

Identification of a novel deltavirus in Boa constrictor

**Udo Hetzel^{1,2}, Leonóra Szirovicza³, Teemu Smura³, Barbara Prähauser¹, Olli Vapalahti^{2,3,4},
Anja Kipar^{1,2}, Jussi Hepojoki^{1,3,*}**

**¹Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich,
Switzerland**

**²University of Helsinki, Faculty of Veterinary Medicine, Department of Veterinary
Biosciences, Helsinki, Finland**

**³University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki,
Finland**

**⁴Department of Virology and Immunology, HUSLAB, Helsinki University Hospital, Helsinki,
Finland**

Running title: A novel deltavirus in snakes

*** Corresponding author**

Present address: University of Helsinki
Medicum
Department of Virology
Haartmaninkatu 3
FI-00290 Helsinki
Finland
Phone: +358-50-4040243
E-mail: jussi.hepojoki@uzh.ch or jussi.hepojoki@helsinki.fi

2

ABSTRACT

3 Human hepatitis D virus (hHDV) forms the genus *Deltavirus* which has not been assigned to
4 any virus family. hHDV is a satellite virus and needs hepatitis B virus (HBV) to make infectious
5 particles. Deltaviruses are thought to have evolved in humans, since they have thus far not been
6 identified elsewhere. Herein we report, prompted by a recent observation of HDV-like agent in
7 birds, the identification of a deltavirus in a snake (*Boa constrictor*) designated as snake-HDV
8 (sHDV). The circular 1711 nt RNA genome of the newly identified virus resembles hHDV in its
9 coding strategy and size. We discovered sHDV when performing a meta-transcriptomic study on
10 brain samples of two boas with central nervous system signs. We did not identify accompanying
11 HBV-like sequences in the samples. By sequence comparison, the putative hepatitis D antigen
12 (HDAg) of sHDV, encoded by one of the two open reading frames (ORFs), is roughly 50%
13 identical to the previously known HDAgs. We used antiserum raised against recombinant snake
14 HDAg to demonstrate a broad viral target cell spectrum, ranging from neurons over epithelial cells
15 to leukocytes. Using RT-PCR, we detected sHDV RNA also in the liver and blood of the two
16 snakes and could show sHDV infection not only in two of their juvenile offspring, but also in a
17 water python (*Liiasis mackloti savuensis*) in the same snake colony, indicating potentially vertical
18 and horizontal transmission. The finding of abundant sHDAg in several tissues suggests that sHDV
19 actively replicated in the studied animals. Our findings suggest that sHDV spread may not be
20 restricted to hepadnavirus co-infection. This would imply that deltaviruses may employ other
21 enveloped viruses for producing infectious particles.

22

23

MAIN TEXT

24 Hepatitis D virus (HDV) forms and is so far the sole member of the genus *Deltavirus* (Le Gal
25 et al., 2006). HDV has only been found in humans, and it is represented by eight distinct genotypes
26 (Le Gal et al., 2006; Lempp et al., 2016). In fact, HDV is hypothesized to have evolved within the
27 human host (Littlejohn et al., 2016). HDV has a negative-sense single-stranded circular RNA
28 genome of 1,672-1,697 nucleotides which is highly self-complementary (Lempp et al., 2016; Wang
29 et al., 1986). The processing (autocatalytic cleavage of multimeric genomic and antigenomic RNAs
30 and ligation of monomers) of the genome is mediated by genomic and antigenomic ribozymes
31 (Been and Wickham, 1997; Lempp et al., 2016). HDV only encodes two proteins, the small and
32 large hepatitis delta antigens (S- and L-HDAg), which are identical in amino acid sequence except
33 that the L-HDAg contains 19 additional amino acid residues at its C-terminus (Tseng and Lai,
34 2009). The S-HDAg is needed for RNA replication and the L-HDAg is involved in virus assembly
35 (Tseng and Lai, 2009). The virus requires hepatitis B virus (HBV) for egress and formation of
36 infectious particles comprising a ribonucleoprotein formed of the circular RNA genome and HDAGs
37 within an envelope decorated with HBV S antigen (Lempp et al., 2016; Rizzetto et al., 1980). HDV
38 replicates in the nucleus and the evidence suggests that cellular DNA-dependent RNA polymerase
39 II mediates HDV RNA replication (Tseng and Lai, 2009). Patients with chronic HBV and HDV co-
40 infection are at great risk of developing liver cirrhosis and hepatocellular carcinoma, particularly in
41 the case of superinfection with HDV in a chronically HBV infected patient (Lempp et al., 2016).
42 The HDV prevalence among HBV carriers is estimated to be around 5% (Lempp et al., 2016),
43 however, there is a great geographical and genotype-specific variation in HDV prevalence (Hughes
44 et al., 2011). Very recently, sequence data showing presence of a divergent HDV-like agent was
45 reported in ducks, without any traces of duck orthohepadnavirus (Wille et al., 2018). This prompted
46 us to report our findings of a HDV-like agent which we discovered earlier this year.

47 The animals included in this study were submitted to the Institute of Veterinary Pathology,
48 Vetsuisse Faculty, University of Zurich, Switzerland for a diagnostic post mortem examination
49 upon the owner's request. We applied the Animals Scientific Procedures Act 1986 (ASPA),
50 schedule 1 (<http://www.legislation.gov.uk/ukpga/1986/14/schedule/1>) procedure to euthanize the
51 snakes. Euthanasia and diagnosis-motivated necropsies are both routine veterinary procedures, and
52 thus ethical permissions were not required.

53 The animals carrying the snake HDV (sHDV) were a *Boa constrictor sabogae* breeding pair with
54 their joint offspring (F2, F3) and a waterpython (*Liasis mackloti savuensis*) from the same colony
55 (Table 1). The parental animals (nos. 1 and 3) had originally been imported from Panama to Italy,
56 from where they were sold to a private owner in Switzerland. All snakes had shown mild
57 neurological signs, which were suspected to be associated with boid inclusion body disease (BIBD).
58 Confirmation of BIBD was achieved by examination of blood smears. After euthanasia, the
59 diagnoses was confirmed by histological examination of formalin-fixed paraffin-embedded samples
60 of brain and other tissues. Apart from the waterpython which suffered from a chronic hepatitis,
61 none of the snakes exhibited other histopathological changes. We used RNA extracted from a
62 freshly frozen brain sample of the parental animals for next-generation sequencing (NGS) library
63 preparation as described in (Keller et al., 2017). The sequencing by Illumina MiSeq platform with
64 MiSeq Reagent Kit v3 (Illumina) 2x300 cycles yielded 825,933 paired end reads, and removal of
65 reads matching to snakes genome (*Python bivittatus*) reduced the number of paired end reads to
66 401,141. We performed *de novo* assembly using MIRA version 4.9.5 ([http://mira-](http://mira-assembler.sourceforge.net/)
67 [assembler.sourceforge.net/](http://mira-assembler.sourceforge.net/)) on CSC (IT Center for Science Ltd., Finland) Taito supercluster. One of
68 the contigs with high coverage (130,902 reads in total, corresponding to 7.92% of all reads)
69 appeared to be circular. The contig contained three repeats of 1,711 nt sequence (GenBank,
70 accession no. MH988742) with two open reading frames (ORFs), one in sense and the other in anti-
71 sense orientation. The genome of the newly identified sHDV and the sequencing coverage are

72 shown in Fig. 1A. By BLAST analysis (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) the other ORF of
73 199 amino acids was identified as snake HDAg (sHDAg) with 50% amino acid identity to S-HDAg
74 (GenBank accession no. AGI51675.1). The ORF2 contains a stretch resembling the DUF3343
75 (domain of unknown function) by HMMER3 search in SMART (Simple Modular Architecture
76 Research Tool available at <http://smart.embl-heidelberg.de/>), but with no apparent other homologies
77 to known proteins. The secondary structure of the genome generated using RNAstructure webserver
78 (Bellaousov et al., 2013) shows 73% self-complementarity, which is close to the 74% reported for
79 known hHDVs (Lempp et al., 2016). By GC content (53.3%) the sHDV lies between the newly
80 reported avian HDV-like sequence (51%) (Wille et al., 2018) and human HDV (hHDV, 60%)
81 (Wang et al., 1986).

82 By aligning the nucleotide sequence of sHDV with hHDVs, we were able to locate the genomic and
83 antigenomic ribozymes (Fig. 1B). The ribozymes share several features with the hHDV
84 counterparts including the active site and surrounding nt residues. The phylogenetic analysis of
85 amino acid sequences of hHDAGs shows that the sHDV and avian HDV-like agents (Wille et al.,
86 2018) are divergent from the hHDV. sHDAG forms a sister clade to hHDAGs, whereas HDAG of the
87 avian HDV-like agent forms an outgroup for these (Fig. 1C).

88 RT-PCR targeting the nt region 1139-1374 was set up using the 5'-
89 GGATTGTCCCTCCAGAGGGTTC-3' (fwd) and 5'-GCTCGAGGCTACCACCGAAAG-3' (rev)
90 primer pair. We performed conventional RT-PCR as described in (Keller et al., 2017) using RNA
91 extracted from freshly frozen liver samples as the template as described in (Dervas et al., 2017). We
92 found the parental animals and four of their seven offspring as well as the waterpython (no. 4) to be
93 sHDV-infected (Table 1 and Fig. 1D). The latter animal had been housed in the same room as the
94 boa breeding pair for several years, similar to an adult *B. constrictor constrictor* (no. 7) that was
95 tested negative for sHDV. A Madagascar tree boa (*Sanzinia madagascariensis*) without BIBD from
96 a different breeder was equally negative (Table 1).

97 To produce an antibody against the sHDAg, we used Champion pET101 Directional TOPO
98 Expression Kit (Thermo Scientific) to clone and express the recombinant sHDAg with C-terminal
99 hexa-histidine tag. We designed primers (5'-CACCATGGAAACTCCATCCAAGAAGC-3' [fwd]
100 and 5'-CGGGAACATTTGTCACCCCTCAC-3' [rev]) according to the manufacturer's
101 instructions to PCR amplify sHDAg ORF from the brain sample used for NGS library preparation.
102 We did the protein expression similarly as described in (Dervas et al., 2017), but performed the
103 purification under native conditions using Ni-NTA agarose (QIAGEN) according to manufacturer's
104 instructions. Rabbit antiserum against the recombinant protein was prepared by BioGenes GmbH as
105 described in (Dervas et al., 2017). Immunohistology then served to detect sHDAg expression in the
106 formalin-fixed and paraffin-embedded tissues (brain, liver, lung, kidney, spleen) of the examined
107 snakes, using the anti-sHDAg antiserum (see above). We used the EnVision HRP detection system
108 (Dako) as described (Dervas et al., 2017), citrate buffer (pH 6.0 at 98°C, 10 min) for antigen
109 retrieval of the sections, and anti-sHDAg serum at 1:5,000 dilution in Dako dilution buffer.
110 Consecutive sections incubated with the pre-immune serum instead of the specific primary antibody
111 served as negative controls.

112 In both parental boas, we found sHDAg to be intensely expressed within the cell body and
113 processes of numerous neurons in all brain regions (Fig. 2A), in individual hepatocytes in the liver
114 (Fig. 2B), in a proportion of tubular epithelial cells in the kidney (Fig. 2C), in occasional epithelial
115 cells in the lung (Fig. 2D), and in leukocytes (mainly consistent with macrophages) in the spleen
116 (Fig. 2E). All tissues also showed evidence of viral antigen expression in occasional vascular
117 endothelial cells and some leukocytes (Fig. 2). These findings suggest active replication. Of the
118 seven juvenile offspring tested, we found the four RT-PCR-positive animals to also be positive by
119 immunohistology, though mainly with a more limited expression (Table 1). The RT-PCR positive
120 waterpython exhibited patchy sHDAg expression in the liver. The three RT-PCR negative boa

121 offspring as well as the RT-PCR negative control animal were also negative in the
122 immunohistology.

123 Herein we provide the first evidence of actively replicating deltavirus in species other than
124 man. Together with the recent report by Wille et. al. (Wille et al., 2018) our study also suggests that
125 deltaviruses are in fact likely found across several taxa. Our histological examination shows that the
126 tropism of sHDV is broad and not limited to liver and blood. In fact, the detection of sHDAg in the
127 renal tubular epithelium and lung epithelial cells indicates that the virus can be shed with secretions.
128 We could not associate the infection with cytopathic changes, but need to undertake further studies
129 to assess the sHDV-related pathogenesis. The fact that we, alike Wille et al. (Wille et al., 2018),
130 could not detect accompanying hepadnavirus challenges the current understanding of strict
131 hepadnavirus-deltavirus association. It would seem plausible that the newly found deltaviruses use
132 arenavirus (in case of snakes) and influenza virus (in case of birds) co-infection to obtain the lipid
133 envelope to make infectious particles. These findings open up a multitude of avenues in deltavirus
134 research.

135

136 **ACKNOWLEDGEMENTS**

137 The authors are grateful to Sabina Wunderlin and Barbara Prähauser, Histology Laboratory,
138 Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, for excellent technical
139 support. This work was supported by Academy of Finland grants to JH (grant numbers 130861 and
140 1314119).

141

142

REFERENCES

143 Been, M.D., and Wickham, G.S. (1997). Self-cleaving ribozymes of hepatitis delta virus RNA Eur.
144 J. Biochem. 247, 741-753.

145 Bellaousov, S., Reuter, J.S., Seetin, M.G., and Mathews, D.H. (2013). RNAstructure: Web
146 servers for RNA secondary structure prediction and analysis Nucleic Acids Res. 41, W471-4.

147 Dervas, E., Hepojoki, J., Laimbacher, A., Romero-Palomo, F., Jelinek, C., Keller, S., Smura, T.,
148 Hepojoki, S., Kipar, A., and Hetzel, U. (2017). Nidovirus-associated proliferative pneumonia in the
149 green tree python (*morelia viridis*) J. Virol.

150 Hughes, S.A., Wedemeyer, H., and Harrison, P.M. (2011). Hepatitis delta virus Lancet. 378, 73-
151 85.

152 Keller, S., Hetzel, U., Sironen, T., Korzyukov, Y., Vapalahti, O., Kipar, A., and Hepojoki, J.
153 (2017). Co-infecting reptarenaviruses can be vertically transmitted in boa constrictor PLoS Pathog.
154 13, e1006179.

155 Le Gal, F., Gault, E., Ripault, M.P., Serpaggi, J., Trinchet, J.C., Gordien, E., and Deny, P.
156 (2006). Eighth major clade for hepatitis delta virus Emerg. Infect. Dis. 12, 1447-1450.

157 Lempp, F.A., Ni, Y., and Urban, S. (2016). Hepatitis delta virus: Insights into a peculiar
158 pathogen and novel treatment options Nat. Rev. Gastroenterol. Hepatol. 13, 580-589.

159 Littlejohn, M., Locarnini, S., and Yuen, L. (2016). Origins and evolution of hepatitis B virus
160 and hepatitis D virus Cold Spring Harb Perspect. Med. 6, a021360.

161 Rizzetto, M., Hoyer, B., Canese, M.G., Shih, J.W., Purcell, R.H., and Gerin, J.L. (1980). Delta
162 agent: Association of delta antigen with hepatitis B surface antigen and RNA in serum of delta-
163 infected chimpanzees Proc. Natl. Acad. Sci. U. S. A. 77, 6124-6128.

164 Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B.,

165 Liu, L., Suchard, M.A., and Huelsenbeck, J.P. (2012). MrBayes 3.2: Efficient bayesian

166 phylogenetic inference and model choice across a large model space *Syst. Biol.* *61*, 539-542.

167 Tseng, C.H., and Lai, M.M. (2009). Hepatitis delta virus RNA replication *Viruses*. *1*, 818-831.

168 Wang, K.S., Choo, Q.L., Weiner, A.J., Ou, J.H., Najarian, R.C., Thayer, R.M., Mullenbach,

169 G.T., Denniston, K.J., Gerin, J.L., and Houghton, M. (1986). Structure, sequence and expression of

170 the hepatitis delta (delta) viral genome *Nature*. *323*, 508-514.

171 Webb, C.H., and Luptak, A. (2011). HDV-like self-cleaving ribozymes *RNA Biol.* *8*, 719-727.

172 Wille, M., Netter, H.J., Littlejohn, M., Yuen, L., Shi, M., Eden, J., Klaassen, M., Holmes, E.C.,

173 and Hurt, A.C. (2018). A divergent hepatitis D-like agent in birds. *BioRxiv*.

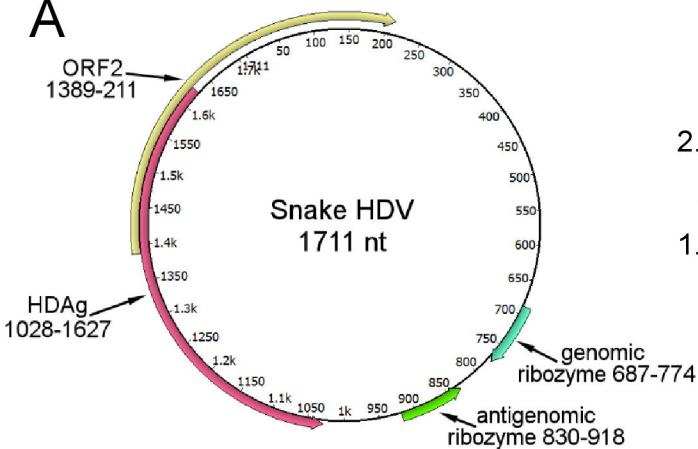
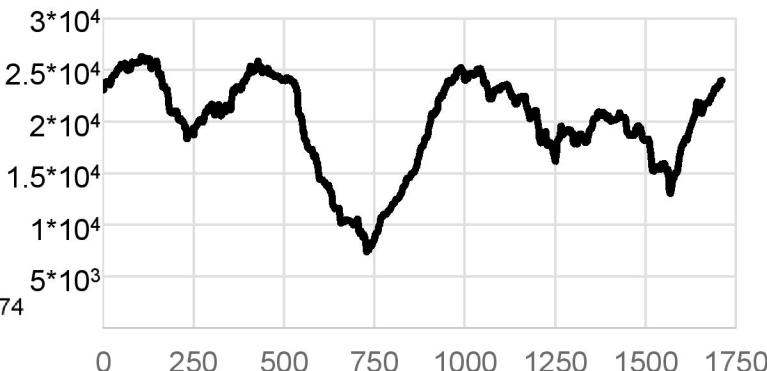
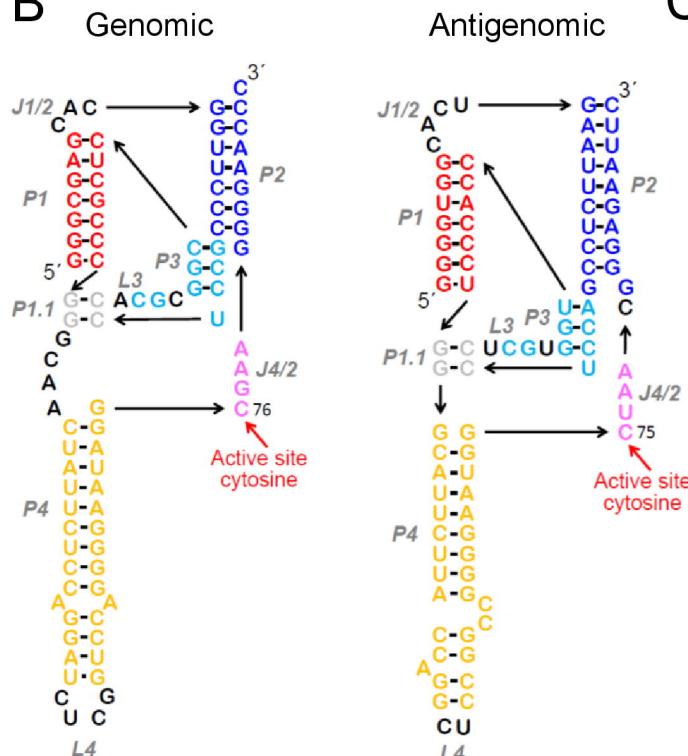
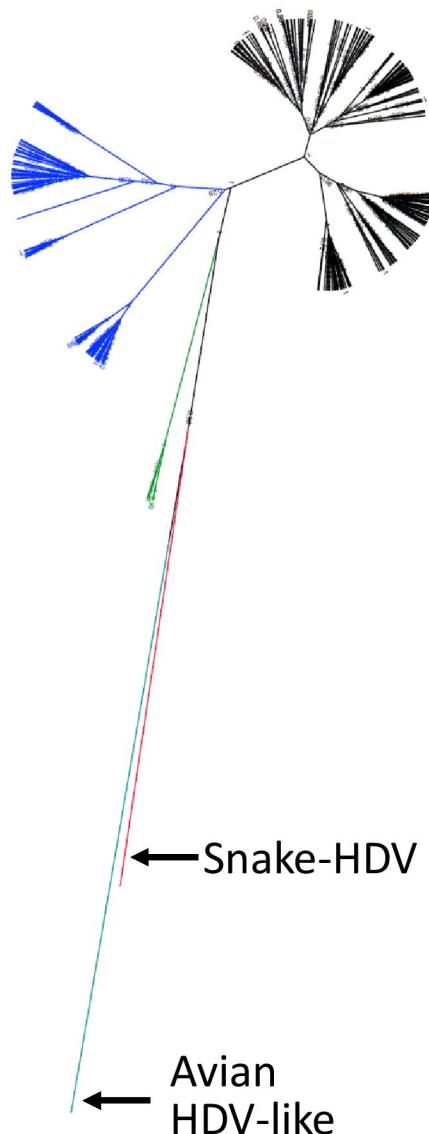
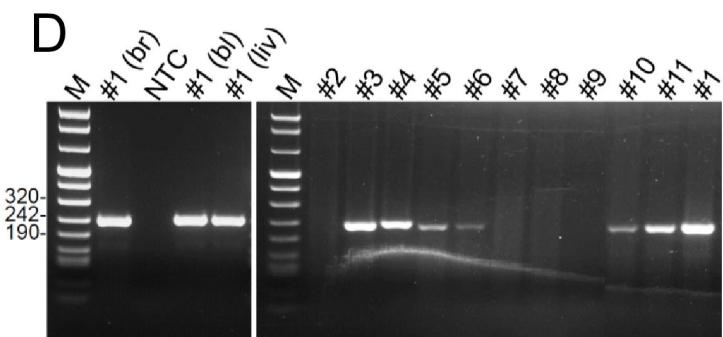
174

175 **FIGURE LEGENDS**

176 **Figure 1.** Genome organization, sequencing coverage, schematic ribozyme structure and
177 phylogenetic analysis of snake HDV. **A)** Schematic presentation of circular RNA genome and
178 sequencing coverage for snake HDV. The genome shows two open reading frames (ORFs), the
179 ORF in antigenomic orientation spanning nucleotide residues 1028-1627 encodes a 199 amino acid
180 protein which by BLAST analysis represents the HDAg. The ORF2 is in genomic orientation and
181 spans residues 1389-211 encodes 177 amino acid protein, which by BLAST analysis did not yield
182 significant hits (35% identity over 66 amino acids, E-value 5, to ferritin-like protein from
183 *Candidatus Nitrososphaera evergladensis* SR1, AIF82718.1). SMART (Simple Modular
184 Architecture Research Tool available at <http://smart.embl-heidelberg.de/>) analysis showed the
185 putative protein to have 2 transmembrane helices, and a DUF3343 (domain of unknown function)
186 domain with E-value 0.013. The genomic and antigenomic ribozymes identified by sequence
187 alignments to known HDVs are respectively located at 687-744 and 830-918. The graph shows
188 sequencing coverage (on Y-axis) in respect to each nucleotide position (on X-axis) of snake HDV
189 from the original brain sample, the coverage ranges from 7368 (at nt position 729) to 26304 fold. **B)**
190 Models for the secondary structures of the genomic and antigenomic ribozymes identified in snake
191 HDV, the presentation format is adopted from review by Webb and Luptak (Webb and Luptak,
192 2011) which was also used by Wille et al. (Wille et al., 2018). The abbreviations are: P=paired
193 region, J=joining region, L=loop. Both genomic and antigenomic ribozymes are structurally close to
194 their human HDV counter parts described in (Webb and Luptak, 2011) and they are identical at the
195 following regions: active site, P1.1 and P3. The cleavage by the ribozyme occurs at the 5' end. **C)**
196 Phylogenetic analysis of human, avian, and reptile HDAgs. The phylogenetic analysis was done
197 using Bayesian MCMC method implemented in MrBayes 3.1.2 (Ronquist et al., 2012) with JTT
198 model of substitution with gamma distributed rate variation among sites. HDV genotype 1 is in
199 black, HDV genotype 2 in blue, HDV genotype 3 in green, avian HDV-like sequence in cyan, and

200 snake-HDV in red. **D)** RT-PCR results of snake tissues. The gel on left shows RT-PCR products
201 obtained for snake 1 (table 1) from different tissues: br=brain, bl=blood, liv=liver. NTC=non
202 template control, M is DNA ladder. The gel on right shows RT-PCR products obtained from liver
203 sample, the animal numbering is according to table 1, animal #1 serves as a positive control.

204






205 **Figure 2.** *Boa constrictor*, female adult. **A)** Brain. Viral antigen is expressed in nucleus, cytoplasm
206 and cell processes of numerous neurons. **B)** Liver. Individual hepatocytes (large arrows) are
207 strongly positive, and macrophages (arrowheads) and endothelial cells (small arrows) are found to
208 also express viral antigen. **C)** Kidney. In a group of tubules (T), the majority of epithelial cells
209 exhibit variably intense viral antigen expression. Occasional leukocytes in the interstitium
210 (arrowhead) are also positive. **D)** Lung. There are several individual positive epithelial cells
211 (arrows); some subepithelial leukocytes are also found to express viral antigen (arrowhead). **E)**
212 Spleen. There is extensive viral antigen expression. Positive cells often have the morphology of
213 macrophages (arrowheads). Immunohistology for sHDAG. Horseradish peroxidase method,
214 haematoxylin counterstain.

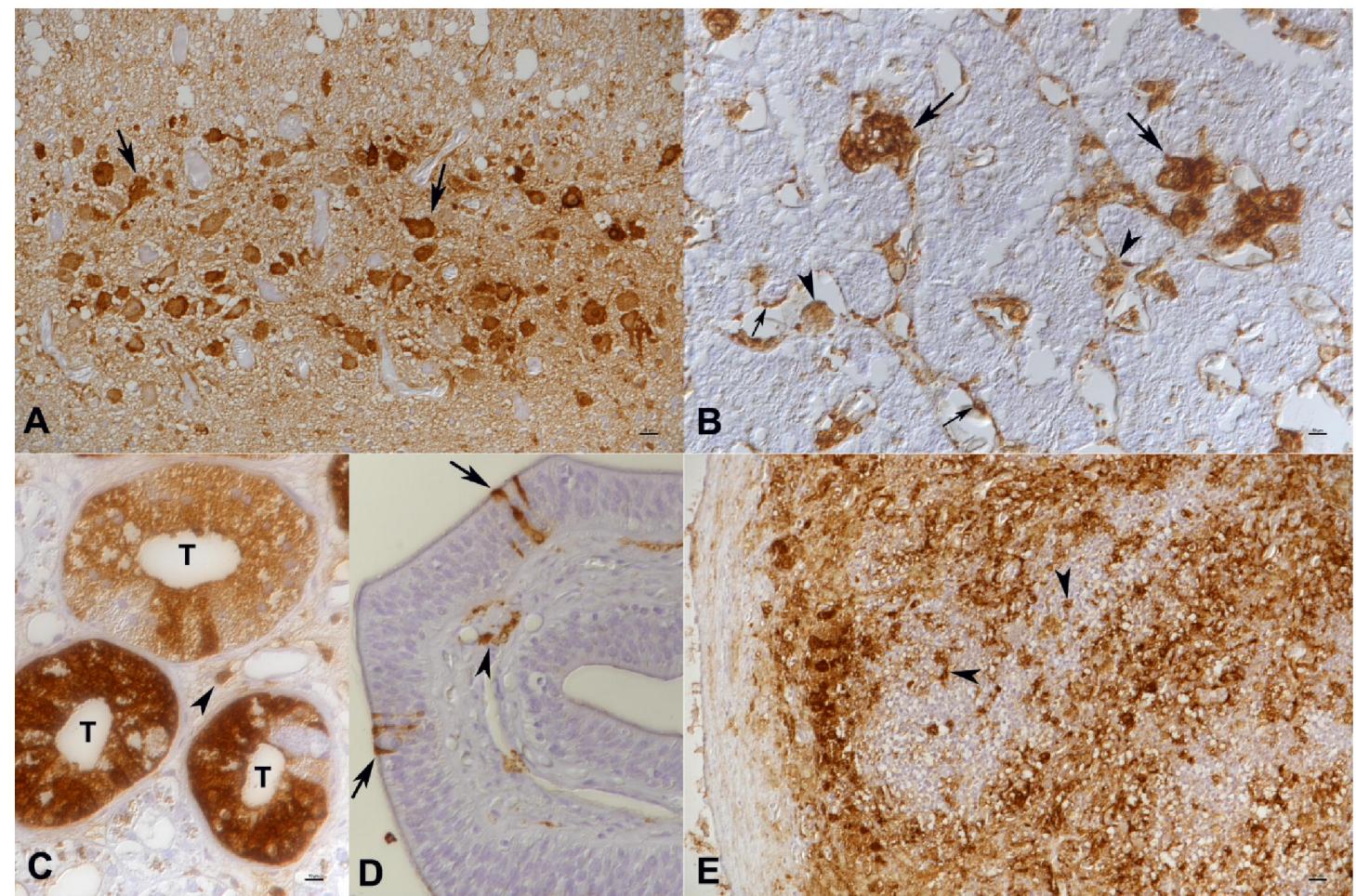

215

Table 1. Animals included in the study.

No.	Animal	Additional information	Delta-PCR (organs tested)	Delta-IH (organs positive)
1	<i>B. c. sabogae</i> , female, >12 y	Maternal animal; NGS	Pos (liver, blood, brain)	Pos (brain, liver, lung, spleen, kidney)
2	<i>B. c. sabogae</i> , male, 2 y	Offspring of #1 and #3 (F3)	Neg (liver)	Neg
3	<i>B. c. sabogae</i> , male, > 12y	Paternal animal; NGS	Pos (liver)	Pos (brain, liver, lung, spleen, kidney)
4	<i>Liasis mackloti savuensis</i> , male, > 10 y	Housed in the same room as #1 and #3; chronic hepatitis, no BIBD	Pos (liver)	Pos (liver)
5	<i>B. c. sabogae</i> , female, 3 y	Offspring of #1 and #2 (F2)	Pos (liver)	Pos (brain, liver, spleen, kidney)
6	<i>B. c. sabogae</i> , male, 3 y	Offspring of #1 and #2 (F2)	Pos (liver)	Pos (spleen, liver)
7	<i>B. c. constrictor</i> , female, ca. 6 y	Housed in the same room as #1 and #3; no BIBD	Neg (liver)	Neg
8	<i>B. c. sabogae</i> , male, 2 y	Offspring of #1 and #3 (F3)	Neg (liver)	Neg
9	<i>Sanzinia madagascariensis</i> , female, 15 y	Control animal; from different breeder; cutaneous mycosis, no BIBD	Neg (liver)	Neg
10	<i>B. c. sabogae</i> , female, 3 y	Offspring of #1 and #3 (F2)	Pos (liver)	Pos (liver, brain)
11	<i>B. c. sabogae</i> , male, 3 y	Offspring of #1 and #3 (F2)	Pos (liver)	Pos (spleen, liver, brain)

B.c. - Boa constrictor, y - years, NGS - next generation sequencing, F2/F3 - second/third clutch of breeding pair (#1 and #3)

A**Snake HDV coverage****B****C****D****Figure 1.**

Figure 2.