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Abstract  

Epilepsy is a major health burden, calling for new mechanistic and therapeutic insights. 

CRISPR–mediated gene editing shows promise to cure genetic pathologies, although hitherto 

it has mostly been applied ex-vivo. Its translational potential for treating non-genetic 

pathologies is still unexplored. Furthermore, neurological diseases represent an important 

challenge for the application of CRISPR, because of the need in many cases to manipulate gene 

function of neurons in situ. A variant of CRISPR, CRISPRa, offers the possibility to modulate 

the expression of endogenous genes by directly targeting their promoters. We asked if this 

strategy can effectively treat acquired focal epilepsy, focusing on ion channels because their 

manipulation is known be effective in changing network hyperactivity and 

hypersynchronisation.  We applied a doxycycline-inducible CRISPRa technology to increase 

the expression of the potassium channel gene Kcna1 (encoding Kv1.1) in mouse hippocampal 

excitatory neurons. CRISPRa-mediated Kv1.1 upregulation led to a substantial decrease in 

neuronal excitability. Continuous video-EEG telemetry showed that AAV9-mediated delivery 

of CRISPRa, upon doxycycline administration, decreased spontaneous generalized tonic-

clonic seizures in a model of temporal lobe epilepsy, and rescued cognitive impairment and 

transcriptomic alterations associated with chronic epilepsy. The focal treatment minimizes 

concerns about off-target effects in other organs and brain areas. This study provides the proof 

of principle for a translational CRISPR-based approach to treat neurological diseases 

characterized by abnormal circuit excitability. 
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Introduction 

Epilepsy affects up to 1% of the population, and 30% of patients continue to experience 

seizures despite the use of current medication (Kwan et al., 2011; Tang et al., 2017). Although 

the majority of drug-resistant epilepsies are focal, targeting drugs to a restricted brain region 

presents major challenges, and potentially curative surgery is limited to a minority of cases 

where the seizure focus is remote from eloquent cortex (Kullmann et al., 2014). Gene therapy 

holds promise as a rational replacement for surgery for intractable pharmaco-resistant epilepsy, 

and could in principle improve the prospect for seizure freedom in many people (Kullmann et 

al., 2014; Lieb et al., 2018). Several approaches have been proposed to interfere with 

epileptogenesis or to decrease seizure frequency in chronic epilepsy (Simonato, 2014). Current 

experimental gene therapies mainly rely on viral vector-mediated expression of genes encoding 

normal CNS proteins or exogenous non-mammalian proteins (Wykes et al., 2012; Krook-

Magnuson et al., 2013; Katzel et al., 2014; Wykes et al., 2016; Lieb et al., 2018). This approach 

has several potential limitations, including a finite packaging capacity of viral vectors, 

difficulty in ensuring normal splicing and post-transcriptional processing, and, in the case of 

non-mammalian proteins, concerns about immunogenicity. Modulating the expression of 

endogenous genes, in contrast, would represent an important step toward safe and rational 

treatment of intractable epilepsy and other neurological diseases.   

The DNA editor/regulator CRISPR/Cas9 (Konermann et al., 2015; Dominguez et al., 2016; 

Adli, 2018) represents a powerful tool to modify endogenous genes, not only in somatic cells 

but also in mammalian neurons (Heidenreich and Zhang, 2016; Suzuki et al., 2016). In addition 

to permanently altering endogenous gene sequences, CRISPR/Cas9 can regulate the activity of 

genes through promoter modulation, an approach known as CRISPR activation (CRISPRa) 

(Dominguez et al., 2016; Liao et al., 2017). CRISPRa is therefore a promising tuneable tool to 

increase the expression of genes encoding, for instance, ion channels, in chronic epilepsy in 
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order to restore physiological levels of network activity (Wykes et al., 2012; Wykes and 

Lignani, 2018). The CRISPRa system consists of a nuclease-defective Cas9 (dCas9) fused to 

a transcription activator and a small guide RNA (sgRNA) that targets dCas9 to the promoter of 

the gene of interest (Dominguez et al., 2016). There are multiple advantages of this system. 

First, it is versatile because the targeted gene can be switched simply by changing the sgRNA. 

Second, CRISPRa preserves the full range of native splice variants and protein biogenesis 

mechanisms (Liao et al., 2017). Third, CRISPRa is, in principle, safe because it only alters the 

promoter activity of genes that are already transcribed in targeted neurons. Finally, CRISPRa 

can be targeted to specific neurons in the epileptic focus using established viral vectors (La 

Russa and Qi, 2015).  

Here, we report the use of CRISPRa to treat a mouse model of temporal lobe epilepsy, from in 

vitro validation to demonstration of efficacy in reducing seizure frequency and rescuing 

cognitive impairment in vivo.  

 

Materials and Methods 

Study Design 

This study aimed to test the hypothesis that upregulating endogenous genes (e.g. Kcna1) with 

CRISPRa can treat chemoconvulsant-induced temporal lobe epilepsy. The experiments were 

designed to achieve a power >0.8 with an  = 0.05. For in vivo experiments the 3Rs guidelines 

for animal welfare were followed. Outliers were not excluded and at least 3 independent 

repetitions were performed. Exclusion criteria were applied for all the recordings (see methods 

below). All the experiments were randomized and researchers were blinded during recordings 

and analysis.   
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Animals and ethics. 

All experimental procedures were carried out in accordance with the UK Animals (Scientific 

Procedures) Act 1986. C57BL/6J and Camk2a-CRE mice were used for the experiments. 

Animals have been housed in groups or single after surgery in IVC cage in an SPF facility. 

Plasmids. sgRNAs were cloned in a lentiviral pU6 vector. Ef1alpha-dCas9VP160-T2A- 

PuroR, was derived from pAC94-pmax-dCas9VP160-2A-puro, a gift of R. Jaenisch (Addgene 

plasmid # 48226). The dCas9VP160-2A-puro cassette was subcloned in a TetO-FUW vector 

and then restriction digested with HpaI/AfeI and blunt cloned into an Ef1alpha-GFP vector 

after GFP removal by SmaI/EcoRV digestion. Ef1alpha-dCas9VP160-T2A-GFP was obtained 

by restriction digestion of Ef1alpha-dCas9VP160-T2A-PuroR with AscI/XbaI that removed 

VP160-T2A-PuroR; the VP160-T2A fragment was then obtained by AscI/XhoI digestion from 

Ef1alpha-dCas9VP160-T2A-PuroR while GFP fragment was PCR amplified with primers 

containing XhoI/XbaI restritction sites; finally, the two fragments were ligated together into 

the vector. To obtain a single vector containing both dCas9A and sgRNA, the pU6-sgRNA 

cassette was HpaI digested and cloned into Ef1alpha-dCas9VP160. AAV-TRE-dCas9-VP64 

was obtained by restriction digestion of AAV-SpCas9 (gift of F. Zhang, Addgene # PX551) 

where the Mecp2 promoter was removed by XbaI/AgeI digestion and TRE promoter was 

amplified with the following primers: FWXbaI: GCTCTAGACCAGTTTGGTTAGATCTC 

and RV AgeI GCACCGGTGCGATCTGACGGTTCACT. SpCas9 was removed with 

AgeI/EcoRI and Cas9m4-VP64 (gift of G. Church, addgene # 47319) was digested with 

AgeI/EcoRI. The VP64 fragment was PCR amplified with following primers with EcoRI sites: 

F: GATCATCGAGCAAATAAGCGAATTCTC and R: gctaaGAATTCTTA-

TCTAGAGTTAATCAGCATG. The AAV vector containing the sgRNA cassette was derived 

from pAAV-U6sgRNA (SapI)_hSyn-GFP-KASH-bGH  (PX552 was a gift of F. Zhang, 

Addgene # 60958): sg19 or lacZ where cloned under U6 promoter and the GFP was removed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 16, 2019. ; https://doi.org/10.1101/431015doi: bioRxiv preprint 

https://doi.org/10.1101/431015
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 6 

by KpnI/ClaI digestion and replaced by a DIO-rtTA-T2A-Tomato cassette. This vector was 

used for the work in Camk2a-Cre mice. For the work in C57/Bl6 mice, this vector was 

XbaI/ClaI-digested to remove both hSyn promoter, and the DIO-rtTA-T2A-Tomato cassette 

was replaced by a Camk2a promoter amplified with NheI-KpnI and a tTA T2a tomato cassette 

amplified with KpnI ClaI, ligated together in the vector. 

Virus preparation. Lentiviruses were produced as previously described with a titer of 10^7-

10^8 IU/ml (Colasante et al., 2015). AAVs were produced as previously described with a titer 

higher than 10^12 vg/ml (Morabito et al., 2017). The TRE-dCas9-VP64 AAV was produced 

by VectorBuilder with a titer of 8 x 10^12 vg/ml.  

P19 cell line. P19 cells were cultured in alpha-MEM (Sigma-Aldrich) supplemented fetal 

bovine serum non-essential amino acids, sodium pyruvate, glutamine and 

penicillin/streptomycin and split every 2-3days using 0.25% trypsin. For transfection, 

Lipofectamine 3000 (Thermo Fisher Scientific) was used according to the manufacturer’s 

instructions.  

Primary neuronal culture and lentivirus transduction. Cortical neurons were isolated from 

P0 C57Bl/6J mouse pups as previously described (Beaudoin et al., 2012) and at 1 DIV were 

transduced with lentiviruses. qRT-PCR, RNA seq, Western blot analysis and electrophysiology 

recordings were performed 14-16 days after transduction.  

RNA isolation and quantitative RT- PCR. RNA was extracted using TRI Reagent (Sigma) 

according to the manufacturer’s instructions. For quantitative RT-PCR (RT-qPCR), cDNA 

synthesis was obtained using the ImProm-II Reverse Transcription System (Promega) and RT-

qPCR were performed with custom designed oligos (Table 1) using the Titan HotTaq EvaGreen 

qPCR Mix (BIOATLAS). Analysis of relative expression was performed using the 

∆∆CT method, relative to Ctrl-dCas9A condition. To determine Kcna1 expression in vivo, 
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∆∆CT was determined in Ctrl- dCas9A or in Kcna1-dCas9A injected hippocampi relative to 

contralateral hippocampi in epileptic animals at the end of the recordings.  

Western Blot. Total neuronal protein extracts were obtained from the lysis of primary neurons 

by RIPA lysis buffer (150 mM NaCl, 1% Triton, 0.5% sodium deoxycholate, 0.1% sodium 

dodecyl sulfate, Tris pH 8.0 50 mM, protease inhibitor cocktail) two weeks after infection with 

the CRISPRa-Kcna1 system. Lysates were kept on ice for 30 minutes by vortexing every 10 

minutes and then centrifuged at 4° C for 5 minutes at 5000 rpm. Supernatants with solubilized 

proteins were collected in new tubes and stored at -80° C until use. Western blot analysis was 

performed using primary antibodies against the following proteins: anti-Kv1.1 (1:1000, 

Neuromab) anti- α/βActin (1:10000, Sigma). 

Bioinformatic analysis. Encyclopedia of DNA Elements (ENCODE) and the Functional 

ANnoTation Of the Mammalian genome (FANTOM) (Carninci et al., 2006) databases were 

used to download transcriptomics and epigenetics NGS data. Tracks were visualized along the 

mm10 mouse reference genome with the Integrative Genome Viewer (IGV) (Thorvaldsdottir 

et al., 2013). 

Off-targets. Employing the free Galaxy web-tool (https://usegalaxy.org/) we generated two 

datasets: one containing sg19 off-target sequences predicted by CRISPOR web tool 

(http://crispor.tefor.net) and one containing all the 500 bp genomic regions (NCBI37/mm9) 

upstream to transcription start sites (TSS) of annotated transcripts. Intersecting the two 

datasets, all sg19 off-target sequences in putative gene promoters were derived. To identify 

genes regulated by putative promoters, the sequence of the predicted off-targets was aligned 

by IGV to the reference genome and to transcripts annotated in ENSEMBL database. 

Validation of expression levels of putative off-target genes was performed by RT-qPCR.  
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RNA-seq. RNA libraries for both in vitro and in vivo experiments were generated starting from 

1 ug of total RNA extracted from sglacz- and sg19-dCas9A neurons at 10 DIV. RNA quality 

was assessed by using a Tape Station instrument (Agilent) and only RNA samples with 

Integrity Number (RIN) ≥ 8 were analyzed. For in vitro experiment, RNA was processed 

according to the Lexogen QuantSeq 3' mRNA-Seq Library Prep Kit protocol and the libraries 

were sequenced on an Illumina NextSeq 500 with 75bp stranded reads at CTGB, Ospedale San 

Raffaele. Fastq files were aligned to the mouse genome (NCBI37/mm9) with Bowtie2.  

For in vivo experiments, RNA was processed according to the TruSeq Stranded mRNA Library 

Prep Kit protocol. The libraries were sequenced on an Illumina HiSeq 3000 with 76 bp stranded 

reads using Illumina TruSeq technology at Genewiz. Image processing and base calling were 

performed using the Illumina Real Time Analysis Software. Fastq files were mapped to the 

mm10 mouse reference genome with the STAR aligner v2.7 (Dobin et al., 2013).  

Differential gene expression and functional enrichment analyses were performed with DESeq2 

(Love et al., 2014) and GSEA, respectively. Statistical and downstream bioinformatics 

analyses were performed within the R environment. Gene expression heatmaps were produced 

with GENE-E (Broad Institute). Data of in vitro and in vivo experiments were deposited in the 

NCBI Gene Expression Omnibus repository with the GSE133930 GEO ID. 

 

Slice preparation. Camk2a-CRE mice of either sex (2-3 months old) were killed by cervical 

dislocation under isoflurane. Brains were quickly dissected into ice cold oxygenated slicing 

solution (in mM: 75 sucrose, 2.5 KCl, 25 NaHCO3, 25 glucose, 7 MgCl2, 0.5 CaCl2) and cut 

into 300 µm coronal slices using a Leica VT1200S vibratome (Leica). Slices were stored 

submerged in oxygenated recording artificial cerebrospinal fluid (aCSF) (in mM: 25 glucose, 
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125 NaCl, 2.5 KCl, 25 NaHCO3, 1 MgCl2, 1.25 NaH2PO4.H2O and 2 CaCl2) at 32C for 30min 

and at room temperature for a further 30min before recording. 

Electrophysiology. In vitro. For current-clamp recordings, the internal solution contained (in 

mM): 126 K-gluconate, 4 NaCl, 1 MgSO4, 0.02 CaCl2, 0.1 BAPTA, 15 Glucose, 5 HEPES, 3 

ATP-Na2, 0.1 GTP-Na, pH 7.3. The extracellular (bath) solution contained (in mM): 2 CaCl2, 

140 NaCl, 1 MgCl2, 10 HEPES, 4 KCl, 10 glucose, pH 7.3. D-(−)-2-amino-5-

phosphonopentanoic acid (D-AP5; 50 μM), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 

10 μM) and picrotoxin (PTX; 30 μM) were added to block synaptic transmission. Transduced 

excitatory neurons were identified with EGFP fluorescence and from a pyramidal somatic 

shape. Neurons with unstable resting potential (or > -50mV), access resistance (Ra) > 15 MΩ 

and/or holding current >200 pA at -70mV were discarded. Bridge balance compensation was 

applied and the resting membrane potential was held at -70 mV. A current step protocol was 

used to evoke action potentials (APs), by injecting 250 ms long depolarizing current steps of 

increasing amplitude from -20pA (Δ 10pA). Recordings were acquired using a Multiclamp 

700A amplifier (Axon Instruments, Molecular Devices) and a Power3 1401 (CED) interface 

combined with Signal software (CED), filtered at 10 kHz and digitized at 50 kHz.  

Ex-vivo current clamp recordings. Current clamp recordings were performed in standard 

external solution in the presence of DL-AP5 (50 M), 6-cyano-7-nitroquinoxaline-2,3-dione 

(CNQX; 10 M) and PTX (30 M) to block NMDA, AMPA/kainate, and GABAA receptors, 

respectively. The internal solution was the same as for in vitro patch clamp recordings. Neurons 

with holding current >100 pA and Ra >20 MΩ upon whole-cell break-in in voltage clamp mode 

and membrane potential less negative than -60mV in current clamp were not considered for 

analysis. A 1440 Digidata (Molecular Devices) or Power3 1401 (CED) interface and 

Multiclamp 700A (Molecular Devices) amplifier were used.  
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In vitro and ex-vivo electrophysiology analysis. All the electrophysiology analysis was 

performed with an automated Python script. Passive properties were calculated from the 

hyperpolarizing steps of the current clamp steps protocol. Input resistance was averaged from 

three current steps (2 negative and one positive). Capacitance was calculated from the 

hyperpolarizing current step as follows. Firstly, the input resistance was determined as the 

steady-state V/I (voltage/current), then the cell time constant (tau) was obtained by fitting 

the voltage relaxation between the baseline and the hyperpolarizing plateau. Capacitance was 

then calculated as tau/resistance. Single action potential parameters were calculated as 

previously described (Pozzi et al., 2013). An event was detected as an action potential if it 

crossed 0mV and if the rising slope was >20mV/ms in a range of injected currents from 0pA 

to 500pA. All the experiments were performed at room temperature (22-24°C). All recordings 

and analysis were carried out blind to vector transduced. 

Activity clamp. The template simulating the barrage of synaptic conductances during 

epileptiform bursts was previously described (Morris et al., 2017). Dynamic clamp software 

(Signal 6.0, Cambridge Electronic Design, Cambridge, UK) and a Power3 1401 (CED) were 

used to inject both excitatory and inhibitory conductance templates simultaneously in a neuron 

recorded in current clamp configuration (iteration frequency 15 kHz). Erev was set to 0 mV and 

-75 mV for excitatory and inhibitory conductances respectively, and corrected for a liquid 

junction potential of 14.9 mV. Incrementing synaptic conductances were injected in recorded 

neurons to establish the conductance threshold for action potential generation. Current clamp 

recordings for activity clamp were performed with the same external and internal solutions as 

given above.  

Surgical procedures. All the surgery procedures were performed in adult mice (2-3 months) 

anesthetized and placed in a stereotaxic frame (Kopf).  
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Epileptic model. 0.3g of 10mg/ml kainic acid (Tocris) was injected in a volume of in 200nl 

in the right amygdala (AP: -0.94; ML: 2.85; DV: 3.75) at 200nl/min under isoflurane 

anaesthesia (surgery time 10-15 minutes). The mice were allowed to recover from anaesthesia 

at 32C for 5 minutes and then moved back to their cage where they were monitored closely 

during status epilepticus (SE). SE usually started 10-15 minutes after complete recovery and 

always stopped 40 minutes after KA injection with 10mg/Kg intraperitoneal diazepam.  

Stereotaxic viral injection. 300nl of AAV9 viruses (1:1) were injected with a 5l Hamilton 

syringe (33 gauge) at 100nl/min in 3 different coordinates of the right ventral hippocampus 

(Antero-Posterior: -2/3 bregma/lamda distance; Medio-Lateral: -3; Dorso-Ventral: 3.5/3/2.5). 

the needle was kept in place for 10 minutes after each injection.   

Transmitter implantation. An electrocorticogram (ECoG) transmitter (A3028C-CC Open 

Source Instruments, Inc) was subcutaneously implanted and the recording electrode was placed 

above the viral injection site (Antero-Posterior: -2/3 bregma/lamda distance; Medio-Lateral: -

3). The ground electrode was placed in the contralateral frontal hemisphere. 

Exclusion criteria. Only animals recorded for the entire period of the experiment (6 weeks after 

KA) were used in the analysis. At the end of the experiments some animal tissues were analysed 

with qRT-PCR and others were verified with immunofluorescence. On total of 42 mice injected 

with kainic acid, 34 animals (80%) were implanted and injected. 24 were recorded for entire 

duration of the experiment. 2 did not express dCas9 and for this reason were excluded from the 

analysis. 22 mice were used for the analysis (13 Ctrl-dCas9A and 9 Kcna1-dCas9A). 

Pilocarpine acute seizure model. Male wild type C57BLC/6J mice (3 months old) were 

anaesthetized with isoflurane and placed in a stereotaxic frame (David Kopf Instruments Ltd., 

USA). The animals were injected with 1.5l AAV CamKII-CRISPR-Kcna1/CamKII-CRISPR-

LacZ at 100nl/min in layer 2/3 - 5 primary visual cortex (coordinates: AP -2.8mm, ML 2.4 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 16, 2019. ; https://doi.org/10.1101/431015doi: bioRxiv preprint 

https://doi.org/10.1101/431015
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 12 

from the bregma, and DV 0.7/0.5/0.3 from pia). For EcoG monitoring, the recording electrode 

of 256Hz single-channel EcoG transmitter (A3028C-CC, Open Source Instruments Inc., USA) 

was placed at the same coordinates.  A reference electrode was placed in the contralateral skull. 

A cannula (Bilaney Consultants Ltd., UK) was implanted in the same location as the recording 

electrode for sequential pilocarpine injections. Animals were allowed to recover for 2 weeks  

before induction of acute seizures by pilocarpine (3.5M in saline) (Magloire et al., 2019) 

injected 0.5mm below the cannula using a microinjection pump (WPI Ltd., USA), a 5 µl 

Hamilton syringe (Esslab Ltd., UK), and a 33 gauge needle (Esslab Ltd., UK). The injection 

volume was incremented on consecutive days (180nl, 300nl and 500nl) until spike-wave 

discharges were observed, and recorded as the threshold dose. If seizures failed to terminate 

spontaneously, the animal was excluded from the study. To assess the treatment, the animals 

were placed on a doxycycline diet for 7 days and only the threshold dose for the animal was 

repeated. EcoG monitoring was used to assess seizure severity for an hour after the pilocarpine 

injection. The researcher who acquired and analysed the data was blinded to the virus injected. 

EEG (or ECoG) recordings. The ECoG was acquired wirelessly using hardware and software 

from Open Source Instruments, Inc. The ECoG was sampled at a frequency of 256Hz, band-

pass filtered between 1 and 160Hz, and recorded continuously for the duration of the 

experiments. The animals were housed independently in a Faraday cage. 

EEG analysis.  Spontaneous seizures were detected from chronic recordings using a semi-

automated supervised learning approach (suppl. figure 7). First, a library containing examples 

of epileptiform activity was built using seizures identified from visual inspection of ECoG data. 

The recordings were saved in hour-long files, and for each seizure this full hour was included 

in the library. Recordings were chunked into 5 second blocks that were labelled as either “ictal” 

or “interictal” if they contained epileptiform-labelled activity or not, respectively.  For each 

five second chunk of recording, 15 features were extracted (suppl. figure 7 and see online 
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resource below). A random forest discriminative classifier was trained on the features and 

labels of each of the 5 second examples in the library (Breiman, 2001). In addition, cross 

validation generated classifier predictions were used to parameterise a Hidden Markov Model 

in which the hidden states were the human annotations and the emissions the classifier 

predictions. For automated detection of epileptiform activity from unlabelled recordings, the 

discriminative classifier was first used to predict the class of consecutive five second chunks. 

We then applied the forward-backward algorithm to obtain the marginal probability of being 

in seizure state for each recording chunk given the surrounding classifier predictions. The 

smoothed predictions were then manually verified, false positives removed from the analysis 

and start and end locations adjusted. In order to quantify the performance of our approach, we 

randomly selected four 2 week chunks of recordings and visually examined the traces for 

seizures and compared to classifier predictions (blinded). During the 8 weeks, we did not detect 

visually any seizures that were not marked by the classifier – as such, for this model of epilepsy, 

our false negative rate was less than 1/300. False positives were less of a concern, but in general 

we observed << n seizures for a given period of time. For further information and code, please 

see: https://github.com/jcornford/pyecog. 

Video recordings. IP cameras from Microseven (https://www.microseven.com/index.html) 

were used and synchronised via the Windows time server to the same machine as used to 

acquire the ECoG. Continuous video recordings produced 6 videos/hour.  

Immunohistochemistry. Immunostaining was performed on 50µm mice brain sections with 

the following antibodies: mouse anti-GAD67 (MAB5406, Merck), rabbit anti-RFP (600-401-

379, Rockland), Alexa Fluor 555 goat anti-rabbit (A32732, Invitrogen) and Alexa Fluor 488 

goat anti-mouse (A32723, Invitrogen). Images were acquired with ZEN software (Zeiss) on a 

LSM710 confocal microscope (Zeiss) and co-localization analysis of tdTomato and GAD67 
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were performed with ImageJ 1.51n (Wayne Rasband, National Institute of Health) plugin 

‘JACoP’.  

Behavior Tests. Trials started two weeks post-virus injection, all were carried out between 7 

a.m. - 7 p.m. during the light phase. Animals (3 months old) were habituated in the designated 

behavior room for at least 15 minutes in home cages prior to the test. 

Object Location Test (OLT). For the familiarization phase, mice were placed individually in 

the arena (50 cm x  50cm x 40 cm), and were allowed to explore two identical objects for 8 

mins placed in the arena at least 5 cm away from the border. After a 6-hour retention delay, the 

animals were returned to the same arena with one of the objects randomly relocated to a new 

location. The animal was allowed to explore for 8 minutes with video recordings. The arena 

and objects were thoroughly cleaned with ethanol between each session.  

Novel Object Recognition Test (NORT). 24 hours after the OLT, the same animals were 

subjected to the NORT test. The familiarization session was the same as for the OLT. After a 

6 hours retention delay, one of the objects was randomly replaced by a novel object with a 

different shape and surface texture. The animals were allowed to explore freely for 8 minutes 

(Leger et al., 2013). 

All trials were recorded with a Raspberry Pi 3B+ equipped with a V1 camera module 

(https://www.raspberrypi.org/documentation/hardware/camera/) and using Raspivid version 

1.3.12 as 1296x972 pixel, 30 frame/second MP4 video files. Automated analysis was carried 

out with custom scripts written in Bonsai version 2.4-preview (Lopes et al., 2015). A researcher 

blinded to the treatment assessed and scored the exploration time manually after automated 

analysis. Discrimination index (DI) was calculated using the following formula: (time spent 

with altered object - time spent with unchanged object)/(total time spent exploring objects). 
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Statistical Analysis. Data are plotted as box and whiskers, representing interquartile range 

(box), median (horizontal line), and max and min (whiskers), together with all the points. The 

mean is further shown as “+”. The statistical analysis performed is shown in each figure legend. 

Deviation from normal distributions was assessed using D’Agostino-Pearson’s test, and the F-

test was used to compare variances between two sample groups. Student’s two-tailed t-test 

(parametric) or the Mann-Whitney test (non-parametric) were used as appropriate to compare 

means and medians. Fisher’s exact test was used to analyze the contingency table. To compare 

two groups at different time points we used two-way repeated measure ANOVA, followed by 

Bonferroni post-hoc test for functional analysis. Statistical analysis was carried out using Prism 

(GraphPad Software, Inc., CA, USA) and SPSS (IBM SPSS statistics, NY, USA). 

Data availability. All the Python and Bonsai scripts are freely available. Plasmids will be 

deposited in Addgene, and transcriptomic data are deposited in the NCBI Gene Expression 

Omnibus repository with the GSE133930 GEO ID. 
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Results 

A CRISPRa system targeting the Kcna1 promoter region increases Kv1.1 expression and 

decreases neuronal excitability 

We first asked if CRISPRa can be exploited to increase endogenous gene expression in 

glutamatergic neurons and decrease their excitability. As a proof of principle, we chose the 

Kcna1 gene encoding the Kv1.1 channel, which is important for the regulation of neuronal 

action potential firing and synaptic transmission (Pinatel et al., 2017; Vivekananda et al., 

2017). Lentivirus- or adeno-associated virus-mediated overexpression of Kcna1 reduces 

neuronal excitability and, when targeted to principal cells, suppresses seizures in rodent models 

of epilepsy (Wykes et al., 2012; Snowball et al., 2019). We first conducted a bioinformatic 

analysis to identify its promoter region. Alignment of datasets of gene expression and 

epigenetic markers of actively transcribed genes in perinatal and adult mouse brain identified 

peaks of enrichment for RNA PolII, mono- and tri-methylation of lys4 and acetylation of lys27 

of H3 histone along the gene (Supplementary Figure 1A). One of these regions was located 

immediately upstream to the annotated Kcna1 transcription start site (TSS) and identified as a 

suitable target for CRISPRa. We submitted 200 bps from this region to the CRISPOR web tool 

(http://crispor.tefor.net) for sgRNA design, and selected four candidate guides (sg4, sg14, sg19 

and sg30) for validation, initially in the mouse P19 cell line that expresses many neuronal 

genes. sgRNAs were lipofected individually or in combination, together with a construct 

carrying dCas9 fused to the transcriptional activator VP160 (dCas9-VP160) and a Puromycin 

resistance cassette. dCas9 with sg4, sg14 or sg19, but not with sg30, significantly upregulated 

the expression of the Kcna1 gene. We focused on sg4 and sg19, which induced the highest 

levels of Kcna1 expression (Supplementary Figure 1B). When tested in combination, sg4 and 

sg19 together were also efficacious, but not sg4 and sg30 (Supplementary Figure 1C). We 

confirmed that the highest efficiency of upregulation of Kcna1 in primary neurons was 
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achieved with sg19 (Figure 1B). Consequently, we generated a construct carrying dCas9-

VP160 driven by the Ef1  promoter and either the sg19 targeting the Kcna1 promoter (Kcna1-

dCas9A) or a control sgRNA targeting LacZ (Ctrl-dCas9A). Western Blot analysis confirmed 

increased Kv1.1 protein levels in sg19-treated neurons when compared to the sgLacZ control. 

Importantly, we detected increased levels of glycosylated Kv1.1, corresponding to mature 

protein, implying normal processing of the upregulated potassium channel (Figure 1C, D) 

(Watanabe et al., 2003). 

The CRISPOR tool predicted 250 putative off-target genes for sg19, mostly with a very low 

likelihood score. To evaluate the specificity of CRISPRa we performed a gene expression 

profile analysis in primary neurons treated with Kcna1-dCas9A and compared this with Ctrl-

dCas9A transduced neurons. No consistent alteration in the transcriptome of sg19 treated 

neurons was observed, except for a significant increase in Kcna1 (red dot, Figure 1E). Six out 

of 250 predicted off-target genes for sg19 were located close to promoters of Mylpf, Efcab4a, 

Nudcd2, Pde4b, Gc and Vps16 genes. However, none of these genes showed a significant 

change in expression in either the transcriptome analysis (green dot, Figure 1E) or in 

quantitative RT-PCR assays (Figure 1F). 

Exogenous Kcna1 overexpression results in a decrease in neuronal excitability and 

neurotransmitter release (Heeroma et al., 2009; Wykes et al., 2012). To test the functional 

efficacy of the CRISPRa system, primary neurons were transduced at 1DIV with a lentivirus 

expressing Kcna1-dCas9A or Ctrl-dCas9A. After 14-16DIV we used whole-cell patch clamp 

recordings to analyse neuronal excitability of both experimental groups (Figure 1G). The 

maximal firing frequency was significantly decreased in neurons transduced with Kcna1-

dCas9A when compared to Ctrl-dCas9A (Figure 1H). Other excitability parameters sensitive 

to Kv1.1 were also changed in neurons transduced with Kcna1-dCas9A in comparison with 

Ctrl-dCas9A: the current threshold was increased, and action potential width was decreased 
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(Figure 1I). Passive membrane properties and other AP properties were however unchanged 

(Supplementary Figure 2).  

Figure 1: CRISPRa increases endogenous Kcna1 expression reducing neuronal 

excitability in vitro.  A. Schematic representation of the CRISPRa approach to increasing 

Kcna1 B. Kcna1 mRNA expression normalised to the control LacZ sgRNA (blue) for the most 

effective sgRNAs and combinations of different sgRNAs tested in P19 cells (Suppl. Figure 1). 

One-way ANOVA followed by Bonferroni multiple comparison test vs sgLacZ. C-D. Western 

blots were used to determine the increase in Kv1.1 and glycosylated Kv1.1 (glyc) in neurons 

transduced either with dCas9A and sg19 (red), or sgLacZ (blue). Student’s t test. E.  MA plots 

showing log2 Fold change as a function of log2 base mean expression of Kcna1-dCas9A 

treated neurons with respect to Ctrl-dCas9A. Kcna1, red dot; off-targets, green dots; all other 
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genes, gray dots. F. mRNA expression relative to sgLacZ for each off target. The expression 

level of sgLacZ is represented as the dashed line at 1. Multiple Student’s t tests, each compared 

to control and corrected for multiple comparison (= 0.0083).  G. Representative traces of 

recordings from neurons transduced either with Ctrl-dCas9A (sgLacZ, blue) or Kcna1-dCas9A 

(sg19, red) and injected with 300pA steps in current clamp. H. Average firing rates in response 

to different current injections for neurons transduced with ctrl-dCas9A or Kcna1-dCas9A. 

Two-way RM ANOVA. I. Neuronal and action potential (AP) properties in neurons transduced 

with ctrl-dCas9A or Kcna1-dCas9A. Student’s t test. 

 

Kcna1-dCas9A decreases CA1 pyramidal cell excitability 

In order to test the efficacy of CRISPRa in vivo, we subcloned the CRISPRa elements in two 

separate AAV9 vectors. One AAV vector carried the dCas9-VP64 under the control of a rtTA 

responsive element (TRE), while the other vector included the sg19 (or sgLacZ as a control) 

element and a human Synapsin promoter (hSyn) upstream to an inverted rtTA-t2a-tdTomato 

cassette flanked by loxP and lox511 sites. This experimental design allowed the Kcna1-dCas9A 

system to be activated in forebrain principal neurons of Camk2a-cre mice transduced with both 

AAVs, but only after doxycycline administration (Figure 2A, B). We co-injected both AAVs 

in the hippocampus of 2-3 month old Camk2a-CRE mice, which were subsequently fed with a 

doxycycline diet for 3 weeks before collecting acute brain slices for analysis. Pyramidal 

neurons in the CA1-subiculum of the ventral hippocampus were recorded with whole-cell patch 

clamp to measure their excitability (Figure 2B, C and Supplementary Figure 3, 4). Consistent 

with data from primary cultures, neurons transduced with Kcna1-dCas9A showed a 

decreased firing rate and increased current threshold when compared with Ctrl-dCas9A 

expressing neurons (Figure 2E). A minor difference from primary cortical cultures was that the 

half width of the first spike was not significantly different between Kcna1-dCas9A and Ctrl-
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dCas9A expressing neurons (Figure 1I). However, a significant decrease in half width was seen 

when all the APs during the current step protocol were pooled (Figure 2 F). Finally, we applied 

activity clamp, a method to assess neuronal excitability during epileptiform barrages of 

excitation (Morris et al., 2017). Neurons expressing Kcna1-dCas9A fired less than neurons 

expressing Ctrl-dCas9A when exposed to the same simulated synaptic input. Taken together, 

these results support using Kcna1-dCas9A as a candidate antiepileptic gene therapy (Figure 2 

G).   

 

 

Figure 2: CRISPRa delivered with AAV9 increases endogenous Kcna1 expression and 

reduces CA1 pyramidal neuron excitability A. Schematic representation of the approach for 

ex vivo quantification of CRISPRa effects. B. Representative live image of Kcna1-dCas9A 
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expression in the hippocampus (inset= CA1 region, Red= tdTomato) C. Representative traces 

from CA1 pyramidal neurons, transduced either with Ctrl-dCas9A (sgLacZ, blue) or Kcna1-

dCas9A (sg19, red) in pryramidal neurons injected with 280pA steps in current clamp. D. 

Average firing rates in response to different current steps for neurons transduced with Ctrl-

dCas9A or Kcna1-dCas9A. Two-way RM ANOVA. E. Neuronal and action potential (AP) 

properties in neurons transduced with Ctrl-dCas9A or Kcna1-dCas9A. Maximal firing rate, 

current threshold to elicit the first AP, AP width and resting membrane potential are shown. 

Student’s t test. F. Cumulative frequency (%) of the AP widths in neurons injected with 280pA 

of current. Kolmogorov-Smirnov test for cumulative distributions.  G. Activity clamp protocol 

to mimic 24 interictal bursts of synaptic input from an epileptic network in neurons transduced 

with Ctrl-dCas9A or Kcna1-dCas9A (left). Black arrows represent the APs missed in the 

Kcna1-dCas9A neurons. Number of APs for each burst showed as mean  sem (middle). Two-

way ANOVA. The histogram represents the average number of APs for each neuron in the 24 

bursts (right). Student’s t test. 

 

Kcna1-dCas9A decreases seizure frequency in a mouse model of temporal lobe epilepsy 

We administered Kcna1-dCas9A in a mouse model of acquired epilepsy. C57BL/6J wild type 

animals were injected with kainic acid (KA) in the right amygdala (Jimenez-Mateos et al., 

2012). This induced a period of status epilepticus (SE), which was quantified by video 

recording to monitor seizure severity (Supplementary Figure 5 and Video 1). One week later, 

we injected either Kcna1-dCas9A or Ctrl-dCas9A AAVs in the right ventral hippocampus, and 

at the same time we implanted wireless EEG transmitters (bandwidth 1-256 Hz). For these 

experiments an AAV9 carrying a rtTA-t2a-tdTomato cassette without flanking recombination 

sites but driven by a Camk2a promoter was delivered in order to bias expression to excitatory 

neurons. After a week of recovery to allow expression of the constructs, we started continuous 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 16, 2019. ; https://doi.org/10.1101/431015doi: bioRxiv preprint 

https://doi.org/10.1101/431015
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 22 

video-EEG recording for 2 weeks (baseline) and then continued recording for 2 further weeks 

with doxycycline administration (Figure 3A). Immunohistochemistry of the injected 

hippocampi showed expression of the tdTomato reporter in dentate gyrus granule cells and 

hippocampal CA3 excitatory neurons, as well as CA1 pyramidal cells (Figure 3B, 

Supplementary Figure 6). We extracted both the ipsilateral and contralateral hippocampi of 11 

mice after the EEG recordings to analyse Kcna1 and dCas9 expression.  Injected hippocampi 

from 2 mice failed to express dCas9 and were excluded from the analysis. The injected 

hippocampi from the remaining 9 mice (5 Ctrl-dCas9A and 4 Kcna1-dCas9A) expressed dCas9 

and showed a 50% increase in Kcna1 expression in mice transduced with Kcna1-dCas9A 

compared to controlateral counterpart while no difference is reported in Ctrl-dCas9A (Figure 

3C).  

To investigate the ability of Kcna1-dCas9 to treat chronic temporal lobe epilepsy we analysed 

the frequency of generalized tonic-clonic seizures (Racine stage 5) in each animal before and 

after doxycycline administration using continuous video-EEG recordings (Figure 3D-F; 

Supplementary Figure 7; Video 2). Animals treated with Kcna1-dCas9A showed a significant 

reduction in the number of seizures after doxycycline was added to the food (Figure 3D-F). 

The number of seizures after doxycycline administration decreased in 8 out of 9 animals treated 

with Kcna1-dCas9A compared to only 5 out of 13 animals treated with Ctrl-dCas9 (Figure 3D). 

Only Kcna1-dCas9A treated animals showed a significant decrease in the number of seizures 

per day after doxycycline administration (Figure 3E, F). There was no significant difference in 

seizure frequencies during the baseline period prior to doxycycline administration between the 

animals treated either with Kcna1-dCas9A or Ctrl-dCas9A (Figure 3E, p=0.09 two-way 

ANOVA followed by Bonferroni multiple comparison test). However, two Ctrl-dCas9A 

animals, but none of the Kcna1-dCas9A animals, died during the baseline period from severe 

seizures and were not included in the comparison of seizure frequencies before and after 
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doxycycline (Figure 3E). We cannot exclude a protective effect of a low level of basal 

activation of CRISPRa in the Kcna1-dCas9A animals. Other EEG parameters such as 

broadband power, seizure duration and EEG power for night-time and day-time periods were 

not changed by the treatment (Supplementary Figure 5 and 7). Taken together, these results 

show that Kcna1-dCas9A reduces the probability of tonic-clonic seizure initiation, but 

otherwise does not change seizure properties recorded in the cortex.  

We complemented the chronic epilepsy study by looking at the effect of Kcna1-dCas9A 

treatment on acute seizures evoked by a different mechanism, focal pilocarpine injection in the 

visual cortex before and after doxycycline administration (Lieb et al., 2018; Magloire et al., 

2019). We did not observe robust differences in EEG coastline and power in different 

frequency bands recorded for 1 hour after pilocarpine in either group, although there was a 

non-significant trend for Kcna1-dCas9 animals to show an attenuation in seizure severity 

(Supplementary Figure 8). These data argue that the action of Kcna1-dCas9A on experimental 

epilepsy goes beyond an effect on individual seizures. 
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Figure 3: CRISPRa-Kcna1 decreases number of seizures in a mouse model of acquired 

intractable temporal lobe epilepsy. A. Schematic representation of the CRISPRa approach 

used in vivo to treat the intra-amygdala kainic acid focal model of temporal lobe epilepsy. B. 

Representative immunofluorescence 7 weeks after status epilepticus (SE) of neurons 

transduced with Ctrl-dCas9A 4 weeks after SE. Scale bar DG: 250 m; CA1:50 m. C. qPCR 

analysis of Kcna1 and dCas9 expression in the ipsilateral hippocampus relative to the 

contralateral hippocampus in epileptic mice transduced with either Ctrl-dCas9A or Kcna1-

dCas9A at the end of the experiments. Student’s t test. D. Left. Raster plot showing all seizures 

before and after doxycycline administration in 13 mice treated with Ctrl-dCas9A and 9 mice 

treated with Kcna1-dCas9A. Right. Pie charts showing the proportion of animals showing 

either more or fewer seizures after doxycycline food than during the baseline. Fisher’s exact 

test. E. Number of seizures/day before and after doxycycline administration in control-dCas9 

(n=13) and Kcna1-dCas9 (n=9) treated animals. Two-way ANOVA followed by Bonferroni 

multiple comparison test. Empty blue circles are animals that died during baseline and excluded 

from the analysis. F. Cumulative plot of seizures normalised to the baseline in mice transduced 

with either ctrl-dCas9A or Kcna1-dCas9A. Two-way ANOVA.   

 

 

Kcna1-dCas9A rescues cognitive deficits and mitigates dysregulation of gene expression 

Cognitive co-morbidities are an important feature of many forms of intractable epilepsy. We 

therefore asked if Kcna1-dCas9A treatment rescues behavioural deficits in our chronic intra-

amygdala KA model of temporal lobe epilepsy. We used two behavioural paradigms, one 

directly related to hippocampal function (object location test, OLT) and the other more related 

to prefrontal cortex function (novel object recognition test, NORT) as previously described 

(Cho et al., 2015). In the OLT test, no impairment in performance, as measured by the 
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discrimination index, before and after doxycycline, were observed in non-epileptic (NE) 

animals treated with either Ctrl-dCas9A or Kcna1-dCas9A (Figure 4A-C). However epileptic 

(E) mice showed a deficit compared to control mice (Ctrl-dCas9A NE vs E, p=0.01; Kcna1-

dCas9A NE vs E, p=0.006; two-way ANOVA followed by Bonferroni multiple comparison 

test). This deficit was completely rescued only by Kcna1-dCas9A treatment (Figure 4C). In 

contrast, no significant differences were observed in the NORT test either between NE and E 

animals, or following treatment with either Ctrl-dCas9A or Kcna1-dCas9A (Supplementary 

Figure 9) (Cho et al., 2015).  These data suggest that while Kcna1-dCas9A does not have 

adverse effects on hippocampal function in non-epileptic mice, it is able to restore function in 

epileptic mice. 

 

Several studies have documented extensive changes in gene expression in different mouse 

seizure models (Motti et al., 2010; Okamoto et al., 2010; Winden et al., 2011; Hansen et al., 

2014; Hawkins et al., 2019). We asked if Kcna1-dCas9A is able to rescue transcriptomic 

changes in the TLE model by performing RNAseq analysis on hippocampi from NE animals 

injected with Ctrl-dCas9A and E injected either with Ctrl-dCas9A or with Kcna1-dCas9A. A 

comparison of gene expression between non-epileptic (NE Ctrl-dCas9A) and epileptic animals 

(E Ctrl-dCas9A) revealed 6654 genes whose expression was altered (Figure 4D, first panel). 

Kcna1-dCas9A treatment (E Kcna1-dCas9A) (Figure 4E) rescued expression of 2742 of them 

(Figure 4D, second panel and Figure 4E). Consequently, the transcriptional profile of treated 

hippocampi (E Kcna1-dCas9A group) was more similar to non-epileptic mice (NE Ctrl-

dCas9A group), with only 1465 genes altered (Figure 4D, third bottom panel), than to epileptic 

Ctrl-dCas9A-treated mice. Sample distribution and K-means clustering along the first two 

principal components (PC1, PC2) failed to discriminate between NE Ctrl-dCas9A and E 

Kcna1-dCas9A groups, while the E Ctrl-dCas9A group was distinct (Supplementary Figure 
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10A).  Gene ontology analysis of the 2742 genes rescued by Kcna1-dCas9A treatment (Figure 

4F) showed that it counteracted changes implicated in neurodegeneration and apoptosis (GO 

ID: negative regulation of anti-apoptotic process, hippocampus development, positive 

regulation of dendrite development, neuronal development with synapse formation, axon 

extension, axonogenesis, axon guidance). Several genes associated with neuronal activity were 

upregulated (GO ID: ion transport, calcium transmembrane, chloride transmembrane transport, 

potassium ion transport). The treatment also re-established expression of genes implicated in 

synapse function (GO ID: neurotransmitter secretion, synapse organization, dendritic spine 

maintenance, long term synaptic potentiation, transmission of nerve impulse, receptor 

recycling) and glutamatergic transmission (GO ID: positive regulation of glutamatergic 

synaptic transmission, regulation of NMDA selective glutamate receptor activity).  

We compared the pattern of gene expression changes in our model with previously published 

studies (Motti et al., 2010; Okamoto et al., 2010; Winden et al., 2011; Hansen et al., 2014; 

Hawkins et al., 2019). This however failed to reveal a consistent signature across 

heterogeneous models of epilepsy (Supplementary Figure 10B). However, when restricting the 

comparison to focal kainic acid injection (Motti et al., 2010) we identified 388 common 

deregulated genes, 165 of which were rescued in Kcna1-dCas9A treated mice (Supplementary 

Figure 10C, D). 
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Figure 4: CRISPRa-Kcna1 rescues cognitive deficits and mitigates transcriptomic 

changes in a mouse model of acquired intractable temporal lobe epilepsy. A. Experimental 

plan for behaviour and transcriptomic analysis. B. Graphical representation of the OLT and 

NORT tests. C. Discrimination index for non-epileptic and epileptic animals before and after 

(green box) doxycycline in mice treated either with Ctrl-dCas9A or Kcna1-dCas9A. Two-way 

ANOVA followed by Bonferroni multiple comparison test.  D. Volcano plots showing 

statistical significance (-log10pvalue) as a function of fold-change in gene expression 
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(log2FC), comparing pairs of datasets as indicated above each plot. Genes showing p<0.05 

difference in expression (-log10pvalue>1.3) are highlighted in red. E. Venn diagram showing 

the fraction of differentially regulated genes in epileptic Ctrl-dCas9A-treated mice (E Ctrl-

dCas9A) which were rescued in Kcna1-dCas9A-treated mice (E Kcna1-dCas9A).F. Histogram 

displaying representative gene ontology (GO) categories functionally enriched among the 

2,742 genes that were differentially expressed in epileptic control mice (E Ctrl-dCas9A) versus 

treated mice (E Kcna1-dCas9A). 
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Discussion 

Although CRISPR has attracted intense interest as a possible treatment for inherited or acquired 

genetic disorders, it has, hitherto, received much less attention as a potential tool to treat 

acquired non-genetic diseases.  The overwhelming majority of epilepsy cases, which represent 

an enormous disease burden, are not thought to be due to single gene mutations but are acquired 

during life, often secondary to a variety of brain insults such as infections, strokes and injuries 

(Kwan et al., 2011; Tang et al., 2017). Here we have shown that CRISPRa can be used to 

increase endogenous Kcna1 expression to modulate neuronal activity, to reduce seizure 

initiation and to rescue behavioural and transcriptomic abnormalities in a mouse model of 

chronic temporal lobe epilepsy. This approach can potentially be used to regulate the 

expression of any gene, opening the way to treating many other neurological diseases 

associated with altered transcription.  

At present, the main obstacles to clinical translation of the CRISPR/Cas9 toolbox are absence 

of long-term data on potential immunogenicity of the bacterial nuclease in humans and possible 

off-target effects that have not been detected by transcriptomic analysis (Kosicki et al., 2018). 

Although in this study a non-mammalian nuclease has been used, which can evoke an immune 

response in the primate CNS (Samaranch et al., 2014), CNS disorders attributable to antibodies 

against nuclear neuronal proteins are rare, and rare forms of autoimmune encephalitis generally 

involve membrane proteins (Platt et al., 2017). The doxycycline transactivator protein could 

also potentially evoke an immune response, although new inducible systems are in 

consideration for clinical translation (Das et al., 2016; Kundert et al., 2019). Cas9 has already 

been delivered with AAV in rodents and has been shown to induce a mild cellular response, 

but this has not been reported in the brain (Chew et al., 2016). CRISPRa is, in principle, less 

likely to have deleterious off-target effects than CRISPR gene editing because it does not 

cleave DNA (La Russa and Qi, 2015; Zheng et al., 2018), but further research is necessary.  
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Among distinct advantages of CRISPRa over exogenous gene delivery is the possibility to 

select one or more sgRNAs to tailor the exact level of gene expression independently by the 

number of viral copies effectively entered within each neuron. In addition, several sgRNAs 

could in principle be used in combination to control the transcription of heteromultimeric 

proteins such as GABAA or NMDA receptors, or of multiple genes in a signalling pathway. 

Finally, whilst exogenous gene delivery is limited by the viral packaging capacity, CRISPRa 

can potentially be applied to control the activity of any gene irrespective of its length 

(Konermann et al., 2015).   

Although the present study made use of two AAVs to allow inducible activation of CRISPRa 

and expression of a fluorescent reporter protein, for clinical translation these features would 

not be required, as it should be possible to package both the dCas9 and the sgRNA in a single 

AAV to simplify clinical delivery. Further refinements can be considered, such as the use of 

an inducible promoter to allow the therapy to be switched off (Wykes and Lignani, 2018), 

which would not be possible with a gene editing strategy.  

Importantly, in the present study we observed rescue not only of epilepsy but also of a 

behavioural co-morbidity and transcriptomic alterations (Figure 4). We tested the effects of 

epilepsy and dCas9A treatment in two behavioural tests previously studied in epileptic animals 

(Cho et al., 2015), but several other tests, beyond the scope of this study, could be used to 

further assess the extent of rescue of co-morbidities (Heinrichs and Seyfried, 2006).  

Many studies have reported transcriptomic changes associated with epilepsy in different mouse 

models (Motti et al., 2010; Okamoto et al., 2010; Winden et al., 2011; Hansen et al., 2014; 

Hawkins et al., 2019). However, no single gene alteration recurs across all available databases 

(Figure S9B). This inconsistency can be ascribed to differences in RNA-Seq technologies, 

epilepsy models, ages of animals, and delay after the insult. Our data add to the available data 
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on gene expression, and provide, to our knowledge, the first evidence that gene therapy for 

epilepsy can correct dysregulation of a significant subset of genes.  

Importantly, the effect of CRISPRa-mediated Kcna1 upregulation on generalised seizures may 

reflect an overall rescue of the pathology, including co-morbidities and gene expression, and 

not only an attenuation of acute seizures.    

In conclusion, CRISPR-mediated control of gene expression can be successfully exploited to 

modulate neuronal activity and to mitigate seizures and behavioural co-morbidity in an 

experimental model of intractable temporal lobe epilepsy.  
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