

2

3 Roman Franěk^{1¶*}, Zoran Marinović^{2¶}, Jelena Lujić², Béla Urbányi², Michaela Fučíková¹,
4 Vojtěch Kašpar¹, Martin Pšenička^{1&}, Ákos Horváth^{2&}

5

6 ¹University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of
7 Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses,
8 Zátiší 728/II, 389 25 Vodňany, Czech Republic

9 ²Department of Aquaculture, Szent István University, Páter Károly u. 1, H-2100 Gödöllő,
10 Hungary

11

12

13 * Corresponding author

14 E-mail: franek@frov.jcu.cz (RF)

15

16

17 ¶These authors contributed equally to this work.

18 &These authors contributed equally to this work.

Abstract

Common carp (*Cyprinus carpio*) is one of the most cultured fish species over the world with many different breeds and plenty of published protocols for sperm cryopreservation, however, data regarding preservation of gonadal tissue and surrogate production is still missing. A protocol for freezing common carp spermatogonia was developed through varying different factors along a set of serial subsequent experiments. Among the six cryoprotectants tested, the best survival was achieved with dimethyl sulfoxide (Me₂SO). In the next experiment, a wide range of cooling rates (0.5 – 10 °C/min) and different concentrations of Me₂SO were tested resulting in the highest survival using 2 M Me₂SO and cooling rate of -1 °C/min. When testing different tissue sizes and incubation times in the cryomedium, the highest viability was observed when incubating 100 mg tissue fragments for 30 min. Finally, sugar supplementation did not yield significant differences. When testing different equilibration (ES) and vitrification solutions (VS) used for needle-immersed vitrification, no significant differences were observed between the tested groups. Additionally, varied exposure time to VS did not improve the vitrification outcome where the viability was 4-fold lower than that of freezing. The functionality of cryopreserved cells was tested by interspecific transplantation into sterilized goldfish recipients. The exogenous origin of the gonads in goldfish recipients was confirmed by molecular markers and incorporation rate was over 40% in both groups at 3 months post transplantation. Results of this study can serve as an alternative way for long-term preservation of germplasm in carp which can be recovered in a surrogate recipient.

Keywords: Cryopreservation, freezing, vitrification, gene banking, spermatogonia, Cyprinus carpio, surrogate reproduction

Introduction

Common carp (*Cyprinus carpio*) is one of the oldest domesticated fish species in the world and is mainly cultured in Europe and Asia. Nowadays, the common carp expanded to all continents with exception of Antarctica. Overall carp production from aquaculture in 2014 was more than 4 million tons - around 14% of the total freshwater aquaculture production in that year [1]. Fruitful history and lasting popularity of this species gave to rise many different strains and lines which became important for breed management and production of hybrids in Central Europe [2–4]. Due to this fact, significant efforts have been committed to preservation of carp genetic resources. Long-term cultivation of pure-breed livestock [5], methods for genetic diversity identification [6–9] as well as methods for creating and keeping gene banks through sperm cryopreservation [10–14] have been developed. However, *ex situ* preservation of valuable genetic material still relies only on sperm cryopreservation.

Recent progress in biotechnology revealed a very efficient alternative for preservation and restoration of a valuable genetic material using cryopreservation of germline stem cells and surrogate offspring production. Germline stem cells (including spermatogonial stem cells - SSCs, oogonial stem cells - OSCs and primordial germ cells - PGCs) have the ability to incorporate into gonads of suitable recipients after transplantation, and therein start gametogenesis and give rise to functional gametes and subsequently offspring. They exhibit a high level of sexual plasticity as transplanted spermatogonia and oogonia can develop into both eggs and sperm, thus both sexes can be easily restored even from a single donor using host individuals of different sex [15–19]. Additionally, several studies so far have displayed that fish germ cells can be cryopreserved, stored for virtually indefinite periods of time, and can be transplanted as they retain their colonization and proliferation capabilities after thawing [20–22].

Most of the cryopreservation studies until now focused on optimizing protocols by freezing germ cells slowly (usually at ~ 1 °C/min) to a temperature that is optimal for plunging into liquid nitrogen. These studies demonstrated that certain differences and peculiarities can be

68 the cryopreservation procedure for each fish species [23–25]. Performed studies focused on
69 optimizing cryoprotectants, their concentrations or additional sugar or protein supplementation,
70 however, little attention was paid to the size of the cryopreserved tissue pieces, incubation time
71 in cryomedium prior freezing and especially the rate of freezing.

73 Vitrification as an ultra-fast cryopreservation method has been largely overlooked until
74 recently. The studies of Lujic et al. (2017) [26], Seki et al. (2017) [27], Higaki et al. (2017)
75 [28], Marinovic et al. (2018) [29] pioneered in developing vitrification methods for fish germ
76 cells as this method has several advantages over the traditional slow-rate freezing: (1) cost
77 efficiency as it does not require special and costly equipment; (2) time-effectiveness as the
78 sample preparation is quicker; (3) low volumes of liquid nitrogen are needed. As high
79 cryoprotectant concentrations are needed to reach the amorphous glassy state of the tissue
80 during vitrification, optimization of the tradeoff between the cryoprotectant combinations, their
81 concentrations and attaining the highest possible cooling rates is of utmost importance.

82 In the present study we optimized the freezing and vitrification protocols for the common carp
83 spermatogonia and showed possible gaps for improvement which can be generally adopted for
84 cryopreservation of other fish species. Additionally, we demonstrated the functionality of the
85 cryopreserved cells through interspecific spermatogonia transplantation using sterilized
86 goldfish host.

87

88 **Material and methods**

89 **Animal ethics**

90 The study was partly conducted at the Department of Aquaculture, Szent Istvan University,
91 Gödöllő, Hungary, and partly at the aquaculture facility of the Genetic Fisheries Center and
92 Laboratory of Germ Cells at the Faculty of Fisheries and Protection of Waters, University of

93 South Bohemia in České Budějovice, Vodňany, Czech Republic. Experiments conducted in
94 Hungary were approved under the Hungarian Animal Welfare Law (Act XXVIII/1998 of the
95 Hungarian Parliament on the protection and humane treatment of animals) by the Government
96 Office of Pest County (approval number: PE/EA/188-6/2016). Experiments conducted in Czech
97 Republic were approved Ministry of Agriculture of the Czech Republic (reference number:
98 53100/2013-MZE-17214). The methodological protocol of the current study was approved by
99 the expert committee of the Institutional Animal Care and Use Committee (IACUC) of the
100 University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of
101 Waters (FFPW) in Vodňany according to the law on the protection of animals against cruelty
102 (Act no. 246/1992 Coll., ref. number 16OZ19179/2016-17214). The study did not involve
103 endangered or protected species. Martin Pšenička and Vojtěch Kašpar (CZ01652) own the
104 certificate (CZ 00673) giving capacity to conduct and manage experiments involving animals
105 according to section 15d paragraph 3 of Act no. 246/1992 Coll.

106 **Cryopreservation experiment**

107 **Testicular tissue preparation**

108 Common carp males (age 1+ year, BW: 128 ± 34 g) used for development and optimization of
109 the cryopreservation protocol were held in a recirculation system at the Department of
110 Aquaculture, Szent István University, Hungary. Fish were kept at a constant temperature of
111 24 ± 1 °C, fed twice per day with a low-fat diet. Fish were euthanized by an overdose of 2-
112 phenoxyethanol and decapitated, testes were aseptically excised, washed in phosphate buffered
113 saline (PBS) and cleaned of large blood vessels and adjacent connective tissue. Testes were
114 then cut into small fragments, approximately weighing 50 mg, 100 mg or 150 mg (depending
115 on the experiment). Three fragments were used as a fresh control.

116 **Dissociation procedure**

117 Each tissue fragment was weighed before dissociation, and subsequently transferred into the
118 dissociation medium (L-15 supplemented with 2 mg/ml collagenase, 1.5 mg/ml trypsin and 40

120 22 °C on a shaking plate. Digestion was terminated by addition of 10% Fetal bovine serum
121 (FBS) (v/v). In order to obtain a single cell suspension, samples were filtered through 30 µm
122 filters (Sysmex, Germany) and centrifuged for 10 min at 200 ×g. The supernatant was removed
123 and the pellet was resuspended by a gentle pipetting with addition of appropriate volume of L-
124 15 medium.

125 **Viability assessment**

126 Cell viability was determined by trypan blue differential staining where the dead cells were
127 stained blue while live cells remained unstained. The number of live early stage germ cells was
128 counted in 20 fields of a Bürker-Türk counting chamber for each sample under a light
129 microscope with phase contrast (Nikon Eclipse E600) at 40× magnification. Final cell survival
130 rate was assessed as the percentage of live cells isolated from cryopreserved tissue compared
131 to the number of live cells isolated from the fresh tissue while correcting for the tissue size
132 according to Lujić et al. (2017): $Viability (\%) = (N_{cryopreserved}/ N_{fresh}) \times CF \times 100$ where $CF =$
133 $Weight_{fresh\ tissue}/Weight_{cryopreserved\ tissue}$) [26].

134 **Freezing of testicular fragments**

135 Cryomedia used in the study were composed of cryoprotectants (type and concentration
136 depending on the experiment), 1.5% Bovine serum albumin (BSA), 25 mM Hepes and sugar
137 supplementation (type and concentration depending on the experiment) diluted in PBS. Tissue
138 fragments were loaded into 1.8 ml cryotubes (Nunc®) filled with 1 ml of cryomedium. Samples
139 were equilibrated for 15 min or 30 min (depending on the experiment) on ice, and subsequently
140 placed into CoolCell (Biocision) freezer boxes and into a deep freezer (- 80 °C) which enabled
141 cooling rates of ~ 1 °C/min or were frozen using a Controlled rate freezer (IceCube 14S
142 programmable freezer (IceCube Series v. 2.24, Sy-Lab, Neupurkersdorf, Austria)) set to
143 different cooling rates depending on the test group (see below). After 4 h, samples were plunged
144 into liquid nitrogen for at least 1 day of storage. Samples were thawed in a 26 °C water bath

145 and tissue fragments were washed three times in L-15 where they remained until further work
146 (not longer than 15 min). Digestion and counting procedures were conducted as mentioned

147 above.

148 Optimization of the freezing protocol was conducted in four sequential experiments where in
149 each experiment one cryopreservation parameter was changed, and the best outcome was used
150 in the subsequent experiment. Initially, 0.1 M glucose was used as sugar supplementation and
151 100-mg tissue fragments were frozen. Firstly, the effects of dimethyl sulfoxide (Me_2SO),
152 ethylene glycol (EG), glycerol (Gly), 1:1 combination of Me_2SO and propylene glycol (Me_2SO
153 + PG) and methanol (MeOH) at a concentration of 1.5 M were assessed. In the second
154 experiment, five different Me_2SO concentrations (1 M, 1.5 M, 2 M, 2.5 M and 3 M) and six
155 different cooling rates (0.5 °C/min, 1 °C/min, 2.5 °C/min, 5 °C/min, 7.5 °C/min and 10 °C/min)
156 were tested. Cryopreservation in this experiment was conducted in controlled-rate freezer. In
157 the third experiment, the tissue size (50, 100 and 150 mg) as well as incubation time (15 or 30
158 min) in the cryoprotectants were tested. Lastly, the effects of sugar supplementation of cell
159 viability was assessed by supplementing the cryomedium with either glucose, fructose,
160 trehalose or sucrose at 0.1 or 0.3 M. Tissue pieces were 100 mg and an equilibration time of 30
161 min was used in this trial.

162 **Vitrification of testicular pieces**

163 Vitrification was conducted by utilizing needle immersed vitrification (NIV) methodology as
164 described by Marinović et al. (2018) [29]. In short, 50 mg testicular fragments were pinned to
165 an acupuncture needle and immersed into two media prior to cryopreservation: the equilibration
166 solution (ES) and the vitrification solution (VS). After 15 min immersion in ES and 1, 1.5 or 2
167 min immersion in VS (depending on the experiment), leftover medium was carefully adsorbed
168 from the tissue by paper wipes and the needles were plunged into liquid nitrogen. After at least
169 1 day of storage, tissue pieces were warmed in three subsequent warming solutions at RT
170 containing L-15 supplemented with 10% FBS and various concentrations of sucrose (WS1 –

172 conducted as mentioned above.

173 Firstly, optimization of the vitrification protocol was conducted by testing the effects of three
174 different equilibration solutions and three different vitrification solutions on spermatogonia
175 viability similarly to brown trout oogonia [26]. Equilibration (ES1 – ES3) and vitrification (VS1
176 – VS3) solutions contained different combinations and concentrations of Me₂SO, MeOH and
177 PG (ES1: 1.5 M MeOH + 1.5 M PG; ES2: 1.5 M MeOH + 1.5 M Me₂SO; ES3: 1.5 M PG +
178 1.5 M Me₂SO; VS1: 1.5 M MeOH + 4.5 M PG; VS2: 1.5 M MeOH + 5.5 M Me₂SO; VS3: 3 M
179 PG + 3 M Me₂SO). The extender used consisted of L-15 supplemented with 10% FBS, 25 mM
180 HEPES and 0.5 M trehalose, while incubation time in VS was 1.5 min. In the second trial, the
181 exposure of testicular fragments for 1, 1.5 or 2 min to two vitrification solutions (VS1: 1.5 M
182 MeOH + 5.5 M Me₂SO; VS2: 3 M PG + 3 M Me₂SO) was tested. The ES consisted of 1.5 M
183 PG + 1.5 M Me₂SO while the extender composition was the same as in the previous trial.

184 **Spermatogonia transplantation**

185 **Preparation of recipients for transplantaiton**

186 Goldfish (*Carassius auratus*) spawners obtained from a local breeder were injected
187 intraperitoneally with carp pituitary 24 h before collection of gametes at a dosage of 0.5 mg/kg
188 for females and 1.5 mg/kg for males, and 12 h before collection of eggs at a dosage of 2.5 mg/kg
189 for females only. Gametes were collected by abdominal massage and stored at 15 °C until
190 fertilization (not more than 15 min). Eggs from five females were mixed together and fertilized
191 with pooled milt from 10 males. Embryos were allowed to stick on a Petri dish and then
192 transferred into an incubator at 23 °C. Embryos were injected under the blastodisc at the 2-cells
193 stage without dechorionation with 100 mM solution of antisense *dead end* morpholino (*dnd-*
194 MO) oligonucleotide according to Goto et al. (2012) (target sequence:
195 CATCACAGGTGGACAGCGGCATGGA) using a M-152 micromanipulator (Narishige,
196 Japan) and FemtoJet® 4x microinjector (Eppendorf, Germany). Part of embryos injected with

197 *dnd*-MO was co-injected with GFP MO (1:100) to confirm successful injection of
198 primordial germ cells. Water was changed daily until hatching. Swim up embryos were fed with

199 *Artemia* nauplii *ad libitum*.

200 **Transplantation**

201 Transplantation was conducted into 11 dpf *dnd*-MO treated recipient larvae. Two different test
202 groups were defined: (1) a recipient group in which fresh cells were injected and (2) a recipient
203 group into which cryopreserved/thawed cells were injected. Due to the low vitrification
204 effectiveness in common carp, only frozen cells were transplanted. In both cases,
205 spermatogonia were enriched using 30% Percoll gradient according to Pšenička et al. (2015)
206 [32]. Recipient larvae were anesthetized in a 0.05% Tricaine solution (SigmaAldrich) and
207 approximately 5000 cells were injected into the peritoneal cavity of the recipients. Injected
208 larvae (100 larvae per group) were transferred into fresh water and left to recover for two weeks
209 and fed with *Artemia* nauplii. Germline chimeras were then transferred into aquaria and fed
210 with an artificial food (Scarlet, Coppens). Water temperature was constantly held at 23±1 °C
211 after the transplantation in order to prevent sex bias [33]. Control groups of intact control fish
212 and morphants were exposed to the same rearing conditions as the experimental individuals
213 were; however, no operations were conducted on them.

214 **Germline chimera identification**

215 From each test group, 40 fish were euthanized by a tricaine overdose, decapitated and dissected
216 3 months post transplantation (BW: 5.6±2.3 g). Firstly, gonads were visually inspected for signs
217 of gonadal development under a light microscope. Subsequently, gonads were excised and
218 stored separately at -80 °C until RNA isolation. RNA was isolated using TRIzol reagent
219 according to manufacturer instruction (Invitrogen). Isolated RNA was transcribed into cDNA
220 using Transcripter High Fidelity cDNA Synthesis Kit (Roche). Primers for RT-PCR were
221 designed for goldfish and carp *vasa* gene and tested for specificity and to find suitable annealing
222 temperature. Goldfish forward primer 5'- CGGCTAGCCTGAGAGATGAG, reverse primer

224 CGGCCGGCCGGAGAGATGAG, reverse primer GATCTGGATAACCCATACA,
225 expected amplicon size 200bp. Primers were diluted according to the manufacturer's
226 instruction. The reaction mixture for PCR contained 1 μ l template cDNA, 0.5 μ l forward and
227 0.5 μ l reverse primer, 5 μ l PPP Master Mix (Top-Bio) and 3 μ l PCR H₂O (Top-Bio). Reaction
228 conditions were 35 cycles of 94 °C for 30 s, 58 °C for 30 s and 72 °C for 30 s. Products were
229 analyzed on gel electrophoresis on 2% agarose gel on a UV illuminator.

230 **Statistical evaluation**

231 All trials were tested in triplicates and for each replicate suitable control sample was used. Data
232 is presented as mean \pm standard deviation (SD). All percentage data was arcsine transformed
233 prior to statistical analyses. One-way ANOVA with Tukey's honest significant difference
234 (HSD) test was applied in the trial with different cryoprotectants. Other trials were evaluated
235 by two-way ANOVA with Tukey's HSD. Significance level was set for all trial at $p < 0.05$.
236 Statistical analysis was performed using STATISTICA v13.1 software (TIBCO Inc., Palo Alto,
237 CA, USA).

238

239 **Results**

240 **Freezing of carp testicular tissue**

241 The highest viability in the first trial was observed using Me₂SO (8.4%), since the use of other
242 cryoprotectants resulted in significantly lower viability (Tukey's HSD, $p < 0.05$; Fig. 1A).
243 Combination of different Me₂SO concentrations (1 to 3 M) and freezing rates (-0.5 to -10
244 °C/min) resulted in a wide range of viability among different combinations. Viability over 20%
245 was recorded only when combining a -1 °C/min freezing rate with 2 M and 2.5 M Me₂SO (Fig.
246 1B). Generally, slower cooling rates (-0.5 to -2.5 °C/min) resulted in higher viability in
247 comparison to the faster cooling rates, while the resistance to the fastest cooling rate increased

248 **With higher Me₂SO concentration, additionally, the use of higher Me₂SO concentrations and**
249 **faster cooling rates resulted in higher amount of viable spermatozoa in cell suspensions**
250 **indicating that optimal conditions for spermatozoa and spermatogonia are different.**

251 **Fig. 1. Optimization of the freezing (A-D) and vitrification (E, F) protocols for common**
252 **carp spermatogonia.** (A) Viability of spermatogonia after freezing with dimethyl sulfoxide
253 (Me₂SO), ethylene glycol (EG), glycerol (Gly), Me₂SO and propylene glycol at ratio 1:1
254 (Me₂SO+PG), methanol (MeOH) and metoxyethanol (ME). (B) The effects of Me₂SO
255 concentrations (1 – 3 M) and cooling rates of 0.5 (I), 1 (II), 2.5 (III), 5 (IV), 7.5 (V) and 10 (VI)
256 °C/min on spermatogonia viability. (C) Viability of spermatogonia after exposing 50, 100 or
257 150 mg tissue fragments for 15 or 30 min to the cryomedium. (D) Effect of sugar
258 supplementation of spermatogonia viability. Effects of different equilibration (ES) and
259 vitrification (VS) solutions (E) and exposures (1 – 2 min) to different VS (F) on spermatogonia
260 viability after NIV. All values are presented as mean ± SD. Different letters above the SD lines
261 indicate statistical significance (Tukey's HSD, $p < 0.05$), while the lack of such letters indicates
262 the lack of statistical significance.

263 Exposure of tissue pieces of different sizes (50 – 150 mg) to cryoprotectants for variable periods
264 of time (15 or 30 min) did not result in high variability. The highest viability was attained when
265 equilibrating 100-mg tissue pieces for 30 min, however, statistical differences were not
266 significant in comparison to other combinations (Tukey's HSD, $p > 0.05$; Fig. 1C). Lastly, the
267 supplementation of cryomedia with various sugars (glucose, fructose, trehalose and sucrose) in
268 different concentrations (0.1 or 0.3 M) did not result in significant differences (Tukey's HSD,
269 $p > 0.05$; Fig. 1D). The highest viability of ~ 40% was obtained when equilibrating 100 mg
270 tissue pieces for 30 min in a cryomedia containing 2 M Me₂SO, 0.3 M glucose, 1.5% BSA and
271 25 mM Hepes.

272 **Vitrification of carp testicular tissue**

273 In the first vitrification trial, only the vitrification solutions displayed a significant effect on the
274 viability of spermatogonia after warming (two-factor ANOVA, $p < 0.05$). Even though the
275 average viability was higher when combining ES3 (containing 1.5 M PG and 1.5 M Me₂SO)
276 with either VS2 (containing 1.5M MeOH and 5.5 M Me₂SO) or VS3 (containing 3 M PG and
277 3 M Me₂SO), clear statistical differences could not be observed (Fig. 1E; Tukey's HSD, $p >$
278 0.05). Therefore, VS2 and VS3 were used in the subsequent experiment. In the second trial,
279 only the exposure times to the vitrification solutions had a significant effect on spermatogonia
280 viability (two-factor ANOVA, $p < 0.01$). Only exposure for 1 min to VS2 (containing 3 M PG
281 and 3 M Me₂SO) yielded significantly lower viability rates compared to other groups (Fig. 1F;
282 Tukey's HSD, $p < 0.05$).

283 **Transplantation of cryopreserved spermatogonia**

284 Due to the higher overall viability obtained by freezing ($40.7 \pm 9.2\%$) compared to vitrification
285 ($11.4 \pm 4.9\%$), only spermatogonia frozen with the optimal protocol indicated above were
286 transplanted alongside freshly isolated cells into the recipient goldfish larvae. As indicated
287 above, recipient embryos were sterilized by injecting *dnd*-MO, and the success of sterilization
288 was confirmed by fluorescent microscopy after co-injection with GFP-nos1 3'UTR mRNA. All
289 of the co-injected larvae displayed a successful depletion of recipient's endogenous PGCs. *dnd*-
290 MO injection affected the survival rates until the hatching stage compared to the untreated
291 control during, however, survival after transplantation procedure and during ongrowing was
292 comparable between assessed groups (Table 1).

293 **Table 1. Recipient goldfish survival during the experiment.**

Treatment	No. of eggs fertilized	Survival 24 h (%)	Survival hatching (%)	Survival swim up (%)	Survival at transplantati on (%)	Survival 24 h pt	Survival 1 month pt	Survival 3 months pt
Control	235	199 (84.6)	167 (71)	151 (64.2)	149 ^a (63.4)	149	143	142
Morphants	1060	719 (67.8)	602 (56.8)	554 (52.2)	531* (50)	100 (MO)	92	92
						96 (FC)	88	88

294 pt – post transplantation

295 ^a no operation was conducted on the control group

296 *MO treated goldfish larvae were divided for the transplantation into 3 groups, 100 larvae per group: MO – only

297 *dnd*-MO treated fish, FC – fresh cells transplanted, CC – cryopreserved cells transplanted.

298 Success of transplantation was assessed three months after transplantation where the recipients

299 were visually inspected for developing gonads after dissection, as well as by RT-PCR

300 amplification of carp-specific *vasa* amplicons (Table 2, Fig. 2E). Firstly, during the visual

301 inspection, none of the MO-treated control individuals showed any signs of developing gonads

302 (Fig. 2B, 2B') compared to the developing gonads observed in the non-treated controls (Fig.

303 2A, 2A'). The RT-PCR amplification of goldfish *vasa* amplicon additionally corroborated these

304 findings as all assessed MO-treated controls and fish transplanted with cells were negative for

305 goldfish *vasa* (data not shown) (Table 2).

306 **Table 2. Summarized results of transplantation success and carp *vasa* RNA expression in**

307 **germline chimeras evaluated 3 months post-transplantation**

Treatment	Developed gonads/fish assessed	Testis/Ovary	Both gonads developed/one undeveloped	Carp <i>vasa</i> RT-PCR positive	Goldfish <i>vasa</i> RT-PCR positive
Control	40/40	17/23	40/0	0	40
Cryopreserved cells transplanted	17/40	10/7	8/9	17	0
Fresh cells transplanted	21/40	14/7	9/12	21	0
<i>dnd</i> MO treated	0/40	-	-	0	0

308

310 **interspecific transplantation into sterilized goldfish recipients.** (A-D) Ventral view of
311 dissected goldfish recipients. (A'-D') Stereomicroscopic observation of the dissected gonads.
312 (A, A') Control fish displaying both gonads fully developed. (B, B') dnd-MO treated goldfish
313 displaying a lack of gonadal development. Development of testis (C, C') and ovary (D, D')
314 after transplantation of common carp spermatogonia into dnd-MO sterilized goldfish recipients.
315 Developed gonads are outlined with white dashed lines, undeveloped gonads are pointed out
316 by white arrowheads. (E) RT-PCR amplification of common carp *vasa* amplicon in gonads of
317 goldfish germline chimeras, as well as in control common carp gonads and fin and goldfish
318 gonads.

319 Approximately 40% of the recipients injected with frozen/thawed carp spermatogonia
320 displayed developing gonads (Table 2). Similarly, ~ 50% of recipients injected with fresh
321 spermatogonia displayed developing gonads. Developing gonads were either testes
322 characterized by their white milky color (Fig. 2C, 2C') or ovaries distinguishable by the
323 presence of oocytes observable under higher magnification (Fig. 2D, 2D') depending of the sex
324 of the recipients; no intersex or individuals of indistinguishable sex were observed. Donor-
325 derived origin of the germ cells within the developing recipient gonads was determined by RT-
326 PCR amplification of the carp *vasa* amplicon (Table 2; Fig. 2E). These results indicated that
327 both fresh and frozen/thawed carp spermatogonia successfully migrated and incorporated into
328 the goldfish gonads, as well as proliferated within the recipient gonads and produced later-stage
329 germ cells of both sex.

330

331 **Discussion**

332 In the present study, we have developed for the first time a cryopreservation methodology for
333 common carp spermatogonia through freezing and vitrification of testicular tissue. The
334 recovered germ cells were physiologically active since they were able to colonize and

sterilized goldfish recipients. Results of this study can serve as an alternative way for long-term preservation of common carp germplasm which can be recovered in a surrogate recipient through interspecific germ cell transplantation.

339 **Cryopreservation of testicular tissue**

340 Me₂SO was the most suitable cryoprotectant optimal for the freezing of common carp
341 spermatogonia. Similar results were observed for salmonids [20,23,34] and cyprinids [25,35].
342 On the other hand, ethylene glycol which was optimal for freezing Siberian sturgeon (*Acipenser*
343 *baerii*) spermatogonia [24] or propylene glycol suitable for freezing rainbow trout
344 spermatogonia [20] were less effective in freezing of carp spermatogonia. Species-specific
345 requirements and sensitivity to different cryoprotectants are therefore obvious and tailored
346 optimized protocols are crucial. Cryoprotectant concentrations and cooling rates can be of
347 crucial importance for freezing protocol optimization. These two parameters balance the rate of
348 water efflux from the cell and its substitution for the cryoprotectant which will lower the
349 freezing point and prevent the detrimental creation of intracellular ice [36]. Highest survival
350 was recorded with 2 and 2.5 M Me₂SO. Similar was reported in tench (*Tinca tinca*) and goldfish
351 [25] where increased concentrations of cryoprotectants yielded higher spermatogonia viability.
352 As for the cooling rates, lower cooling rates of -0.5 and -1 °C/min were more appropriate than
353 the higher ones. Similar results were observed by Lee and Yoshizaki (2016) for the Manchurian
354 trout (*Brachymystax lenok*) [23]. The cause to this is most likely related to cell size: larger cells
355 generally require lower cooling rates and thus more time during cooling to enable water efflux
356 out of the cell [37].

357 With regard to freezing of isolated cells or whole tissues, studies of Pšenička et al., 2016 and
358 Marinović et al., 2016 [24,25] indicated slightly better results when freezing whole tissues.
359 Cryopreservation of whole tissue is a more reasonable approach since gonadal tissue can be
360 dissected, incubated in cryomedia, frozen to – 80 °C and then stored in liquid nitrogen within a
361 timeframe of 2 – 3 hours (in case of slow cooling rate 1 °C/min). Cryopreservation procedure

363 for spermatogonia) which takes more time. Moreover, the use of this approach for germ cell
364 transplantation could compromise its efficiency due to a high number of dead cells in the
365 suspension and/or would optionally call for further purification of the suspension. However,
366 when freezing whole tissues, attention needs to be paid to the size of the frozen tissue. In
367 immature individuals or fish of small size, testicular tissue is generally small, therefore further
368 fragmentation would not have any benefits [20,23,26]. On the other hand, when presented with
369 large mature testes such as ones of common carp, its fragmentation is necessary. Trials of the
370 present study did not display any effect of tissue size nor equilibration time on spermatogonia
371 viability, however, we recommend that tissue pieces should be of reasonable size and should
372 not surpass 100 mg (where an average of approximately 600,000 spermatogonia may be isolated
373 from 100 mg of frozen/thawed testicular tissue).

374 During the recent decades, vitrification as a form of cryopreservation distinct to freezing where
375 the formation of ice crystals is circumvented by using ultra-rapid cooling rates (up to 10^{10} °C/s)
376 [38] has started to gain significant scientific attention. Several studies conducted fish, bird and
377 mammalian testicular and ovarian tissue [26,29,39,40] indicated that vitrification offers
378 advantages when compared to freezing with regard to cost- and time-effectiveness, low
379 volumes of LN₂ needed and other. Even though studies conducted on zebrafish (*Danio*
380 *rerio*)[29], medaka (*Oryzias latipes*) [27] and honmoroko (*Gnathopogon caerulescens*) [28]
381 testicular tissue display vitrification viability comparable to freezing viability, the present study
382 demonstrated that viability of vitrified spermatogonia was approximately four-fold lower than
383 the viability obtained through freezing. Similar was observed in goldfish and Wels catfish
384 (*Silurus glanis*) (unpublished data). The main difference between the low and high vitrification
385 viability species is the presence of spermatozoa. The proportion of spermatozoa to other
386 testicular cells in mature common carp, goldfish and catfish testis is much higher than in
387 zebrafish and medaka, while the vitrified honmoroko testicular tissue was immature and
388 contained only early-stage germ cells. As vitrification of spermatozoa regularly displays lower

390 tissue might form a selective barrier for the application of vitrification protocols in certain cases.

391 **Transplantation of cryopreserved tissue**

392 In the present study, we demonstrated successful inter-specific transplantation of carp
393 spermatogonia into goldfish recipients and the onset of the surrogate production technology
394 between these two species. Inter-specific surrogate production offers several distinct
395 advantages such as shortening of the reproduction time of long-term maturing species
396 [17,32,42,43] or overcoming problems connected with poor reproduction performance [27].

397 The reasons for choosing goldfish in surrogate reproduction of carp are: (1) its small body size
398 [44], (2) relatively fast maturation [45], (3) similar reproduction characteristics and
399 management to carp [46], (4) short phylogenetic distance between carp and goldfish when even
400 crossbreeds are viable [47], (5) available technology for recipient sterilization [30], and (6)
401 proven resistance to diseases which represent a serious threat to carp such as Koi herpes virus
402 [48].

403 Sterility of recipients is one of the main factors in successful application of surrogacy. Results
404 of the MO-treatment in the present study correspond to previous reports of *dnd*-MO sterilization
405 in goldfish [30], rainbow trout [49], sterlet [50] or zebrafish [51]. The lack fluorescent
406 primordial germ cells after the co-injection of GFP-nos1 3'UTR mRNA and the absence of
407 goldfish-specific *vasa* amplicons in recipient gonads in all tested individuals indicate that the
408 sterilization was successful. Similarly, gene editing techniques using knock out approaches to
409 target the *dnd* gene have successfully induced sterilization in Atlantic salmon (*Salmo salar*)
410 [52]. However, Škugor et al., (2014) reported severe metabolic impairments in morphants,
411 primarily in the sex hormone metabolism. Consequences of a lifetime absence of *dnd* induced
412 by gene editing techniques need to be assessed, and different species might reach differently to
413 such circumstances. For example, after intra-specific transplantation of zebrafish
414 spermatogonia, only 5% of recipients sterilized through *dnd*-KO demonstrated donor cell
415 incorporated [54]; on the other hand, incorporation rates were significantly higher when *dnd*-

417 triploidization or hybridization usually applied in salmonids can be used for production of
418 convenient recipients [17,34]. However, partial development of indigenous gonads can occur
419 and alter production of donor derived gametes [43]. Therefore, sterility achieved through PGCs
420 migration disruption via temporal RNA knockdown seems to be most convenient sterilization
421 approach in case of goldfish [30,50,55], even when an immersion in vivo MO can be applied
422 instead of microinjection [56].

423 Transplantation of both frozen/thawed and fresh spermatogonia into goldfish recipient larvae
424 resulted in successful colonization and proliferation of carp germ cells within the recipient
425 gonads. Incorporation rates were similar, thus demonstrating that frozen/thawed germ cells
426 retain their physiological capabilities and can be used in surrogate production technology.
427 Additionally, observed incorporation rates (40-50%) are within the range reported for various
428 other species such as brown trout (*Salmo trutta*) (27%) and European grayling (*Thymallus*
429 *thymallus*) (23-28%) germ cells transplanted into rainbow trout (*Oncorhynchus mykiss*) [57],
430 allogenic transplantation in rainbow trout (60-70%) [49]; rainbow trout germ cells into masu
431 salmon (*Oncorhynchus masou*) (68.5%) [22]. In many observed germline chimeras in our study,
432 only one gonad was developed, while the other remained undeveloped, similarly to the *dnd*-
433 MO treated controls. This phenomenon can be most likely attributed to the transplantation
434 procedure, where germ cells are injected only from one side of the recipient's body cavity.
435 Therefore, cells can either stay near the place of injection and colonize only one gonad, or they
436 can spread and migrate throughout the body cavity and colonize both gonads.

437 In the present study, both testes and ovaries were observed in the germline chimeras after
438 transplantation of both cryopreserved and fresh spermatogonia. This offers the possibility for
439 production of gametes of both sexes, and subsequently production of viable offspring
440 originating even from a single donor. Sexual plasticity of germ cells after transplantation has
441 been already described in several species when transplanted spermatogonia developed into both
442 male and female gametes [20,43]. Sexual plasticity has a great importance when germ cells

444 significantly affect sex differentiation and the final sex ratio. Thus, goldfish were constantly
445 held at 23 ± 1 °C during the first month because temperature above 25 °C is known to trigger
446 masculinization [33]. Observed sex ratio in goldfish chimeras was slightly biased in favour of
447 testicular development. This can be attributed to the fact that transplanted germ cells will rather
448 tend to respect their original sex. Anyway, temperature sensitivity gives a possible advantage
449 to goldfish as a recipient, because sex can be modified very easily without hormonal treatment.
450 However, further studies are necessary to elucidate biological pathways causing the switch from
451 spermatogonia to oogonia and *vice versa* as well as the effects of the surrounding environment
452 on exogenous cells. Future studies will focus on optimization of surrogate reproduction,
453 reproductive characteristics of goldfish recipients as well cryopreservation of female germ cells
454 which is crucial because it is currently the optimal way of preserving maternal genome.

455

456 Conclusion

457 This study developed an optimal protocol for cryopreservation of carp male germ cells by
458 freezing with subsequent restoration in goldfish as a surrogate host. Post-thaw viability of
459 cryopreserved spermatogonia was improved over 40% through optimizing factors such as
460 cryoprotectants, their concentrations, cooling rate, tissue size, incubation time and lastly sugars
461 and their concentration. Importantly, our study showed that cryopreservation can be
462 successfully performed without advanced cooling equipment when a commercially available
463 cooling box placed in a -80 °C deep freezer can be used. Incorporation rates of fresh and
464 cryopreserved spermatogonia were similar after inter-specific transplantation into surrogate
465 goldfish and transplanted spermatogonia developed within both ovaries and testes. The donor
466 derived origin was further confirmed by *vasa* gene expression in germline chimera gonads. The
467 results could serve as an alternative strategy in breeding programs for male germplasm
468 cryopreservation with subsequent recovery in goldfish hosts. Additionally, cryopreservation
469 gives a possibility to synchronize and carry out transplantation according to the availability of

473 described by Lajić et al. (2018) where hypothermic storage is optimal for short-term storage of
474 up to two weeks, while the freezing methodology developed in this study is optimal for long-
475 term storage [58]. Further steps will be taken to develop a protocol for female germ cell
476 cryopreservation as well to improve transplantation success using younger recipients or
477 developing germ-less carp hosts for allogenic germ cell transplantation.

478

479 **Acknowledgements**

480 We would like thank to staff at the Faculty of Fisheries and Protection of Waters as well staff
481 at Department of Aquaculture at Szent István University.

481 1. FAO. The State of World Fisheries and Aquaculture. 2016. Available at
482 <https://www.fao.org/3/a-i5555e.pdf>

483 2. Balon EK. Origin and domestication of the wild carp, *Cyprinus carpio*: from Roman
484 gourmets to the swimming flowers. Aquaculture. 1995;129: 3–48. doi:10.1016/0044-
485 8486(94)00227-F

486 3. Gorda S, Bakos J, Liska J, Kakuk C. Live gene bank of common carp strains at the Fish
487 Culture Research Institute, Szarvas. Aquaculture. 1995;129: 199–202.
488 doi:10.1016/0044-8486(94)00248-M

489 4. Bakos J, Gorda S, Haltenyésztési Kutató Intézet., Food and Agriculture Organization of
490 the United Nations. Genetic resources of common carp at the Fish Culture Research
491 Institute, Szarvas, Hungary. FAO; 2001.

492 5. Flajšhans M, Linhart O, Šechta V. Genetic resources of commercially important fish
493 species in the Czech Republic : present state and future strategy. Most. 1999; 471–483.
494 doi:10.1016/S0044-8486(98)00477-3

495 6. Hulák M, Kaspar V, Kohlmann K, Coward K, Tešitel J, Rodina M, et al.
496 Microsatellite-based genetic diversity and differentiation of foreign common carp
497 (*Cyprinus carpio*) strains farmed in the Czech Republic. Aquaculture. 2010;298: 194–
498 201. doi:10.1016/j.aquaculture.2009.10.021

499 7. Kohlmann K, Kersten P, Flajšhans M. Microsatellite-based genetic variability and
500 differentiation of domesticated, wild and feral common carp (*Cyprinus carpio* L.)
501 populations. Aquaculture. 2005. pp. 253–266. doi:10.1016/j.aquaculture.2005.02.024

502 8. Crooijmans RPM a, Bierbooms V a F, Komen J, Poel JJ Van Der, Tong J, Yu X, et al.
503 Microsatellite markers in common carp (*Cyprinus carpio* L.). Anim Genet. 2005;21:
504 129–134. doi:10.1111/j.1365-2052.1997.00097.x

506 diversity of the common carp, *Cyprinus carpio*. Nat Publ Gr. Nature Publishing Group;
507 2014;46: 1212–1219. doi:10.1038/ng.3098

508 10. Horváth Á, Miskolczi E, Mihálffy S, Osz K, Szabó K, Urbányi B. Cryopreservation of
509 common carp (*Cyprinus carpio*) sperm in 1.2 and 5 ml straws and occurrence of
510 haploids among larvae produced with cryopreserved sperm. Cryobiology. 2007;54:
511 251–257. doi:10.1016/j.cryobiol.2007.02.003

512 11. Kurokura H, Hirano R, Tomita M, Iwahashi M. Cryopreservation of carp sperm.
513 Aquaculture. Elsevier; 1984;37: 267–273. doi:10.1016/0044-8486(84)90159-5

514 12. Linhart O, Rodina M, Cosson J. Cryopreservation of sperm in common carp *Cyprinus*
515 *carpio*: sperm motility and hatching success of embryos. Cryobiology. 2000;41: 241–
516 250. doi:10.1006/cryo.2000.2284

517 13. Lubzens E, Daube N, Pekarsky I, Magnus Y, Cohen A, Yusefovich F, et al. Carp
518 (*Cyprinus carpio* L.) spermatozoa cryobanks - Strategies in research and application.
519 Aquaculture. 1997;155: 13–30. doi:10.1016/S0044-8486(97)00106-3

520 14. Warnecke D, Pluta HJ. Motility and fertilizing capacity of frozen/thawed common carp
521 (*Cyprinus carpio* L.) sperm using dimethyl-acetamide as the main cryoprotectant.
522 Aquaculture. 2003;215: 167–185. doi:10.1016/S0044-8486(02)00371-X

523 15. Okutsu T, Shikina S, Sakamoto T, Mochizuki M, Yoshizaki G. Successful production
524 of functional Y eggs derived from spermatogonia transplanted into female recipients
525 and subsequent production of YY supermales in rainbow trout, *Oncorhynchus mykiss*.
526 Aquaculture. Elsevier B.V.; 2015;446: 298–302.
527 doi:10.1016/j.aquaculture.2015.05.020

528 16. Okutsu T, Suzuki K, Takeuchi Y, Takeuchi T, Yoshizaki G. Testicular germ cells can
529 colonize sexually undifferentiated embryonic gonad and produce functional eggs in
530 fish. Proc Natl Acad Sci U S A. 2006;103: 2725–2729. doi:10.1073/pnas.0509218103

532 Offspring from Triploid Salmon Parents. *Science* (80-). 2007;317: 15–17.

533 18. Takeuchi Y, Yoshizaki G, Takeuchi T. Biotechnology: surrogate broodstock produces
534 salmonids. *Nature*. 2004;430: 629–30. doi:10.1038/430629a

535 19. Yoshizaki G, Ichikawa M, Hayashi M, Iwasaki Y, Miwa M, Shikina S, et al. Sexual
536 plasticity of ovarian germ cells in rainbow trout. *Development*. 2010;137: 1227–30.
537 doi:10.1242/dev.044982

538 20. Lee S, Iwasaki Y, Shikina S, Yoshizaki G. Generation of functional eggs and sperm
539 from cryopreserved whole testes. *Proc Natl Acad Sci U S A*. 2013;110: 1640–1645.
540 doi:10.1073/pnas.1218468110

541 21. Lee S, Katayama N, Yoshizaki G. Generation of juvenile rainbow trout derived from
542 cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells.
543 *Biochem Biophys Res Commun*. Elsevier Ltd; 2016; 6–11.
544 doi:10.1016/j.bbrc.2016.08.156

545 22. Lee S, Iwasaki Y, Yoshizaki G. Long-term (5 years) cryopreserved spermatogonia
546 have high capacity to generate functional gametes via interspecies transplantation in
547 salmonids. *Cryobiology*. Elsevier Ltd; 2016;73: 5–9.
548 doi:10.1016/j.cryobiol.2016.08.001

549 23. Lee S, Yoshizaki G. Successful cryopreservation of spermatogonia in critically
550 endangered Manchurian trout (*Brachymystax lenok*). *Cryobiology*. Elsevier Ltd;
551 2016;72: 165–168. doi:10.1016/j.cryobiol.2016.01.004

552 24. Pšenička M, Saito T, Rodina M, Dzyuba B. Cryopreservation of early stage Siberian
553 sturgeon *Acipenser baerii* germ cells, comparison of whole tissue and dissociated cells.
554 *Cryobiology*. 2016; doi:10.1016/j.cryobiol.2016.02.005

555 25. Marinović Z, Lujić J, Kása E, Bernáth G, Urbányi B, Horváth Á. Cryosurvival of
556 isolated testicular cells and testicular tissue of tench *Tinca tinca* and goldfish *Carassius*

558 doi:10.1016/j.ygcen.2016.07.005

559 26. Lujić J, Marinović Z, Sušnik Bajec S, Djurdjević I, Kása E, Urbányi B, et al. First
560 successful vitrification of salmonid ovarian tissue. *Cryobiology*. 2017;76: 154–157.
561 doi:10.1016/j.cryobiol.2017.04.005

562 27. Seki S, Kusano K, Lee S, Iwasaki Y, Yagisawa M, Ishida M, et al. Production of the
563 medaka derived from vitrified whole testes by germ cell transplantation. *Sci Rep*.
564 2017;7: 43185. doi:10.1038/srep43185

565 28. Higaki S, Todo T, Teshima R, Tooyama I, Fujioka Y, Sakai N, et al. Cryopreservation
566 of male and female gonial cells by vitrification in the critically endangered cyprinid
567 honmoroko *Gnathopogon caerulescens*. *Fish Physiol Biochem. Fish Physiology and*
568 *Biochemistry*; 2018;44: 503–513. doi:10.1007/s10695-017-0449-x

569 29. Marinović Z, Lujić J, Kása E, Csenki Z, Urbányi B, Horváth Á. Cryopreservation of
570 Zebrafish Spermatogonia by Whole Testes Needle Immersed Ultra-Rapid Cooling. *J*
571 *Vis Exp*. 2018; 2–7. doi:10.3791/56118

572 30. Goto R, Saito T, Takeda T, Fujimoto T, Takagi M, Arai K, et al. Germ cells are not the
573 primary factor for sexual fate determination in goldfish. *Dev Biol. Elsevier*; 2012;370:
574 98–109. doi:10.1016/j.ydbio.2012.07.010

575 31. Saito T, Fujimoto T, Maegawa S, Inoue K, Tanaka M, Arai K, et al. Visualization of
576 primordial germ cells in vivo using GFP-nos1 3'UTR mRNA. *Int J Dev Biol*. 2006;50:
577 691–700. doi:10.1387/ijdb.062143ts

578 32. Pšenička M, Saito T, Linhartová Z, Gazo I. Isolation and transplantation of sturgeon
579 early-stage germ cells. *Theriogenology*. 2015;83: 1085–1092.
580 doi:10.1016/j.theriogenology.2014.12.010

581 33. Goto-Kazeto R, Abe Y, Masai K, Yamaha E, Adachi S, Yamauchi K. Temperature-
582 dependent sex differentiation in goldfish: Establishing the temperature-sensitive period

583 and effect of constant and fluctuating water temperatures. *Aquaculture*. 2006;252: p1-7

584 624. doi:10.1016/j.aquaculture.2005.10.009

585 34. Lee S, Katayama N, Yoshizaki G. Generation of juvenile rainbow trout derived from
586 cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells.
587 Biochem Biophys Res Commun. Elsevier Ltd; 2016;478: 1478–1483.
588 doi:10.1016/j.bbrc.2016.08.156

589 35. Linhartova Z, Saito T, Psenicka M. Embryogenesis, visualization and migration of
590 primordial germ cells in tench (*Tinca tinca*). *J Appl Ichthyol.* 2014;30: 29–39.
591 doi:10.1111/jai.12429

592 36. Mazur P. Kinetics of Water Loss from Cells at Subzero Temperatures and the
593 Likelihood of Intracellular Freezing. *J Gen Physiol.* 1963;47: 347–369.
594 doi:10.1085/jgp.47.2.347

595 37. Gao D, Critser JK. Mechanisms of cryoinjury in living cells. *ILAR J.* 2000;41: 187–
596 196. doi:10.1093/ilar.41.4.187

597 38. Franks F. The Properties of Aqueous Solutions at Subzero Temperatures. *Water and*
598 *Aqueous Solutions at Subzero Temperatures.* Boston, MA: Springer US; 1982. pp.
599 215–338. doi:10.1007/978-1-4757-6952-4_3

600 39. Wang Y, Xiao Z, Li L, Fan W, Li SW. Novel needle immersed vitrification: A
601 practical and convenient method with potential advantages in mouse and human
602 ovarian tissue cryopreservation. *Hum Reprod.* 2008;23: 2256–2265.
603 doi:10.1093/humrep/den255

604 40. Liu J, Cheng KM, Silversides FG. Production of Live Offspring from Testicular Tissue
605 Cryopreserved by Vitrification Procedures in Japanese Quail (*Coturnix japonica*). *Biol*
606 *Reprod.* 2010;83: 15–19. doi:10.1095/biolreprod.113.108951

607 41. Kása E, Lujić J, Marinović Z, Kollár T, Bernáth G, Bokor Z, et al. Development of
608 sperm vitrification protocols for two endangered salmonid species: the Adriatic

610 Biochem. 2018; 1–9. doi:10.1007/s10695-018-0516-y

611 42. Ye H, Li C-J, Yue H-M, Du H, Yang X-G, Yoshino T, et al. Establishment of
612 intraperitoneal germ cell transplantation for critically endangered Chinese sturgeon
613 *Acipenser sinensis*. Theriogenology. 2017;94: 37–47.
614 doi:10.1016/j.theriogenology.2017.02.009

615 43. Hamasaki M, Takeuchi Y, Yazawa R, Yoshikawa S, Kadomura K, Yamada T, et al.
616 Production of Tiger Puffer *Takifugu rubripes* Offspring from Triploid Grass Puffer
617 *Takifugu niphobles* Parents. Mar Biotechnol. Springer US; 2017; 1–13.
618 doi:10.1007/s10126-017-9777-1

619 44. Lorenzoni M, Corboli M, Ghetti L, Pedicillo G, Carosi A. Growth and reproduction of
620 the goldfish *Carassius auratus* : a case study from Italy. 2007; 259–273.

621 45. Ortega-Salas AA, Reyes-Bustamante H. Initial sexual maturity and fecundity of the
622 goldfish *Carassius auratus* (Perciformes: Cyprinidae) under semi-controlled
623 conditions. Rev Biol Trop. 2006;54: 1113–1116.

624 46. Brzuska E. Characteristics of the reproduction effectiveness of four Hungarian
625 breeding lines of carp *Cyprinus carpio* (L.). Aquac Int. Springer Netherlands; 2014;22:
626 149–158. doi:10.1007/s10499-013-9675-0

627 47. Taylor J, Mahon R. Hybridization of *Cyprinus carpio* and *Carassius auratus*, the first
628 two exotic species in the lower Laurentian Great Lakes. Environ Biol Fishes. Kluwer
629 Academic Publishers; 1977;1: 205–208. doi:10.1007/BF00000412

630 48. Yuasa K, Sano M, Oseko N. Goldfish is Not a Susceptible Host of Koi Herpesvirus
631 (KHV) Disease. Fish Pathol. The Japanese Society of Fish Pathology; 2013;48: 52–55.
632 doi:10.3147/jsfp.48.52

633 49. Yoshizaki G, Takashiba K, Shimamori S, Fujinuma K, Shikina S, Okutsu T, et al.
634 Production of germ cell-deficient salmonids by dead end gene knockdown, and their

636 doi:10.1002/mrd.22625

637 50. Linhartová Z, Saito T, Kašpar V, Rodina M, Prášková E, Hagihara S, et al. Sterilization
638 of sterlet *Acipenser ruthenus* by using knockdown agent, antisense morpholino
639 oligonucleotide, against dead end gene. Theriogenology. 2015;84: 1246–1255.
640 doi:10.1016/j.theriogenology.2015.07.003

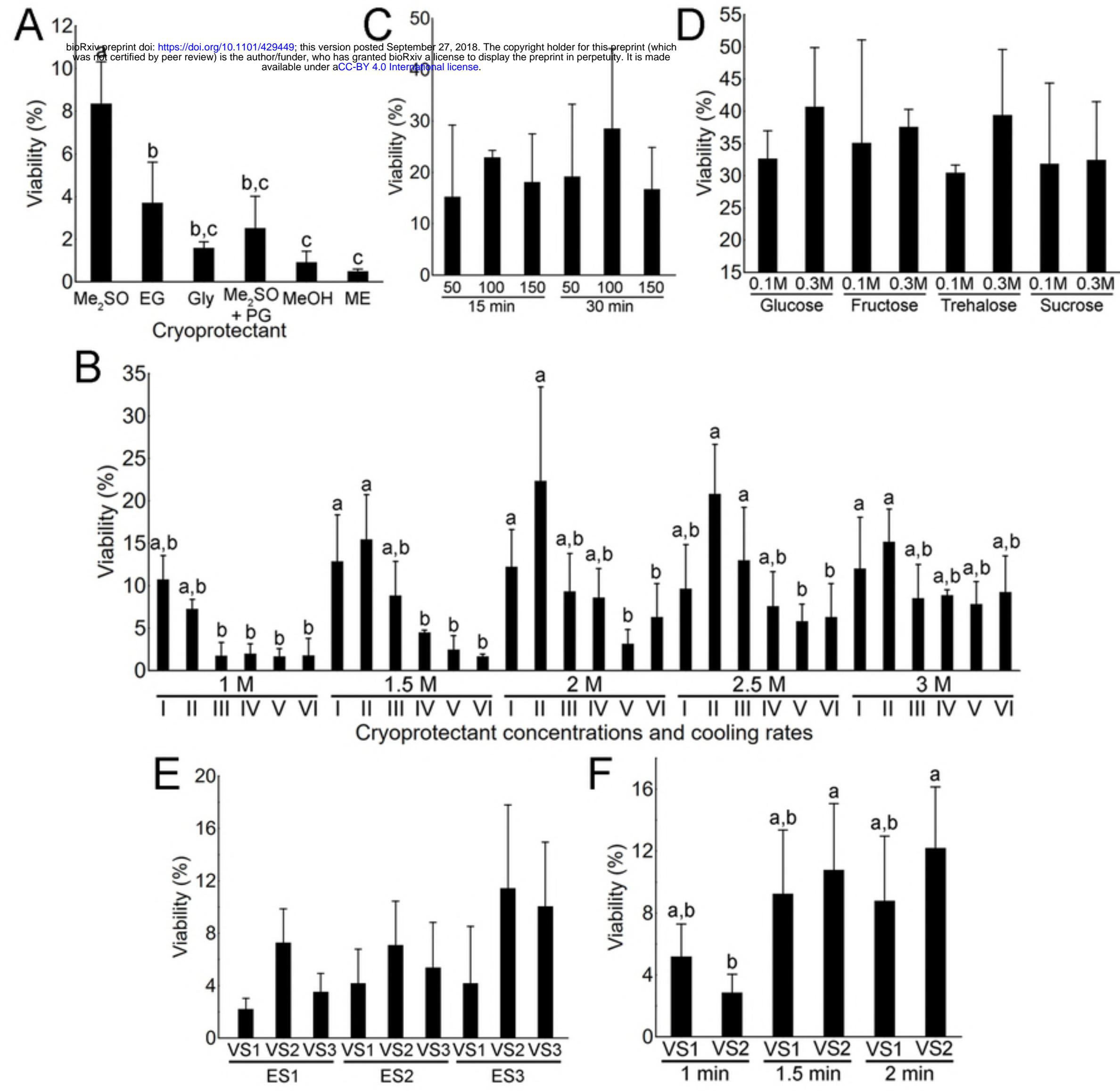
641 51. Ciruna B, Weidinger G, Knaut H, Thisse B, Thisse C, Raz E, et al. Production of
642 maternal-zygotic mutant zebrafish by germ-line replacement. Proc Natl Acad Sci U S
643 A. 2002;99: 14919–14924. doi:10.1073/pnas.222459999

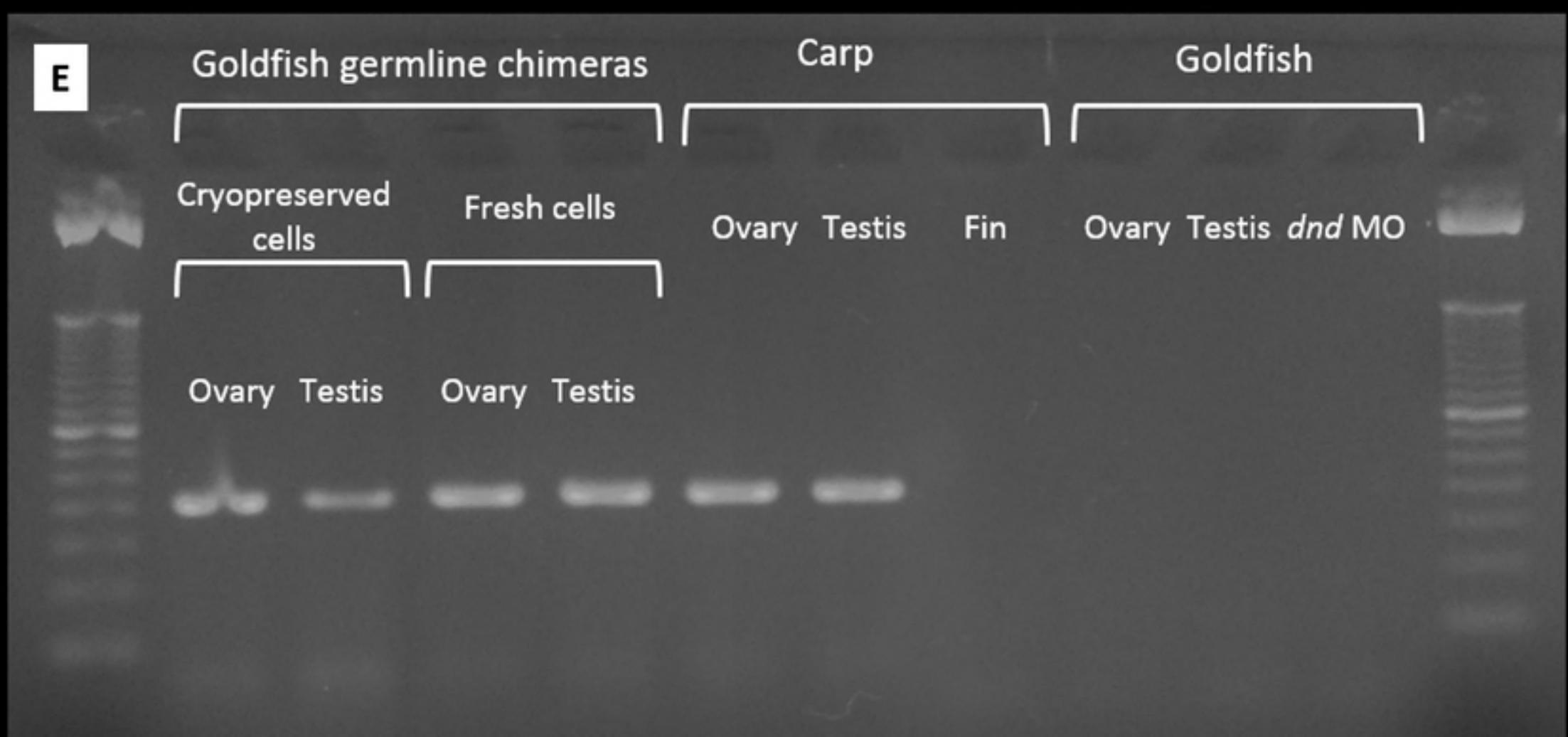
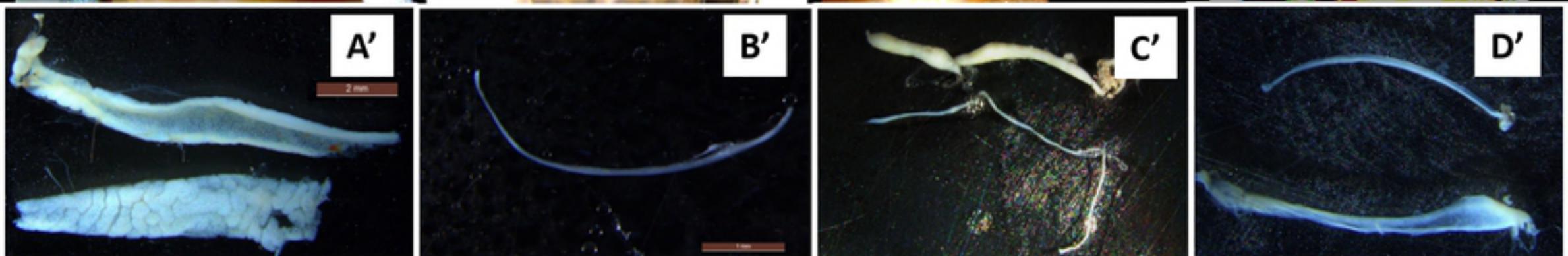
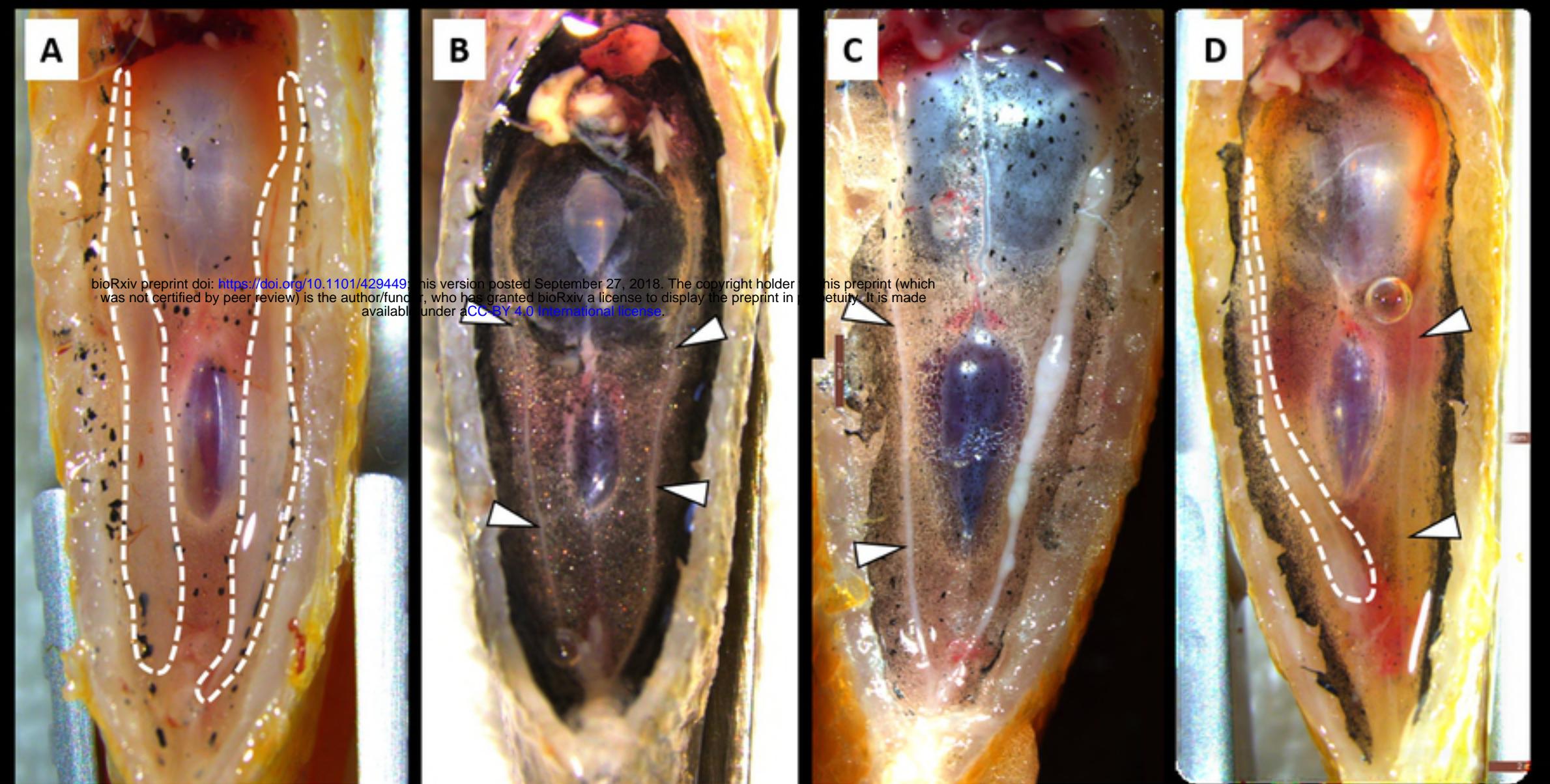
644 52. Wargelius A, Leininger S, Skaftnesmo KO, Kleppe L, Andersson E, Taranger GL, et
645 al. Dnd knockout ablates germ cells and demonstrates germ cell independent sex
646 differentiation in Atlantic salmon. Sci Rep. 2016;6: 21284. doi:10.1038/srep21284

647 53. Škugor A, Tveiten H, Krasnov A, Andersen Ø. Knockdown of the germ cell factor
648 Dead end induces multiple transcriptional changes in Atlantic cod (*Gadus morhua*)
649 hatchlings. Anim Reprod Sci. 2014;144: 129–137.
650 doi:10.1016/j.anireprosci.2013.12.010

651 54. Li Q, Fujii W, Naito K, Yoshizaki G. Application of *dead end* -knockout zebrafish as
652 recipients of germ cell transplantation. Mol Reprod Dev. 2017; doi:10.1002/mrd.22870

653 55. Saito T, Goto-Kazeto R, Arai K, Yamaha E. Xenogenesis in teleost fish through
654 generation of germ-line chimeras by single primordial germ cell transplantation. Biol
655 Reprod. 2008;78: 159–166. doi:10.1095/biolreprod.107.060038


656 56. Wong T-T, Zohar Y. Production of reproductively sterile fish by a non-transgenic gene
657 silencing technology. Sci Rep. Nature Publishing Group; 2015; 1–6.
658 doi:10.1016/j.ygcen.2014.12.012




659 57. Lujić J, Marinović Z, Bajec SS, Djurdjević I, Urbányi B, Horváth Á. Interspecific germ
660 cell transplantation: a new light in the conservation of valuable Balkan trout genetic

662 0510-4

663 58. Lujić J, Marinović Z, Kása E, Šćekić I, Urbányi B, Horváth Á. Preservation of
664 common carp germ cells under hypothermic conditions: Whole tissue vs isolated cells.
665 Reprod Domest Anim. 2018; 1–6. doi:10.1111/rda.13220

666

