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Abstract

Bacterial populations that colonize a host can play important roles in host health,
including serving as a reservoir that transmits to other hosts and from which invasive
strains emerge, thus emphasizing the importance of understanding rates of acquisition
and clearance of colonizing populations. Studies of colonization dynamics have been
based on assessment of whether serial samples represent a single population or distinct
colonization events. With the use of whole genome sequencing to determine genetic
distance between isolates, a common solution to estimate acquisition and clearance rates
has been to assume a fixed genetic distance threshold below which isolates are
considered to represent the same strain. However, this approach is often inadequate to
account for the diversity of the underlying within-host evolving population, the time
intervals between consecutive measurements, and the uncertainty in the estimated
acquisition and clearance rates. Here, we present a fully Bayesian model that provides
probabilities of whether two strains should be considered the same, allowing us to
determine bacterial clearance and acquisition from genomes sampled over time. Our
method explicitly models the within-host variation using population genetic simulation,
and the inference is done using a combination of Approximate Bayesian Computation
(ABC) and Markov Chain Monte Carlo (MCMC). We validate the method with
multiple carefully conducted simulations and demonstrate its use in practice by
analyzing a collection of methicillin resistant Staphylococcus aureus (MRSA) isolates
from a large recently completed longitudinal clinical study. An R-code implementation
of the method is freely available at:
https://github.com/mjarvenpaa/bacterial-colonization-model.git.
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Author summary

As colonizing bacterial populations are the source for much transmission and a reservoir
for infection, they are a major focus of interest clinically and epidemiologically.
Understanding the dynamics of colonization depends on being able to confidently
identify acquisition and clearance events given intermittent sampling of hosts. To do so,
we need a model of within-host bacterial population evolution from acquisition through
the time of sampling that enables estimation of whether two samples are derived from
the same population. Past efforts have frequently relied on empirical genetic distance
thresholds that forgo an underlying model or employ a simple molecular clock model.
Here, we present an inferential method that accounts for the timing of sample collection
and population diversification, to provide a probabilistic estimate for whether two
isolates represent the same colonizing strain. This method has implications for
understanding the dynamics of acquisition and clearance of colonizing bacteria, and the
impact on these rates by factors such as sensitivity of the sampling method, pathogen
genotype, competition with other carriage bacteria, host immune response, and
antibiotic exposure.

Introduction

Colonizing bacterial populations are often the source of infecting strains and
transmission to new hosts [1-5], making it important to understand the dynamics of
these populations and the factors that contribute to persistent colonization and to the
success or failure of clinical decolonization protocols. The study of colonization
dynamics is based on inferring whether bacteria from samples collected over time
represent the same population or distinct colonization events, thereby permitting
calculation of rates of acquisition and clearance [6,7]. Whole genome sequencing has
provided a detailed measure of genetic distance between isolates, which can then be
used to infer the relationship between them [8-11]. While to date most studies have
used genetic distance thresholds as the basis for determining the relationship between
isolates [8,10], here we improve on these heuristic strategies and present a robust and
accurate fully Bayesian model that provides probabilities of whether two strains should
be considered the same, allowing us to determine bacterial clearance and acquisition
from genomes sampled over time.

An example of a typical individual-level longitudinally sampled data set from a
study population is shown in Fig 1: each 'row’ represents a patient, x-axis is time, and
dots are the genomes sampled at multiple time points. Dot color refers to different,
easily distinguishable, sequence types (ST). The coloured number between two
consecutive samples reflects the distance between the genomes, and we see that even
within the same ST the distances may vary considerably, and, therefore, determining
whether the changes can be explained by within-host evolution only, is challenging.
Intuitively, if two genomes are very similar, we interpret this as a single strain colonizing
the host. On the other hand, two very different genomes, even if the same ST, are
interpreted as two different strains, obtained either jointly or separately as two
acquisitions. With these data, we would like to address questions including: to what
extent are people persistently colonized, cleared, and recolonized? If recolonized, what
is the likelihood that it is the same or a distinct strain? To address these questions,
previous works have relied on using a threshold number of single nucleotide
polymorphisms (SNPs) to define a strain. Optimally, however, the SNP distance
between the genomes observed and the interval between the sampling time defines a
probability that the two genomes represent the same strain. Such data are critical for
understanding within-host dynamics, response to interventions, and transmission.
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Fig 1. Illustration of a subset of the data used in the study. Each row
corresponds to one patient and only the first 30 patients are shown. RO is the initial
hospital visit and V1, V2 etc. are the further visits. Red colour refers to ST5 and blue
to ST8 and the coloured numbers are the amount of mutations d;. Yellow colour
highlights the cases where the ST changes from ST 5 to ST 8.

Previously, transitions between different colonizing bacteria have been modeled using
hidden Markov models [12] with states corresponding to different colonizing STs.
However, this approach is not suitable for modeling within a single ST, where
acquisition and clearance must be determined based on a small number of mutations.
Crucial for interpreting such small differences is a model for within-host variation [8,13],
specifying the number of mutations expected by evolution within the host. Population
genetic models can be used for understanding the variation in an evolving
population [14]. A major difficulty in fitting such models to data like those shown in
Fig 1 is that the information contained by the data is extremely limited regarding the
variation within the host: a single time point is summarized with just a single (or a few)
genomes, and must serve to represent the whole within-host population. While some
studies use genome sequence from multiple isolates to achieve a more complete
characterization of within-host diversity [3,10], these tend to be limited in terms of the
number of time points and/or patients.

The Bayesian statistical framework can be used to combine information from
multiple data sources. In the Bayesian approach, a prior distribution is updated using
the laws of probability into a posterior distribution in the light of the observations, and
this can be repeated multiple times with different data sets [15,16]. Approximate
Bayesian computation (ABC) is particularly useful with population genetic models,
where the likelihood function may be difficult to specify explicitly, but simulating the
model is straightforward [17,18]. ABC has recently been introduced in bacterial
population genetics [19-22]. Here, we present a Bayesian model for determining whether
two genomes should be considered the same strain, enabling a strategy grounded in
population genetics to make inferences about acquisition and clearance from data of
closely related genomes. Benefits of the fully Bayesian analysis include: rigorous
quantification of uncertainty, explicit statement of modeling assumptions (open for
criticism and further development when needed), and straightforward utilization of
multiple data sources. We demonstrate these benefits by analyzing a large collection

PLOS

3/24

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61


https://doi.org/10.1101/429464
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/429464; this version posted September 27, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

@PLOS | susmission

under aCC-BY 4.0 International license.

longitudinally collected methicillin resistant Staphylococcus aureus (MRSA) genomes,
obtained through a clinical trial (Project CLEAR) to evaluate the effectiveness of an
MRSA decolonization protocol [23]. This method for identifying strains with explicit
assessment of uncertainty will enable studies of the characteristics—both host and
pathogen—that impact colonization in the presence and absence of interventions.

Methods

Overview of the model

One input data item for our model consists of a pair of genomes that are of the same
ST, sampled from the same individual at two consecutive time points (or possibly with
an intervening time point with no samples or a sample of a different ST). Each of these

data items (i.e. pairs of consecutive genomes) is summarized in terms of two quantities:

the distance between the genomes and the difference between their sampling times (see
Fig 1). Hence, the observed data D can be written as consisting of pairs (d;, t;),
i=1,..., N, where t; > 0 is the time between the sampling of the genomes,

d; € {0,1,2,...} is the observed distance, and N the total number of genome pairs that
satisfy the criteria (i.e. same patient, same ST, consecutive time points or possibly with
an intervening time point with no samples or a sample of a different ST). The
restriction to genome pairs of the same ST stems from the fact that different STs will
always be considered different strains anyway.

There are two possible explanations for the observed distances. If the genomes are
from the same strain, we expect their distance to be relatively small. If the genomes are
from different strains, we expect a greater distance. Below we define two probabilistic
models that represent these two alternative explanations. These models are then
combined into one overall mixture model, which assumes that the distance between a
certain pair of genomes is generated either from the 'same strain’ model or the ’different
strain’ model, and enables calculation of the probabilities of these two alternatives for

each genome pair, rather than relying on a fixed threshold to distinguish between them.

An essential part of our approach is a population genetic simulation which allows us
to model the within-host variation, and hence make probabilistic statements of the
plausibilities of the ’same strain’ vs. ’different strain’ models. For this purpose, we
adopt the common Wright-Fisher (W-F) simulation model, see e.g. [24], with a constant
mutation rate and population size, which are estimated from the data. The simulation
is started with all genomes being the same, which corresponds to a biological scenario
according to which a colonization begins with a single isolate multiplying rapidly until
reaching the maximum ’capacity’, followed by slow diversification of the population.
This assumption is supported by the fact that in the distance distribution, in cases
where the acquisition time was known and had happened recently, very little variation
was observed in the population. See the Discussion section for more details on the
modeling assumptions. Overview of the approach, including data sets, models, and
methods for inference, is outlined in Fig 2 and discussed below in detail.

Model ps: Same strain

Let (si1, 8;2) denote a pair of genomes with distance d;, sampled from a patient at two
consecutive time points (see the previous section) with time ¢; between taking the
samples. Here we present a model, i.e., a probability distribution pg(d; | t;, nett, it),
which tells what kind of distances we should expect if the genomes are from the same
strain. The parameter neg is the effective population size and p is the mutation rate.
We model d; as

di = d;1 + di2 (1)
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Fig 2. Overview of the modeling and data fitting steps. In Phase 1 we update
our prior information on parameters (nes, 1) based on external data Dy. In phase 2 we
estimate all the parameters of the (mixture) model using MCMC, precomputed distance
distributions pg and the information obtained in Phase 1. The fitted model can be used
to e.g. obtain the same strain probability for a new (future) measurement.

where we have defined
dﬂ = diSt(Sil, Si*) and dig = diSt(Si*, Sig), (2)

where dist(+,-) is a distance function that tells the number of mutations between its
arguments, and s;, is the unique ancestor of s;o that was present in the host when s;;
was sampled, and which has descended within the host from the same genome as s;;
(see Fig 3A). The Equation 1 is valid when mutations between s;; and s;«, and s;, and
842 have occurred in different sites, which is true with a high probability when the
genomes are long (millions of bps) compared to the number of mutations (dozens or a
few hundred at most). The probability distribution of d;; which we will denote by
Dsim (di1 | nett, 1), and which is not available analytically and does not depend on ¢;,
represents the within-host variation at a single time point, and we approximate it as

Dsim (di1 | pt, negr) = WF-simulator(d;y | pt, nege). (3)
The distribution of d;o is assumed to be
dio | p, t; ~ Poisson(d;e | pt;), (4)
that is, mutations are assumed to occur according to a Poisson process with the rate
parameter p.
Model pp: Different strains

Model pp represents the case that the genomes s;; and s;o are from different strains,
which we define to mean that their most recent common ancestor (MRCA), denoted by
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Fig 3. Outline of the ’same strain’ and ’different strain’ models. Model pp
on the left (panel A) represents the situation where the genomes denoted by s;1 and s;9
are of the same strain. Model pg on the right (panel B) shows the case where these
genomes are of different strains. Time flows from left to right in the figures, the dots
represent individual genomes, and the edges parent-offspring relationships.

&
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s;4, resided outside the host. The time between s;4 and s;1 is denoted by to; (see
Fig 3B). Under model pp, we assume that the distribution of the distance d; is

p(di | p, i, to;) = Poisson(d; | u(2to; + t;)), (5)

where the values of tg; are unknown and will be estimated, but let us assume for now
that they are known. One difference between the same strain model pg (defined by
Equations 1, 3, 4) and the different strain model pp (Equation 5) is that the former
uses Wright-Fisher simulation, whereas the latter does not. The reason is that the
within-host variation is bounded, occasionally increasing and decreasing, which is
reflected by the constant population size of the Wright-Fisher simulation in the same
strain model. On the other hand, in the different strain model the distance between s;;
and s;5 can in principle increase without bound, given enough time since their common
ancestor, because they diverged and evolved outside the host.

Mixture model

With the two alternative models for the distance, we can write the full model, which
assumes that each distance observation is distributed according to

p(di|t;,0) = wsps(d; | ti, nest, 1) +wppp(di | iy tos, ), i=1,...,N, (6)

where 6 denotes jointly all the parameters of the models, i.e.,

0 = (nest, 4, ws, wp, to1, - - -, ton ). The parameter wg represents the proportion of pairs
from the same strain and wp is the proportion of pairs from different strains, such that
ws +wp = 1. To learn the unknown parameters 8, we need to fit the model to data,
but before going into details, we discuss how to use an external data set to update the
prior distribution about the mutation rate y and the effective sample size nesg. This
updated distribution will itself be used as the prior in the mixture model.
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ABC inference to update the prior using external data

Simulations with the W-F model are used in our approach for two purposes: 1) to
incorporate information from an external data set to update the prior on the mutation
rate u and the effective sample size negr, and 2) to define empirically the distribution
ps(d;|ti, nest, 1) required in the mixture model. Here we discuss the first task.

As external data we use measurements from eight patients colonised with MSSA [3],
comprising nasal swabs from two time points for each patient, such that the acquisition
is known to have happened approximately just before the first swab. Multiple genomes
were sequenced from each sample, and the distributions of pairwise distances between
the genomes provide snapshots to the within-host variability at the two time points for
each individual, and these distance distributions are used as data. We exclude one
patient (number 1219) because according to [3] this patient was likely infected already
long before the first sample. The data set also contains observations from an additional
13 patients from [13], denoted by letters from A to M in [3]. For these patients, distance
distributions from only one time point are available, and the acquisition times are
unknown. The data comprising the distance distributions from the 7 patients (two time
points) and the additional 13 patients (a single time point) are jointly denoted by Dj.

To learn about the unknown parameters neg and p, we first note that their values
affect the distance distribution of a population resulting from a W-F simulation with
the specified values (Fig. 4). To estimate these parameters, we try to find such values
for them which make the output of the W-F similar to the observed distance
distributions Dg. Since the corresponding likelihood function is unavailable, standard
statistical techniques for model fitting do not apply. Therefore, we use Approximate
Bayesian Computation (ABC), a class of methods for Bayesian inference when the
likelihood is either unavailable or too expensive to evaluate but simulating the model is
feasible, see [17,18,25,26] for an overview on ABC. The basic ABC rejection sampler
algorithm for the model fitting consists of the following steps:

1. Simulate a parameter vector (negt, 1) from the prior distribution p(nest, ().

2. Generate a pseudo-data similar to the observed data Dy by running the W-F
model separately for each patient using the parameter (nes, ().

3. Accept the parameter (nef, 1) as a sample from the (approximate) posterior
distribution if the discrepancy between the observed and simulated data is smaller
than a specified threshold .

The quality of the resulting ABC approximation depends on the selection of the
discrepancy function, the threshold ¢ and the number of accepted samples. Broadly
speaking, if the discrepancy summarizes the information in the data completely (e.g. it
is a function of the sufficient statistics) and ¢ is arbitrarily small, the approximation
error becomes negligible and the samples are generated from the exact posterior. In
practice, choosing € very small makes the algorithm inefficient since many simulations
are needed to obtain an accepted sample even with the optimal value of the parameter.
Also, finding a good discrepancy function may be difficult because sufficient statistics
are typically unavailable. Many sophisticated ABC variants exist, see e.g. [18,26] and
the references therein, but as we need to estimate only two parameters (one of which is
discrete) and because running the simulations in parallel is straightforward with the
basic algorithm, we use a the ABC rejection sampler outlined above, with details
discussed below.

In [13], MRSA evolution was simulated using parameters derived from the following
estimates: 8 mutations per genome per year and generation length of 90 minutes (the
whole year is thus 5840 generations). This gives mutation rate of 0.0019 per genome per
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generation, approximately 6.3 x 107'° mutations per site per generation assuming the
genome length of 3 Mbp. We also use the generation time of 90 minutes, originally
derived by [13] from the estimated doubling time of Staphylococcus aureus [27]. We use
independent uniform priors for the parameters of the W-F model, so that

nege ~ U({20,21,...,10000}), p~U([au,bu]) (7)

with a, = 0.00005 and b,, = 0.005 mutations per genome per generation.

We argue that reasonable parameters should produce populations with similar
histograms of the pairwise distances compared to the observations at the corresponding
times. Consequently, we use the discrepancy A defined as

7 2
A=Y L@ (e, w). By + > mjin{ll(@j (nett, 1), D)}, (8)
i=1 j=1

i€{A,B,....M}

where p;; (nes, ) and fo\?]'»”s are the simulated and observed empirical distributions of

pairwise distances for patient i with time point j, respectively, and [1 (-, ) denotes the L!
distance between the distributions. In principle, the unknown acquisition times for the

13 patients (A-M) could be estimated by making each of them an additional parameter.

However, ABC in the resulting 15 dimensional parameter space would be difficult due to
the curse of dimensionality. Instead, as shown in the Eq 8, we use these data such that

we supplement the unknown times with values that produce the minimum discrepancy.

This way, parameters that never produce enough variability to match the observations
will increase the discrepancy, allowing us to gain evidence against such unreasonable
values, even if the exact times are unknown and too computationally costly to infer.

Instead of simulating (ner, ) samples from the prior we perform equivalent
grid-based computations. That is, we consider an equidistant 50 x 50 grid of (nes, 1)
values and simulate the model 1,000 times at each grid point. However, in preliminary
experiments we noticed that if nes and p are simultaneously large, the amount of
mutations produced by the model increases rapidly and it is clear that the simulated
pairwise distances are always greater than in the observed data, and also the
computation time and memory usage become prohibitive. Thus, we do not run the full
set of 1000 simulations in this parameter region because it is clear that the posterior
density would be negligible. Finally, the threshold ¢ is chosen such that 5,000 out of the
total of almost 1 million simulations are below the threshold, corresponding to the
acceptance probability of 0.0057.

Details of the mixture model

We now discuss the mixture model in detail and then derive an efficient algorithm to
estimate its parameters. Because the values of #y; in Eq 5, denoting the times to the
MRCAs in case the sequences are different strains, are unknown, we model them as
random variables and give each of them a prior distribution

toi | k, A ~ Gamma(k,\), i=1,...,N. (9)
We further specify a weakly informative prior for A such that
A ~ Gamma(q, ). (10)

The parameter A is thus shared between different to; which allows us to learn about its
distribution.

If K =1, then the Gamma distribution in Eq 9 reduces to the Exponential, which,
however, does not reflect our prior understanding of reasonable value of ¢y; because the
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Fig 4. Distributions of pairwise distances for populations simulated with
different parameters. The histograms show the estimated probability mass functions
Dsim (di1 | nett, 1) with selected parameter vectors (ne, ). Increasing p and/or neg tends
to increase the distances. The distance distribution can also be bimodal as the subfigure
in lower right corner shows. Each histogram represent variability in a simulated
population at a single time point 6,000 generations after the beginning of the simulation.

mode of the resulting distribution is at zero, corresponding to a very recent common
ancestor for genomes considered to be from different strains. Instead, we set k = 5,
a = 2.5, and 8 = 1600, which approximately correspond to the mean and standard
deviation of 5800 and 8400 generations, respectively. This weakly informative prior
reflects the notion that different strains diverged on average approximately a year ago,
but with a large variance. Furthermore, if the time between samples, ¢;, is three months,
the prior translates to an expectation that, if the sampled genomes are from different
strains, they are on average 30 mutations apart, with a large standard deviation of 50
mutations. Moreover, the density has a heavy tail to account for some possibly much
greater distances. The formulas used to compute these values and other useful facts
about the prior are provided in the supplementary material.

An equivalent way of writing the mixture model in Eq 6, which also simplifies the
computations, is to introduce hidden labels which specify the component which
generated each observation d;, see [28]. We thus define latent variables

. _ 7 _ [ (1,007, if d; has distribution pg
z; = (zi1, zi2)" = { (0,1)T, if d; has distribution pp. (11)

The prior density for the latent variables z is

N N
p(z|w) = [ p(zi |w) = []wiwip, (12)
i=1 i=1
where we have used vector notation t = (t1,...,tx)7, d = (dy,...,dn)7T,
z=(21,...,25)7, to = (to1,...,ton)? and w = (ws,wp)?. We augment the parameter

6 to represent jointly all model parameters in Eq 6 and the prior densities specified in
Eq 9 and 10, i.e., @ = (negr, 1, w, 2, to, \)T. To complete the model specification, we
must specify the prior for w, neg and p. We use

w ~ Dir(y), (13)
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that is, a Dirichlet distribution with parameter v = (1,1)”7. We use the posterior
p(nest, 1| Do), obtained by ABC using the external data Dy as discussed in the previous
section, as the (joint) prior for (neg, p).

Bayesian inference for the mixture model

We now show how the mixture model can be fit efficiently to data. The joint probability
distribution for the data d and the parameters @ can be now written as

p(d7 0 | t7 DO) = p(da Neff, U, W, thO, A ‘ ta DO)

= p(d> z ‘ Neff, WUy W, t07 )\7t)p(neff7 M, W, t07 A | DO) (14)
N N

= [ [ p(di | 2i, nete, g1, tos, A, ta) p( | @) p(ness, 11| Do) p(w) [ [ p(to: [ V) p(A)  (15)
=1 1=1

We use Gibbs sampling, which is an MCMC algorithm, to sample from the posterior
density. The algorithm exploits the hierarchical structure of the model and it proceeds
by iteratively sampling from the conditional density of each variable (or a block of
variables) at a time [29]. In the following we derive the conditional densities for the
Gibbs sampling algorithm. We observed that some of the parameters 8 are highly
correlated which causes slow mixing of the resulting Markov chain and thus inefficient
exploration of the parameter space. To make the algorithm more efficient, we
reparametrise the model by defining new parameters 8’ = (neg, t, w, z, 7, \) via the
transformation = pty and we use the Gibbs sampler for the transformed parameters
0’. This common strategy [29] resolves the problem arising from correlations between
to; and pu, because the magnitudes of all n; can now be changed simultaneously by a
single p update. The original variables ty; can be obtained from the generated samples
as toi = 1;/ -

The joint probability in Eq 15 for the transformed parameters then becomes

p(d7neffa M, w, 7,1, A | t7D0)

N N
= [T p(d: | 2, nese, 1, ™", X 13) p(2i | @) p(ness, 11| Do) p(w) [ [ o™ 0 [ A) p(A)u=
=1 i=1
N
= H W& ps(di | ti, nese, )" wi?pp (di | ti, i/ e, o) ¥ Gamma(n; /p | k, )]
=1
- Gamma(\ | , 8) Dir(w | ¥)p(nese, 1| Do), (16)

where % is the determinant of the Jacobian of the inverse transformation.

Computing the conditional density of parameter w is straightforward. We neglect those
terms in Eq 16 that do not depend on w and recognise the resulting formula as an
unnormalised Dirichlet distribution. We then obtain

p(w|z, D) = Dir(w[n +7), (17)

with n = (nq,n2)7, where n; = sz\; zi1 and ny = Zil zi2. Next we consider the
latent variables z;. We see that the conditional distribution of z; for any i =1,..., IV
does not depend on other latent variables z;, j # i. Specifically, we obtain

P(zi1 = 1| netr, p, w, M, D) o< wsps (di | £, nest, 1), (18)
(2771' + ,uti)die_@m-‘ruti)
dtl :

P(Zﬂ =1 ‘neffvﬂuwv n, D) X Wp
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We expect the effective sample size nog and the mutation parameter p to be

correlated a posteriori so we include them to the same block and update them together.

We also include A to this block as it also tends to be correlated with neg and p. It is
convenient to replace the sampling step from p(ne, 1, A |w, z,m, D, Dy) with the
following two consecutive sampling steps: first sample from

p(nesr, p|w,z,m, D, Do) = [ p(nest, t, A | w,z,m, D, Dy) dX and then sample from

P(A | M, pt, w, 2,1, D, Dy). From Eq 16 we observe that

N _ s e M Zf\fz1 ziati
p(ncffv 1, A | z,n, Da DO) o8 H [ps(dl | tiv Neff, N)Zu (27}1 + luti)zlz 1] T

i=1

- p(Net, 1| DO))\NHa—le—A(/fl Silimith) (20)
The above formula is recognised to be proportional to a Gamma density as a function of
A. We can thus marginalise A easily to obtain the following density for the first step

p(neff,ﬂ | z,m, Da DO)

N —u Zf\]: Ziot; D
oc [T [ps(di | tismess, 1)** (2n; + pti) 72 %] - 2 pAret, 4] Do) (21)

i1 pNE(um L SN s + BNkt

In the second step, we sample A from the probability density

p(A 1, m, D) = Gamma <>\

L N
Nk-l—aﬁ—kluZm). (22)

=1

This formula follows directly from Eq 20.

Sampling from Eq 21 and sampling z using Eq 18 are challenging because pg is
defined implicitly via the W-F simulation model. Consequently, we will consider an
approximation that allows to compute pg(d; | t;, negr, ) for any proposed point (e, 1)
and all values of d; and ¢; in the data. Since d; = d;1 + d;2, we can use the convolution
formula for a sum of discrete random variables to see that

d;

ps (dz | tiv Neff, M) = Z POiSSOH(j | Nti)psim (dz - j | Neff, /1‘)7 (23)
j=max{0,d;—d, }

where pginm, specifies the distribution for a distance between two genomes as in Eq 3 and
d,, is the maximum distance that can be obtained from pg;y,.

Since pgim (di1 | nest, 1) is not available analytically, we estimate this probability mass
function by simulation. A special case is if we know that there is no variation in the
population at the time of taking the first sample s;1, which can happen if we know that
the acquisition happened just before the first sample. In this case, d;; = 0, and we do
not need the simulation. Since this is usually not the case, we use a general solution as
follows: for each (mesr, ) value, we sample independently dz(-{) ~ Dsim (* | Rett, 1) by
simulating the W-F model, sample a pair of genomes at a fixed time ¢ from the

simulated population, and compute their distance dg{). This is repeated for j =1,...,s.

Since d;; is discrete, we approximate
1 S
Psim (i | Tet, 1) ~ Dsim (din [ ett, ) = — Zﬂdﬁ):dil’ (24)
j=1

for all 7. Since in data D we do not know the acquisition times, we set ¢t = 6000
generations and use this same value for all 4. This large value represents a steady state
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of the simulation, where the variation in the population occasionally increases and
decreases as new lineages emerge and old ones die out, which can be seen as
corresponding to a reasonable default expectation about population variability when the
true acquisition time is unknown. While this assumption was introduced for
computational necessity, it can be justified by considering its impact on the inferences:
the simplification may cause slightly overestimated distances d;; if many acquisitions in
reality happened very recently. The consequence is that the criterion for reporting new
acquisitions becomes more conservative, because now the ’same strain’ model will place
some probability mass on occasional greater distances, and hence better accommodate
also distant genomes which might otherwise have been considered as different strains.

Some of the resulting probability mass functions Dgsim (d;1 | nest, 14) were already
shown in Fig 4. In practice, the computations above are done using logarithms and the
fact log Y, e% = max;{a;} + log >, e ~maxi{ai} to avoid numerical underflow, which
can occur whenever a; < 0. The finite sample size s causes some numerical error, but,
because the distances are usually small enough that the number of values we need to
consider is limited, s can be made large enough without too extensive computation,
making this error small in general. The above procedure allows computation of the
conditional density in Eq 21 for any (nes, 1), and we can use a Metropolis update for
(netr, ). We marginalised A in Eq 21 to improve the mixing of the chain and to be able
to use the analytical formula in Eq 22, and in the supplementary material we justify
that this algorithm is valid under the assumption that a new A parameter is sampled
only if the corresponding proposed value (negr, ) has been accepted.

Whenever a new (negr, 1)-parameter is proposed, we need to compute pgiy, at this
point to check the acceptance condition. This value is also needed when sampling z.
However, computing pgi,, on each MCMC iteration as described earlier makes the
algorithm slow. Consequently, we instead precompute the values of pg, in a dense grid
of (negt, 1t)-points which can be done in a parallel manner on a computer cluster. Given
the grid values, we use bilinear interpolation to approximate pgin, at each proposed
point (n¥, 1*). We proceed similarly also with the prior density p(negs, pt | Do). This
approach also allows one to fit the mixture model using different modelling assumptions
or different data sets without need to repeat the costly W-F simulations.

Finally, we see that the probability density of 7; conditioned on the other variables
does not depend on 7;, j # i. Specifically, we obtain

Gammal(n; |k, \/p), if zjo =0

S w; Gamma(n: [ £+ 5,2+ Mp), fzm=1 )

p(ni‘,u7zia)‘7D) :{

for i =1,..., N. Derivation of this result, the formula for the mixture weights w; and a
special algorithm (Algorithm 2) to generate random values from this density are shown
in the supplementary material.

The resulting Gibbs sampler is presented as Algorithm 1. It could be alternatively
called a Metropolis-within-Gibbs sampler since some of the parameters (neg and p) are

sampled using a Metropolis-Hastings step using a proposal density that is denoted as q.

Because ne is a discrete random variable, (neg, 1) is a mixed random vector and we
cannot use the standard Gaussian proposal. Instead, we consider the distribution

(_ (1 — w)? _ (ndge — Nerr)

(e 1) | (e ) 3 exp )6m—n&» (26)

2 2
nez 2UQ7M 20977Leff
2 2 1. .
where o, and oy , = are chosen to produce acceptance probability of the Metropolis

step close to 0.25 and d(-) is the Dirac delta function. The first element of a random
sample from ¢ in Eq 26 is an integer, and this proposal is also symmetric. We truncate
the tails of ¢ with respect to negr to be able to sample the discrete element from ¢
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efficiently. In practice we then use a proposal ¢ that is a mixture density where the

components are as in Eq 26 but with different variance parameters 037 . and aq nege 0O

occasionally propose large steps to increase the exploration of the parameter space.

Algorithm 1 MH-within-Gibbs sampling algorithm for the mixture model

select an initial parameter 6'(”) (e.g. by sampling from the prior p(8')), proposal ¢
and the number of samples s
fori=1,...,sdo

sample (nfy, 1*) ~ q(- | (ng ', p=1)) and w ~ U((0,1])

compute p = min< 1, ; . . — .
g plngy " pli=D |z<H>,nuflmD,Do)q((nemu ) (g V= D))

ing Eq 21
if p <wu then
set (n(f%a,um) (ncffuu*)
sample A ~ p(- | u,n=1 D) using Eq 22
else - . ‘
set (nggh, 1, A0) = (ng ™), =D, A0=D)
end if
for j=1,...,N do
sample ;i 0 using the Algorithm 2 with = pu(?,z = z(—D X\ = \(®)
end for

for j=1,...,N do

sample zg) ~ p(- |n f,,u(l) W=D n® D) using Eq 18
end for
sample w(® ~ p(-|2z*, D) using Eq 17
end for

return samples {(né}}, 1D, w® 70 () XO)e

Posterior predictive distribution

Given a new (future) data point (d*,t*) from a new patient, we would like to compute
the probability of whether this case is of the same strain. This can be computed from
the posterior of the model fitted to data D, Dy as follows. We denote the original
parameter vector with 8 as before and additional parameters related to the new data
point D* = {(d*,t*)} as z* € {(1,0),(0,1)} and t§ > 0. The updated posterior after
considering the new data point D* is then

p(z",15,0| D", D, Do) < p(z”, 5, 0)p(D*, D, Do | 0, 2", () (27)
= p(e)p(Z*vt(*Ja | 0)p(D,D0 | 0)p<d* |t*a Z*’t87 9) (28)
O<p(d* |t*7Z*vt(>;70)p(Z*7t(ﬂ;‘e)p(a‘DwDO)v (29)

where p(@| D, Dy) is the posterior based on our original data D, Dy. We marginalise the
set of parameters least contributory to the aim to obtain

p(z* | D*, D, Dg) // p(d*|t*,2%,t5,0)p(ty | \)p(z" |w)p(0| D, Do) dt5do  (30)
0 Jtx

1 - * 7 * 2 * £y 2
~ > (w@pstar (a1, 0) " (B pn(@ [0, 1) (31)

=1

»
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Fig 5. ABC posterior distribution for (ness, ;). The ABC posterior distribution
i.e. the updated prior for parameters (nes, 1), the effective population size and
mutation rate, given data Dy. Panel A shows the result with the full data and panel B
the corresponding result with only a subset of the data (see text for details).

where (t{;(” 0D ~ p(ty | Np(@| D, Do) for i = 1,...,s. The probability of the new
measurement point (d*,t*) being of the same strain, based on the previously observed
data D, Dy is obtained from Eq. 31.

Results

In this section we fit the W-F model to the external data Dy as discussed in Section
ABC inference to update the prior using external data. We then verify that the
proposed Gibbs sampling algorithm for fitting the mixture model from Section Bayesian

inference for the mixture model is consistent based on experiments with simulated data.

Subsequently, we fit the mixture model to the MRSA data and discuss the results.
Finally, we assess the quality of the model fit.

Updating the prior using ABC inference

The ABC posterior based on the external data Dy and the discrepancy in Eq 8, is
shown in Fig 5A. We also repeated the computations so that we omitted a subset,

patients A-M, from the analysis i.e. the second summation term in Eq 8 was set to zero.

This was done to assess the effect of patients A-M, which have measurements from one
time point only, and an unknown time since acquisition. This extra analysis resulted in
an ABC posterior approximation shown in Fig 5B. We see that in both cases large parts
of the parameter space have been ruled out as having negligible posterior probability.
As expected, the posterior distribution based on the subset (Fig 5B) is slightly more
dispersed than with the full data Dy (Fig 5A). Using the full data causes the estimated
mutation rate to be slightly greater than with the subset, likely because the model
needs to accommodate the higher variability in the patients A-M. In addition, small
effective sample sizes (negr < 2000) are less probable based on the full data Dy.
Overall, we see that the effective sample size nqg cannot be well identified based on
the external data Dy alone. We also see that if the upper bound of the prior density of
negs was increased from 10,000, higher values would likely have non-negligible posterior
probability also; however, this constraint will have a negligible impact on the resulting
posterior from the mixture model as is seen later. The mutation rate u, on the other
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hand, is smaller than 0.001 mutations per genome per generation with high probability
and cannot be arbitrarily small.

Validation of the mixture model using simulated data

To empirically investigate the identifiability of the mixture model parameters and the
correctness and consistency of our MCMC algorithm under the assumption that the
model is specified correctly, we first fit the mixture model to simulated data. We
generate artificial data from the mixture model with parameter values similar to the
estimates for the observed data D from the next section. Specifically, we choose

Negr = 2,137, 1 = 0.0011, wg = 0.8, A = 0.0001 and we repeat the analysis with various
data sizes N. We use otherwise similar priors as for the real data in the next section
except that, for simplicity, instead of using the prior obtained from the ABC inference,
we use a uniform prior in Eq 7. We then fit the mixture model to the simulated data
sets to investigate if the true parameters can be recovered (identifiability) and whether
the posterior becomes concentrated around their true values when the amount of data
increases (consistency).

Results are illustrated in Fig 6. We see that the (marginal) posterior of (ne, @) is
concentrated around the true parameter value that was used to generate the data (green
diamond in the figure). Also, despite the fact that the number of parameters increases
as a function of data size N (because each data point (d;,¢;) has its own class indicator
z; and time to the most recent common ancestor tp; parameter), the marginal posterior
distribution of (nes, ) can be identified and appears to converge to the true value as N
increases. On the other hand, we cannot learn each ty; accurately since essentially only

the data point to which the parameter corresponds provides information about its value.

However, precise estimates of these nuisance parameters are not needed for using the
model or obtaining useful estimates of the other unknown parameters as demonstrated
in Fig 6.

The panel in the lower right corner of Fig 6 shows results from an additional
simulation experiment where the mixture model is fitted to data generated with
different values for the wg parameter, which represents the proportion of pairs that are
from the same strain. Other than that and the fact that we fixed N = 150, the
experimental design is the same as above. The results show that the estimated wg
values generally agree well with the true values. Interestingly, wg is slightly
overestimated when its true value is close to 0, and slightly underestimated when the
true value is close to 1, which may reflect the regularizing effect of the prior, drawing
the estimates away from the extreme values. Furthermore, when the true value of wg is
around 0.5, the variance of the estimate tends to be higher than with wg values close to
0 or 1. This observation may be explained by the fact that there are more data points
that overlap both mixture model components when wg is around 0.5 which makes the
inference task more challenging and causes higher posterior variance.

Analysis of the Project CLEAR MRSA data

The following settings are used to analyse longitudinally-sampled S. aureus nares
isolates from the control arm of Project CLEAR [23]. We generate 4 MCMC chains,
each of length 25,000, initialized randomly from the prior density, whose first halves are
discarded as “burn-in”. We use the Gelman and Rubin’s convergence diagnostic in
R-package coda and visual checks to assess the convergence of the MCMC algorithm.
We use 100 x 100 equidistant grid for numerical computation with the (neg, 1) values
and s = 10,000 in Eq 24. The ABC posterior obtained in Section Updating the prior
using ABC inference and visualised in Fig 5A is used as the prior for (nes, ).
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Fig 6. Accuracy and consistency with synthetic data. The first three panels
show the estimated posterior distributions for parameters (e, ) of the mixture model
using simulated data of different sizes N. The green diamond shows the true value used
to generate the simulated data and the light grey dots denote the grid point locations
needed for numerical computations. The bottom right panel shows the estimated vs.
the true wg parameter in a set of additional simulation experiments.

The parameter vector @ consists of the 'global’ parameters ne¢, pt, w, A, as well as a
large number of nuisance parameters (z and tg) related to each data point. The
estimated global parameters are presented in Table 1. We also repeated the analysis
using a uniform prior on (neg, ). While the uniform prior is non-informative about the
parameters (neg, (), the results are nevertheless surprisingly similar (Table 1). In other
words, the additional data Dy used to update the prior has only a small effect on the
estimated parameters of the mixture model. This was unexpected because the data set
D used to train the mixture model has only one genome per sampled time point, and
yet, impressively, the model is able to learn about the parameters (neg, 1) which
effectively define the variability in the whole population. This further demonstrates the
robustness of the mixture model to the prior used. We observe, however, that
incorporating the prior from the ABC slightly shifts the probability distribution for neg
towards larger values, although there is no clear conflict between the two results. For
example, as seen in Table 1, the 95% credible interval (CI) for neg, [1200,2200], gets
updated to [1300,2200] when the extra prior information is included.

Fig 7 shows the posterior predictive distribution for the probability of the same
strain case for a (hypothetical future) observation with distance d* and time difference
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Table 1. Posterior mean and 95% credible interval (CI) for the ’global’
parameters of the mixture model.

Informative prior (ABC, data D) Uniform prior
parameter mean 95% CI mean 95% CI
Tt 1700 [1300,2200] 1700 [1200,2200]
I 0.00076  [0.00060, 0.00092] 0.00080  [0.00064, 0.00095]
wg 0.87 [0.83,0.91] 0.88 [0.83,0.92]
wp 0.13 [0.09,0.17] 0.12 [0.08,0.17]
A (x10%) 7.3 [5.8,9.0] 7.5 [5.9,9.3]

sgl.:
I T T

o
[
o

40 50

Fig 7. Results for the Project CLEAR MRSA data. Contour plot for same
strain probability of a distance d* and time interval t* based on the fitted model. The
coloured points denote the observations that were used to fit the model. Blue colour
indicates large same strain probability. Distances greater than 50 are not shown and are
classified as different strains with probability one. 6,000 generations on the y-axis
correspond to approximately one year.

t*. Blue colour in the figure denotes high probability of the same strain. The
corresponding 50% classification curve is (almost) a straight line with a steep positive
slope. This is as expected since the same strain model can explain a greater number of
mutations when more time has passed. Approximately 20 mutations draws the line
between the same strain and different strains cases within the time difference up to 6000
generations. The uncertainty in the classification occurs because there is overlap in the
two explanations (around d* a 20) and because of the posterior uncertainty in the
model parameters 6.

We also analysed explicitly all observed patterns where: 1) two genomes of the same
ST from the same patient are interleaved with a missing observation, i.e. the
colonization appears to disappear and then re-emerge, and 2) two genomes of the same
ST from the same patient are interleaved with an observation of a different ST. The
numbers for the two genomes being from the same or different strain in these patterns
are shown in Table 2. The credible intervals for the ’same strain’ proportion combine
uncertainty from the limited number of samples with the posterior uncertainty of
whether a sample is from the same strain or not (see the Supplementary material for
further details). From Table 2 we see that approximately 58% of genome pairs in
pattern 1) are from the same strain. This is only a little smaller than the same strain
proportion when there are no missing observations in between (84%). Therefore, a
plausible explanation for most of the missing in-between observations is that in reality
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the same strain has been colonizing the patient throughout, and the missing observation
reflects the limited sensitivity of the sampling, rather than a clearance followed by a
novel acquisition. Similarly, even if interleaved with a different ST (pattern 2), the
surrounding genomes often, in 63% of cases, appear to be from the same strain. This
suggests that in these cases the patient has been colonized by the surrounding strain
throughout, and co-colonized by two different STs at the time of observing the
divergent ST in the middle.

Table 2. The estimated numbers (mean, 95% CI in parenthesis) of cases
with genomes in the beginning and in the end of the pattern being from the
same or different strain, for three different patterns in the Project CLEAR
MRSA data, and the estimated proportion of the same strain cases.

same strain/n diff. strain/n

same strain prop.

STA — STA
STA—-0—..—STA
STA - STB — ... =+ STA

190(187,192) /224
17(16,19)/29
12(10,12)/18

34(32,37)/224  0.84(0.78,0.89)
12(10,13)/29  0.58(0.36,0.76)
6(6,8)/18 0.63(0.34,0.81)

“STA — ST A” denotes the case where the ST does not change between two genomes
at consecutive samples, “STA — () — ... = ST A” is the pattern 1) where one or more
negative samples are seen between the same ST and “STA — STB — ... = STA” is
the pattern 2) where a sample with different ST is observed between two samples of the
same ST. n denotes the number of data points in each alternative.

Finally, we compute acquisition and clearance rates using our model, and compare

those to the ones obtained with the common strategy of using a fixed distance threshold.

For the purposes of this exposition, we define the acquisition r,.q and clearance rates
Tclear iNformally as

B+C+E D

acq — T~ clear = &7 T o~ 32
Tacq €] el A+B+C+D (32)

where the quantities A, B, C, D and E denote the numbers of possible events in
consecutive samples (e.g. acquisition, replacement, clearance, or no change) defined in
detail in Table 3. Also, G is the total number of possible events over the whole data.
The quantities A, B, D and E are random variables that depend on the same/different
strain posterior probabilities and, consequently, we also compute the uncertainty
estimates for these quantities in Eq 32. Number C is a constant because an observed
change of ST always indicates an actual change of ST as well. For cases with one or
more negative samples (denoted by () between two positive samples, we do not know
when the clearance and acquisition events took place and whether the negative samples
are “false negatives”. To handle these cases, we parsimoniously assume that a missing
observation between two positive samples that are inferred to come from the same
strain is a false negative (i.e. that the same strain was present also in the middle, even
if it was not detected), and record these events in the groups A-E accordingly. Details
on how we unambiguously determine the group for all special cases is provided in the
Supplementary material.

The estimated acquisition and clearance rates with 95% credible intervals are shown
on the last two lines of Table 3. For comparison, we also computed these rates otherwise
similarly but using a fixed distance threshold of 40 mutations, a value used in [10], to
determine if two genomes are from the same strain or not. We see that the
threshold-based estimates are relatively similar to, and only slightly smaller than the
estimates from our model. The explanation for the similarity of summaries such as the

PLOS

18/24

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511


https://doi.org/10.1101/429464
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/429464; this version posted September 27, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

@PLOS | susmission

under aCC-BY 4.0 International license.

acquisition and deletion rates is that, when estimating these quantities across the whole
data set, the uncertainty gets averaged out, even if individual data points exhibit a lot
of uncertainty regarding whether they are the same strain or not (see Fig 7).
Importantly, while being consistent with the previous results, our model bypasses the
task of heuristically choosing a single threshold and adds uncertainty estimates around
the point estimates, crucial for drawing rigorous conclusions.

Table 3. Estimated numbers (posterior means) of different patterns A-E of
consecutive samples and the estimated acquisition and clearance rates
(mean, 95% CI in parenthesis).

event expected number

A: STA, strX — STA, strX 231
B: STA,strX — STA,strY 34

C:STA — STB 45

D: STA,strX — 0 104

E: ) — STA, strX 21

rate parameter post. estimate threshold-based estimate
acquisition rate racq 0.18(0.17,0.19) 0.16

clearance rate Tcear 0.25(0.24, 0.25) 0.24

Above, ST denotes sequence type as before, str denotes the strain and symbol () denotes
a negative sample i.e. no bacteria detected.

Assessing the goodness-of-fit of the model for the Project
CLEAR MRSA data

As the last part of our analysis, we use posterior predictive checks to assess the quality
of the model, see e.g. [15] for further details. Briefly, this consists of simulating
replicated data sets D*P() from the fitted mixture model and comparing these to the
observed data D for any systematic deviations. Any discrepancies between the observed
and simulated data can be used to criticise the model and understand how the model
could be improved. In practice, simulating replicate data is done by simulating a
parameter vector 89) from the posterior (by using the existing MCMC chain) and
simulating a new set of distance-time difference pairs (JEJ), fgj)),i =1,...,N in Drep:(9)
from the model using 0. To obtain M replicates this procedure is repeated for
j=1,...,M.

Example replicate data sets are shown in Fig 8. Overall, the simulated distances are
similar to the corresponding observations. There is a clear peak at d; = 0, and as the
distance is increased the frequency starts to decrease. Occasional large distances
(d; > 20) occur only rarely, in keeping with the observed data. A minor discrepancy is
that the fitted model tends to underestimate the frequency of distance zero while small
positive distances tend to occur more frequently than observed. This could happen
because we estimated the empirical densities psim(di1 | Nest, 1) using a constant time of
6,000 (i.e. 1 year) since the acquisition (as discussed in Section Bayesian inference for
the mixture model), which may lead to a slight overestimation of the distances. To
explore the impact of this assumption further, we repeated the analysis so that we
computed the densities pgim (dsi1 | Mest, 14) at a constant time of 1,000 generations.
However, the mismatch did not disappear completely and the estimated mutation rate
increased as a result to compensate for the occurrence of greater distances, in
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disagreement with the prior density from the ABC analysis and data Dy. We thus
believe that the current model is adequate.

observed data
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Fig 8. Model validation using posterior predictive checking. The histogram in
the upper left corner shows the observed distance distribution in the Project CLEAR
MRSA data, the other figures in the top two rows show the corresponding distances in
replicate data sets simulated from the fitted model. The bottom two rows show the
same histograms zoomed to range [0, 50]. The replicate data sets look overall similar to
the observed data, demonstrating the adequacy of the model. However, the amount of
zero distances is underestimated and the frequencies of small positive distances tend to

be slightly overestimated.

Discussion

We presented a new model for the analysis of clearance and acquisition of bacterial
colonization, which, unlike previous approaches, does not rely on a heuristic fixed
distance threshold to determine whether genomes observed at different times points are
from the same or different acquisition. Fully probabilistic, the model automatically
provides uncertainty estimates for all relevant quantities. Furthermore, it takes into

account the variation in the time intervals between pairs of consecutive samples.

Another benefit is that the model can easily incorporate additional external data to

inform about the values of the parameters. To fit the model, we developed an
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innovative combination of ABC and MCMC, based on an underlying mixture model
where one of the component distributions was formulated empirically by simulation.

We demonstrated the model using data on S. aureus genomes sampled longitudinally
from multiple patients. Our analysis provided evidence for occasional co-colonization
and identified likely false negative samples. The output of the model consists of the
same vs. different strain probability for any pair of genomes, and, by using this
information to decide (probabilistically) when and where the colonizing strain had
changed, the acquisition and clearance rates were easy to calculate. Estimates of these
parameters were found to be in agreement with previous estimates derived using a fixed
threshold, but now we were able to provide confidence intervals, essential for drawing
rigorously supported conclusions. We believe such analyses are common enough that
our method should be useful for many, and, consequently, we provide it as an
easy-to-use R-code. The code includes tools for both the ABC-inference to incorporate
external data of distance distributions between multiple samples at a given time point
(or two time points), and the MCMC-algorithm. We note that our method does not
assume recombination, which was not relevant with the present data. If this is an issue,
we recommend removing recombinations by preprocessing the genomes with one of the
standard methods [30-32]. While our analysis demonstrated that the external data may
reduce uncertainty in the resulting posterior, we also saw that the method may work
without such data. In the latter case the input is simply a list of distance-time
difference pairs for genomes sampled from the same patient at consecutive time points,
and it is sufficient to run the MCMC, which is efficient and fast in typical cases.

A central component of our approach is a model for within-host variation, required
to determine how much variation can be expected if the genomes at different time points
have evolved from the same strain obtained in a single acquisition. We selected for this
purpose the basic Wright-Fisher model assuming constant population size and mutation
rate with the understanding that these assumptions are expected to be violated to some
extent in any realistic data set, but the benefits of simplicity include robustness of the
conclusions to prior distributions and identifiability of the parameters from the available
data. More complex models have been fitted to the distance distributions (our external
data Do), assuming the population size first increases and then decreases [13]. However,
our model can fit the same data with fewer parameters, which justifies the simpler
alternative. Furthermore, the constant population size may also be seen as a sensible
model for persistent colonization. An interesting future research question is what
additional data should be collected in order to be able to fit one of the possible
extensions of the basic model. Another direction that we are currently pursuing is to
extend the model to cover genomes sampled from multiple body sites.

Supporting information

S1 File. Derivations and further details of the model. We provide some
further derivations and details related to our MCMC algorithm. To guide the selection
of prior hyperparameters, we also derive the explicit prior distribution and some of its
summaries for the parameter ty and the mean and variance for the prior predictive
distribution for the distance. We also describe further details on computing the
acquisition and clearance rates.
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