460>; this version posted October 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

B

RSL1**PHYB****C****TIC****D****PP2A**