

1
2 **Characterizing the pathogenic, genomic, and chemical traits of *Aspergillus fischeri*, a close**
3 **relative of the major human fungal pathogen *Aspergillus fumigatus***
4

5 Matthew E. Mead^a, Sonja L. Knowles^b, Huzefa A. Raja^b, Sarah R. Beattie^{c#}, Caitlin H.
6 Kowalski^c, Jacob L. Steenwyk^a, Lilian P. Silva^d, Jessica Chiaratto^d, Laure N.A. Ries^d, Gustavo
7 H. Goldman^d, Robert A. Cramer^c, Nicholas H. Oberlies^b, and Antonis Rokas^{a,*}
8

9 ^aDepartment of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA

10 ^bDepartment of Chemistry and Biochemistry, University of North Carolina at Greensboro,
11 Greensboro, North Carolina, USA

12 ^cDepartment of Microbiology and Immunology, Geisel School of Medicine at Dartmouth,
13 Hanover, New Hampshire, USA

14 ^dFaculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
15

16 Running Title: Comparing *Aspergillus fischeri* with *A. fumigatus*

17 ^{*}Address correspondence to Antonis Rokas, Antonis.rokas@vanderbilt.edu

18 [#] Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa,
19 USA
20

21 Keywords: fungal pathogenesis, comparative genomics, secondary metabolism, specialized
22 metabolism, evolution of virulence, *laeA*

23 **Abstract**

24 *Aspergillus fischeri* is closely related to *Aspergillus fumigatus*, the major cause of
25 invasive mold infections. Even though *A. fischeri* is commonly found in diverse environments,
26 including hospitals, it rarely causes invasive disease; why that is so is unclear. Comparison of *A.*
27 *fischeri* and *A. fumigatus* for diverse pathogenic, genomic, and secondary metabolic traits
28 revealed multiple differences for pathogenesis-related phenotypes, including that *A. fischeri* is
29 less virulent than *A. fumigatus* in multiple animal models of disease, grows slower in low oxygen
30 environments, and is more sensitive to oxidative stress. In contrast, the two species exhibit high
31 genomic similarity; ~90% of the *A. fumigatus* proteome is conserved in *A. fischeri*, including
32 48/49 genes known to be involved in *A. fumigatus* virulence. However, only 10/33 *A. fumigatus*
33 biosynthetic gene clusters (BGCs) likely involved in secondary metabolite production are
34 conserved in *A. fischeri* and only 13/48 *A. fischeri* BGCs are conserved in *A. fumigatus*. Detailed
35 chemical characterization of *A. fischeri* cultures grown on multiple substrates identified multiple
36 secondary metabolites, including two new compounds and one never before isolated as a natural
37 product. Interestingly, an *A. fischeri* deletion mutant of *laeA*, a master regulator of secondary
38 metabolism, produced fewer secondary metabolites and in lower quantities, suggesting that
39 regulation of secondary metabolism is at least partially conserved. These results suggest that the
40 non-pathogenic *A. fischeri* possesses many of the genes important for *A. fumigatus* pathogenicity
41 but is divergent with respect to its ability to thrive under host-relevant conditions and its
42 secondary metabolism.

43 **Importance**

44 *Aspergillus fumigatus* is the primary cause of aspergillosis, a devastating ensemble of
45 diseases associated with severe morbidity and mortality worldwide. *A. fischeri* is a close relative
46 of *A. fumigatus*, but is not generally observed to cause human disease. To gain insights into the
47 underlying causes of this remarkable difference in pathogenicity, we compared two
48 representative strains (one from each species) for a range of host-relevant biological and
49 chemical characteristics. We found that disease progression in multiple *A. fischeri* mouse models
50 was slower and caused less mortality than *A. fumigatus*. The two species also exhibited different
51 growth profiles when placed in a range of stress-inducing conditions encountered during
52 infection, such as low levels of oxygen and the presence of reactive oxygen species-inducing
53 agents. Interestingly, we also found that the vast majority of *A. fumigatus* genes known to be
54 involved in virulence are conserved in *A. fischeri*, whereas the two species differ significantly in
55 their secondary metabolic pathways. These similarities and differences that we identified are the
56 first step toward understanding the evolutionary origin of a major fungal pathogen.

57 **Introduction**

58 Aspergillosis is a major cause of human morbidity and mortality, resulting in over
59 200,000 life-threatening infections each year worldwide, and is primarily caused by the fungal
60 pathogen *Aspergillus fumigatus* (1). Multiple virulence traits related to Invasive Aspergillosis
61 (IA) are known for *A. fumigatus*, including thermotolerance, the ability to grow under low
62 oxygen conditions, the ability to acquire micronutrients such as iron and zinc in limiting
63 environments, and the ability to produce a diverse set of secondary metabolites (2).

64

65 *A. fumigatus* thermotolerance, a key trait for its survival inside mammalian hosts, is likely
66 to have arisen through adaptation to the warm temperatures present in decaying compost piles,
67 one of the organism's ecological niches (3-5). The primary route of *A. fumigatus* colonization
68 and infection is through the lung, where oxygen levels have been observed to be as low as 2/3 of
69 atmospheric pressure, and a successful response to this hypoxic environment is required for
70 pathogenesis (6, 7). *A. fumigatus* produces a diverse set of small, bioactive molecules, known as
71 secondary metabolites, which are biosynthesized in pathways that exist outside of primary
72 metabolism. Some of these secondary metabolites and their regulators have been shown to be
73 required for severe disease in mouse models (8-10). Furthermore, a master regulator of
74 secondary metabolism, *laeA*, is also required for full virulence in IA mouse model studies (11,
75 12).

76

77 Other species closely related to *A. fumigatus* are also capable of causing disease, but they
78 are rarely observed in the clinic (2, 13-15). For example, *A. fischeri* is the closest evolutionary
79 relative to *A. fumigatus* for which a genome has been sequenced (16, 17), but is only rarely

80 reported to cause human disease (2). Recent evolutionary genomic analyses suggest that *A.*
81 *fischeri* and *A. fumigatus* last shared a common ancestor approximately 4 million years ago (95%
82 credible interval: 2 – 7 million years ago) (17). Why *A. fischeri*-mediated disease is less common
83 than *A. fumigatus*-mediated disease remains an open question. Non-mutually exclusive
84 possibilities include differences in ecological abundance, lack of species level diagnosis in the
85 clinic of disease-causing strains, and innate differences in pathogenicity and virulence between
86 the two species.

87

88 Previous studies have suggested that the difference in the frequencies with which the two
89 species cause disease is unlikely to be solely due to ecological factors, as both can be isolated
90 from a variety of locales, including soils, fruits, and hospitals (18-20). For example,
91 approximately 2% of the fungi isolated from the respiratory intensive care unit at Beijing
92 Hospital were *A. fischeri* compared to approximately 23% of fungal species identified as *A.*
93 *fumigatus* (20). While *A. fischeri* is easily isolated from a variety of environments, only a few
94 cases of human infections have been reported (21-24). Furthermore, numerous recent
95 epidemiological studies from multiple countries that used state-of-the-art molecular typing
96 methods were able to identify several rarely isolated pathogenic species closely related to *A.*
97 *fumigatus*, such as *A. lentulus* and *A. udagawae*, as the source of 10-15% of human infections but
98 did not identify *A. fischeri* in any patient sample (13, 14, 25-27).

99

100 If ecological factors and lack of precision in species identification cannot explain why *A.*
101 *fischeri* is non-pathogenic and *A. fumigatus* is pathogenic, other factors must be responsible. An
102 early genomic comparison between *A. fumigatus*, *A. fischeri*, as well as the more distantly related

103 *Aspergillus clavatus* identified 818 genes that were *A. fumigatus*-specific (16). These genes were
104 enriched for functions associated with carbohydrate transport and catabolism, secondary
105 metabolite biosynthesis, and detoxification (16), raising the possibility that the observed
106 differences in pathogenicity observed between *A. fischeri* and *A. fumigatus* have a molecular
107 basis.

108

109 To gain further insight into why *A. fischeri*-mediated disease is less abundant than *A. fumigatus*-mediated disease, we took a multi-pronged approach to investigate phenotypic,
110 genomic, and chemical differences between *A. fischeri* strain NRRL 181 and *A. fumigatus* strain
111 CEA10. We observed that while *A. fischeri* is able to cause fatal disease in multiple animal
112 models, its disease progression and response to multiple host-relevant stresses is markedly
113 different than that of *A. fumigatus*. We also found that while the two organisms' genomes are in
114 general very similar, the sets of secondary metabolite pathways in each of them exhibit a
115 surprisingly low level of overlap. Examination of the secondary metabolite profile of *A. fischeri*
116 identified both previously isolated as well as novel compounds. Finally, construction of a mutant
117 *A. fischeri* strain that lacked the *laeA* gene, a master regulator of secondary metabolism, and
118 examination of its chemical profile suggested that LaeA-mediated regulation of secondary
119 metabolism in *A. fischeri* closely resembles that of *A. fumigatus*. These results begin to reveal the
120 molecular differences between *A. fischeri* and *A. fumigatus* related to fungal pathogenesis and
121 suggest that a functional evolutionary genomic comparison between pathogenic and non-
122 pathogenic species closely related to *A. fumigatus* harbors great promise for generating insights
123 into the evolution of fungal disease.

125

126 **Results**

127 *A. fischeri* is significantly less virulent than *A. fumigatus* in multiple animal models of Invasive
128 Pulmonary Aspergillosis (IPA)

129 In contrast to *A. fumigatus*-mediated disease, only a handful of cases of invasive fungal
130 infections have been reported to be caused by *A. fischeri* (21-24). Given this contrast, we utilized
131 two immunologically distinct murine IPA models to assess differences in pathogenicity and
132 virulence between the two species. In a leukopenic murine model, *A. fischeri* NRRL 181 is
133 significantly less virulent than *A. fumigatus* CEA10, in a dose dependent manner (Fig. 1). Using
134 an inoculum of 1×10^5 conidia, *A. fischeri* is completely attenuated in virulence, with 100%
135 murine survival by day 15 post-fungal challenge. In contrast, inoculation with *A. fumigatus*
136 results in 100% murine mortality by day 15 (Fig. 1A). Using a higher dose (2×10^6) of conidia,
137 both strains cause 90% mortality by day 14; however, the disease progression is markedly
138 different. 80% of mice inoculated with *A. fumigatus* succumb to infection by day 4, whereas for
139 mice inoculated with *A. fischeri*, the first mortality event occurs on day 5, and then one or two
140 mice succumb each day until day 14 (Fig. 1B). Thus, despite the similar overall mortality at
141 higher fungal challenge doses, *A. fischeri* is significantly less virulent than *A. fumigatus* in a
142 leukopenic murine IPA model.

143

144 As the patient population at risk for IA continues to change (28), we also tested a non-
145 leukopenic triamcinolone (steroid)-induced immune suppression model and observed a
146 significant reduction in virulence of *A. fischeri* compared to *A. fumigatus* ($p < 0.0001$ by Log-
147 Rank and Gehan-Breslow-Wilcoxon tests). All mice inoculated with *A. fumigatus* succumbed to

148 infection by day 3; however, similar to the leukopenic model, mice inoculated with *A. fischeri*
149 had slower disease progression as monitored by Kaplan-Meier analyses (Fig. 1C).

150

151 We observed similar pathogenicity and virulence results when using the *Galleria*
152 *mellonella* insect larvae model of aspergillosis (Fig. 1DE). Both low (1×10^6 conidia) and high
153 (1×10^9 conidia) inoculum experiments showed significant differences between the disease
154 progression of *A. fischeri* (slower) and *A. fumigatus* (faster) in this insect model of fungal
155 pathogenicity.

156

157 To better understand what is happening *in vivo* during disease progression with *A.*
158 *fischeri* and *A. fumigatus*, histological analyses on lungs from the triamcinolone model 3 days
159 post inoculation were utilized. Histological sections were stained with Gomori methenamine
160 silver (GMS) to visualize fungal burden and with hematoxylin and eosin (H&E) stain to visualize
161 host related pathology (Fig. 1F). Overall, mice inoculated with *A. fischeri* had similar numbers of
162 fungal lesions as those inoculated with *A. fumigatus* but the lesions caused by the two species
163 were phenotypically distinct (Fig. 1F). In larger terminal bronchioles infected with *A. fumigatus*,
164 there was greater fungal growth per lesion, and the growth was observed throughout the
165 bronchiole itself, extending well into the lumen. These lesions are accompanied by substantial
166 granulocytic inflammation and obstructs the airways surrounding the hyphae (Fig. 1F). In the
167 lesions containing *A. fischeri*, the fungal growth is contained to the epithelial lining of the
168 bronchioles. This pattern of growth is accompanied by inflammation at the airway epithelia,
169 leaving the airway lumen largely unobstructed (Fig. 1F). The lack of airway obstruction during
170 *A. fischeri* infection may contribute to the reduced virulence compared to *A. fumigatus*.

171

172 Although the distribution of the fungal lesions varies, there is still significant fungal
173 growth in mice infected with *A. fischeri*, suggesting that *A. fischeri* is capable of growing within
174 the immune compromised host. Indeed, we tested the growth rate of *A. fischeri* and *A. fumigatus*
175 in lung homogenate as a proxy for growth capability within the nutrient environment of the host
176 and observed no difference between the two strains (Fig. S1). These experiments show that in
177 multiple models of fungal disease, *A. fischeri* is less virulent than *A. fumigatus*, although *A.*
178 *fischeri* is still capable of causing disease using a higher dose and importantly, is able to grow
179 within the immune compromised murine lung.

180

181 When compared to *A. fumigatus*, *A. fischeri* differs in its response to several host-relevant
182 stresses

183 Our *in vivo* experiments suggested that the lower virulence of *A. fischeri* is not solely a
184 result of its inability to grow within the host. Therefore, we hypothesized that an additional
185 contributing factor was the inability of *A. fischeri* to mitigate host stress. Nutrient fluctuation is a
186 stress encountered *in vivo* during *A. fumigatus* infection (29). To assess differences in metabolic
187 plasticity between the two species, we measured the two organisms' growth on media
188 supplemented with glucose, fatty acids (Tween-80), or casamino acids. Because low oxygen
189 tension is a significant stress encountered during infection (6), and recently, fitness in low
190 oxygen has been correlated to virulence of *A. fumigatus* (30), we measured growth of both
191 species at 37°C in both normoxic (ambient air) and hypoxia-inducing (0.2% O₂, 5% CO₂)
192 conditions. In normoxia with glucose, fatty acids (Tween-80), or casamino acids supplied as the
193 carbon source, radial growth of *A. fischeri* was lower than that of *A. fumigatus* (Fig. 2). However,

194 on rich media both organisms grew equally well (Fig. 2). We also observed a slower growth rate
195 of *A. fischeri* compared to *A. fumigatus* in the first 16 hours of culture in liquid media supplied
196 with glucose at 37°C. At 30°C, *A. fischeri* grew the same as, or better than, *A. fumigatus* except
197 on Tween-80 where *A. fumigatus* had a slight advantage (Fig. S2). Also, *A. fischeri* grew
198 substantially worse than *A. fumigatus* when grown at 44°C (Fig. S3). To determine relative
199 fitness in hypoxic liquid environments, we measured the ratio of biomass in liquid culture in
200 ambient air (normoxia) versus hypoxic (0.2% O₂, 5%CO₂) conditions. *A. fischeri* showed
201 significantly lower fitness in hypoxic conditions, with about an 8.5-fold lower biomass than *A.*
202 *fumigatus* (Fig. 3A). These data suggest that *A. fischeri* is less fit than *A. fumigatus* at 37°C and
203 in low oxygen conditions, both of which have been shown to impact fungal virulence.

204

205 Metabolic flexibility, or the ability for an organism to utilize multiple carbon sources
206 simultaneously, has been suggested to provide a fitness advantage to *Candida albicans* during *in*
207 *vivo* growth (31). Metabolic flexibility can be characterized using the glucose analog, 2-
208 deoxyglucose (2-DG), in combination with an alternative carbon source available *in vivo*, such as
209 lactate. 2-DG triggers carbon catabolite repression, which shuts down alternative carbon
210 utilization pathways. However, in *C. albicans* this shut down is delayed and growth occurs on
211 lactate with 2-DG (31, 32). We tested the metabolic flexibility of both *A. fumigatus* and *A.*
212 *fischeri* and observed that while both species can grow in the presence of 2-DG on lactate, the
213 growth inhibition of *A. fischeri* is higher (~60%) than that of *A. fumigatus* (~35%; Fig. 3B). Even
214 under low oxygen conditions (5% and 2%), *A. fumigatus* maintains this metabolic flexibility
215 except under extremely low oxygen conditions (0.2%), whereas *A. fischeri* shows even greater
216 inhibition at all oxygen tensions of 5% or below. These data suggest that while both species

217 exhibit some level of metabolic flexibility, *A. fumigatus* appears more metabolically flexible
218 under a wider range of conditions than *A. fischeri*.

219
220 Next, we measured the susceptibility of *A. fischeri* to oxidative stress, cell wall stress, and
221 antifungal drugs. Interestingly, we observed that *A. fischeri* is more resistant to the intracellular
222 oxidative stress agent menadione than *A. fumigatus* but more susceptible to the external oxidative
223 stress agent hydrogen peroxide (Fig. 3CD). As the *in vivo* levels of inflammation caused by the
224 two species appeared different, we indirectly tested for differences in cell wall pathogen-
225 associated molecular patterns using the cell wall perturbing agents Congo Red and Calcofluor
226 White. *A. fumigatus* was significantly more resistant to both agents than *A. fischeri* (Fig. 3C),
227 suggesting differences in the response to cell wall stress or in the composition and organization
228 of the cell wall between the two species. These differences are likely important for host immune
229 cell recognition and interaction, which in turn influences pathology and disease outcome.

230
231 Lastly, *A. fischeri* showed enhanced resistance relative to *A. fumigatus* for three of the
232 four antifungal drugs tested (Table 1), consistent with previous experiments (33). Overall, our
233 phenotypic data show that the response of *A. fischeri* to host-related stresses and antifungals is
234 substantially different from that of *A. fumigatus*. Furthermore, our results suggest that increased
235 growth capability of *A. fumigatus* in low oxygen and in high temperatures are two important
236 attributes that likely contribute to its pathogenic potential compared to *A. fischeri*.

237
238 The proteomes of *A. fumigatus* and *A. fischeri* are highly similar, but their secondary metabolic
239 pathways show substantial divergence

240 The large differences in virulence and virulence-related traits we observed between *A.*
241 *fumigatus* and *A. fischeri* led us to investigate the genotypic differences that could be
242 responsible. To describe the genomic similarities and differences between *A. fumigatus* and *A.*
243 *fischeri*, we determined how many orthologous proteins and how many species-specific proteins
244 were present in each genome using a Reciprocal Best BLAST Hit approach (34). We identified
245 8,737 proteins as being shared between the two species (Fig. S4), representing 88% and 84% of
246 the *A. fumigatus* and *A. fischeri* proteomes, respectively, and 1,684 *A. fischeri*-specific proteins
247 (16% of its proteome) and 1,189 *A. fumigatus*-specific proteins (12% of its proteome). To narrow
248 our search for genes that are absent in *A. fischeri* but are important for *A. fumigatus* disease, we
249 compiled a list of 49 *A. fumigatus* genes considered to be involved in virulence (Table S1) based
250 on two previously published articles (35, 36) and extensive literature searches of our own. We
251 observed that all but one of these virulence-associated genes were also present in *A. fischeri*, a
252 surprising finding considering the substantial differences observed between the two species in
253 our animal models of infection. The virulence-associated gene not present in *A. fischeri* is *pesL*
254 ([Afu6g12050](#)), a non-ribosomal peptide synthase that is essential for the synthesis of the
255 secondary metabolite fumigaclavine C and required for virulence in the *Galleria* model of *A.*
256 *fumigatus* infection (37).

257
258 Since the only previously described *A. fumigatus* virulence-associated gene not present in
259 the *A. fischeri* genome (i.e. *pesL*) is involved in secondary metabolism, we investigated the
260 differences between the repertoire of secondary metabolic pathways present in *A. fumigatus* and
261 *A. fischeri*. Using the program antiSMASH (38), we identified 598 secondary metabolic cluster
262 genes distributed amongst 33 clusters in *A. fumigatus* (Table S2) and 786 secondary metabolite

263 cluster genes spread out over 48 clusters in *A. fischeri* (Table S3). Of these 598 *A. fumigatus*
264 genes, 407 (68%) had an orthologous gene that was part of an *A. fischeri* secondary metabolic
265 gene cluster. This level of conservation of secondary metabolic cluster genes (68%) is much
266 lower than the amount of conservation observed for the rest of the proteome (88%), illustrating
267 the rapid rate at which fungal metabolic pathways evolve (39, 40).

268

269 We next directly compared the secondary metabolic gene clusters of the two organisms.
270 An *A. fumigatus* gene cluster was considered conserved in *A. fischeri* if $\geq 90\%$ of its genes were
271 also present in an *A. fischeri* gene cluster and vice versa. We found that only 10 / 33 *A. fumigatus*
272 gene clusters are conserved in *A. fischeri* and only 13 / 48 *A. fischeri* gene clusters are conserved
273 in *A. fumigatus* (Fig. 4), a finding consistent with the low conservation of individual secondary
274 metabolic genes between the two species. While only 10 *A. fumigatus* gene clusters were
275 conserved in *A. fischeri*, many other clusters contained one or more orthologs of genes in *A.*
276 *fischeri* secondary metabolic gene clusters.

277

278 Only one gene cluster (Cluster 18) was completely *A. fumigatus*-specific. Interestingly,
279 our previous examination of the genomes of 66 *A. fumigatus* strains showed that this cluster was
280 a “jumping cluster”, as it was found to be present in only 5 strains and to reside in three distinct
281 genomic locations (40). Conversely, there are 10 *A. fischeri*-specific gene clusters that do not
282 have orthologs in secondary metabolic gene clusters in *A. fumigatus*. One of these gene clusters
283 is responsible for making helvolic acid [a gene cluster known to be absent from the *A. fumigatus*
284 strain CEA10 but present in strain Af293 (40)], but the other 9 have not been biochemically
285 connected to any metabolite.

286

287 All the genes required for the production of the mycotoxin gliotoxin are located in a gene
288 cluster in *A. fischeri* (Fig. S5), and are in fact similar to their *A. fumigatus* orthologs (41), even
289 though *A. fischeri* is not known to produce this mycotoxin (42). Both the gliotoxin and
290 acetylaszonalenin gene clusters are adjacent to one another in the *A. fischeri* genome (Fig. S5). In
291 *A. fumigatus*, the gliotoxin gene cluster is immediately next to what appears to be a truncated
292 version of the acetylaszonalenin cluster that lacks portions of the nonribosomal peptide synthase
293 and acetyltransferase genes as well as the entire indole prenyltransferase gene required for
294 acetylaszonalenin production. The close proximity of these two gene clusters is noteworthy, as it
295 is similar to previously reported “super clusters” in *A. fumigatus* and *A. fumigatus*-related strains
296 (43). These super clusters have been hypothesized to be “evolutionary laboratories” that may
297 give rise to new compounds and pathways (40).

298

299 Isolation and characterization of three new compounds from *A. fischeri*

300 The relatively low level of conservation of secondary metabolic gene clusters we
301 observed between *A. fumigatus* and *A. fischeri* led us to characterize the secondary metabolites
302 produced by *A. fischeri* (Fig. S6) (44-48). The one strain-many compounds (OSMAC) approach
303 was used to alter the secondary metabolites being biosynthesized in order to produce a diverse
304 set of molecules (49-52). Depending on the media on which it was grown, *A. fischeri* produced
305 as few as 4 (Yeast Extract Soy Peptone Dextrose Agar - YESD) or as many as 10 compounds
306 (Oatmeal Agar – OMA) (Fig. S7). These results showed that culture media influences the
307 biosynthesis of secondary metabolites in *A. fischeri*, a phenomenon observed in many other fungi
308 (50, 53).

309

310 To characterize the peaks of interest we observed when *A. fischeri* was grown on OMA,
311 we increased the size of our fungal cultures; doing so yielded seven previously isolated
312 compounds (sartorypyrone A (**1**), aszonalenin (**4**), acetylaszonalenin (**5**), fumitremorgin A (**6**),
313 fumitremorgin B (**7**), verruculogen (**8**), and the C-11 epimer of verruculogen TR2 (**9**)) and three
314 newly biosynthesized secondary metabolites (sartorypyrone E (**2**), 14-epi-aszonapyrone A (**3**),
315 and 13-*O*-fumitremorgin B (**10**). Two of the secondary metabolites were new compounds (**2** and
316 **3**) and one was a new natural product (**10**) (Fig. 5B). The structures for all 10 compounds were
317 determined using a set of spectroscopic (1 and 2D NMR) and spectrometric techniques (HRMS).
318 Our data for sartorypyrone A (**1**) (54), aszonalenin (**4**) (55, 56), acetylaszonalenin (**5**) (54, 57),
319 fumitremorgin A (**6**) (58, 59), fumitremorgin B (**7**) (60-62), verruculogen (**8**) (63, 64), and the C-
320 11 epimer of verruculogen TR2 (**9**) (64) correlated well with literature values. The structures of
321 14-epi-aszonapyrone A (**3**), and 13-*O*-prenyl fumitremorgin B (**10**) were fully characterized in
322 this study (see Figshare document: <https://doi.org/10.6084/m9.figshare.7149167>); the structure
323 elucidation of sartorypyrone E (**2**) is ongoing and will be reported in detail in a forthcoming
324 manuscript.

325

326 Since four secondary metabolites (**5-8**) from *A. fischeri* had also been reported from *A.*
327 *fumigatus*, we hypothesized that the mechanisms *A. fischeri* employs to regulate its secondary
328 metabolism would also be similar to those used by *A. fumigatus*. To test this hypothesis, we
329 constructed a deletion mutant of *laeA* in *A. fischeri* (Fig. S8). LaeA is a master regulator of
330 secondary metabolism in *A. fumigatus* and a variety of other fungi (65-67). Both the wild type
331 and $\Delta laeA$ strains of *A. fischeri* were subjected to LC-MS analysis. The chromatographic profile

332 of $\Delta laeA$ showed mass data that corresponded to sartorypyrone A (**1**), sartorypyrone E (**2**), 14-
333 epi-aszonapyrone A (**3**), aszonalenin (**4**), acetylaszonalenin (**5**), fumitremorgin A (**6**),
334 verruculogen (**8**), and the C-11 epimer of verruculogen TR2 (**9**). However, the relative
335 abundance of compounds present was very low compared to the wild type (Fig. 5C).
336 Fumitremorgin B (**7**) and 13-*O*-prenyl-fumitremorgin B (**10**) were not produced by the $\Delta laeA$
337 mutant at all.

338

339 **Discussion**

340 *A. fumigatus* is a major human fungal pathogen, yet its close relative *A. fischeri* is rarely
341 an agent of human disease. A number of traits that contribute to the virulence of *A. fumigatus*
342 have been characterized, but their distribution and potential role in *A. fischeri*-mediated disease
343 was largely unknown. In this study, we thoroughly characterized *A. fischeri* (strain NRRL 181)
344 and compared it to *A. fumigatus* (strain CEA10) for multiple disease-relevant biological and
345 chemical differences. Our data shows that *A. fischeri* can grow in a mammalian host but is much
346 less fit and causes a disease progression quite different than that observed during *A. fumigatus*
347 infections (Figs. 1 and 2). Further investigations revealed that secondary metabolic genes are
348 much less conserved than genes in the rest of the genome (Fig. S4), and a chemical analysis of *A.*
349 *fischeri* resulted in the identification of both previously identified and new compounds (Fig. 5).
350 While the biosynthetic pathways producing secondary metabolites in *A. fischeri* and *A. fumigatus*
351 appear to be quite different, our data suggest that a master regulator of secondary metabolism in
352 *A. fumigatus* (*laeA*) possesses a similar role in *A. fischeri* (Fig. 5C).

353

354 In order to cause disease, a microbe must be able to respond to the set of diverse and
355 stressful environments presented by its host. Based on our data, *A. fischeri* is unable to respond
356 to many of these stresses as well as *A. fumigatus* (Figs. 2-3). We hypothesize that this inability to
357 thrive under stress contributes to the varying disease progressions observed during our animal
358 model experiments (Fig. 1). Some or all of the genetic determinants responsible for this
359 discrepancy in stress response and virulence could reside in the 9 *A. fumigatus*-specific genes we
360 identified (Fig. S4); alternatively, some of the ~1,700 *A. fischeri*-specific genes we identified
361 may inadvertently facilitate control of *A. fischeri* in a mammalian host. Importantly, our analyses
362 herein were conducted on single strains of the two species and further studies are needed to
363 determine how representative these observed trait and genomic differences are across strains.

364

365 Even though more than 10% of the genes in each species lack an ortholog in the other
366 species, only ~2% (1/49) of previously identified genetic determinants of virulence in *A.*
367 *fumigatus* are not conserved in *A. fischeri* (Table S1). This result, and our observation that many
368 of the pathways of secondary metabolism are quite different between *A. fischeri* and *A.*
369 *fumigatus*, support a multifactorial model of *A. fumigatus* virulence (1, 68, 69) and suggest a
370 need to investigate virulence on multiple levels of biological complexity. In order to cause
371 disease in a host, *A. fumigatus* (and other species closely related to it) must adhere and germinate
372 in the lung (69), survive inherently stressful conditions presented by host environments (ex.
373 severe lack of metals and oxygen) (6, 70, 71), and modulate or endure actions of the host
374 immune system (72). Given the diversity of these activities, it is unlikely that single genes or
375 pathways will be responsible for the totality of *A. fumigatus*-derived disease, even though not all
376 genes in the genome have been characterized for their role in pathogenicity. We hypothesize that

377 multiple pathways (including those involved in secondary metabolism) have changed during the
378 evolution of *A. fischeri* and *A. fumigatus*, resulting in their differing ability to cause disease.

379
380 *A. fumigatus* and *A. fischeri* are members of *Aspergillus* section *Fumigati*, a clade that
381 includes multiple closely related species, some of which are pathogens (e.g., *A. fumigatus*, *A.*
382 *lentulus*, and *A. udagawae*) and some of which are considered non-pathogens (e.g., *A. fischeri*, *A.*
383 *aureolus*, and *A. turcosus*) (2, 42, 73, 74). The ability to cause disease in humans appears to have
384 either arisen or been lost (or both) multiple times independently during the evolution of this
385 lineage, as pathogenic species are spread throughout the phylogeny (17, 75). A broader,
386 phylogenetically-informed comparison of pathogenic and non-pathogenic species in section
387 *Fumigati* would provide far greater resolution in identifying (or dismissing) factors and pathways
388 that may contribute or prevent the ability of these organisms to cause disease. Also, leveraging
389 the diversity of section *Fumigati* would give researchers a better understanding of the nature and
390 evolution of human fungal pathogenesis as the appreciation for the health burden caused by fungi
391 increases (76).

392
393 An important caveat to our experiments is that we only analyzed a single, representative
394 strain from each species. Several recent studies have identified a wide variety of differences
395 between *A. fumigatus* strains, which have in turn been shown to contribute to physiological
396 differences, including but not limited to secondary metabolism and virulence (30, 40, 72, 73).
397 While the genome of only one isolate of *A. fischeri* has so far been sequenced (16) and the
398 organism has only been reported to cause human disease a few times (21-24), it would be of
399 great interest to compare patient-derived and environment-derived isolates at the genomic,

400 phenotypic, and chemical levels. Although it appears that clinical and environmental isolates do
401 not stem from separate lineages in *A. fumigatus* (77), whether this is also the case for largely
402 non-pathogenic species, such as *A. fischeri*, or for rarely isolated pathogenic species, such as *A.*
403 *lentulus* or *A. udagawae*, remains largely unknown.

404

405 **Materials and Methods**

406 Strains and growth media

407 *A. fischeri* strain NRRL 181 was acquired from the ARS Culture Collection (NRRL). *A.*
408 *fumigatus* strain CEA10 (CBS 144.89) was obtained from the CBS. All strains were grown on
409 glucose minimal media (GMM) from conidial glycerol stocks stored at -80°C. All strains were
410 grown in the presence of white light at 37°C. Conidia were collected in 0.01% Tween-80 and
411 enumerated with a hemocytometer.

412

413 Murine virulence studies

414 For the chemotherapeutic (leukopenic) murine model, outbred CD-1 female mice
415 (Charles River Laboratories, Raleigh, NC, USA), 6-8 weeks old, were immunosuppressed with
416 intraperitoneal (i.p.) injections of 150 mg/kg cyclophosphamide (Baxter Healthcare Corporation,
417 Deerfield, IL, USA) 48 hours before and 72 hours after fungal inoculation, along with
418 subcutaneous (s.c.) injections of 40 mg/kg Kenalog-10 (triamcinolone acetonide, Bristol-Myer
419 Squibb, Princeton, NJ, USA) 24 hours before and 6 days after fungal inoculation. For the murine
420 triamcinolone model outbred CD-1 female mice, 6-8 weeks old, were treated with 40 mg/kg
421 Kenalog-10 by s.c. injection 24 hours prior to fungal inoculation.

422

423 For both models, conidial suspensions of 2×10^6 conidia were prepared in 40 μL sterile
424 PBS and administered to mice intranasally while under isoflourine anesthesia. Mock mice were
425 given 40 μL PBS. Mice were monitored three times a day for signs of disease for 14 or 18 days
426 post-inoculation. Survival was plotted on Kaplan-Meir curves and statistical significance
427 between curves was determined using Mantel-Cox Log-Rank and Gehan Breslow-Wilcoxon
428 tests. Mice were housed in autoclaved cages at 4 mice per cage with HEPA filtered air and
429 autoclaved food and water available ad libitum.

430

431 *Galleria mellonella* virulence studies

432 *G. mellonella* larvae were obtained by breeding adult moths (78). *G. mellonella* larvae of
433 a similar size were selected (approximately 275–330 mg) and kept without food in glass
434 container (Petri dishes), at 37°C, in darkness for 24 h prior to use. *A. fumigatus* and *A.*
435 *fischeri* conidia were obtained by growing on YAG media culture for 2 days. The conidia were
436 harvested in PBS and filtered through a Miracloth (Calbiochem). The concentration of conidia
437 was estimated by using hemocytometer, and resuspended at a concentration of 2.0×10^8
438 conidia/ml. The viability of the conidia was determined by incubating on YAG media culture, at
439 37°C, 48 hours. Inoculum (5 μl) of conidia from both strains were used to investigate the
440 virulence of *A. fumigatus* and *A. fischeri* against *G. mellonella*. Ten *G. mellonella* in the final
441 (sixth) instar larval stage of development were used per condition in all assays. The control
442 group was the larvae inoculated with 5 μl of PBS to observe the killing due to physical trauma.
443 The inoculum was performed by using Hamilton syringe (7000.5KH) and 5 μl into the haemocel
444 of each larva via the last left proleg. After, the larvae were incubated in glass container (Petri

445 dishes) at 37°C in the dark. The larval killing was scored daily. Larvae were considered dead by
446 presenting the absence of movement in response to touch.

447

448 Histopathology

449 Outbred CD-1 mice, 6-8 weeks old, were immunosuppressed and intranasally inoculated
450 with 2×10^6 conidia as described above for the chemotherapeutic and corticosteroid murine
451 models. Mice were sacrificed 72 hours post inoculation. Lungs were perfused with 10% buffered
452 formalin phosphate before removal, then stored in 10% buffered formalin phosphate until
453 embedding. Paraffin embedded sections were stained with haematoxylin and eosin (H&E) and
454 Gömöri methenamine silver (GMS). Slides were analyzed microscopically with a Zeiss Axioplan
455 2 imaging microscope (Carl Zeiss Microimaging, Inc. Thornwood, NY, USA) fitted with a
456 Qimaging RETIGA-SRV Fast 1394 RGB camera. Analysis was performed in Phylum Live 4
457 imaging software.

458

459 Ethics Statement

460 We carried out our mouse studies in strict accordance with the recommendations in the
461 Guide for the Care and Use of Laboratory Animals of the National Research Council (Council,
462 1996). The mouse experimental protocol was approved by the Institutional Animal Care and Use
463 Committee (IACUC) at Dartmouth College (Federal-Wide Assurance Number: A3259-01).

464

465 Growth Assays

466 Radial growth was quantified by point inoculation of 1×10^3 conidia in 2 μL on indicated
467 media; plates were incubated at 37°C in normoxia (~21% O₂, 5% CO₂) or hypoxia (0.2% O₂, 5%

468 CO₂). Colony diameter was measured every 24 hours for 4 days and reported as the average of
469 three biological replicates per strain.

470

471 For 2-DG experiments, 1x10³ conidia in 2 µL were spotted on 1% lactate minimal media
472 with or without 0.1% 2-deoxyglucose (2-DG; Sigma, D8375). Plates were incubated for 3 days
473 at 37°C in normoxia or hypoxia with 5% CO₂. Percent inhibition was calculated by dividing
474 radial growth on 2-DG plates by the average radial growth of biological triplicates on plates
475 without 2-DG.

476

477 Fungal biomass was quantified by measuring the dry weight of fungal tissue from 5x10⁷
478 conidia grown in 100 mL liquid GMM shaking at 200 rpm for 48 hours in normoxia (~21% O₂)
479 and hypoxia (0.2% O₂, 5% CO₂). Liquid biomass is reported as the average of three biological
480 replicates per strain. Hypoxic conditions were maintained using an INVIVO₂ 400 Hypoxia
481 Workstation (Ruskinn Technology Limited, Bridgend, UK) with a gas regulator and 94.8% N₂.

482

483 Liquid growth curves were performed with conidia adjusted to 2x10⁴ conidia in 20 µL
484 0.01% Tween-80 in 96-well dishes, then 180 µL of media (GMM or lung homogenate) was
485 added to each well. Plates were incubated at 37°C for 7 hours, then Abs₄₀₅ measurements were
486 taken every 10 minutes for the first 16 hours of growth with continued incubation at 37°C. Lung
487 homogenate media was prepared as follows: lungs were harvested from healthy CD-1 female
488 mice (20-24 g) and homogenized through a 100 µM cell strainer in 2 mL PBS/lung. Homogenate
489 was diluted 1:4 in sterile PBS, spun down to remove cells, then filter sterilized through 22 µM
490 PVDF filters.

491

492 Cell wall and oxidative stresses

493 Congo Red (0.5 mg/mL), Menadione (20 μ M), or calcofluor white (CFW, 25 μ g/mL)
494 were added to GMM plates. 1×10^3 conidia (Calcofluor white and Menadione) or 1×10^5 conidia
495 (Congo Red) were point inoculated and plates were incubated for 96 hours at 37°C with 5% CO₂.

496

497 Orthology Determination and Analyses

498 Genomes for *A. fumigatus* CEA10 and *A. fischeri* NRRL 181 were downloaded from
499 NCBI (Accession numbers of GCA_000150145.1 and GCF_000149645.1, respectively). To
500 identify putative orthologous genes between *A. fischeri* and *A. fumigatus*, a reciprocal best
501 BLAST hit (RBBH) approach was used. We blasted the proteome of *A. fischeri* to *A. fumigatus*
502 and vice versa using an e-value cutoff of 10^{-3} and then filtered for RBBHs according to bitscore
503 (79). A pair of genes from each species was considered orthologous if their best blast hit was to
504 each other. Species-specific and orthologous protein sets were visualized using version 3.0.0 of
505 eulerAPE (80).

506

507 Secondary Metabolism Cluster Prediction and Analyses

508 Version 4.2.0 of antiSMASH (38) was used with its default settings to identify secondary
509 metabolite clusters. Orthologous cluster genes were identified using our RBBH results and
510 visualized using version 0.69 of Circos (81). Chromosomes were identified for *A. fischeri*
511 NRRL1 and *A. fumigatus* CEA10 using NUCMER (82) and chromosomal sequences from *A.*
512 *fumigatus* strain AF293 from NCBI (Accession number GCA_000002655.1). Syntenic clusters
513 were visualized using easyfig version 2.2.2 (83).

514

515 Secondary Metabolite Extraction and Identification

516 Secondary metabolites were extracted from *A. fischeri* using techniques well established
517 in the Natural Products literature (84, 85). This was done by adding a 1:1 mixture of
518 CHCl₃:CH₃OH and left to shake overnight. The resulting slurry was partitioned twice, first with
519 a 4:1:5 CHCl₃:CH₃OH:H₂O solution, with the organic layer drawn off and evaporated to dryness
520 *in vacuo*, and secondly reconstituting 1:1:2 CH₃CN:CH₃OH:hexanes, where the organic layer
521 was drawn off and evaporated to dryness. The extract then underwent chromatographic
522 separation (flash chromatography and HPLC) using varied gradient systems. The full structural
523 characterization of the new secondary metabolites is provided in the Figshare document
524 (<https://doi.org/10.6084/m9.figshare.7149167>).

525

526 Construction of the *A. fischeri* Δ laeA mutant

527 The gene replacement cassettes were constructed by “*in vivo*” recombination in *S.*
528 *cerevisiae* as previously described by (86, 87). Approximately 2.0 kb from the 5'-UTR and 3'-
529 UTR flanking regions of the targeted ORF regions were selected for primer design. The primers
530 pRS NF010750 5'fw (5'-
531 GTAACGCCAGGGTTTCCCAGTCACGACGCAGTCTAACGCTGGGCCCTTCC-3') and
532 pRS NF010750 3'rv (5'-
533 GCGGTTAACAAATTCTCTGGAAACAGCTACGGCGTTGACGGCACAC-3') contained
534 a short homologous sequence to the Multicloning site (MCS) of the plasmid pRS426. Both the
535 5'- and 3'-UTR fragments were PCR-amplified from *A. fischeri* genomic DNA (gDNA). The
536 *prtA* gene, conferring resistance to pyritthiamine, which was placed within the cassette as a

537 dominant marker, was amplified from the pPRT1 plasmid by using the primers prtA NF010750
538 5'rv (5'-GTAATCAATTGCCGTCTGTCAGATCCAGGTCGAGGAGGTCCAATCGG-3')
539 and prtA NF010750 3'fw (5'-
540 CGGCTCATCGTCACCCCATGATAGCCGAGATCAATCTTGCATCC-3'). The deletion
541 cassette was generated by transforming each fragment along with the plasmid pRS426 cut with
542 *Bam*HI/*Eco*RI into the *S. cerevisiae* strain SC94721, using the lithium acetate method (88). The
543 DNA from the transformants was extracted by the method described by Goldman et al. (89). The
544 cassette was PCR-amplified from these plasmids utilizing TaKaRa Ex TaqTM DNA Polymerase
545 (Clontech Takara Bio) and used for *A. fischeri* transformation according to the protocol described
546 by Malavazi and Goldman (87). Southern blot and PCR analyses were used to demonstrate that
547 the cassette had integrated homologously at the targeted *A. fischeri* locus. Genomic DNA from
548 *A. fischeri* was extracted by grinding frozen mycelia in liquid nitrogen and then gDNA was
549 extracted as previously described (87). Standard techniques for manipulation of DNA were
550 carried out as described (90). For Southern blot analysis, restricted chromosomal DNA fragments
551 were separated on 1% agarose gel and blotted onto Hybond N⁺ nylon membranes (GE
552 Healthcare). Probes were labeled using [α -³²P]dCTP using the Random Primers DNA Labeling
553 System (Life Technologies). Labeled membranes were exposed to X-ray films, which were
554 scanned for image processing. Southern blot and PCR schemes are shown in Fig. S8.

555

556 **Acknowledgements**

557 Computational infrastructure was provided by The Advanced Computing Center for
558 Research and Education (ACCRE) at Vanderbilt University. MEM, JS, and AR were supported
559 by a Vanderbilt University Discovery Grant. Research in AR's lab is also supported by the

560 National Science Foundation (DEB-1442113), the Guggenheim Foundation, and the Burroughs
561 Wellcome Fund. RAC holds an Investigator in the Pathogenesis of Infectious Diseases Award
562 supported by the Burroughs Wellcome Fund and is also supported by a National Institute of
563 Allergy and Infectious Diseases award 1R01AI130128. SRB was supported, in part, by the
564 National Institute of General Medical Sciences of the National Institutes of Health under Award
565 Number T32GM008704. SLK was supported by the National Center for Complementary and
566 Integrative Health, a component of the National Institutes of Health, under award number T32
567 AT008938. GHG was supported by grants from Fundação de Amparo à Pesquisa do Estado de
568 São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico
569 (CNPq), both from Brazil.

570 **References**

- 571 1. **Latgé JP.** 1999. *Aspergillus fumigatus* and aspergillosis. *Clin Microbiol Rev* **12**:310–350.
- 572 2. **Lamoth F.** 2016. *Aspergillus fumigatus*-Related Species in Clinical Practice. *Frontiers in*
573 *Microbiology* **7**:683.
- 574 3. **Tekaia F, Latgé J-P.** 2005. *Aspergillus fumigatus*: saprophyte or pathogen? *Current*
575 *Opinion in Microbiology* **8**:385–392.
- 576 4. **Bhabhra R, Miley MD, Mylonakis E, Boettner D, Fortwendel J, Panepinto JC,**
577 **Postow M, Rhodes JC, Askew DS.** 2004. Disruption of the *Aspergillus fumigatus* gene
578 encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence.
579 *Infect Immun* **72**:4731–4740.
- 580 5. **Wagener J, Echtenacher B, Rohde M, Kotz A, Krappmann S, Heesemann J, Ebel F.**
581 2008. The Putative α -1,2-Mannosyltransferase AfMnt1 of the Opportunistic Fungal
582 Pathogen *Aspergillus fumigatus* Is Required for Cell Wall Stability and Full Virulence.
583 *Eukaryotic Cell* **7**:1661–1673.
- 584 6. **Grahl N, Puttikamonkul S, Macdonald JM, Gamsik MP, Ngo LY, Hohl TM,**
585 **Cramer RA.** 2011. *In vivo* hypoxia and a fungal alcohol dehydrogenase influence the
586 pathogenesis of invasive pulmonary aspergillosis. *PLoS Pathog* **7**:e1002145.
- 587 7. **Willger SD, Puttikamonkul S, Kim K-H, Burritt JB, Grahl N, Metzler LJ, Barbuch**
588 **R, Bard M, Lawrence CB, Cramer RA.** 2008. A sterol-regulatory element binding
589 protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and
590 virulence in *Aspergillus fumigatus*. *PLoS Pathog* **4**:e1000200.
- 591 8. **Rokas A, Wisecaver JH, Lind AL.** 2018. The birth, evolution and death of metabolic
592 gene clusters in fungi. *Nature Reviews Microbiology* **163**:150.
- 593 9. **Keller NP, Turner G, Bennett JW.** 2005. Fungal secondary metabolism — from
594 biochemistry to genomics. *Nature Reviews Microbiology* **3**:937–947.
- 595 10. **Bignell E, Cairns TC, Throckmorton K, Nierman WC, Keller NP.** 2016. Secondary
596 metabolite arsenal of an opportunistic pathogenic fungus. *Phil Trans R Soc B*
597 **371**:20160023–9.
- 598 11. **Sugui JA, Pardo J, Chang YC, Müllbacher A, Zaremba KA, Galvez EM, Brinster**
599 **L, Zerfas P, Gallin JI, Simon MM, Kwon-Chung KJ.** 2007. Role of *laeA* in the
600 Regulation of *alb1*, *gliP*, Conidial Morphology, and Virulence in *Aspergillus fumigatus*.
601 *Eukaryotic Cell* **6**:1552–1561.
- 602 12. **Bok JW, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Keller NP.** 2005.
603 LaeA, a regulator of morphogenetic fungal virulence factors. *Eukaryotic Cell* **4**:1574–
604 1582.

- 605 13. **Balajee SA, Kano R, Baddley JW, Moser SA, Marr KA, Alexander BD, Andes D, Kontoyiannis DP, Perrone G, Peterson S, Brandt ME, Pappas PG, Chiller T.** 2009. Molecular identification of *Aspergillus* species collected for the Transplant-Associated Infection Surveillance Network. *J Clin Microbiol* **47**:3138–3141.
- 609 14. **Alastruey-Izquierdo A, Mellado E, Peláez T, Pemán J, Zapico S, Alvarez M, Rodríguez-Tudela JL, Cuenca-Estrella M, FILPOP Study Group.** 2013. Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP Study). *Antimicrob Agents Chemother* **57**:3380–3387.
- 613 15. **van der Linden JWM, Arendrup MC, Warris A, Lagrou K, Pelloux H, Hauser PM, Chryssanthou E, Mellado E, Kidd SE, Tortorano AM, Dannaoui E, Gaustad P, Baddley JW, Uekötter A, Lass-Flörl C, Klimko N, Moore CB, Denning DW, Pasqualotto AC, Kibbler C, Arikán-Akdogan S, Andes D, Meletiadis J, Naumiuk L, Nucci M, Melchers WJG, Verweij PE.** 2015. Prospective multicenter international surveillance of azole resistance in *Aspergillus fumigatus*. *Emerging Infect Dis* **21**:1041–1044.
- 620 16. **Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A, Anguoli S, Bussey H, Bowyer P, Cotty PJ, Dyer PS, Egan A, Galens K, Fraser-Liggett CM, Haas BJ, Inman JM, Kent R, Lemieux S, Malavazi I, Orvis J, Roemer T, Ronning CM, Sundaram JP, Sutton G, Turner G, Venter JC, White OR, Whitty BR, Youngman P, Wolfe KH, Goldman GH, Wortman JR, Jiang B, Denning DW, Nierman WC.** 2008. Genomic islands in the pathogenic filamentous fungus *Aspergillus fumigatus*. *PLoS Genet* **4**:e1000046.
- 627 17. **Steenwyk JL, Shen X-X, Lind AL, Goldman GG, Rokas A.** 2018. A robust phylogenomic timetree for biotechnologically and medically important fungi from Aspergillaceae (Eurotiomycetes, Ascomycota). *bioRxiv* 370429.
- 630 18. **Hong S-B, Kim D-H, Park I-C, Samson RA, Shin H-D.** 2010. Isolation and Identification of *Aspergillus* Section *Fumigati* Strains from Arable Soil in Korea. *Mycobiology* **38**:1.
- 633 19. **Frąc M, Jezińska-Tys S, YAGUCHI T.** 2015. Occurrence, Detection, and Molecular and Metabolic Characterization of Heat- Resistant Fungi in Soils and Plants and Their Risk to Human Health. *Advances in Agronomy*. Elsevier Ltd.
- 636 20. **Tong X, Xu H, Zou L, Cai M, Xu X, Zhao Z, Xiao F, Li Y.** 2017. High diversity of airborne fungi in the hospital environment as revealed by meta-sequencing-based microbiome analysis. *Sci Rep* **7**:39606.
- 639 21. **Summerbell RC, de Repentigny L, Chartrand C, St Germain G.** 1992. Graft-related endocarditis caused by *Neosartorya fischeri* var. *spinosa*. *J Clin Microbiol* **30**:1580–1582.
- 641 22. **Lonial S, Williams L, Carrum G, Ostrowski M, McCarthy P.** 1997. *Neosartorya fischeri*: an invasive fungal pathogen in an allogeneic bone marrow transplant patient. *Bone Marrow Transplant* **19**:753–755.

- 644 23. **Gerber J, Chomicki J, Brandsberg JW, Jones R, Hammerman KJ.** 1973. Pulmonary
645 aspergillosis caused by *Aspergillus fischeri* var. *spinosus*: report of a case and value of
646 serologic studies. *Am J Clin Pathol* **60**:861–866.
- 647 24. **Coriglione G, Stella G, Gafa L, Spata G, Oliveri S, Padhye AA, Ajello L.** 1990.
648 *Neosartorya fischeri* var *fischeri* (Wehmer) Malloch and Cain 1972 (anamorph:
649 *Aspergillus fischerianus* Samson and Gams 1985) as a cause of mycotic keratitis. *Eur J
650 Epidemiol* **6**:382–385.
- 651 25. **Escribano P, Peláez T, Muñoz P, Bouza E, Guinea J.** 2013. Is azole resistance in
652 *Aspergillus fumigatus* a problem in Spain? *Antimicrob Agents Chemother* **57**:2815–2820.
- 653 26. **Negri CE, Gonçalves SS, Xafranski H, Bergamasco MD, Aquino VR, Castro PTO,
654 Colombo AL.** 2014. Cryptic and rare *Aspergillus* species in Brazil: prevalence in clinical
655 samples and in vitro susceptibility to triazoles. *J Clin Microbiol*, 7 ed. **52**:3633–3640.
- 656 27. **Sabino R, Verissimo C, Parada H, Brandao J, Viegas C, Carolino E, Clemons KV,
657 Stevens DA.** 2014. Molecular screening of 246 Portuguese *Aspergillus* isolates among
658 different clinical and environmental sources. *Med Mycol* **52**:519–529.
- 659 28. **Abers MS, Ghebremichael MS, Timmons AK, Warren HS, Poznansky MC, Vyas
660 JM.** 2016. A Critical Reappraisal of Prolonged Neutropenia as a Risk Factor for Invasive
661 Pulmonary Aspergillosis. *Open Forum Infect Dis* **3**:ofw036.
- 662 29. **Beattie SR, Mark KMK, Thammahong A, Ries LNA, Dhingra S, Caffrey-Carr AK,
663 Cheng C, Black CC, Bowyer P, Bromley MJ, Obar JJ, Goldman GH, Cramer RA.** 2017. Filamentous fungal carbon catabolite repression supports metabolic plasticity and
664 stress responses essential for disease progression. *PLoS Pathog* **13**:e1006340–29.
- 666 30. **Kowalski CH, Beattie SR, Fuller KK, McGurk EA, Tang Y-W, Hohl TM, Obar JJ,
667 Cramer RA.** 2016. Heterogeneity among Isolates Reveals that Fitness in Low Oxygen
668 Correlates with *Aspergillus fumigatus*. *Virulence*. *mBio* **7**.
- 669 31. **Childers DS, Raziunaite I, Mol Avelar G, Mackie J, Budge S, Stead D, Gow NAR,
670 Lenardon MD, Ballou ER, MacCallum DM, Brown AJP.** 2016. The Rewiring of
671 Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host
672 Colonization and Virulence. *PLoS Pathog* **12**:e1005566.
- 673 32. **Sandai D, Yin Z, Selway L, Stead D, Walker J, Leach MD, Bohovych I, Ene IV,
674 Kastora S, Budge S, Munro CA, Odds FC, Gow NAR, Brown AJP.** 2012. The
675 evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon
676 assimilation in the pathogenic yeast *Candida albicans*. *mBio* **3**.
- 677 33. **Houbraken J, Weig M, Groß U, Meijer M, Bader O.** 2016. *Aspergillus
678 oerlinghausenensis*, a new mould species closely related to *A. fumigatus*. *FEMS Microbiol
679 Lett* **363**:fnv236.

- 680 34. **Salichos L, Rokas A.** 2011. Evaluating ortholog prediction algorithms in a yeast model
681 clade. *PLoS ONE* **6**:e18755.
- 682 35. **Abad A, Fernández-Molina JV, Bikandi J, Ramírez A, Margareto J, Sendino J, Hernando FL, Pontón J, Garaizar J, Rementeria A.** 2010. What makes *Aspergillus fumigatus* a successful pathogen? Genes and molecules involved in invasive aspergillosis. *Rev Iberoam Micol* **27**:155–182.
- 686 36. **Kjærboelling I, Vesth TC, Frisvad JC, Nybo JL, Theobald S, Kuo A, Bowyer P, Matsuda Y, Mondo S, Lyhne EK, Kogle ME, Clum A, Lipzen A, Salamov A, Ngan CY, Daum C, Chiniquy J, Barry K, LaButti K, Haridas S, Simmons BA, Magnuson JK, Mortensen UH, Larsen TO, Grigoriev IV, Baker SE, Andersen MR.** 2018. Linking secondary metabolites to gene clusters through genome sequencing of six diverse *Aspergillus* species. *Proc Natl Acad Sci USA*.
- 692 37. **O'Hanlon KA, Gallagher L, Schrett M, Jöchl C, Kavanagh K, Larsen TO, Doyle S.** 2012. Nonribosomal Peptide Synthetase Genes *pesL* and *pes1* Are Essential for Fumigaclavine C Production in *Aspergillus fumigatus*. *Appl Environ Microbiol* **78**:3166–3176.
- 696 38. **Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, Suarez Duran HG, de los Santos ELC, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R, Takano E, Lee SY, Weber T, Medema MH.** 2017. antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. *Nucleic Acids Res* **45**:W36–W41.
- 701 39. **Lind AL, Wisecaver JH, Smith TD, Feng X, Calvo AM, Rokas A.** 2015. Examining the evolution of the regulatory circuit controlling secondary metabolism and development in the fungal genus *Aspergillus*. *PLoS Genet* **11**:e1005096.
- 704 40. **Lind AL, Wisecaver JH, Lameiras C, Wiemann P, Palmer JM, Keller NP, Rodrigues F, Goldman GH, Rokas A.** 2017. Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. *PLoS Biol* **15**:e2003583.
- 707 41. **Gardiner DM, Howlett BJ.** 2005. Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of *Aspergillus fumigatus*. *FEMS Microbiol Lett* **248**:241–248.
- 710 42. **Frisvad JC, Larsen TO.** 2016. Extrolites of *Aspergillus fumigatus* and Other Pathogenic Species in *Aspergillus* Section *Fumigati*. *Frontiers in Microbiology* **6**:1485.
- 712 43. **Wiemann P, Guo C-J, Palmer JM, Sekonyela R, Wang CCC, Keller NP.** 2013. Prototype of an intertwined secondary-metabolite supercluster. *Proc Natl Acad Sci USA* **110**:17065–17070.
- 715 44. **El-Elimat T, Raja HA, Day CS, Chen W-L, Swanson SM, Oberlies NH.** 2014. Greensporones: Resorcylic Acid Lactones from an Aquatic *Halenospora* sp. *J Nat Prod* **77**:2088–2098.

- 718 45. **El-Elimat T, Raja HA, Figueroa M, Falkinham JO, Oberlies NH.** 2014. Isochromenones, isobenzofuranone, and tetrahydronaphthalenes produced by *Paraphoma radicina*, a fungus isolated from a freshwater habitat. *Phytochemistry* **104**:114–120.
- 719 46. **El-Elimat T, Raja HA, Day CS, McFeeters H, McFeeters RL, Oberlies NH.** 2017. α -Pyrone derivatives, tetra/hexahydroxanthones, and cyclodepsipeptides from two freshwater fungi. *Bioorg Med Chem* **25**:795–804.
- 720 721 47. **Raja HA, Paguigan ND, Fournier J, Oberlies NH.** 2017. Additions to *Lindgomyces* (Lindgomycetaceae, Pleosporales, Dothideomycetes), including two new species occurring on submerged wood from North Carolina, USA, with notes on secondary metabolite profiles. *Mycol Progress* **16**:535–552.
- 722 723 724 48. **Rivera-Chávez J, Raja HA, Graf TN, Gallagher JM, Metri P, Xue D, Pearce CJ, Oberlies NH.** 2017. Prealamethicin F50 and related peptaibols from *Trichoderma arundinaceum*: Validation of their authenticity via *in situ* chemical analysis. *RSC Adv* **7**:45733–45751.
- 725 726 727 728 49. **Sanchez JF, Somoza AD, Keller NP, Wang CCC.** 2012. Advances in *Aspergillus* secondary metabolite research in the post-genomic era. *Nat Prod Rep* **29**:351–371.
- 729 730 731 732 50. **Bode HB, Bethe B, Höfs R, Zeeck A.** 2002. Big effects from small changes: possible ways to explore nature's chemical diversity. *Chembiochem* **3**:619–627.
- 733 734 735 736 51. **Vandermolen KM, Raja HA, El-Elimat T, Oberlies NH.** 2013. Evaluation of culture media for the production of secondary metabolites in a natural products screening program. *AMB Express* **3**:71.
- 737 738 739 740 741 52. **Hemphill CFP, Sureechatchaiyan P, Kassack MU, Orfali RS, Lin W, Daletos G, Proksch P.** 2017. OSMAC approach leads to new fusarielin metabolites from *Fusarium tricinctum*. *J Antibiot* **70**:726–732.
- 742 743 744 745 746 747 748 53. **Frisvad JC, Andersen B, Thrane U.** 2008. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. *Mycol Res* **112**:231–240.
- 749 750 751 752 753 54. **Eamvijarn A, Gomes NM, Dethoup T, Buaruang J, Manoch L, Silva A, Pedro M, Marini I, Roussis V, Kijjoa A.** 2013. Bioactive meroditerpenes and indole alkaloids from the soil fungus *Neosartorya fischeri* (KUFC 6344), and the marine-derived fungi *Neosartorya laciniosa* (KUFC 7896) and *Neosartorya tsunodae* (KUFC 9213). *Tetrahedron* **69**:8583–8591.
- 754 55. **Kimura Y, Hamasaki T, Nakajima H, Isogai A.** 1982. Structure of aszonalenin, a new metabolite of *Aspergillus zonatus*. *Tetrahedron Letters* **23**:225–228.
- 755 56. **Ruchti J, Carreira EM.** 2014. Ir-Catalyzed Reverse Prenylation of 3-Substituted Indoles: Total Synthesis of (+)-Aszonalenin and (–)-Brevicompanine B. *J Am Chem Soc* **136**:16756–16759.

- 754 57. **Ellestad GA, Mirando P, Kunstmann MP.** 1973. Structure of the metabolite LL-
755 S490.beta. from an unidentified *Aspergillus* species. *J Org Chem* **38**:4204–4205.
- 756 58. **Yamazaki M, Fujimoto H, Kawasaki T.** 1980. Chemistry of tremorogenic metabolites.
757 I. Fumitremorgin A from *Aspergillus fumigatus*. *Chem Pharm Bull* **28**:245–254.
- 758 59. **Feng Y, Holte D, Zoller J, Umemiya S, Simke LR, Baran PS.** 2015. Total Synthesis of
759 Verruculogen and Fumitremorgin A Enabled by Ligand-Controlled C–H Borylation. *J Am
760 Chem Soc* **137**:10160–10163.
- 761 60. **Pohland AE, Schuller PL, Steyn PS, Van Egmond HP.** 1982. Physicochemical data for
762 some selected mycotoxins. *Pure and Applied Chemistry* **54**:2219–2284.
- 763 61. **Afiyatullov SS, Kalinovskii AI, Pivkin MV, Dmitrenok PS, Kuznetsova TA.** 2005.
764 Alkaloids from the Marine Isolate of the Fungus *Aspergillus fumigatus*. *Chemistry of
765 Natural Compounds* **41**:236–238.
- 766 62. **Mundt K, Wollinsky B, Ruan H-L, Zhu T, Li S-M.** 2012. Identification of the
767 verruculogen prenyltransferase FtmPT3 by a combination of chemical, bioinformatic and
768 biochemical approaches. *Chembiochem* **13**:2583–2592.
- 769 63. **Fayos J, Lokensgaard D, Clardy J, Cole RJ, Kirksey JW.** 1974. Letter: Structure of
770 verruculogen, a tremor producing peroxide from *Penicillium verruculosum*. *J Am Chem
771 Soc* **96**:6785–6787.
- 772 64. **Fill TP, Asenha HBR, Marques AS, Ferreira AG, Rodrigues-Fo E.** 2013. Time course
773 production of indole alkaloids by an endophytic strain of *Penicillium brasiliense*
774 cultivated in rice. *Nat Prod Res* **27**:967–974.
- 775 65. **Bok JW, Keller NP.** 2004. LaeA, a regulator of secondary metabolism in *Aspergillus* spp.
776 *Eukaryotic Cell* **3**:527–535.
- 777 66. **Hoff B, Kamerewerd J, Sigl C, Mitterbauer R, Zadra I, Kürnsteiner H, Kück U.**
778 2010. Two components of a velvet-like complex control hyphal morphogenesis,
779 conidiophore development, and penicillin biosynthesis in *Penicillium chrysogenum*.
780 *Eukaryotic Cell* **9**:1236–1250.
- 781 67. **Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf H-U, Tudzynski
782 B.** 2010. FfVel1 and FfLae1, components of a velvet-like complex in *Fusarium fujikuroi*,
783 affect differentiation, secondary metabolism and virulence. *Mol Microbiol* **77**:972–994.
- 784 68. **Dagenais TRT, Keller NP.** 2009. Pathogenesis of *Aspergillus fumigatus* in Invasive
785 Aspergillosis. *Clin Microbiol Rev* **22**:447–465.
- 786 69. **Ben-Ami R, Lewis RE, Kontoyiannis DP.** 2010. Enemy of the (immunosuppressed)
787 state: an update on the pathogenesis of *Aspergillus fumigatus* infection. *Br J Haematol*
788 **150**:406–417.

- 789 70. **Hissen AHT, Wan ANC, Warwas ML, Pinto LJ, Moore MM.** 2005. The *Aspergillus*
790 *fumigatus* siderophore biosynthetic gene *sidA*, encoding L-ornithine N5-oxygenase, is
791 required for virulence. *Infect Immun* **73**:5493–5503.
- 792 71. **Moreno MA, Ibrahim-Granet O, Vicentefranqueira R, Amich J, Ave P, Leal F, Latgé J-P, Calera JA.** 2007. The regulation of zinc homeostasis by the ZafA
793 transcriptional activator is essential for *Aspergillus fumigatus* virulence. *Mol Microbiol*
794 **64**:1182–1197.
- 796 72. **Cramer RA, Rivera A, Hohl TM.** 2011. Immune responses against *Aspergillus*
797 *fumigatus*: what have we learned? *Curr Opin Infect Dis* **24**:315–322.
- 798 73. **Mellado E, Alcazar-Fuoli L, Cuenca-Estrella M, Rodriguez-Tudela JL.** 2011. Role of
799 *Aspergillus lentulus* 14- α sterol demethylase (Cyp51A) in azole drug susceptibility.
800 *Antimicrob Agents Chemother* **55**:5459–5468.
- 801 74. **Sugui JA, Vinh DC, Nardone G, Shea YR, Chang YC, Zelazny AM, Marr KA, Holland SM, Kwon-Chung KJ.** 2010. *Neosartorya udagawae* (*Aspergillus udagawae*),
802 an emerging agent of aspergillosis: how different is it from *Aspergillus fumigatus*? *J Clin*
803 *Microbiol* **48**:220–228.
- 805 75. **Hubka V, Barrs V, Dudová Z, Sklenář F, Kubátová A, Matsuzawa T, Yaguchi T, Horie Y, Nováková A, Frisvad JC, Talbot JJ, Kolařík M.** 2018. Unravelling species
806 boundaries in the *Aspergillus viridinutans* complex (section *Fumigati*): opportunistic
807 human and animal pathogens capable of interspecific hybridization. *Persoonia*.
- 809 76. 2017. Stop neglecting fungi. *Nat Microbiol* **2**:17120.
- 810 77. **Abdolrasouli A, Rhodes J, Beale MA, Hagen F, Rogers TR, Chowdhary A, Meis JF, Armstrong-James D, Fisher MC.** 2015. Genomic Context of Azole Resistance
811 Mutations in *Aspergillus fumigatus* Determined Using Whole-Genome Sequencing. *mBio*,
812 2nd ed. **6**:e00536.
- 814 78. **Fuchs BB, O'Brien E, Khouri JBE, Mylonakis E.** 2010. Methods for using *Galleria*
815 *mellonella* as a model host to study fungal pathogenesis. *Virulence* **1**:475–482.
- 816 79. **Madden T.** 2013. The BLAST Sequence Analysis Tool. *In The NCBI Handbook*
817 [Internet]. 2nd edition. National Center for Biotechnology Information (US).
- 818 80. **Micallef L, Rodgers P.** 2014. eulerAPE: Drawing Area-Proportional 3-Venn Diagrams
819 Using Ellipses. *PLoS ONE* **9**:e101717–18.
- 820 81. **Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA.** 2009. Circos: an information aesthetic for comparative genomics. *Genome Res* **19**:1639–1645.
- 823 82. **Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL.** 2004. Versatile and open software for comparing large genomes. *Genome Biol* **5**:R12.

- 825 83. **Sullivan MJ, Petty NK, Beatson SA.** 2011. Easyfig: a genome comparison visualizer.
826 Bioinformatics **27**:1009–1010.
- 827 84. **El-Elimat T, Figueroa M, Ehrmann BM, Cech NB, Pearce CJ, Oberlies NH.** 2013.
828 High-resolution MS, MS/MS, and UV database of fungal secondary metabolites as a
829 dereplication protocol for bioactive natural products. J Nat Prod **76**:1709–1716.
- 830 85. **Paguigan ND, El-Elimat T, Kao D, Raja HA, Pearce CJ, Oberlies NH.** 2017.
831 Enhanced dereplication of fungal cultures via use of mass defect filtering. J Antibiot
832 **70**:553–561.
- 833 86. **Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL,
834 Borkovich KA, Dunlap JC.** 2006. A high-throughput gene knockout procedure for
835 *Neurospora* reveals functions for multiple transcription factors. Proc Natl Acad Sci USA
836 **103**:10352–10357.
- 837 87. **Malavazi I, Goldman GH.** 2012. Gene disruption in *Aspergillus fumigatus* using a PCR-
838 based strategy and in vivo recombination in yeast. Methods Mol Biol **845**:99–118.
- 839 88. **Schiestl RH, Gietz RD.** 1989. High efficiency transformation of intact yeast cells using
840 single stranded nucleic acids as a carrier. Curr Genet **16**:339–346.
- 841 89. **Goldman GH, Reis Marques dos E, Duarte Ribeiro DC, de Souza Bernardes LA,
842 Quiapin AC, Vitorelli PM, Savoldi M, Semighini CP, de Oliveira RC, Nunes LR,
843 Travassos LR, Puccia R, Batista WL, Ferreira LE, Moreira JC, Bogossian AP,
844 Tekaia F, Nobrega MP, Nobrega FG, Goldman MHS.** 2003. Expressed sequence tag
845 analysis of the human pathogen *Paracoccidioides brasiliensis* yeast phase: identification
846 of putative homologues of *Candida albicans* virulence and pathogenicity genes.
847 Eukaryotic Cell **2**:34–48.
- 848 90. **Sambrook J, Russell DW.** 2001. Molecular Cloning, 3rd ed. Cold Spring Harbor
849 Laboratory Press, London.
- 850 91. **Yin W-B, Grundmann A, Cheng J, Li S-M.** 2009. Acetylaszonalenin biosynthesis in
851 *Neosartorya fischeri*. Identification of the biosynthetic gene cluster by genomic mining
852 and functional proof of the genes by biochemical investigation. J Biol Chem **284**:100–109.
- 853
- 854

855 **Tables**

856

857 **Table 1. *A. fischeri* shows enhanced resistance relative to *A. fumigatus* for several**
858 **antifungal drugs.**

Strain	Posaconazole [μ g/ml]	Voriconazole [μ g/ml]	Itraconazole [μ g/ml]	Caspofungin [μ g/ml]
<i>A. fumigatus</i>	0.7	0.8	5	0.09
<i>A. fischeri</i>	2.4	>4	>24	0.06

859

860 **Figure Legends**

861 **Figure 1: *A. fischeri* is significantly less virulent than *A. fumigatus* in multiple murine**

862 **models of invasive pulmonary aspergillosis.** AB) Cumulative survival of mice inoculated with
863 1×10^5 (A) or 2×10^6 (B) conidia in a leukopenic model of IPA. A) n=10/group B) n=12/group,
864 4/PBS. *p=0.0098 by Log-Rank test, p=0.0002 by Gehan-Breslow-Wilcoxon test. C) Cumulative
865 survival of mice inoculated with 2e6 conidia in a triamcinolone model of IPA. n=12/group,
866 4/PBS. *p=<0.0001 by Log-Rank and Gehan-Breslow-Wilcoxon tests. D) and E) Cumulative
867 survival of *G. mellonella* larvae inoculated with 1×10^6 (D) or 1×10^9 (E) conidia. 10 larvae were
868 used per condition in all assays. Survival curves for *A. fischeri* and *A. fumigatus* were
869 significantly different (p<0.003) in both Log-Rank and Gehan-Breslow-Wilcoxon tests for both
870 inoculums. F) Histological sections from 3 days post inoculation in a triamcinolone model of
871 IPA stained with H&E and GMS. Images were acquired at 100x.

872

873 **Figure 2: *A. fischeri* is unable to thrive under suboptimal metabolic conditions at 37°C.**

874 1×10^3 conidia were point inoculated on each plate then plates were incubated at 37°C in
875 normoxia (N; ~21% oxygen, 5%CO₂) or hypoxia (H; 0.2% O₂, 5%CO₂); colony diameter was
876 measured every 24 hours. Mean and SEM of triplicates. CAA – Casamino acids; GMM –
877 glucose minimal media.

878

879 **Figure 3: *A. fischeri* is more susceptible to multiple host-relevant stresses than *A. fumigatus*.**

880 A) Fitness ratio of *A. fumigatus* or *A. fischeri* during hypoxic vs normoxic growth (measured as
881 the dry weight of cultures). Data represent mean and SEM of biological triplicates; ***p=0.0006
882 by Student's t-test. B) Growth inhibition of strains grown on 1% lactate minimal media with

883 0.1% 2-deoxyglucose (2-DG) under a range of low oxygen conditions. C) *A. fumigatus* and *A.*
884 *fischeri* were grown in the presence of the cell wall perturbing agent Congo Red (0.5mg/mL), the
885 oxidative stressor Menadione (20 μ M), or the chitin perturbing agent calcofluor white (CFW,
886 25 μ g/mL). Plates were grown for 96 hours at 37°C and 5% CO₂. For all plates except Congo Red
887 and its GMM control, 1e3 spores were plated. For Congo red and the control GMM plate 1e5
888 spores were plated. Student's t-test was performed where *: p<0.05, **: p<0.01. D) Strains were
889 grown for 48 h at 37°C in liquid complete medium supplemented with increasing concentrations
890 of hydrogen peroxide.

891

892 **Figure 4: Secondary Metabolite Clusters of *A. fumigatus* and *A. fischeri* show substantial**
893 **evolutionary divergence.** Predicted secondary metabolite gene clusters are shown in the inner
894 track, are alternatively colored dark and light gray, and their size is proportional to the number of
895 genes in them. Black ticks on the exterior of the cluster track indicate a gene that possesses an
896 ortholog in the other species but is not in a secondary metabolite gene cluster in the second
897 species. White dots indicate species-specific clusters. Solid bars on the exterior correspond to the
898 chromosome on which the clusters below them reside. Genes are connected to their orthologs in
899 the other species with dark lines if >90% of the cluster genes in *A. fumigatus* are conserved in the
900 same cluster in *A. fischeri*. Lighter lines connect all other orthologs that are present in both
901 species' sets of secondary metabolite clusters. Image was made using Circos version 0.69-4 (81).

902

903 **Figure 5: Secondary metabolite production in *A. fischeri*.** A) Compounds isolated from *A.*
904 *fischeri*: (1) sartorypyrone A, (2) sartorypyrone E, (3) 14-epimer aszonapyrone A, (4)
905 aszonalenin, (5) acetylazonalenin, (6) fumitremorgin A, (7) fumitremorgin B, (8) verruculogen,

906 (9) C-11 epimer verruculogen TR2, and (10) 13-*O*-prenyl-fumitremorgin B. The color coding
907 indicates which putative class the molecule belongs to; e.g., terpenes, PKS, or NRPS. B) Top,
908 *Aspergillus fischeri* was initially grown on rice for two weeks, and then extracted using methods
909 outlined in Fig. S6. The rice culture yielded compounds **1**, **4**, and **5**. Middle, *A. fischeri* was
910 grown on multigrain Cheerios for two weeks, which yielded compounds **1** and **4-9**. Bottom, *A.*
911 *fischeri* on Quaker oatmeal for two weeks. All compounds that were previously isolated in rice
912 and multigrain cheerios cultures in addition to three new compounds (**2**, **3**, and **10**) were found in
913 the oatmeal culture. All pictures depict fungi growing in 250 mL Erlenmeyer flasks; left panel
914 indicates top view, while the right panel shows bottom view. All chromatographic profiles have
915 been normalized to the highest μ AU value. C) *Aspergillus fischeri* WT and $\Delta laeA$ were grown on
916 solid breakfast oatmeal for two weeks and extracted using organic solvents as indicated
917 previously. The crude de-sugared and de-fatted extracts were run using UPLC-MS at a
918 concentration of 2 mg/mL with 5 μ L being injected for analysis. The chromatographic profiles
919 were normalized to the highest μ AU value. Mass spec analysis indicated the presence of
920 secondary metabolites **1-10** within the wild type, and only **1-6**, **8**, and **9** were seen in the $\Delta laeA$
921 mutant. All pictures show *A. fischeri* grown on oatmeal agar in Petri plates.

922 **Supplementary Material**

923 **Figure S1: *A. fumigatus* grows slower than *A. fischeri* in glucose minimal media (GMM),**
924 **but at the same speed as *A. fischeri* in lung homogenate media.** *A. fumigatus* CEA10 or *A.*
925 *fischeri* NRRL181 were cultured in flat-bottom 96 well plates at 2×10^4 conidia per well. Conidia
926 were added in a 20 μ L of 0.01% Tween-80 and media was carefully pipetted over the inoculum
927 into each well. Lung homogenate was generated according to (29). Plates were incubated for 7
928 hours at 37°C before measurements at 405 nm were taken every 10 min. Mean and SEM of
929 eight technical replicates; data is representative of three biological replicates.

930

931 **Figure S2: *A. fischeri* and *A. fumigatus* exhibit similar growth patterns at 30°C.** 1×10^3
932 conidia were point inoculated on each plate then plates were incubated at 30°C in normoxia
933 (~21% oxygen, 5%CO₂); colony diameter was measured every 24 hours. Mean and SEM of
934 triplicates. Tween-80 – 1% Tween-80 provided as sole carbon source; CAA – Casamino acids;
935 GMM – glucose minimal media.

936

937 **Figure S3: In contrast to *A. fumigatus*, *A. fischeri* fails to thrive at 44°C.** Error bars indicate
938 standard deviations between biological duplicates (**P-value < 0.005 in a paired, equal variance
939 student t-test).

940

941 **Figure S4: The genomes of *A. fumigatus* and *A. fischeri* are largely similar, but their**
942 **secondary metabolic pathways are quite divergent.** Left, Venn diagram showing the sets of *A.*
943 *fischeri*-specific proteins, shared orthologous proteins, and *A. fumigatus*-specific proteins
944 encoded in each genome. Numbers below each species name indicate the total number of

945 proteins encoded in that genome. Right, Venn diagram showing the sets of *A. fischeri*-specific
946 secondary metabolite cluster proteins, shared secondary metabolite cluster genes, and *A.*
947 *fumigatus*-specific secondary metabolite cluster genes. Numbers below each species name
948 indicate the total number of secondary metabolite cluster proteins encoded in that genome. In
949 each diagram, circles are proportional to the number of proteins they contain.

950

951 **Figure S5: The acetylaszonalenin and gliotoxin clusters in *A. fumigatus* and *A. fischeri* are**
952 **located immediately next to one another.** The portions of Clusters 37 and 25 from *A. fischeri*
953 and *A. fumigatus*, respectively, that are known to contain the previously characterized
954 acetylaszonalenin (91) and gliotoxin (41) clusters is shown. Genes colored in shades of green are
955 involved in the acetylaszonalenin biosynthetic pathway. Dark green, *anaPS* (nonribosomal
956 peptide synthase). Light green, *anaAT* (acetyltransferase). Green, *anaPT* (prenyltransferase).
957 Orange, gliotoxin biosynthetic genes. Gray arrow, syntenic gene in both species not involved in
958 gliotoxin synthesis. Sequences that are similar to one another (based on blastn scores) are
959 marked by gray parallelograms. Image was made using EasyFig version 2.2.2 (83).

960

961 **Figure S6: A custom chemical analysis protocol was developed for studying the metabolites**
962 **produced by *A. fischeri*.** Approximately 60 mL of 1:1 CH₃OH:CH₃Cl was added to cultures of
963 *Aspergillus fischeri* grown on solid-state fermentation for two weeks. The cultures were then
964 chopped thoroughly with a large scalpel and shaken for 16 hours using an orbital shaker. The
965 liquid culture was then vacuum filtered and concentrated using 90 mL CH₃Cl and 150 mL water
966 and transferred into a separatory funnel. The organic (bottom) layer was drawn off and
967 evaporated to dryness. The dried, de-sugared extract was reconstituted in 100 mL of 1:1

968 CH₃OH:CH₃CN and 100 mL of hexane. The biphasic solution was shaken vigorously and
969 transferred to a separatory funnel. The CH₃OH:CH₃CN layer was evaporated to dryness under
970 vacuum, producing a de-fatted extract. The extract was then subdivided into several peaks or
971 fractions using flash chromatography. The subfractions were further separated using HPLC until
972 pure compounds were isolated. The pure compounds were subjected to UPLC-MS analysis to
973 establish the molecular formula and fragmentation patterns. Finally, pure compounds were
974 identified using both NMR analysis as well as information from UPLC-MS data.

975

976 **Figure S7: *A. fischeri* produces different numbers of metabolites, depending on the media it**
977 **is grown on.** Base peak chromatograms as measured by LC-MS, illustrating how the chemistry
978 profiles varied based on growth conditions. PDA + ab was used as the chemical control to
979 observe the differences in the secondary metabolites, due to it being the media that *A. fischeri* is
980 stored. There were overall no chemical differences observed between the different variations of
981 PDA media. Each peak (which indicates different chemical entities) was observed in the three
982 PDA variations, albeit at fluctuating intensities. SDA, PYG, and YESD produced the majority of
983 the peaks observed in PDA, but it also lacked some observed peaks, indicating that these growth
984 conditions were not chemically favored. CYA produced the majority of the peaks, as well as an
985 additional peak that was observed at a much lower intensity in PDA. However, this peak was
986 similarly observed in OMA. OMA produced similar peaks to those observed in PDA, but with
987 higher intensity. Due to this, OMA was selected to further study. The gray boxes indicate
988 differences in the observed peaks compared to PDA. See Figshare document
989 (<https://doi.org/10.6084/m9.figshare.7149167>) for more information.

990

991 **Figure S8: Southern blot confirms construction of the $\Delta laeA$ mutant.** A 1kb probe recognizes
992 a single DNA band (~4.4kb) in the wild type strain and a single DNA band (~2.7kb) in the $\Delta laeA$
993 mutant.

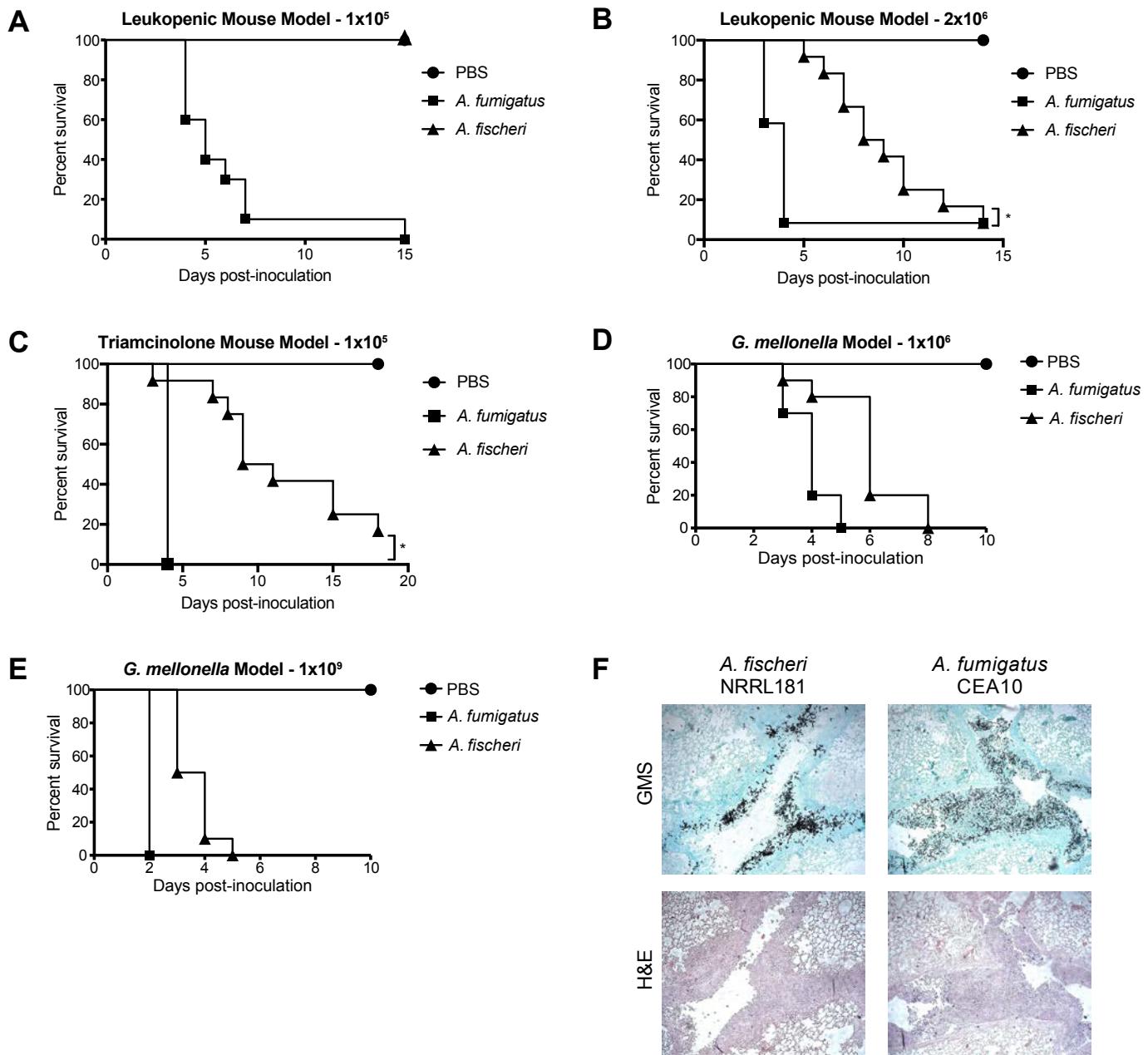
994

995 All supplemental tables can be found on Figshare (<https://doi.org/10.6084/m9.figshare.7149167>)

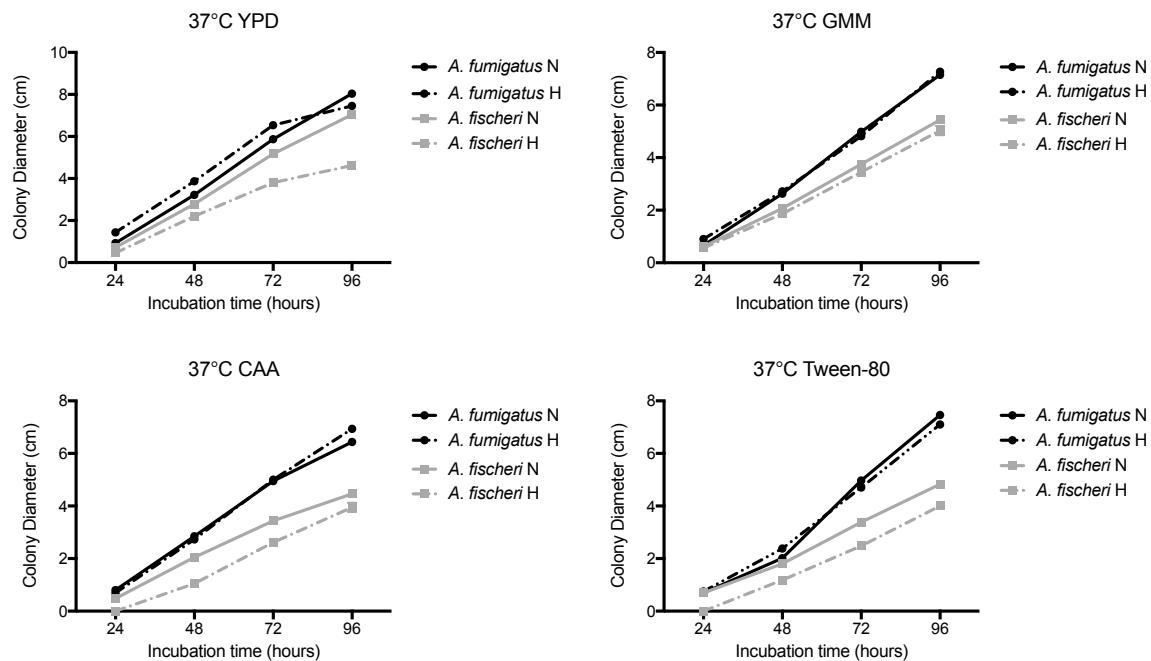
996 **Table S1: Virulence-associated genes in *A. fumigatus* and *A. fischeri*.**

997

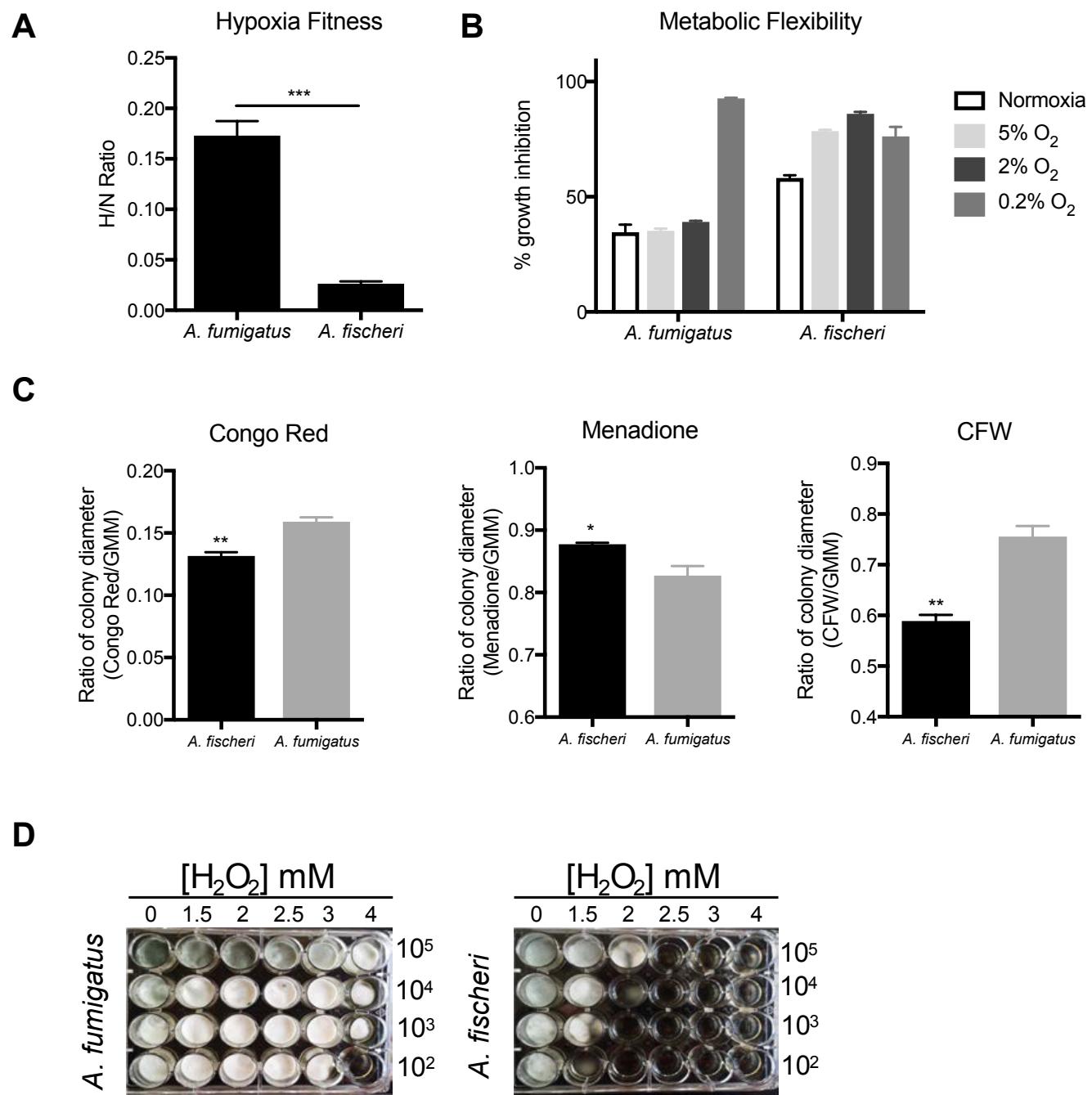
998 **Table S2: Bioinformatically predicted secondary metabolite clusters in *A. fumigatus* strain**
999 **CEA10.**


1000

1001 **Table S3: Bioinformatically predicted secondary metabolite clusters in *A. fischeri* strain**
1002 **NRRL 181.**


1003

1004 **Table S4: Different Types of Growth Media used for *Aspergillus fischeri*.**


Figure 1

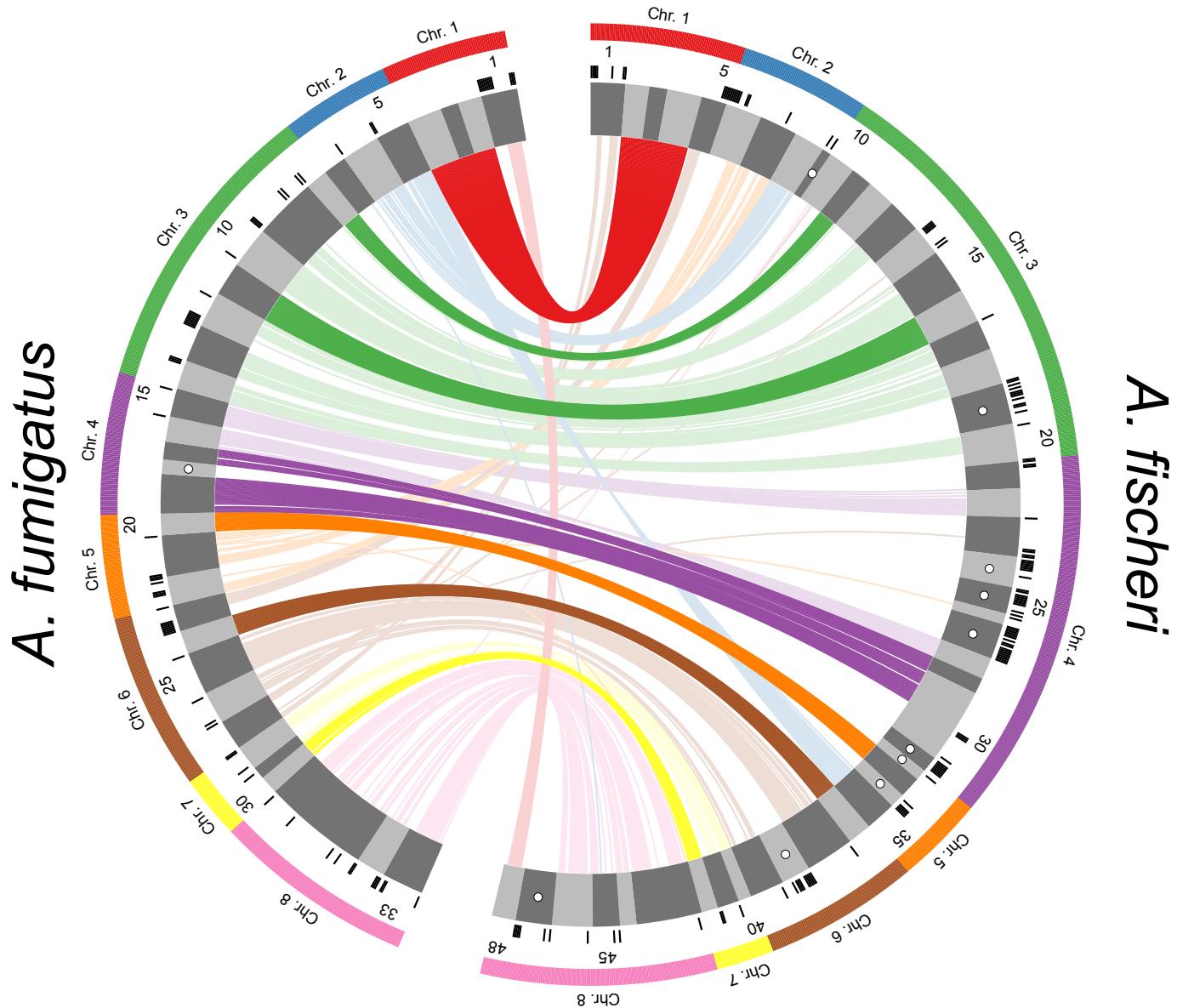

Figure 2

Figure 3

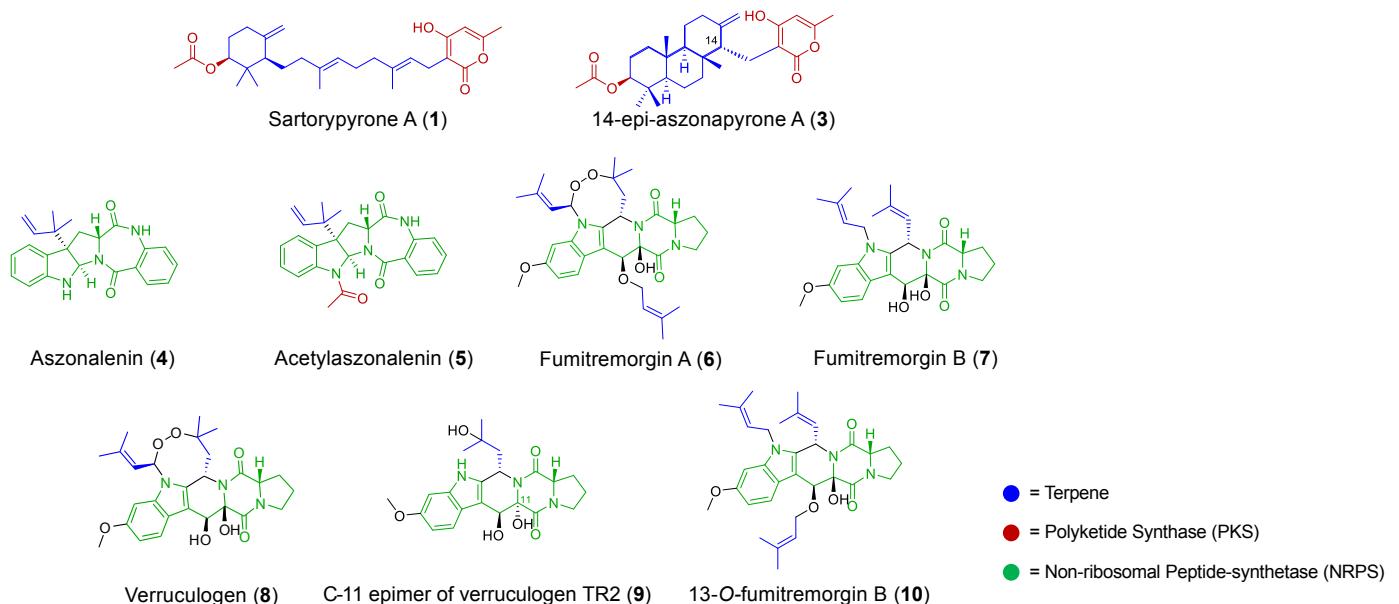


Figure 4

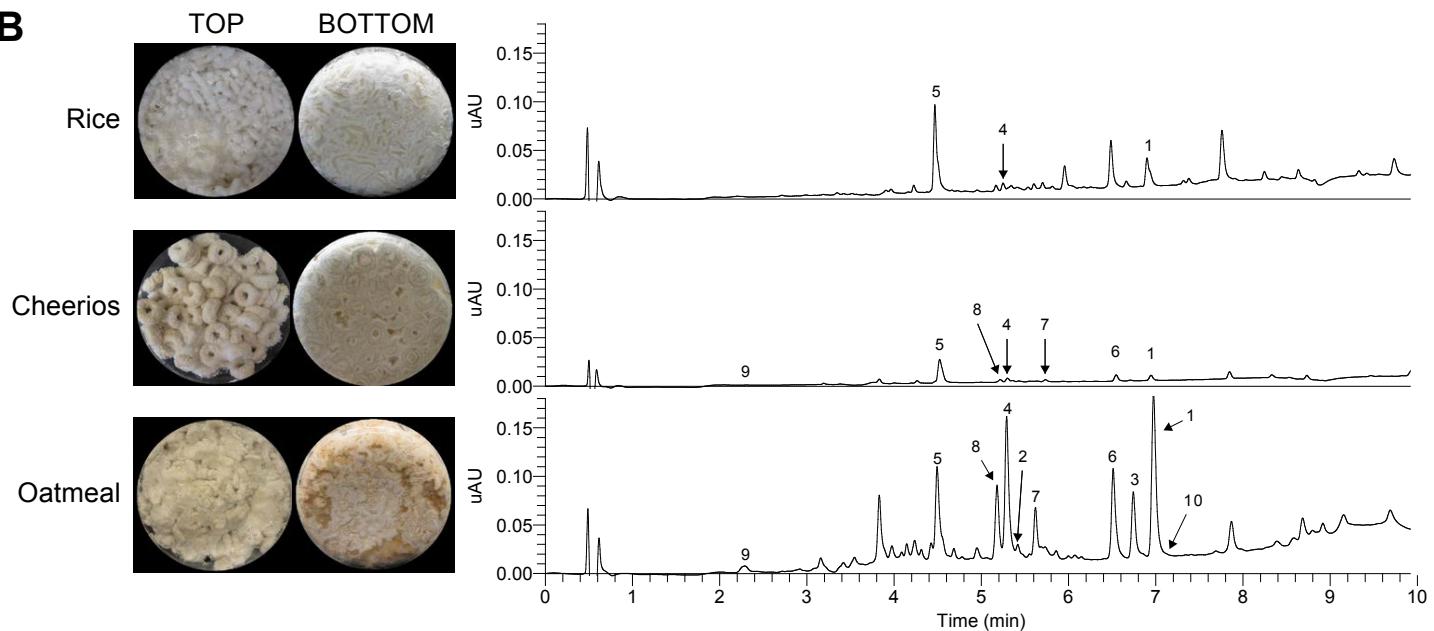
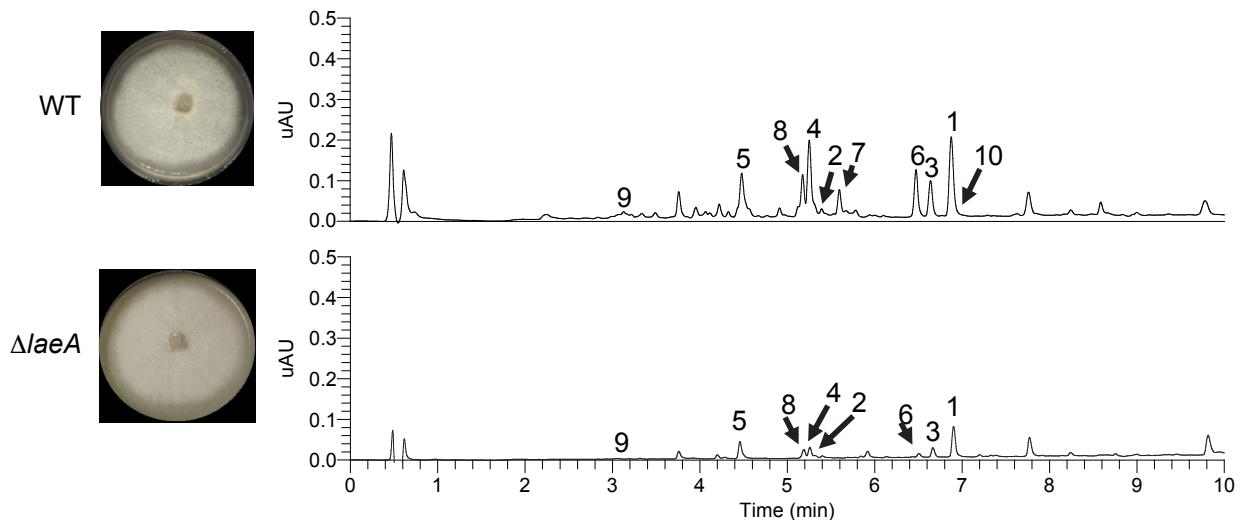


Figure 5


A

B

C

