

1 *Size-based ecological interactions drive food web responses to climate warming*

2 Max Lindmark^{a,1}, Jan Ohlberger^b, Magnus Huss^c, Anna Gårdmark^c

3 ^a Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Coastal
4 Research, Skolgatan 6, Öregrund 742 42, Sweden

5 ^b School of Aquatic and Fishery Sciences (SAFS), University of Washington, Box 355020, Seattle, WA
6 98195-5020, USA

7 ^c Swedish University of Agricultural Sciences, Department of Aquatic Resources, Skolgatan 6, SE-742
8 42 Öregrund, Sweden

9 ¹ Author to whom correspondence should be addressed. Current address:

10 Max Lindmark, Swedish University of Agricultural Sciences, Department of Aquatic Resources,
11 Institute of Coastal Research, Skolgatan 6, Öregrund 742 42, Sweden, Tel.: +46(0)104784137, email:
12 max.lindmark@slu.se

13

14 **BIOLOGICAL SCIENCES:** Ecology

15 **KEY WORDS:** Temperature-scaling, Allee effects, community dynamics, size structure, trophic
16 interactions, alternative stable states, climate change

17

18

19

20

21

22

23

24

25

26

27 **Abstract**

28 Predicting the impacts of climate change on animal populations and communities requires
29 understanding of feedbacks between direct physiological responses and indirect effects via ecological
30 interactions. Food-dependent body growth and within-species size variation have major effects on
31 dynamics of populations and communities through feedbacks between individual performance and
32 population size structure. Moreover, evidence suggests a link between temperature and population size
33 structure, but we lack an understanding of how this is mediated by species interactions when life history
34 processes are food-dependent. Here, we use a dynamic stage-structured biomass model with food-, size-
35 and temperature-dependent life history processes to assess how temperature affects coexistence,
36 stability and size structure in a tri-trophic food chain. We show that predator biomass densities decline
37 with warming either gradually or in the form of collapses, depending on which consumer life stage they
38 predominantly feed on. Collapses occur when warming destabilizes the community and induces
39 alternative stable states via Allee effects, which emerge when predators promote their own food source
40 through predation. By contrast, warming at low temperatures stabilizes the community as limit cycles
41 turn to fixed point dynamics, unless predators feed only on juveniles. Elevated costs of being large in
42 warmer environments accelerate the decline in predator persistence and mean body size of the
43 community. These results suggest that predator persistence in warmer climates may be lower than
44 previously acknowledged when accounting for size- and food-dependence of life history processes, and
45 that interactions within and between species can mediate the effects of warming on food web stability.

46

47

48

49

50

51

52

53

54 **Significance**

55 Climate warming is altering the dynamics and structure of aquatic ecosystems worldwide. Predicting
56 food web reorganization under rising temperatures requires an understanding of physiological responses
57 and ecological interactions of organisms, both of which depend on body size. We show that size
58 variation within species, food-dependent growth and ecological interactions critically affect how food
59 chains respond to warming. Specifically, warming can stabilize or destabilize food chains and expose
60 predators to increased risk of sudden collapses, resulting in alternative stable food web states. Increasing
61 temperatures can cause abrupt reductions in mean community body size, primarily due to loss of top
62 predators. The potential loss of biodiversity and shifts in ecosystem stability are among the major
63 challenges caused by a warming climate.

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80 **Introduction**

81 Predicting the impacts of climate change on natural food webs requires mechanistic understanding of
82 organisms' physiological responses to warming and how these translate to the population and
83 community level. An individual's metabolism, and related ecological traits including feeding, mortality
84 and population growth rate, depend strongly on body size and temperature (1–3). Mechanistic models
85 based on metabolic scaling theory have increased our understanding of how warming affects
86 populations and communities in terms of (i) community size structure (4–6), (ii) strength of trophic
87 interactions (7–9), (iii) food chain length (8, 10) and (iv) stability (10–12). The effects of temperature
88 on (ii)–(iv) can largely be predicted from the relative temperature sensitivity of biomass gains (feeding)
89 and losses (metabolism, mortality) – hereafter referred to as energetic efficiency – and resource
90 productivity (8, 10–14). Specifically, increased energetic efficiency with temperature is generally
91 predicted to have a destabilizing effect on communities and decreased efficiency a stabilizing effect
92 (11). In addition, the latter scenario generally leads to predator extinction from starvation (10, 11).
93 However, while these insights stem from mechanistic models that are typically based on body size
94 dependence of individual-level processes, two fundamental aspects of body size are commonly
95 overlooked when modeling effects of warming on populations and communities. First, the combination
96 of within-species size variation and food-dependent life history processes (e.g. growth, development
97 and reproduction) generates feedbacks between size structure and individual performance, ultimately
98 affecting community dynamics (15). Second, the effects of warming differ between individuals,
99 depending on life history stage and body size (16, 17). Therefore, we need to account for variation in
100 body size within and between species to better understand the potential effects of warming on food web
101 structure and stability (18).

102 Within-species size variation is not only universal in natural systems, but has major implications for
103 the stability and structure of populations and communities because it leads to asymmetric competition
104 between individuals of different sizes (ontogenetic asymmetry) (15). Ontogenetic asymmetry can lead
105 to phenomena such as biomass overcompensation, which refers to an increase in standing stock biomass
106 with mortality, and this is often life stage specific (19). Biomass overcompensation occurs when

107 mortality releases a life stage from high density dependence, resulting in higher biomass production
108 (greater than lost through that mortality). This phenomenon has been identified empirically in several
109 studies (20–24). In the case of predation mortality, predators can thus cultivate biomass density of their
110 own food source by inducing overcompensation in the prey, which can lead to an emergent Allee effect
111 and alternative stable states when predator persistence relies on prey overcompensation (25, 26).
112 Emergent Allee effects refer to a positive relationship between per capita predator population growth
113 rate and their population density (Allee effect) that emerges from individual-level assumptions, such as
114 size-scaling of feeding rates and maintenance costs, instead of predefined population dynamics. As a
115 consequence, predator populations may be exposed to risks of sudden collapses from e.g. fishing
116 mortality, from which they may not recover (26). Emergent Allee effects via food-dependent body
117 growth have been demonstrated in a natural whole-lake experiment, where an overharvested predator
118 population (brown trout, *Salmo trutta*, L.) could not control the size distribution of its then stunted prey
119 (Arctic charr, *Salvelinus alpinus*, L.). However, culling of the stunted prey led to increased juvenile
120 prey abundance on which predators fed, which shifted the community to a state with abundant predators
121 in which predation kept the prey from a stunted state (22). The same mechanism has also been proposed
122 to explain the lack of recovery of overfished Atlantic cod (*Gadus morhua*, L.) stocks, despite reduced
123 fishing pressures (26–28). As food- and size-dependent body growth and within-species size variation
124 are important for understanding dynamics of ecological communities, they are also key factors
125 determining the effects of climate change on food webs.

126 In addition to affecting community structure and dynamics, the effects of warming on individuals
127 tend to be size-dependent, and this interactive effect is possibly stronger in aquatic compared to
128 terrestrial systems (17, 29–31). Lines of evidence that support size-dependent temperature effects
129 include directional changes in size composition towards smaller, energetically more efficient
130 individuals (6, 32, 33), the across taxa observation that size at maturity declines with warming
131 (temperature-size rule, TSR) (29, 34, 35), and that optimum temperatures for growth decrease with size
132 (36, 37). Despite the observational evidence of various temperature-size interactions, only recently have
133 the dynamical consequences of such interactions in warming environments been explored (31, 38–40).
134 Theoretical studies suggest that community persistence (in terms of food chain length) generally

135 increases if body sizes decrease in warmer environments, due to weakened interaction strengths
136 between species (40). Smaller mean body sizes can also increase stability (return times) and thus
137 resilience of consumer-resource systems, which could buffer against extinctions (39). However, it is
138 not known whether the effect of temperature-size interactions on stability and persistence holds when
139 the change in size (or performance of a given size or life stage) with temperature depends on feedbacks
140 between direct temperature effects, food availability and population size structure. This has not been
141 studied for more than two interacting species (31, 38). As feedbacks between the biotic environment,
142 individuals and population shape community size structure and dynamics, this knowledge gap limits
143 our ability to predict how climate change impacts food chains and food webs (15, 18, 26, 31, 38).

144 Here we show how within- and between-species interactions mediate the direct physiological effects
145 of warming on the stability and coexistence of a tri-trophic food chain, using a dynamic stage-structured
146 biomass model with temperature-dependent vital rates. Our analyses generated novel predictions on
147 community responses to changing temperatures that are due to food-dependent life history processes
148 and species interactions; (i) whether warming stabilizes or destabilizes communities depends on the
149 size preference of the predator, size structure in the consumer and the current temperature; (ii) warming
150 can cause non-gradual declines (collapses) in predator populations due to Allee effects, which also
151 induce alternative stable states in which predators either coexist with their prey or go extinct; (iii)
152 increased energetic costs of being large in a warmer environment reduce the scope for predator
153 persistence and the average community body size. These previously unrecognized temperature
154 responses highlight that food-dependent life history processes and species interactions mediate the
155 direct effects of warming on the dynamics and structure of ecological communities.

156

157 **Results**

158 ***Stabilizing and destabilizing effects of warming***

159 Whether increasing temperatures stabilize or destabilize the food chain depends on the form of species
160 interactions and the current temperature regime (Fig. 1-2). Warming at low temperatures have a
161 stabilizing effect on the community as cyclic dynamics (“inverse enrichment cycles”) switch to fixed

162 point dynamics (Hopf bifurcation at 12 °C in Fig. 1A-D) (Fig. 2) – unless the predator feeds more or
163 less exclusively on juvenile consumers (Fig. 1E-H; Fig. 2) ($p > 0.98$). In contrast, at higher
164 temperatures, e.g. reference temperature (19 °C), warming induces alternative stable states (bistability),
165 with or without predators, when predators feed mainly on juveniles (Fig. 1-2). In this case, warming has
166 a destabilizing effect on community dynamics, as equilibrium dynamics switch from fixed point to
167 bistability. By contrast, warming has no effect on the dynamical stability when predators feed more
168 equally on both life stages. This means there is a region of juvenile feeding preference ($0.72 < p <$
169 0.98) where increasing temperatures initially stabilize the community, but induce bistability with
170 additional warming (Fig. 2), i.e. the stability-temperature relationship depends on the current
171 temperature regime. Irrespective of the predator's feeding preference, the predator population declines
172 in biomass density with warming until starvation (when predators go extinct). This decline can be
173 gradual or in the form of a collapse, depending on which consumer life stage the predator feeds more
174 on. Predators can thus experience sudden collapses when falling below a certain biomass threshold (Fig.
175 1H). The interaction between predators and consumers also regulates at which temperature predators
176 go extinct, such that the extinction temperature decreases with increased feeding on juveniles (Fig. 2;
177 SI Appendix, Fig. S9, Table S3-S4).

178 The alternative stable states at warmer temperatures are due to emergent Allee effects in the predator
179 population, i.e. there is a positive relationship between predator biomass density and their individual
180 performance. The mechanism is that when predators feed primarily on juveniles ($p > 0.72$), predation
181 induces overcompensatory biomass responses in the consumer. This overcompensation releases the
182 adult consumer life stage from strong intraspecific competition, resulting in larger reproductive output
183 (SI Appendix, Fig. S8) and hence a shift in consumer stage structure (SI Appendix, Fig. S7) – see also
184 (26). If overcompensation is necessary for predator persistence, bistability emerges in the community
185 as predators are able to persist but not invade a stable consumer-resource system. This bistability of the
186 community at higher temperatures occurs because consumer top down control of basal resource levels
187 increases with warming, and the predator population then declines due to the lower basal resource
188 levels. Below a certain equilibrium biomass density, predators cannot invade a stable consumer-
189 resource system as the total predation pressure is not large enough to alter the stage structure of the

190 consumer population to the predator's favor. Specifically, persistence is possible for all temperatures
191 below ~ 33 °C (limit point, saddle node bifurcation), while invasion is only possible below ~ 22 °C
192 (branch point, transcritical bifurcation) for this specific parameter configuration (Fig. 1H). At lower
193 temperatures, the basal resource levels, and thus predator densities, are sufficiently large for the predator
194 to invade a consumer-resource system and hence there is no bistability.

195

196 ***Varying temperature-scaling scenarios***

197 Warming-induced alternative stable states emerge when predators feed predominantly on juveniles,
198 both when basal resource productivity is temperature-independent ($E_{R_{max}} = 0$) and when it declines
199 with temperature ($E_{R_{max}} = -0.43$) for most of the productivity values at reference temperature, 19 °C
200 (Fig. 3; see SI Appendix, Fig. S4 for biomass densities). However, resource productivity regulates
201 predator biomass density, which in turn determines the predator population's ability to control the size
202 distribution of the consumer (and, hence, ability to induce overcompensation in the consumer which is
203 key for bistability to occur) (SI Appendix, Fig. S3). Therefore, both resource productivity and its scaling
204 with temperature affect at which temperature transitions between different types of dynamics occur
205 (fixed points, limits cycles or bistability) and food chain structure over temperature, such that predator
206 persistence decreases faster with warming when the productivity declines with temperature ($E_{R_{max}} =$
207 -0.43) (Fig. 3B and D). The parameter combinations considered in the main analyses, based on
208 empirical relationships, all lead to declines in predator biomass density with warming. However, a few
209 specific scenarios can lead to increases in predator biomass density over temperature. For this to occur,
210 the following conditions must be met: i) productivity is not decreasing with temperature, ii) resource
211 turnover rate increases faster with temperature than consumer and predator metabolic and feeding rates,
212 and iii) the energetic efficiency of the consumer and predator does not decline with temperature
213 (i.e. $E_I \geq E_{M,\mu}$) (SI Appendix, Table S3-S4).

214 We model temperature-size interactions on vital rates by adding a temperature dependence (c) to the
215 allometric exponent of metabolism (31) (see “*Materials and Methods*” and Eq. S1). When temperature
216 affects the size dependence of metabolic rate ($c > 0$), the food density needed for a consumer or

217 predator to grow (R_{crit}) has a steeper scaling with body size compared to when assuming independent
218 effects of temperature and body size (SI Appendix, Fig. S2). Thus, temperature-size interactions ($c >$
219 0) imply that energetic costs increase faster with warming in large compared to small individuals. In
220 these scenarios (Fig. 3C-D), predator persistence is lower than in the corresponding scenario with no
221 temperature-size interaction (Fig. 3A-B). This is because $c > 0$ reduces the growth performance more
222 strongly in large individuals at high temperatures, which leads to a lower reproductive output of adults
223 and a lower juvenile to adult biomass ratio (SI Appendix, Fig. S7). Therefore, temperature-size
224 interactions negatively affect predators that feed predominantly on juveniles via two mechanisms:
225 reductions in prey availability due to shifts in the prey size structure and increased metabolic costs.
226 Consequently, a predator species feeding on both consumer life stages can persist at higher temperatures
227 than one specialized on juveniles (Fig. 2), and this result is independent of the relative activation
228 energies of feeding and metabolism (SI Appendix, Fig. S9, Table S3-S4).

229 The stabilizing effect of increasing temperatures that manifests when predators feed on both life
230 stages is also shaped by the productivity of the basal resource. Specifically, the temperature at which
231 the cyclic dynamics of the food chain switch to fixed point dynamics increases with $R_{max,T19}$ (SI
232 Appendix, Fig. S5), because the mechanism is a reversed enrichment cycle (41) and the basal resource
233 biomass declines with warming. Factors that promote stable coexistence at high temperatures are a high
234 and temperature-independent resource productivity ($R_{max,T19} > 2.25$) (Fig. 3A), predators feeding on
235 both consumer life stages (Fig. 2), high energetic efficiency (SI Appendix, Table S4) and no
236 temperature-size interactions for the scaling of metabolic rate in consumers and predators ($c = 0$, cf.
237 Fig. 3A; SI Appendix, Fig. S2).

238

239 ***Effects of warming on mean community body size***

240 The decline in predator biomass with increased temperatures leads to a decline in the biomass-weighted
241 mean community body size (Fig. 4). As with the abrupt predator collapse, the community size structure
242 can also show a non-gradual abrupt decline as temperature increases, leading to alternative stable
243 “community size states”. This decline in mean community body size occurs in all scenarios considered,

244 and is more pronounced with interactive effects of temperature and body size on vital rates and when
245 basal resource productivity declines with temperature (Fig. 4A-B).

246

247 **Discussion**

248 Here we show that food dependence of life history processes, such as maturation and reproduction, and
249 size preference of predator feeding can explain previously unrecognized community-wide responses to
250 warming, including alternative stable states due to emergent Allee affects, and both stabilization and
251 destabilization of communities. These diverse community responses result from feedbacks between
252 food, size and temperature dependence of individual performance and life history processes. We also
253 show how warming results in declines in average community body size and reduced potential for
254 predator persistence. These results hold across a wide range of assumptions of temperature
255 dependencies on resource productivity, feeding and metabolism, and interactive effects of body size
256 and temperature on metabolic rate. Much of the research on how temperature shapes population and
257 community dynamics has focused on the role of relative temperature sensitivities of vital rates (10, 11,
258 13, 14). Our findings demonstrate that even under large variation in thermal sensitivities of vital rates,
259 food- and size dependence of ecological interactions can determine the outcome of warming on
260 community structure and dynamics. This study highlights the importance of size-based interactions and
261 food-dependent life history processes for the energetic performance of individuals in changing climates,
262 and how that translates to community dynamics and structure.

263 The general prediction of reduced predator persistence with increasing temperatures corroborates
264 earlier studies (8, 10). Moreover, the parameter space that cause predators to decline, i.e. a combination
265 of negative temperature dependence of resource productivity, slower resource growth rates relative to
266 consumer and predator feeding and metabolic rates, and reduced energetic efficiency of consumers and
267 predators, have also been found in both terrestrial and aquatic systems (5, 7–9, 12, 42–44). Our novel
268 finding is that predator declines with increasing temperatures are not always gradual, but can be sudden
269 and collapses can occur at temperatures much lower than those that would cause starvation. This
270 happens when warming induces bistability due to Allee effects (26), which emerge from feedbacks

271 between individual performance and population size structure, given food-dependent growth – all of
272 which are ubiquitous in natural food webs. Therefore, our results suggest that warming may expose
273 predators to an additional, previously overlooked risk of sudden collapse and/or impaired recovery
274 potential in warmer environments. This occurs as warming can cause community bistability, in which
275 case the predator population can collapse before energetic starvation, depending on the initial
276 productivity and temperature of the system. This increased risk could manifest itself in systems where
277 strong interactions among and within species shape the community size structure (the prerequisites for
278 emergent Allee effects) as has been suggested for populations of Atlantic cod, brown trout and Arctic
279 charr (22, 26–28). The model predicts non-gradual declines in biomass when predators feed mainly on
280 smaller consumers. Such feeding behavior has empirical support for e.g. Atlantic salmon (*Salmo salar*
281 L.) (45) and Atlantic cod (27, 28). Thus, the model used here generally predicts lower persistence of
282 predators in warmer environments, and importantly, that both predator densities and mean community
283 body size do not necessarily decline gradually with temperature but can exhibit sudden collapses.

284 Recent studies have aimed to reconcile the diverse effects warming can have on e.g. community
285 stability by deriving general principles based on the relative temperature-sensitivities of resource
286 energetic efficiency (i.e. biomass gains vs losses) and productivity (10–12). However, we do not know
287 if these predictions apply to size-structured populations with individuals exhibiting food-dependent
288 growth, development and reproduction. This is a key question to address, as both size variation within
289 species and food dependence of development and reproduction are widespread in nature, and often
290 govern ecological dynamics (15). We account for food dependence of growth, development and
291 reproduction mechanistically, such that these processes depend on both size-dependent interactions
292 within and among species, and on direct physiological effects of warming. The model analyses suggest
293 that for a predator feeding on both consumer life stages, warming shifts the community from exhibiting
294 limit cycles to stable point dynamics via an inverse paradox of enrichment mechanism, as reported also
295 in previous studies (40, 46). In contrast to models that do not account for size-variation within
296 populations (11), we show that the qualitative shifts in community structure and stability with increased
297 temperatures (in terms of periodic vs fixed point equilibrium solutions, or presence of alternative stable
298 states), are not primarily driven by the relative temperature dependence of resource productivity,

299 feeding and metabolism. Instead, we found that the effect of body size on competitive interactions
300 within the consumer species and the effect of predation on consumer biomass indeed can determine the
301 effects of warming on community structure and stability.

302 As the effects of temperature on performance tend to vary with body size or life stage, a single
303 activation energy parameter cannot describe the entire temperature dependence of a given vital rate (31,
304 47–49). Such interactive effects of temperature and body size are reflected in empirical patterns such
305 as the temperature size rule (TSR) (increased juvenile growth- or developmental rates but smaller adult
306 body size in warmer environments) (34), which is especially strong in aquatic environments (29, 30).
307 Still, the implications of such temperature-size interactions for population and community dynamics
308 are poorly understood (31). Recent studies suggest that when the average body size of species declines
309 with warming, stability, in terms of return times after perturbations, generally increases (39).
310 Persistence of species in a food chain generally increases when warming causes reductions in size,
311 though this depends on the trophic level at which the reductions occur (40). In our study we find the
312 opposite. Predator persistence is always lower with temperature-size interactions compared to
313 independent temperature and body size effects. A key difference in our approach to previous studies of
314 temperature and body size interactions (39, 40), in addition to accounting for stage structure within
315 species, is that we do not assume temperature-effects on body size based on empirical temperature-size
316 patterns. Instead, we assess how the energetic performance of an individual of a specific size changes
317 with temperature, based on the scaling of individual-level rates, such as feeding and metabolism, and
318 species interactions. Thus, any changes in average body size within species and of the community as a
319 whole emerge in the model as a result of the temperature dependence of physiological rates and how
320 temperature effects are mediated by ecological interactions.

321 Predators and consumers coexist when basal productivity is high, irrespective of the predator feeding
322 preference (in stable fixed point or cyclic dynamics, respectively). Information about productivity is
323 thus important for qualitative and quantitative predictions about the effects of warming. Given its effect
324 on community composition, we choose values that allowed for stable coexistence at our reference
325 temperature, given all other sets of parameters (22). There are, however, other important aspects of
326 productivity and temperature than their numerical values. For instance, a recent study showed that

327 responses of carrying capacity of algae to increased temperature can be increasing, decreasing or hump-
328 shaped, if viewed as a dynamic property rather than a parameter (11). This suggests that resource
329 densities may in fact show more complex response to temperature than acknowledged here (e.g. Fig. 3;
330 SI Appendix, Fig. S3). We made simplifying assumptions about the resource dynamics to focus on the
331 mechanistic feedbacks between individual-level energetics and ecological interactions in the food chain.
332 In addition, by using the Arrhenius equation (i.e. exponential temperature dependencies) we have not
333 accounted for hump-shaped relationships between temperature and biological rates (50, 51), which can
334 have major effects on the stability and persistence responses to warming (11). Thereby, we likely
335 overestimate the specific temperatures beyond which predators cannot persist. However, we do not aim
336 to quantitatively represent a specific system but identify qualitative community responses to warming
337 and their underlying mechanisms. Importantly, we show that in most temperature scaling scenarios
338 considered (Fig. 3), warming-induced alternative stable states emerge in juvenile specialized predators
339 regardless of how productivity scales with temperature.

340 Within-species phenotypic variation is increasingly recognized as an important driver of ecological
341 dynamics (15, 52–55), and there is vast empirical evidence on size-dependent responses to warming
342 (16, 17, 34). Accordingly, warming should influence the outcome of size-dependent interactions.
343 However, the ecological implications of within species variation in the context of responses to global
344 warming have been largely overlooked (but see (31, 38)). Our results demonstrate that approaches based
345 on species-averaged traits (such as mean body size) cannot accurately represent the full range of
346 dynamics and shifts in community size structure that warming is causing globally. We show that even
347 simple stage structure within a population can result in unexpected community-level responses to rising
348 temperatures, including alternative stable food web states and potential collapses of predators due to
349 emergent Allee effects. Thus, feedbacks between food dependence of life history processes and
350 population size structure, both ubiquitous in natural food webs, can alter the effects of temperature on
351 food web stability and predator persistence.

352 **Materials and Methods**

353 ***Modeling framework***

354 To study the effects of warming on coexistence and stability of a tri-trophic food chain taking within-
355 species stage structure and size- and food-dependent processes into account, we used a stage-structured
356 biomass model (Eqns. 1-4) (56). Stage-structured biomass models are derived from – and under
357 equilibrium conditions exactly represent – size-structured population models with a continuous size
358 distribution (57). Following bioenergetics and mass conservation principles (58), biomass production
359 (used for growth, development and reproduction) is food-dependent. Consequently, growth
360 performance is mediated by ecological interactions within and between species via exploitation of
361 shared resources.

362 The model in this paper is an extension of the temperature-dependent consumer-resource model used
363 in (31), empirically parameterized to represent a stage-structured consumer zooplanktivorous fish
364 (common roach, *Rutilus rutilus* L.) and its zooplankton prey (*Daphnia* sp.), here extended with a size-
365 selective predator (pike, *Esox Lucius* L.) feeding on the consumer. The life stages considered in the
366 consumer are juveniles and adults, as maturation and reproduction are two of the most fundamental life
367 history processes in animals (15). Juvenile and adult consumers and predators are characterized by a
368 representative body size (~4 g, ~30 g and ~640 g, respectively; see SI Appendix), which are used to
369 calculate their average mass-specific rates of metabolism, maximum ingestion, attack and background
370 mortality. We also account for interactive effects of body size and temperature on metabolic rate to
371 approximate the increasing costs of being large in a warmer environment, see “*Size- and temperature*
372 *dependence of vital rates*”, below for details. Independent of temperature scaling, asymmetrical
373 competition between life stages in the consumer population arises from differences in body size and
374 thus energetic performance (i.e. energetic gains minus losses from metabolism and mortality). The state
375 variables are biomass densities [g m^{-3}] of a basal resource, juvenile and adult consumers feeding on the
376 resource and a predator feeding with varied size preference on consumers (referred to as R , J , A and P ,
377 respectively) (Eqns. 1-4):

$$\frac{dR}{dt} = \delta(R_{max} - R) - \mu_{RJ}(R, J) - \mu_{RA}(R, A) \quad (1)$$

$$\frac{dJ}{dt} = \nu_A^+(R)A + \nu_J(R)J - \gamma[\nu_J^+(R, P)]J - \mu_J(J, A, P)J \quad (2)$$

$$\frac{dA}{dt} = \gamma[v_J^+(R, P)]J + v_A(R)A - v_A^+(R)A - \mu_A(J, A, P)A \quad (3)$$

$$\frac{dP}{dt} = (v_P(J, A) - \mu_P)P \quad (4)$$

378 Most terms in the system of ordinary differential equations are species- and mass-specific functions
379 of body size, temperature and the basal resource. These are described in the following paragraphs and
380 in Table 1. For parameters and derivation of the allometric relationships within the functions, we refer
381 to SI Appendix, Table S1.

382 We assume that the basal resource (R) grows according to semi-chemostat dynamics (59), with
383 temperature-dependent turnover rate (δ) and maximum density ($R_{\max, T19}$). Juvenile biomass increases
384 with adult reproduction (v_A^+). The $^+$ -superscript refers to positive values of biomass production such
385 that reproduction and maturation only occurs when biomass is produced, which ensures that starvation
386 (i.e. when $v_{J,A} < 0$) in one life stage does not reduce biomass of the other life stage. However, since we
387 analyze equilibrium dynamics, starvation is not possible without consumer extinction, which we did
388 not encounter in any of our modeled scenarios. Juvenile biomass is lost through maturation (γ) into the
389 adult stage and mortality, μ_J (sum of background and predation mortality). Adult biomass is gained
390 through maturation (γ) and lost through reproduction (v_A^+) and background and predation mortality
391 (μ_A). We assume that juveniles invest all energy into growth and development, whereas adults spend
392 all their energy on reproduction and hence do not grow in size (56). The predator population is
393 unstructured as we are primarily interested in how warming responses are influenced by the relation
394 between consumer size structure and mortality imposed by the predator. This does not necessarily rely
395 on structure in the predator, but rather on the interplay between size-specific predation mortality and
396 stage-structured dynamics in the consumer (26). Hence, the biomass dynamics of the predator are
397 described by its temperature-dependent net energy production (v_p) and losses due to background
398 mortality μ_P .

399 The net biomass production of consumers and predators ($v_{J,A,P}$) is the difference between ingested
400 energy, scaled with assimilation efficiency $\sigma_{z,p}$ (Table 1; SI Appendix, Table S1), and metabolic costs
401 ($M_{J,A,P}$). Ingestion follows a Holling type II functional response (60) for consumers and predators, with

402 size- and temperature-dependent functions describing maximum ingestion ($I_{max,J,A,P}$) and attack rate
403 ($a_{J,A,P}$) (Table 1; SI Appendix). We vary the feeding preference of predators by scaling their encounter
404 rate of juveniles with parameter p and of adults with $1 - p$ (i.e. $p = 1$ means juvenile selective predator,
405 $p = 0.5$ no preference and $p = 0$ means adult selective predator).

406

407 ***Size- and temperature dependence of vital rates***

408 All individual-level rates are functions of both body size and temperature (Table 1; see also SI Appendix
409 for derivation of functions and Table S1 for their numerical values at 19 °C). Temperature dependence
410 is acquired by multiplying allometric functions of mass-specific rates (at reference temperature, 19 °C)
411 with a Boltzmann-Arrhenius function, scaled to equal 1 at 19 °C (31). Allometric functions are of the
412 form aM^b , with species- and rate-specific constants and exponents, a and b , respectively. Attack rates
413 are derived from more complex, hump-shaped functions that depend on both predator and prey body
414 sizes (59, 61, 62) (SI Appendix, Table S1). The Boltzmann-Arrhenius function is given by $r_Y =$
415 $e^{\frac{E_Y(T-T_0)}{kT T_0}}$, where T [K] is the temperature, T_0 [K] is the reference temperature, k [eV K⁻¹] is Boltzmann's
416 constant and E_Y [eV] is the activation energy of rate or parameter Y (63). These temperature-dependent
417 rates and parameters (Y) include: metabolism ($M_{J,A,P}$), functional response parameters attack rate
418 ($a_{J,A,P}$) and maximum ingestion rate ($I_{max,J,A,P}$), basal resource turnover rate (δ), maximum resource
419 density ($R_{max,T19}$) and background mortality ($\mu_{J,A,P}$).

420 When varying the productivity of the basal resource ($R_{max,T19}$) and its scaling with temperature
421 through its activation energy, $E_{R_{max}}$, two contrasting scenarios were considered: (i) no effect of
422 temperature on $R_{max,T19}$ ($E_{R_{max}} = 0$), or (ii) $R_{max,T19}$ declining with temperature at the same rate as
423 turnover rate increases ($E_{R_{max}} = -E_\delta = -0.43$ [eV]) (SI Appendix). This assumption is based on mass
424 conservation and metabolic scaling principles (13, 39, 64). Given the large variation in activation
425 energies of feeding rates in the literature, in particular within species (50, 51), we varied the activation
426 energy of functional response parameters (E_f) by scaling it with a factor ranging between 0.5 and 1.5
427 relative to the activation energy of metabolism (E_M) (SI Appendix, Table S1, S4; Fig. S9-S10). This

428 results in E_I -values between 0.297 and 0.891, which are in the range of estimates reported in the
429 literature (43, 50, 51).

430 Thus far, the formulation follows closely that of the metabolic theory of ecology (1), in that
431 temperature effects are exponential and independent of body size. However, we also relax the
432 assumption of independent effects of body size and temperature. This is done by adding a linear
433 temperature dependence (c) to the exponent of metabolic rate, such that $M_{J,A,P} = r_M \rho_1 m_{J,A,P}^{\rho'_2 + c(T-T_0)}$,
434 where r_M is the temperature scaling factor for metabolism, ρ_1 is the normalization constant, $m_{J,A,P}$ is
435 the mass of juveniles, adults or predators and ρ'_2 is the allometric exponent at T_0 (292 °K, i.e. 19 °C),
436 and c determines whether metabolism increases faster with temperature for large relative to small
437 individuals ($c > 0$), or vice versa ($c < 0$) (SI Appendix, Fig. S2). This linear form of temperature-size
438 interaction has been shown within species (31, 49). We assume that both consumers and predators have
439 the same c by default (but see SI Appendix, Fig. S9), but acknowledge that it can vary considerably
440 between species (31, 49). A steeper size scaling of metabolism with body size at higher temperatures
441 ($c > 0$), all else equal, leads to a steeper scaling of the critical resource density needed to meet metabolic
442 demands (R_{crit}) with body size (SI Appendix, Fig. S2). Therefore, an interactive effect of body size
443 and temperature on metabolism ($c > 0$) results in a reduced growth performance for larger individuals
444 in warmer environments, as is often observed in aquatic systems (29, 30). R_{crit} is given by $R_{crit} =$
445
$$\frac{M}{a(\sigma - \frac{M}{I_{max}})}$$
, where M is metabolic rate, σ is the assimilation efficiency, a is attack rate and I_{max} is
446 maximum ingestion rate (65). Note also that steeper scaling of critical resource density (R_{crit}) with
447 body size can arise with $c \leq 0$, as long as the size-scaling exponent of feeding rate decreases more
448 rapidly with temperature than that of the metabolic exponent (SI Appendix, Fig. S2).

449 Importantly, we do not make assumptions about temperature effects on integrated traits such as body
450 size, but instead model interactive temperature-size effects mechanistically on individual-level rates
451 from which body growth results. Thus, effects of warming stem from direct effects on individual-level
452 processes that are mediated by ecological interactions within and between species via exploitation of
453 shared resources.

454

455 **Analysis**

456 We analyzed equilibrium biomass densities and bifurcations by performing equilibrium continuations,
457 which allows for also tracing unstable equilibria, using the MATLAB (66) package MATCONT GUI
458 (67). In using numerical techniques, the specific results presented here (e.g. temperatures at
459 bifurcations) should be viewed in relation to the parameter setup and not as quantitative predictions for
460 a particular system. Therefore, we test the robustness of our results in various sensitivity analyses,
461 including a wide variety of temperature dependencies. Minimum and maximum of limit cycles were
462 acquired by running time integrations until equilibrium for selected parameters and with continuation
463 analysis, and the stability of limit cycles was tested using Floquet theory (68). We also calculated
464 biomass-weighted mean body size (S_T) of the community for stable equilibria at temperature T
465 (averaged for each T) as $S_T = \frac{\sum_s (S_s \cdot B_{s,T})}{\sum_s B_{s,T}}$, where S_s is the representative body size of juvenile consumers,
466 adult consumers or predators ($s = J, A, P$) and $B_{s,T}$ is their corresponding equilibrium biomass density
467 at temperature T . Model files, instructions for viewing and implementing the model in MATCONT,
468 and R-scripts to reproduce the main figures with simulated data have been deposited on
469 https://github.com/maxlindmark/Temperature_Allee. R version 3.4.2 (69) was used to create figures.
470

471 **Acknowledgements**

472 We thank Sebastian Diehl, Wojciech Uszko and Viktor Thunell for inspiring and helpful discussions,
473 André De Roos for assistance in implementing the maturation function and phylopic
474 (<http://phylopic.org/>) for the pike silhouette, available for reuse under the Public Domain Mark 1.0
475 license (the other silhouettes were drawn by ML). This work was supported by grants from the Swedish
476 Research Council (no. 2015-03752 to AG), and the Swedish Research Council FORMAS (no. 217-
477 2013-1315 to AG).

478

479 **Author contributions:** AG conceived the study. All authors contributed to the formulation of research
480 questions and study design. ML performed modelling analyses and wrote the first draft. All authors
481 contributed to the revision of the manuscript.

482

483 **Cited Literature**

- 484 1. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of
485 ecology. *Ecology* 85(7):1771–1789.
- 486 2. Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL (2004) Effects of body size and
487 temperature on population growth. *Am Nat* 163(3):429–441.
- 488 3. Peters RH (1983) *The ecological implications of body size* (Cambridge University Press).
- 489 4. Blanchard JL, et al. (2012) Potential consequences of climate change for primary production
490 and fish production in large marine ecosystems. *Philos Trans R Soc Lond B Biol Sci*
491 367(1605):2979–2989.
- 492 5. O’Gorman EJ, et al. (2017) Unexpected changes in community size structure in a natural
493 warming experiment. *Nat Clim Change* 7(9):659–663.
- 494 6. Yvon-Durocher G, Montoya JM, Trimmer M, Woodward GUY (2011) Warming alters the size
495 spectrum and shifts the distribution of biomass in freshwater ecosystems. *Glob Change Biol*
496 17(4):1681–1694.
- 497 7. O’Connor MI (2009) Warming strengthens an herbivore-plant interaction. *Ecology* 90(2):388–
498 398.
- 499 8. Rall BC, Vucic-Pestic O, Ehnes RB, Emmerson M, Brose U (2010) Temperature, predator-prey
500 interaction strength and population stability. *Glob Change Biol* 16(8):2145–2157.
- 501 9. Vucic-Pestic O, Ehnes RB, Rall BC, Brose U (2011) Warming up the system: higher predator
502 feeding rates but lower energetic efficiencies. *Glob Change Biol* 17(3):1301–1310.
- 503 10. Fussmann KE, Schwarzmüller F, Brose U, Jousset A, Rall BC (2014) Ecological stability in
504 response to warming. *Nat Clim Change* 4(3):206–210.
- 505 11. Uszko W, Diehl S, Englund G, Amarasekare P (2017) Effects of warming on predator-prey
506 interactions: a resource-based approach and a theoretical synthesis. *Ecol Lett* 20(4):513–523.
- 507 12. Vasseur DA, McCann KS (2005) A mechanistic approach for modelling temperature-dependent
508 consumer-resource dynamics. *Am Nat* 166(2):184–198.
- 509 13. Gilbert B, et al. (2014) A bioenergetic framework for the temperature dependence of trophic
510 interactions. *Ecol Lett* 17(8):902–914.
- 511 14. O’Connor MI, Gilbert B, Brown CJ (2011) Theoretical predictions for how temperature affects
512 the dynamics of interacting herbivores and plants. *Am Nat* 178(5):626–638.
- 513 15. Persson L, De Roos AM (2013) Symmetry breaking in ecological systems through different
514 energy efficiencies of juveniles and adults. *Ecology* 94(7):1487–1498.

515 16. Angilletta MJ, Dunham AE (2003) The temperature-size rule in ectotherms: simple evolutionary
516 explanations may not be general. *Am Nat* 162(332–342).

517 17. Pörtner HO, Farrell AP (2008) Physiology and climate change. *Science* 322(5902):690–692.

518 18. Ohlberger J (2013) Climate warming and ectotherm body size - from individual physiology to
519 community ecology. *Funct Ecol* 27(4):991–1001.

520 19. De Roos AM, et al. (2007) Food-dependent growth leads to overcompensation in stage-specific
521 biomass when mortality increases: the influence of maturation versus reproduction regulation.
522 *Am Nat* 170(3):E59–E76.

523 20. Huss M, Nilsson KA (2011) Experimental evidence for emergent facilitation: promoting the
524 existence of an invertebrate predator by killing its prey. *J Anim Ecol* 80(3):615–621.

525 21. Ohlberger J, et al. (2011) Stage-specific biomass overcompensation by juveniles in response to
526 increased adult mortality in a wild fish population. *Ecology* 92(12):2175–2182.

527 22. Persson L, et al. (2007) Culling prey promotes predator recovery - alternative states in a whole-
528 lake experiment. *Science* 316(5832):1743–1746.

529 23. Schröder A, Persson L, de Roos AM (2009) Culling experiments demonstrate size-class specific
530 biomass increases with mortality. *Proc Natl Acad Sci USA* 106(8):2671–2676.

531 24. Schröder A, van Leeuwen A, Cameron TC (2014) When less is more: positive population-level
532 effects of mortality. *Trends Ecol Evol* 29(11):614–624.

533 25. De Roos AM, Persson L, Thieme HR (2003) Emergent Allee effects in top predators feeding on
534 structured prey populations. *Proc R Soc Lond B Biol Sci* 270(1515):611–618.

535 26. De Roos AM, Persson L (2002) Size-dependent life-history traits promote catastrophic collapses
536 of top predators. *Proc Natl Acad Sci USA* 99(20):12907–12912.

537 27. Gårdmark A, et al. (2015) Regime shifts in exploited marine food webs: detecting mechanisms
538 underlying alternative stable states using size-structured community dynamics theory. *Philos
539 Trans R Soc Lond B Biol Sci* 370(1659):20130262.

540 28. van Leeuwen A, De Roos AM, Persson L (2008) How cod shapes its world. *J Sea Res* 60(1–
541 2):89–104.

542 29. Forster J, Hirst AG, Atkinson D (2012) Warming-induced reductions in body size are greater in
543 aquatic than terrestrial species. *109(47):19310–19314*.

544 30. Horne CR, Hirst AG, Atkinson D (2015) Temperature-size responses match latitudinal-size
545 clines in arthropods, revealing critical differences between aquatic and terrestrial species. *Ecol
546 Lett* 18(4):327–335.

547 31. Lindmark M, Huss M, Ohlberger J, Gårdmark A (2018) Temperature-dependent body size
548 effects determine population responses to climate warming. *Ecol Lett* 21(2):181–189.

549 32. Malerba ME, White CR, Marshall DJ (2018) Eco-energetic consequences of evolutionary shifts
550 in body size. *Ecol Lett* 21(1):54–62.

551 33. Reuman DC, Holt RD, Yvon-Durocher G (2014) A metabolic perspective on competition and
552 body size reductions with warming. *J Anim Ecol* 83(1):59–69.

553 34. Atkinson D (1994) Temperature and Organism Size—A Biological Law for Ectotherms? *Adv
554 Ecol Res* 25:1–58.

555 35. Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. *Evol Ecol Res*
556 10:251–268.

557 36. Björnsson B, Steinarsson A (2002) The food-unlimited growth rate of Atlantic cod (*Gadus
558 morhua*). *Can J Fish Aquat Sci* 59(3):494–502.

559 37. Karås P, Thoresson G (1992) An application of a bioenergetics model to Eurasian perch (*Perca
560 fluviatilis* L.). *J Fish Biol* 41:217–230.

561 38. Ohlberger J, Edeline E, Vollestad LA, Stenseth NC, Claessen D (2011) Temperature-driven
562 regime shifts in the dynamics of size-structured populations. *Am Nat* 177(2):211–223.

563 39. Osmond MM, et al. (2017) Warming-Induced Changes to Body Size Stabilize Consumer-
564 Resource Dynamics. *Am Nat* 189(6):718–725.

565 40. Sentis A, Binzer A, Boukal DS (2017) Temperature-size responses alter food chain persistence
566 across environmental gradients. *Ecol Lett* 20(7):852–862.

567 41. Rosenzweig ML (1971) Paradox of Enrichment: Destabilization of Exploitation Ecosystems in
568 Ecological Time. *Science* 171(3969):385–387.

569 42. Downs CJ, Hayes JP, Tracy CR (2008) Scaling metabolic rate with body mass and inverse body
570 temperature: A test of the Arrhenius fractal supply model. *Funct Ecol* 22(2):239–244.

571 43. Rall BC, et al. (2012) Universal temperature and body-mass scaling of feeding rates. *Philos
572 Trans R Soc Lond B Biol Sci* 367(1605):2923–2934.

573 44. Segura AM, Sarthou F, Kruk C (2018) Morphology-based differences in the thermal response of
574 freshwater phytoplankton. *Biol Lett* 14(5):20170790.

575 45. Jacobson P, Gårdmark A, Östergren J, Casini M, Huss M (2018) Size-dependent prey
576 availability affects diet and performance of predatory fish at sea: a case study of Atlantic
577 salmon. *Ecosphere* 9(1):e02081.

578 46. Binzer A, Guill C, Brose U, Rall BC (2012) The dynamics of food chains under climate change
579 and nutrient enrichment. *Philos Trans R Soc Lond B Biol Sci* 367(1605):2935–2944.

580 47. Xie X, Sun R (1990) The Bioenergetics of the Southern Catfish (*Silurus meridionalis* Chen). I.
581 Resting Metabolic Rate as a Function of Body Weight and Temperature. *Physiol Zool*
582 63(6):1181–1195.

583 48. Beamish FWH (1964) Respiration of fishes with special emphasis on standard oxygen
584 consumption: II. Influence of weight and temperature on respiration of several species. *Can J*
585 *Zool Can Zool* 42(2):177–188.

586 49. Ohlberger J, Mehner T, Staaks G, Hölker F (2012) Intraspecific temperature dependence of the
587 scaling of metabolic rate with body mass in fishes and its ecological implications. *Oikos*
588 121(2):245–251.

589 50. Dell AI, Pawar S, Savage VM (2011) Systematic variation in the temperature dependence of
590 physiological and ecological traits. *Proc Natl Acad Sci USA* 108(26):10591–10596.

591 51. Englund G, Öhlund G, Hein CL, Diehl S (2011) Temperature dependence of the functional
592 response. *Ecol Lett* 14(9):914–921.

593 52. Bolnick DI, et al. (2011) Why intraspecific trait variation matters in community ecology. *Trends*
594 *Ecol Evol* 26(4):183–192.

595 53. Des Roches S, et al. (2018) The ecological importance of intraspecific variation. *Nat Ecol Evol*
596 2(1):57–64.

597 54. Miller TEX, Rudolf VHW (2011) Thinking inside the box: Community-level consequences of
598 stage-structured populations. *Trends Ecol Evol* 26(9):457–466.

599 55. Ryabov AB, De Roos AM, Meyer B, Kawaguchi S, Blasius B (2017) Competition-induced
600 starvation drives large-scale population cycles in Antarctic krill. *Nat Ecol Evol* 1:0177.

601 56. De Roos AM, et al. (2008) Simplifying a physiologically structured population model to a stage-
602 structured biomass model. *Theor Popul Biol* 73(1):47–62.

603 57. Metz JA, Diekmann O (1986) *The dynamics of physiologically structured populations*
604 (Springer-Verlag, Heidelberg, Germany).

605 58. Yodzis P, Innes S (1992) Body size and consumer-resource dynamics. *Am Nat* 139(6):1151–
606 1175.

607 59. Persson L, Leonardsson K, De Roos AM, Gyllenberg M, Christensen B (1998) Ontogenetic
608 scaling of foraging rates and the dynamics of a size-structured consumer-resource model. *Theor*
609 *Popul Biol* 54:270–293.

610 60. Holling CS (1959) Some characteristics of simple types of predation and parasitism. *Can*
611 *Entomol* 91(07):385–398.

612 61. Hjelm J, Persson L (2001) Size-dependent attack rate and handling capacity: inter-cohort
613 competition in a zooplanktivorous fish. *Oikos* 95:520–532.

614 62. Claessen D, De Roos AM, Persson L (2000) Dwarfs and Giants: Cannibalism and Competition
615 in Size-Structured Populations. *Am Nat* 155(2):219–237.

616 63. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and
617 temperature on metabolic rate. *Science* (293.5538):2248–2251.

618 64. Bernhardt JR, Sunday JM, O'Connor MI (2018) Metabolic theory and the temperature size rule
619 explain the temperature dependence of population carrying capacity. *Am Nat* In press.
620 doi:<https://dx.doi.org/10.1086/700114>.

621 65. Byström P, Andersson J (2005) Size-dependent foraging capacities and intercohort competition
622 in an ontogenetic omnivore (Arctic char). *Oikos* 110(3):523–536.

623 66. MATLAB (2014) version 8.4.0.150421 (2014b). Natick, Ma.

624 67. Dhooge A, Govaerts W, Kuznetsov YA, Meijer HGE, Sautois B (2008) New features of the
625 software MatCont for bifurcation analysis of dynamical systems. *Math Comput Model Dyn Syst*
626 14(2):147–175.

627 68. Klausmeier CA (2008) Floquet theory: a useful tool for understanding nonequilibrium
628 dynamics. *Theor Ecol* 1(3):153–161.

629 69. R Core Team (2018) *R: A Language and Environment for Statistical Computing*. R Foundation
630 for Statistical Computing (Vienna, Austria) Available at: <https://www.R-project.org/>.

631

632

633

634

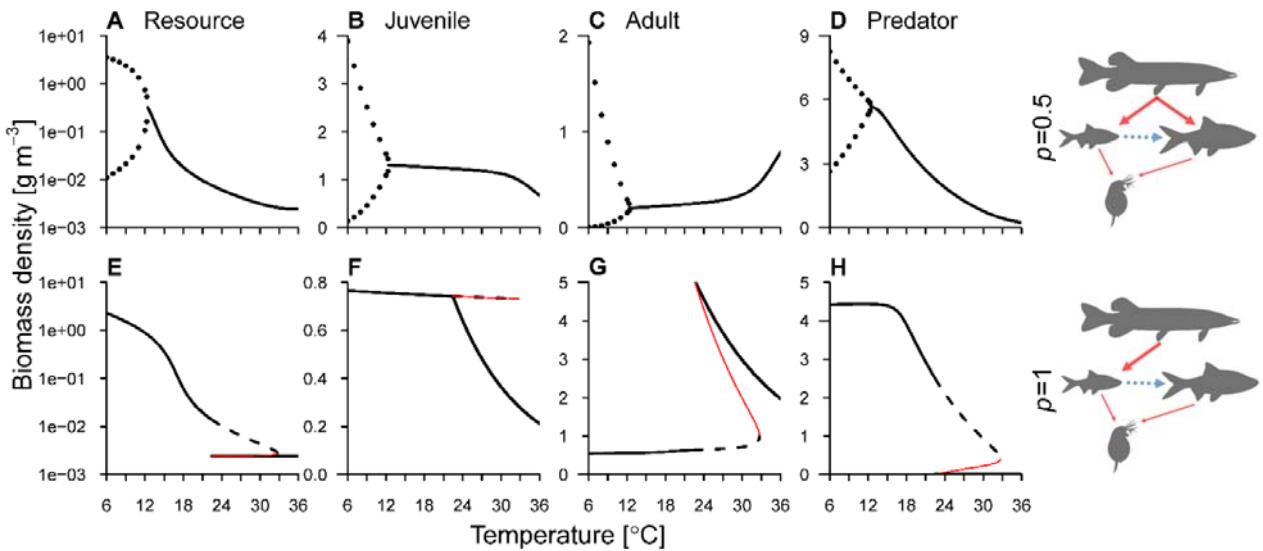
635

636

637

638

639


640

641 **Tables**

642 *Table 1 Model functions. Note that dependencies are only expressed for state variables, but all functions relate to individual-*
 643 *level rates that depend both on body size and temperature (see SI Appendix, Table S1).*

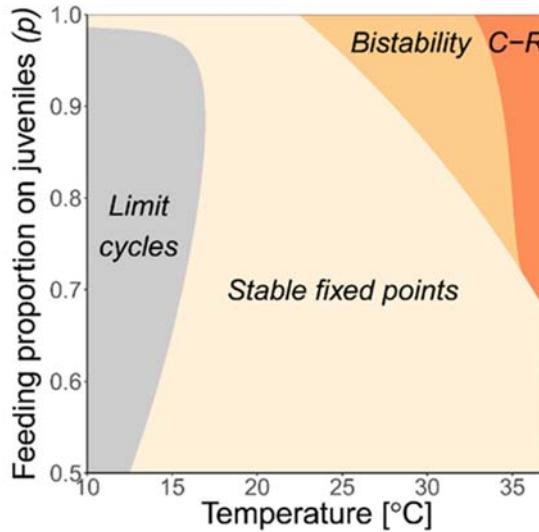
Functions	Expression	Description
<i>Temperature</i>		
$r_Y(T)$	$e^{\frac{E_Y(T-T_0)}{kTT_0}}$	Function scaling rate/parameter Y with temperature ($Y = M, I_{max}, a, \mu, R_{max}, \delta$)
<i>Resource</i>		
$\mu_{RJ}(R, J)$	$I_J(R)J$	Predation mortality from juveniles
$\mu_{RA}(R, A)$	$I_A(R)A$	Predation mortality from adults
<i>Consumer</i>		
$\eta_{J,A}(R)$	$a_{J,A}R$	Encounter rate
$I_{J,A}(R)$	$\frac{\eta_{J,A}(R)}{1 + \frac{\eta_{J,A}(R)}{I_{max,J,A}}}$	Ingestion rate
$v_{J,A}(R)$	$\sigma_z I_{J,A}(R) - M_{J,A}$	Net-biomass production
$v_{J,A}^+(R)$	$v_{J,A}(R) \text{ if } v_{J,A}(R) > 0; 0 \text{ otherwise}$	Net-biomass production limited to positive values
$\gamma(v_J^+[R, P])$	$\frac{v_J^+(R) - \mu_J(P)}{1 - \frac{\mu_J(P)}{v_J^+(R)}}$	Juvenile maturation rate
$\mu_J(J, A, P)$	$r_\mu \varphi_1 m_J^{\varphi_2} + \frac{I_{PJ}(J, A)}{J} P$	Total juvenile mortality
$\mu_A(J, A, P)$	$r_\mu \varphi_1 m_A^{\varphi_2} + \frac{I_{PA}(J, A)}{A} P$	Total adult mortality
<i>Predator</i>		
$\eta_{PJ}(J)$	$p a_P J$	Encounter rate on juveniles
$\eta_{PA}(A)$	$(1 - p) a_P A$	Encounter rate on adults
$I_{PJ}(J, A)$	$\frac{\eta_{PJ}(J)}{1 + \frac{\eta_{PJ}(J) + \eta_{PA}(A)}{I_{max,P}}}$	Ingestion rate on juveniles
$I_{PA}(J, A)$	$\frac{\eta_{PA}(A)}{1 + \frac{\eta_{PJ}(J) + \eta_{PA}(A)}{I_{max,P}}}$	Ingestion rate on adults
$v_P(J, A)$	$\sigma_p [I_{PJ}(J, A) + I_{PA}(J, A)] - M_P$	Net-biomass production
μ_P	$r_\mu \varphi_1 m_P^{\varphi_2}$	Background mortality

645 **Figures**

647 **Fig. 1.** Effects of warming on food chain stability depend on ecological interactions. Equilibrium
648 biomass densities of the resource (A, E), consumer life stages (B-C, F-G) and predator (D, H) as a
649 function of temperature, given a predator feeding with equal intensity on both life stages (A-D) ($p =$
650 0.5) or exclusively on juveniles (E-H) ($p = 1$). Black lines (full and dashed) are stable equilibria and
651 red thin lines are unstable equilibria (connecting the two stable branches in the bistable region), which
652 separate the two stable equilibria when there are alternative stable states. Maximum and minimum
653 biomass density of a stable limit cycle is shown with points (top row below ~ 12 °C). Alternative stable
654 states, where predators are either extinct or abundant, occur between ~ 22 - 33 °C in E-H. Note the
655 different scales on the y-axes and the logarithmic y-axis for resources densities. $E_{R_{max}} = -0.43$, all
656 other parameters have default values (SI Appendix, Table S1).

657

658


659

660

661

662

663

664

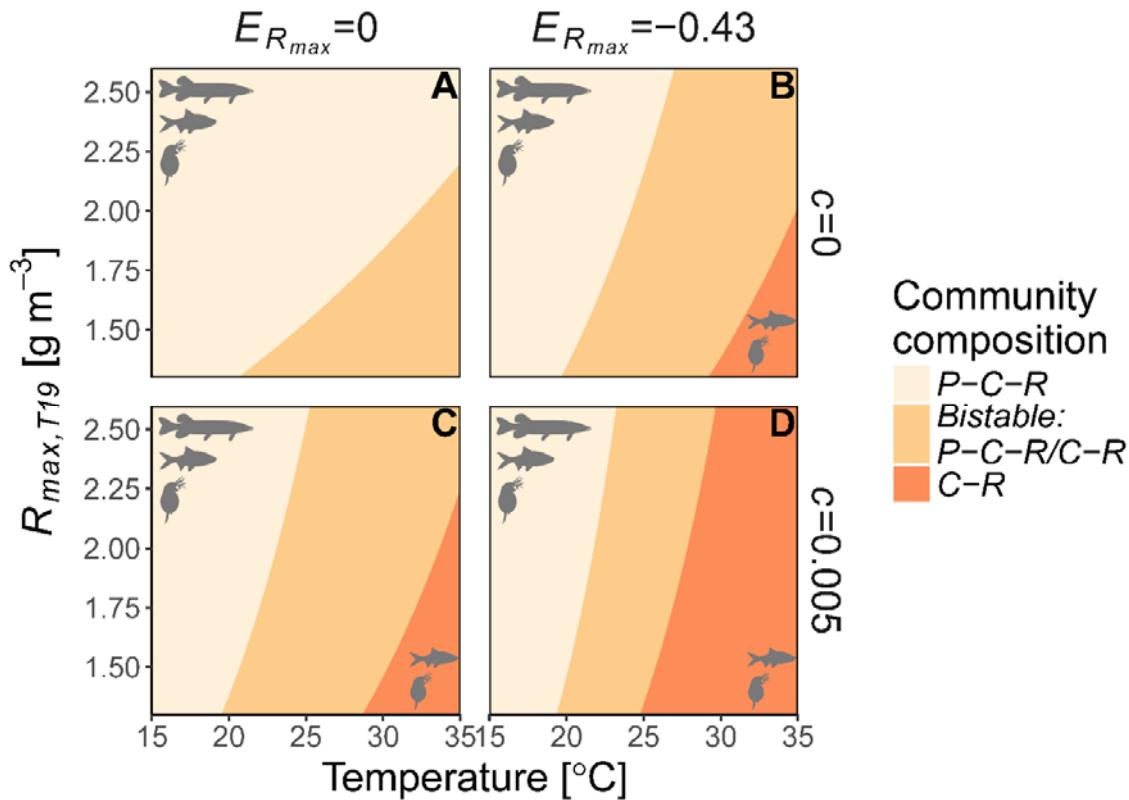
665 **Fig. 2.** Community structure shifts with temperature and the predators' feeding preference. In gray
666 regions all species in the food-chain exhibit stable population cycles, off white corresponds to stable
667 predator-consumer-resource states, beige shows bistable regions where the food-chain exhibits
668 alternative stable states with predators being either extinct or absent (here the lower temperature
669 boundary of the region corresponds to the invasion boundary and the upper is the persistence boundary),
670 and orange is the stable consumer-resource system where predators cannot persist. $E_{R_{max}} = -0.43$, all
671 other parameters have default values (SI Appendix, Table S1).

672

673

674

675


676

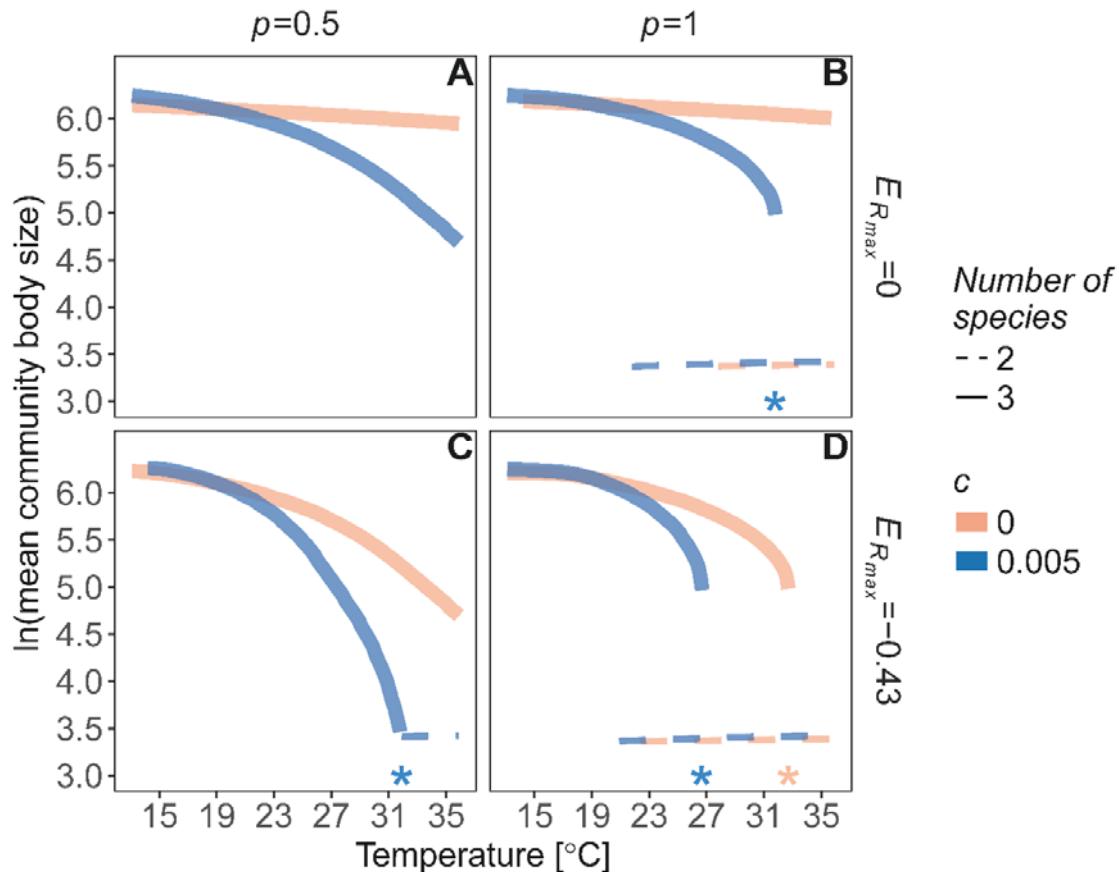
677

678

679

680

681


682 **Fig. 3.** Effects of temperature on community structure depend on temperature scaling of resource (R)
683 productivity and whether metabolism scales with body size and temperature independently ($c = 0$) or
684 interactively ($c \neq 0$) in the consumer (C) and predator (P). With warming, the tri-trophic food-chain
685 changes from stable (off white space), to exhibiting alternative stable states (beige space; with predators
686 either present or absent), to being reduced to two trophic levels following predator extinction (orange
687 space). The figure shows how the species composition and dynamics of the food-chain change with
688 temperature and resource productivity, given no ($E_{R_{max}} = 0$) (A, C) or negative ($E_{R_{max}} = -0.43$) (B,
689 D) effects of temperature on resource productivity, $R_{max,T19}$, with independent (A, B) or interactive (C,
690 D) effects of body size and temperature on metabolism. The predator feeds exclusively on juveniles
691 ($p = 1$), all other parameters have default values (SI Appendix, Table S1).

692

693

694

695

696

697 **Fig. 4.** Mean body size (S_T) in the community decreases with temperature, and warming can induce
698 abrupt shifts in mean community body size. The warming effects on S_T depend on basal productivity,
699 ecological interactions and temperature-size interactions, as shown for food-chains with a predator
700 species feeding with equal intensity on both consumer life stages (A, C) ($p = 0.5$) or exclusively on
701 juveniles (B, D) ($p = 1$), in a system with no temperature effects (A, B) on the basal resource
702 productivity ($E_{R_{max}} = 0$) or declining resource productivity with temperature (C, D) ($E_{R_{max}} = -0.43$).
703 Colors indicate different temperature-size scaling of metabolism, where coral lines show independent
704 effects of body size and temperature, $c = 0$ and blue lines show positive interactive effects, $c = 0.005$.
705 Dashed curves correspond to equilibria in which the predator has gone extinct, and mean community
706 body size correspondingly has shifted to smaller values. Stars indicate the maximum temperature for
707 predator persistence. Parameters have default values (SI Appendix, Table S1).

708