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Abstract 

Many computational models for analyzing and predicting cell physiology rely on in vitro data, collected 

in dilute and cleanly controlled buffer solutions. However, this can mislead models because about 40% 

of the intracellular volume is occupied by a dense mixture of proteins, lipids, polysaccharides, RNA, 

and DNA. These intracellular macromolecules interact with enzymes and their reactants and affect the 

kinetics of biochemical reactions, making in vivo reactions considerably more complex than the in vitro 

data indicates. In this work, we present a new type of kinetics that captures and quantifies the effect 

of volume exclusion and any other spatial phenomena on the kinetics of elementary reactions. We 

further developed a framework that allows for the efficient parameterization of this type of kinetics 

using particle simulations. Our formulation, entitled GEneralized Elementary Kinetics (GEEK), can be 

used to analyze and predict the effect of intracellular crowding on enzymatic reactions and was herein 

applied to investigate the influence of crowding on phosphoglycerate mutase in Escherichia coli, which 

exhibits prototypical reversible Michaelis-Menten kinetics. Current research indicates that many 

enzymes are reaction limited and not diffusion limited, and our results suggest that the influence of 

fractal diffusion is minimal for these reaction-limited enzymes. Instead, increased association rates 

and decreased dissociation rates lead to a strong decrease in the effective maximal velocities 𝑉𝑚𝑎𝑥 

and the effective Michaelis-Menten constants 𝐾𝑀 under physiologically relevant volume occupancies. 

Finally, the effects of crowding in the context of a linear pathway were explored, with the finding that 

crowding can have a redistributing effect, relative to ideal conditions, on the effective flux responses 

in the case of two-fold enzyme overexpression. We suggest that the presented framework in 

combination with detailed kinetics models will improve our understanding of enzyme reaction 

networks under non-ideal conditions.   
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Introduction 

The intracellular environment is a crowded place, with about 20–40% of the interior volume of living 

cells occupied by a variety of macromolecules including proteins, RNA, DNA, and lipids. (1, 2). The 

composition of this mixture depends considerably on the organism and its environment, but even 

within the cell, the local density and size distribution of the macromolecules varies between and within 

compartments (3-5). Because the presence of these macromolecules can impact diffusion rates, 

protein conformation, folding and aggregation, catalytic rates, and enzyme-substrate affinities (6-8), 

an alteration in the elementary properties governing the spatiotemporal dynamics of cells can affect 

all cellular functions, such as expression, translation signaling, and metabolism. Because many of these 

cellular functions depend on specific reactions catalyzed by cellular enzymes, it is necessary to study 

the effect of macromolecular crowding on the function of enzyme-catalyzed reaction systems, and to 

do this, it is necessary to characterize the kinetics of these systems under the altered conditions. 

Computational models are used to analyze and predict cell physiology, though computational studies 

are limited in their frequent reliance on in vitro characteristics to directly parameterize their models 

(9, 10), reduce uncertainty (11, 12), or to evaluate predicted parameters (13). This causes that the 

actual enzyme in vivo characteristics are not captured such that the model predictions from these 

studies might deviate significantly from the ones measured in vitro. This is especially true considering 

that in vitro characterizations are usually performed in dilute, homogenous conditions whereas 

reactions in the cytoplasm occur in an inhomogeneous and densely packed environment (14). 

The importance of environmental impact on enzyme kinetics is therefore an important topic of study, 

especially in terms of crowding in the densely packed intracellular space. In early studies of crowded 

enzyme catalysis, it was believed that the main effect of diffusion-limited Michaelis-Menten kinetics 

was caused by altered, anomalous diffusion accompanied by increased effective concentrations. 

These studies were limited, however, in that volume exclusion effects caused by the reactive partners 

themselves were often neglected, which results that the change in activity due to interaction with 

macromolecules is not captured (15-18). A more recent work on the subject was presented by Mourao 

et al. in which fractal behavior, indicating that the diffusion and the apparent order of the elementary 

reactions is altered, was studied using a lattice-based model for an irreversible Michaelis-Menten 

mechanism. They showed that fractal kinetics only occur under very restrictive conditions, suggesting 

that it might be less common than previously assumed (19).  

Further recent work has shown that the effective rate constant for bimolecular reactions changes 

under crowded conditions (20, 21). Berezhkovskii and Szabo demonstrated that it is possible to 

express the effective rate for bimolecular reactions as a function of a crowding-induced interaction 
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potential between two reaction partners, which results from an interaction with the surrounding 

particles when two reactants are in contact. Repulsive interactions between the reactants and 

particles would, therefore, result in an attractive effective potential between the reactants and vice 

versa. Relatedly, it has been shown that for rate-limited reactions in the presence of high reactant 

concentrations, the influence of diffusion minimal, indicating that the effective crowding-induced 

interaction potential might be more dominant for most enzymatic reactions (22). 

Because of its importance in modeling in vivo systems, the effects of crowding on biochemical 

reactions have been extensively studied by various computational and experimental methods, as seen 

in several reviews (1, 2, 23). Most of the effort in these studies has been directed towards investigating 

the impact of diffusion in fractal media on the reaction kinetics (22), with little focus on characterizing 

the effect of crowding on the mean effective enzyme kinetics. However, since it has now been shown 

that most enzymes are not diffusion limited but instead are reaction limited (24), the reevaluation of 

crowding in these reactions is important. In this work, therefore, we aimed to design computational 

methods for studying spatial effects of any kind, applying our work specifically to the effects of 

crowding on reaction-limited instead of diffusion-limited enzymes, with a goal of bridging the 

discrepancy between the in vitro measurement of kinetic parameters and the actual in vivo conditions.  

In contrast to the previous studies on the Michaelis-Menten kinetics, that use a diffusion limited 

irreverisble reaction scheme, we studied the effect of crowding on enzyme kinetics by employing a 

fully reversible reaction scheme and present herein an example with a representative catalytic activity 

and affinities that result in a reaction-limited enzyme. Additionally, our molecular particle model 

accounts for volume exclusion and the diffusion of all species, including reactants and crowding 

agents, and this was used to study the effect of different size distributions of crowding agents on 

reaction kinetics.  

Previous studies into crowding conditions are limited by their computational cost and lack of global 

insight into the sensitivity of the reaction kinetics. They often use spatial simulation techniques to 

simulate multiple realizations of reaction trajectories to determine the influence on the effective 

kinetics under very specific conditions, meaning that these studies only gain insight into the local 

sensitivity of the kinetics with respect to the crowding conditions. Furthermore, it is computationally 

very expensive to resolve the reaction trajectories from particle simulations for reaction-limited 

reactions because the time scale to resolve the diffusion of the particle is up to seven orders of 

magnitude faster than the reaction time scale. This requires billions of time steps to be solved for tens 

of thousands of particles, resulting in a month of simulation time for a single trajectory (25). 

To resolve these challenges, we present a new formulation entitled GEneralized Elementary Kinetics 

(GEEK) to characterize the kinetic mechanisms that are influenced by various spatial effects, including 
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volume exclusion, confinement (1D/2D diffusion), strong and weak interaction forces, localization, or 

any combination of similar phenomena. In the presented work, we use a coarse-grained particle model 

based on hard-sphere Brownian reaction dynamics to parametrize this formulation, which can be used 

in a straightforward way to build ordinary differential equation (ODE) models that use power-law 

approximations to capture the characteristics of spatial effects and to directly quantify the impact of 

fractal diffusion.  

We applied our method to the investigation of macromolecular crowding on the function of 

phosphoglycerate mutase (PGM) in Escherichia coli. Our presented example clearly demonstrates that 

accounting solely for an increased local concentration and anomalous diffusion is not sufficient to 

properly describe crowding effects. We show that a mechanism-dependent effect emerges upon 

crowding that is facilitated by an increase in both product and substrate association activity and a 

decrease in the dissociation activity. For reversible Michaelis-Menten kinetics, these effects result in 

an increase in the binding affinity for the product and substrate as well as a decrease in the maximal 

reaction rate. Finally, we investigated the effects of crowding on a linear pathway, where we show 

that crowding can significantly redistribute the relative flux responses with respect to enzyme 

overexpression, indicating that the impact of altered kinetics is also propagated on a network level. 

Methods  

Reversible Michaelis-Menten kinetics 

In this study, we primarily investigated a reversible Michaelis-Menten reaction mechanism, where a 

substrate 𝑆 binds to an enzyme 𝐸 to form a complex 𝐸𝑆 via a reversible reaction, which can reversibly 

transform the substrate and reversibly dissociate the product 𝑃. The overall reaction scheme is given 

by: 

𝑆 + 𝐸 

𝑘1,𝑓
⇌
𝑘1,𝑏

 𝐸𝑆 

𝑘2,𝑓
⇌
𝑘2,𝑏

 𝐸 + 𝑃, (1) 

where 𝑘1,𝑓, 𝑘1,𝑏, 𝑘2,𝑓, and 𝑘2,𝑏 denote the rate constants of the elementary reactions. The typical form 

of the reaction rate 𝑣 as a function of substrate and product concentration, see Eq. (2), is derived from 

the assumption that all enzymes are conserved such that [𝐸𝑆] + [𝐸] = [𝐸𝑇], where [𝐸𝑇] denoted the 

total enzyme concentration, and the enzyme-substrate complex concentration [𝐸𝑆] is in a quasi-

steady state, i.e. 𝑑[𝐸𝑆]/𝑑𝑡 ≈ 0 (26). 
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𝑣([𝑆], [𝑃]) =

𝑉𝑚
+ [𝑆]
𝐾𝑚,𝑆

− 𝑉𝑚
− [𝑃]
𝐾𝑚,𝑃

 

1 +
[𝑆]
𝐾𝑚,𝑆

+
[𝑃]
𝐾𝑚,𝑃

, (2) 

where the parameters 𝑉𝑚
+, 𝑉𝑚

−, 𝐾𝑚,𝑆, and 𝐾𝑚,𝑃 are related to the elementary rate constants 𝑘1/2,𝑓/𝑏 

given a [𝐸𝑇].  

𝑉𝑚
+ = 𝑘2,𝑓[𝐸𝑇] , 𝑉𝑚

− = 𝑘1,𝑏[𝐸𝑇], (3a,b) 

𝐾𝑚,𝑆 = (𝑘1,𝑏 + 𝑘2,𝑓)/𝑘1,𝑓, and 𝐾𝑚,𝑃 = (𝑘1,𝑏 + 𝑘2,𝑓)/𝑘1,𝑓.  (4a,b) 

The equilibrium constant of the system is then:  

𝐾𝑒𝑞 =
𝑘1,𝑓

𝑘1,𝑏

𝑘2,𝑓

𝑘2,𝑏
 . (5) 

 

Generalized elementary kinetics (GEEK) 

By introducing inert molecules, we observe an alteration of the effective rate constants due to a 

change in the diffusion and the collision dynamics. In the most general case, this can, compared mass-

action kinetics, result in a change of the effective order and effective rate constant. Berezhkovskii and 

Szabo showed that the effective (Collins-Kimball) reaction rate constant 𝑘𝐶𝐾 for a diffusion-influenced, 

bimolecular reaction under crowded conditions can be expressed in terms of an altered diffusion 

constant 𝐷1 and an external crowding induced interaction potential Δ𝑈 between the two reacting 

species. This potential is an implicit representation of the interaction of the individual reactant species 

with the molecules in their environment and whether these interactions keep the reactants in contact 

or if they are tearing them apart. The expression for the Collins-Kimball rate constant was found to 

follow that described by Berezhkovskii and Szabo (20): 

𝑘𝐶𝐾 =
4𝜋𝐷1𝑅𝑘0𝑒

Δ𝑈
𝑘𝐵𝑇

4𝜋𝐷1𝑅 + 𝑘0𝑒
Δ𝑈
𝑘𝐵𝑇

, (6) 

where 𝑘0 is the reaction rate upon collision. For the reaction-limited case 𝑘0 ≫  4𝜋𝐷1𝑅, this expression 

simplifies to an exponential relation, 𝑘𝐶𝐾 ≈ 𝑘0 exp(Δ𝑈/𝑘𝐵𝑇). In general, the induced interaction 

potential Δ𝑈 and the diffusion constant 𝐷1 are a function of the global state of the system, which 

includes concentrations and intermolecular interactions.  
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To approximate this deviation of the effective elementary rate constants, indicated by 𝑘𝑗,𝑒𝑓𝑓, where 

j 𝜖 [(1, 𝑓), (1, 𝑏), (2, 𝑓), (2, 𝑏)], from the free rate constants in ideal conditions, 𝑘𝑗,0 in a general form, 

the logarithmic deviation 𝜁𝑗  was introduced: 

log (
𝑘𝑗,𝑒𝑓𝑓(𝜙)

𝑘𝑗,0
) = 𝜁𝑗. (7) 

To quantify this deviation as a function of the species’ concentrations, a linear function of the scaled 

logarithmic concentrations log([𝑋𝑖]/[𝑋𝑖]0) was introduced and tested for 𝜁𝑗: 

log (
𝑘𝑗,𝑒𝑓𝑓

𝑘𝑗,0
) = ∑ 𝛼𝑖,𝑗 log (

[𝑋𝑖]

[𝑋𝑖]0
)𝑁

𝑖=1 + 𝛽𝑗, (8) 

where 𝛼𝑖,𝑗 are the coefficients quantifying the effect of one of the 𝑁 reactants 𝑋𝑖 on reaction j, and 𝛽𝑗 

is an offset attributed to the effect of different occupied volume fractions.  

The effective reaction rate is thus given by: 

𝑘𝑗,𝑒𝑓𝑓(𝜙) = 𝑘𝑗,0 exp𝛽𝑗  ∏(
[𝑋𝑖]

[𝑋𝑖]0
)

𝛼𝑖,𝑗𝑁

𝑖=1 

. (9) 

From this expression, a generalized mass-action rate law is defined for the elementary reactions:  

𝑣𝑗(𝜙) = 𝑘𝑗,0 exp𝛽𝑗  ∏(
[𝑋𝑖]

[𝑋𝑖]0
)

𝛼𝑖,𝑗 + 𝑛𝑖,𝑗

[𝑋𝑖]0
𝑛𝑖,𝑗

𝑁

𝑖=1 

 , (10) 

where 𝑛𝑖,𝑗 denotes the stoichiometric coefficient of the substrate 𝑋𝑖 in reaction 𝑗. The generalized 

elementary mass-action rate law (10) can be directly used to create a system of ordinary differential 

equations that can approximate the time evolution of the system under non-ideal conditions.  

Generalized elementary Michaelis-Menten kinetics 

Given the generalized elementary rate laws, the quasi-steady-state approximation for the Michaelis-

Menten reaction rate with generalized elementary kinetics can be defined. Therefore, it can be 

assumed that the enzyme is conserved, [𝐸𝑆] + [𝐸] = [𝐸𝑇], and the enzyme-complex is in a quasi-

steady state, i.e. 

𝑑[𝐸𝑆]

𝑑𝑡
= 𝑣1,𝑓 − 𝑣1,𝑏 − 𝑣2,𝑓 + 𝑣2,𝑏 ≈ 0, (11) 
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where each flux 𝑣𝑗  given by a generalized rate law as given in Eq. (10). The reaction rate of the 

enzymatic reaction at steady state is then given by the rate of product formation at steady state:  

𝑣([𝑆], [𝑃]) = [𝐸𝑆]𝑞𝑠𝑠 𝑘2,𝑓,𝑒𝑓𝑓, (12) 

where [𝐸𝑆]𝑞𝑠𝑠 is enzyme complex concentration at the quasi-steady state. For the case of 𝛼𝑖,𝑗 ∈ ℝ 

and 𝛼𝑖,𝑗 ≠ 0, it is not possible to obtain an explicit expression for the reaction rate 𝑣([𝑆], [𝑃]). Eq. (11) 

can thus be solved numerically for the quasi-steady-state concentration of the enzyme complex 

[𝐸𝑆]𝑞𝑠𝑠 for given amount of total enzyme [𝐸𝑇], substrate [𝑆], and product [𝑃], and the reaction rate 

can then be calculated according to Eq. (11). The average apparent Michaelis-Menten parameters are 

then extracted using a linear approximation of 𝑣([𝑋]) with 𝑣([𝑋])/[𝑋] for either [𝑆] = 0 or [𝑃] = 0, 

i.e. the Eadie-Hofstee form of Michaelis-Menten kinetics (27, 28). The slope of these linear regressions 

yields the respective 𝐾𝑚, and the y-axis intercept yields the respective 𝑉𝑚𝑎𝑥: 

|𝑣([𝑆])| =  −𝐾𝑚,𝑆
|𝑣([𝑆])|

[𝑆]
+ 𝑉𝑚𝑎𝑥

+ , 

|𝑣([𝑃])| = −𝐾𝑚,𝑃
|𝑣([𝑃])|

[𝑃]
+ 𝑉𝑚𝑎𝑥

− . 

(13) 

To express the thermodynamic driving forces, the elementary rate model was considered as 𝑀 

reversible reactions 𝜌 𝜖 [1,2], with the forward flux 𝑣𝜌,𝑓 and the backward flux 𝑣𝜌,𝑏. Using the principle 

of detailed balance, the free energy of the reaction can be expressed as a function of the displacement 

from equilibrium Γ = 𝑣𝑏/𝑣𝑓 (29): 

Δ𝑟𝐺𝜌
′ = 𝑅𝑇 ln Γ𝜌  = 𝑅𝑇 ln (

𝑣𝜌,𝑏

𝑣𝜌,𝑓
), (14) 

where 𝑅 is the general gas constant and 𝑇 is the absolute temperature. With the fluxes expressed in 

terms of the generalized elementary rate law (10), the free energy reads:  

Δ𝑟𝐺𝜌
′ = 𝑅𝑇 ln

(

 
 𝑘𝜌,𝑏,0 exp𝛽𝜌,𝑏  

∏ (
[𝑋𝑖]
[𝑋𝑖]0

)
𝑛𝑖,𝜌,𝑏+𝛼𝑖,𝜌,𝑏

[𝑋𝑖]0
𝑛𝑖,𝜌,𝑏𝑀

𝑖=1 

𝑘𝜌,𝑓,0 exp𝛽𝜌,𝑓  ∏ (
[𝑋𝑖]
[𝑋𝑖]0

)
𝑛𝑖,𝜌,𝑓+𝛼𝑖,𝜌,𝑓

[𝑋𝑖]0
𝑛𝑖,𝜌,𝑓𝑀

𝑖=1 
)

 
 
. (15) 

In general, the overall free energy consists of the ideal and non-ideal contributions. The ideal 

contribution consists of the standard free energy of the reaction and the concentration contributions, 

and the non-ideal contribution contains terms emerging from molecular interactions, such as by steric 

repulsion, van der Waals forces, and electrostatic interactions.  
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Δ𝑟𝐺𝜌
′ = Δ𝑟𝐺𝜌

′∘ + ∑ 𝑛𝑖,𝜌𝑅𝑇 ln([𝑋𝑖])
𝑀
𝑖⏟                  
Δ𝑟𝐺𝜌,𝑖𝑑𝑒𝑎𝑙

′

+ Δ𝑟𝐺𝜌,𝑠𝑡𝑒𝑟𝑖𝑐
′ + Δ𝑟𝐺𝜌,𝑉𝐷𝑊

′ + Δ𝑟𝐺𝜌,𝑒𝑙
′ +⋯⏟                        

Δ𝑟𝐺𝜌,𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙
′

. 
(16) 

In this work, only the non-ideal contributions due to steric repulsion were modeled by means of a 

hard-sphere potential, though in the most general case, the formulation presented in this work allows 

for the inclusion of any kind non-ideal contributions: 

Δ𝑟𝐺𝜌
′ = Δ𝑟𝐺𝜌

′∘ + ∑ 𝑛𝑖,𝜌𝑅𝑇 ln([𝑋𝑖])
𝑀
𝑖⏟                
Δ𝑟𝐺𝜌,𝑖𝑑𝑒𝑎𝑙

′

+ Δ𝑟𝐺𝜌,𝑠𝑡𝑒𝑟𝑖𝑐
′

⏟      
Δ𝑟𝐺𝜌,𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙

′

. 

By comparing the free energy of the generalized elementary rate model to the free energy of the dilute 

mass-action equivalent, the ideal contribution can be identified as: 

Δ𝑟𝐺𝜌,𝑖𝑑𝑒𝑎𝑙
′ = 𝑅𝑇 ln(

𝑘𝜌,𝑏,0

𝑘𝜌,𝑓,0
) + ∑𝑛𝑖,𝜌,𝑏𝑅𝑇 ln([𝑋𝑖])

𝑀

𝑖

−∑𝑛𝑖,𝜌,𝑓𝑅𝑇 ln([𝑋𝑖])

𝑀

𝑖

 

= Δ𝑟𝐺𝜌
′∘ +∑𝑛𝑖,𝜌𝑅𝑇 ln([𝑋𝑖])

𝑀

𝑖

. 

(17) 

The remaining contributions can be identified as the non-ideal contribution: 

Δ𝑟𝐺𝜌,𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙
′ =  𝑅𝑇(𝛽𝜌,𝑏 − 𝛽𝜌,𝑓 ) + 𝑅𝑇 ln

(

 
∏ (

[𝑋𝑖]
[𝑋𝑖]0

)
𝛼𝑖,𝜌,𝑏

𝑀
𝑖=1 

∏ (
[𝑋𝑖]
[𝑋𝑖]0

)
𝛼𝑖,𝜌,𝑓

𝑀
𝑖=1 )

   . (18) 

Δ𝑟𝐺𝜌,𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙
′  can be further partitioned into a reactant-independent and a reactant-dependent 

contribution:  

Δ𝑟𝐺𝜌,𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙
′ = Δ𝑟𝐺𝜌,𝑖𝑛𝑑𝑒𝑝

′ + Δ𝑟𝐺𝜌,𝑑𝑒𝑝
′  

                    =   𝑅𝑇(𝛽𝜌,𝑏 − 𝛽𝜌,𝑓 ) + 𝑅𝑇 ln (∏(
[𝑋𝑖]

[𝑋𝑖]0
)

𝛼𝑖,𝜌,𝑏−𝛼𝑖,𝜌,𝑓𝑀

𝑖=1 

). 
(19) 

The free energy of the generalized elementary Michaelis-Menten kinetics is given by the sum of all 

reversible reaction free energy contributions Δ𝑟𝐺𝜌
′ : 

Δ𝑟𝐺
′ = ∑Δ𝑟𝐺𝜌

′

𝑅

𝜌

. (20) 

With [𝑋𝑖] = [[𝑆], [𝐸], [𝐸𝑆], [𝑃]], the free energy of the reaction can be simplified to the well-known 

ideal contribution containing only the chemically modified species [𝑆] and [𝑃] as well as a non-ideal 
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contribution, wherein the non-ideal contribution is a phenomenological description of free energy 

change based on the generalized elementary kinetics. 

Δ𝑟𝐺
′ = Δ𝑟𝐺

′∘ + 𝑅𝑇 ln(
[𝑃]

[𝑆]
) + Δ𝑟𝐺𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙

′ ([𝑆], [𝐸], [𝐸𝑆], [𝑃]). (21) 

The formulation of the reversible Michaelis-Menten rate law in terms of generalized elementary 

kinetics allows for the phenomenological capture of non-linear effects on the collision level.  

Hard-sphere Brownian reaction dynamics 

To incorporate the spatial effects into the enzymatic reaction system, hard-sphere Brownian reaction 

dynamics (HSBRD) were used. The method used in this work is a straightforward combination of hard-

sphere Brownian dynamics (30) and Brownian reaction dynamics (31, 32) that was accomplished by 

adding the hard-sphere collision dynamics as described to Brownian reaction dynamics. The method 

describes the movement of independent particles as a random walk of point particles diffusing in a 

viscous medium. Thereby, HSBRD neglects the hydrodynamic interactions between the particles. The 

equations of motion are given in terms of the overdamped Langevin equation. Using the Einstein-

Smoluchwoski relation, its velocity is given by Wang and Uhlenbeck (33): 

𝑑𝑥⃗

𝑑𝑡
=  −

𝐷

𝑘𝑏𝑇
𝐹(𝑥⃗) + √2𝐷

𝑑𝜂(𝑡)

𝑑𝑡
 , (22) 

where 𝐹(𝑥⃗) is a force acting on the particle, 𝑘𝑏 is the Boltzmann constant, 𝑇 is the absolute 

temperature of the surrounding fluid, and 𝜂⃗(𝑡) is the result of a three-dimensional Wiener process. 

An explicit Euler formulation was used to update the positions at every time step, 𝛥𝑡, as follows: 

𝑥⃗𝑖+1 = 𝑥⃗𝑖 − Δ𝑡
𝐷

𝑘𝑏𝑇
𝐹(𝑥⃗) + √2𝐷𝛥𝑡 𝜂𝑡 , (23) 

where 𝜂𝑡 is a random vector drawn from a normal distribution.  

When two reactants collided, i.e. their radii overlapped after the positions were updated, a uniform 

distributed random number 𝑟 was compared to the reaction with a probability 𝑝 to determine if the 

reaction occurred within this time step Δ𝑡. The probability 𝑝 was determined by a microscopic reaction 

rate 𝑘𝑚𝑖𝑐𝑟 (34):  
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𝑝 = 1 − exp (−
𝑘𝑚𝑖𝑐𝑟𝑜𝛥𝑡

4𝜋𝐼(𝐷, 𝑅, 𝛥𝑡)
), (24) 

where 𝐼(𝐷, 𝑅, 𝛥𝑡) is a normalization factor for the effective collision volume in Brownian reaction 

dynamics simulations, as derived by Morelli and ten Wolde (34). The observed steady-state reaction 

rate 𝑘𝐴𝐵 for a bimolecular reaction in homogenous, dilute conditions is then given by (35): 

1

𝑘𝐴𝐵
=

1

 𝑘𝐴𝐵,𝑚𝑖𝑐𝑟𝑜
+
1

𝛾𝐴𝐵
=

1

 𝑘𝐴𝐵,𝑚𝑖𝑐𝑟𝑜
+

1

4𝜋(𝐷𝐴 + 𝐷𝐵)(𝑟𝐴 + 𝑟𝐵)
 , (25) 

where  𝑘𝐴𝐵,𝑚𝑖𝑐𝑟𝑜 is the reaction rate upon collision, and 𝛾𝐴𝐵 is the diffusion-limited reaction rate 

constant.  

In the case of a particle collision without a subsequent reaction, an elastic hard-sphere collision was 

assumed to take place. The new particle position was computed from the momentum conservation 

using the average velocity 𝑣𝑖 = 𝛥𝑟𝑖/𝛥𝑡 of the move that led to the particle overlap (30). 

First-order reactions are modeled similarly to bimolecular reactions by comparing a uniformly 

distributed random variable to the probability that the reaction took place in the time interval Δ𝑡, with 

the reaction probability of 𝑝 = 1 − exp(−𝑘𝑚𝑖𝑐𝑟𝑜𝛥𝑡). The reaction products are placed in contact 

around the original position of the educt using a random orientation. If the products were to collide 

with any other particles, the move would be rejected and the educt would remain at its original 

position. Otherwise, the educt would be removed and the products would be placed instead. 

Furthermore, constant particle boundary conditions were applied at every timestep through the 

random insertion or removal of particles of a given species to match the specified particle count of the 

species. The HSBRD particle simulation was implemented in C++ using the OPENFPM framework 

(http://openfpm.mpi-cbg.de/).  

Measuring effective rate constants 

Since it is necessary to resolve the particle movement on the nanosecond timescale as opposed to the 

timescales of the reaction dynamics, which are found to be on the order of seconds to hours, a 

separated timescale approach was proposed to efficiently bridge these differences. The effective 

elementary reaction rates at constant concentrations and crowding conditions in particle simulation 

were therefore measured. To measure the effective rate constants from a particle simulation, two 

separate schemes for monomolecular and bimolecular rate constants were proposed.  
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For monomolecular rate constants, the effective reaction rates were extracted by probing the space 

around the enzyme-substrate complexes. Therefore, every valid educt 𝑘 for a reaction 𝑗 was selected, 

and multiple dissociation reactions were attempted in a random direction. If the dissociation were to 

be successful, meaning that the dissociated particles did not collide, 𝜔𝑗𝑙𝑗 = 1. If the dissociation were 

to yield a collision, 𝜔𝑗𝑘𝑙 = 0. Averaging over the results of all dissociation attempts 𝜔𝑖𝑗 of the probed 

particle 𝑖, a local success probability of 〈𝜔𝑘𝑗〉 was obtained. To describe the equivalent homogenous 

system, the success probability 〈𝜔𝑗〉 was computed as the mean of the local average success rate over 

all probed particles. In the limit of continuous concentrations, the effective rate constant, 𝑘𝑒𝑓𝑓,𝑗, is 

given by the rate constant 𝑘0,𝑗 scaled by the success probability 〈𝜔𝑗〉: 

𝑘𝑚𝑜𝑛,𝑒𝑓𝑓,𝑗 = 𝑘0,𝑗 〈𝜔𝑗〉. (26) 

The effective bimolecular rate constant can be extracted from the effective collision frequency 𝑧𝐴,𝐵 

between two species, A and B. This collision frequency is estimated as the number of collisions 

between A and B in an integrated time interval 𝑐𝐴,𝐵(𝑡, 𝑡 + 𝛥𝑡) per time step 𝛥𝑡: 

𝑧𝐴,𝐵(𝑡, 𝑡 + 𝛥𝑡) =
𝑐𝐴,𝐵(𝑡,𝑡+𝛥𝑡)

𝛥𝑡
. (27) 

Given the probability of a reactive collision (Eq. (24)), the effective bimolecular rate constant can be 

measured as the mean collision frequency per number of possible interactions pairs, i.e. 𝑁𝐴𝑁𝐵, scaled 

by the fraction of successful collisions within a measurement time interval 𝛥𝑡: 

𝑘𝑏𝑖,𝑒𝑓𝑓 =
〈 𝑧𝐴,𝐵〉

𝑁𝐴𝑁𝐵 
(1 − exp (−

𝑘𝑚𝑖𝑐𝑟𝑜𝛥𝑡

4𝜋𝐼(𝐷,𝑅,𝛥𝑡)
)). (28) 

Modeling Framework 

In this paper, we propose a new simulation framework using the above-described concept of 

generalized elementary kinetics. In our simulation framework, an equivalent particle model is first 

created from an elementary step mechanism (Fig. 2, part 1). To create an equivalent particle model, 

only the elementary reactions of the enzyme mechanism are required. If only phenomenological 

constants, e.g. parameters for the quasi-steady-state approximation, are given for the enzymatic 
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reaction, it is necessary to map these to the elementary reaction rate constants. Furthermore, all 

species involved in the elementary reaction properties need to be assigned to describe their molecular 

movement, i.e., a diffusion coefficient, a collision radius, and a mass. Given the molecular data, the 

rate constants of the particle model are matched with the rate constants of the elementary step model 

with the assumption that the measured, or calculated, rate constants were measured in homogenous, 

dilute conditions. In the case of monomolecular reactions, the observed rate constants are then 

equivalent to the microscopic transition rates. For bimolecular reactions, the diffusion-limited rate 

constant 𝛾𝐴,𝐵 is first computed based on the diffusion coefficients and collision radii and then matched 

to the effective reaction rate of the dilute, homogenous particle system with the rate constant in the 

elementary step model by adapting the corresponding microscopic rate constant 𝑘𝐴,𝐵,𝑚𝑖𝑐 using Eq. 

(25). A volume that is large enough to capture the local bulk properties of a locally well-mixed enzyme 

substrate system is then chosen such that the number of particles of each species in the system is 

large enough to discretize the concentration space of interest.  

In the second step, the system is perturbed on the microscopic level to investigate the influence of 

crowding (Fig. 2, part 2). Therefore, inert particles are introduced into the system that therefore alter 

effective particle interactions between the reactive species (20). To model a realistic crowding 

environment, a size distribution function 𝑝(𝑟) is estimated from the mass distribution 𝑝(𝑀𝑤) and an 

empirical mass size relation, 𝑟 =  0.0151 𝑀𝑤
0.315[𝑛𝑚], as reported for proteins in E. coli by Kalwarczyk 

et al. (36). The simulation volume is then populated with inert molecules by randomly drawing collision 

radii from the size distribution until the specified inert volume fraction 𝜙 is reached. The diffusion 

constant of the individual species is then calculated using the Stokes-Einstein relation, assuming that 

the hydrodynamic radius is equal to the collision radius: 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑟ℎ𝑦𝑑
 , (29) 

where 𝑟ℎ𝑦𝑑 is the hydrodynamic radius and 𝜂 is the dynamic viscosity.  

Next, the model is sampled around a chosen reference state (Fig. 2, parts 3 and 4). In this work, we 

chose to generate our sample with a full-factorial design. For each concentration sample, a particle 

simulation is performed where the effective rate constants 𝑘𝑒𝑓𝑓,𝑗 are measured for every elementary 

reaction as described in the previous section (Fig. 2, part 5). 

Subsequently, multivariate linear regression is used to estimate the mean GEEK parameters 𝛼𝑖𝑗 and 

𝛽𝑗 for the specified crowding conditions (Fig. 2, part 6). Finally, the generalized elementary kinetics, 

as described above, are used to analyze the response behavior of an equivalent crowded ODE-enzyme 

model (Fig. 2, part 7). 
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Weighted linear regressions  

To estimate the GEEK parameters using multivariate regression, a multivariate regression was 

performed. Because the variance of the reaction rate would be expected to be dependent on the 

regression variables, a weighted linear regression was performed to avoid fitting data with a large 

heteroscedasticity (See Supplemental Text). The conditional variance of the residuals was therefore 

extracted, and a weighted linear regression was performed where each observation was weighted by 

the inverse of the conditional variance of the residual. To perform these calculations, the Python 

package statsmodels was used (37).  

Results & Discussion 

To address the pitfalls currently associated with computational studies of enzymatic reactions in the 

intracellular space, this paper presents GEEK, a novel approach to capture spatial effects, such as 

crowding, in ordinary differential equation models. The framework is available in the form of two 

python packages: a package to implement GEEK expressions into ODE https://github.com/EPFL-

LCSB/geek, and a package to perform openfpm-based hard-sphere Brownian reaction dynamics 

simulations https://github.com/EPFL-LCSB/openbread. The GEEK formulation directly quantifies the 

deviation from dilute mass-action behavior in a systematic and efficient procedure, and we have 

focused our studies on the impact of crowding due to the influence of densely packed biomolecules 

on enzyme reaction rates in vivo.  

As an example, we applied our modeling framework to an investigation of the effects of 

macromolecular crowding on the enzymatic activity of PGM in E. coli. PGM is part of the lower 

glycolysis pathway and functions by reversibly transforming 3-phospho-D-glycerate (g3p) into 

2-phospho-D-glycerate (g2p). We use PGM for our investigation as it exhibits a prototypical reversible 

Michaelis-Menten kinetics and it’s in vitro kinetics are well known (38). 

Impact of crowding on the elementary reaction level 

For our reference elementary step mass-action model, which will serve as a basis for to construct the 

generalized elementary kinetic (GEEK) model, we calculated the elementary rate constants by the 

relations given in Eq. (3a,b) and Eq. (4a,b) from the in vitro Michaelis-Menten parameters measured 

by Fraser et al. (Table 1) (38). Based on this in vitro elementary step model, we built an equivalent in 

vitro particle model that required additional information on the molecular parameters, including mass, 

diffusion, and collision radius, of all the species involved in a reaction, meaning the substrates, 

products, free enzymes, and enzyme complexes. To estimate the collision radius of the enzyme and 

the enzyme-substrate complex, we followed the suggestions of Gameiro et al. and used the empirical 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/429316doi: bioRxiv preprint 

https://github.com/EPFL-LCSB/geek
https://github.com/EPFL-LCSB/geek
https://github.com/EPFL-LCSB/openbread
https://doi.org/10.1101/429316
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 

 

relation between mass and size to estimate the inert molecule size from the enzyme mass (36, 39). In 

the same way, we applied the Stokes-Einstein relation to calculate the diffusion constants from the 

collision radius. We additionally assumed that the enzyme-substrate complex entirely enclosed the 

substrate with its binding pocket, thus rendering the collision radius of the complex and enzyme equal. 

To estimate the collision radius of g3p and g2p, we also followed the suggestions of Gameiro et al. and 

used the method developed by Zhao et al. to estimate their van der Waals volume and to calculate 

the equivalent sphere radius (39, 40). The diffusion constants of g2p and g3p were obtained from the 

literature (41). All molecular properties are summarized in Table 2. 

Given the effective elementary rate constants and the molecular properties of the species, we 

calculated the effective microscopic rate constants using the relation given in Eq. (25) (Table 3). 

Comparing the microscopic rate constants in Table 3 with the diffusion-limited rate constants, it can 

be seen that the diffusion limited constants 𝛾1,𝑓 = 𝛾2,𝑏 = 3.88 × 10
10 M−1𝑠−1 are about five orders 

of magnitude higher than the microscopic reaction constants. This indicates that the microscopic 

binding process is much slower than the diffusion process and that the kinetics are reaction limited 

and not diffusion limited. Thus the mean time until the first collision between two reactants, i.e. the 

mean first passage time, is orders of magnitudes shorter than the mean time to the first reaction. For 

a reaction to be successful tens of thousands of collisions are occurring, hence, the impact of any 

increase in high-frequency first passage events due to fractal diffusion is limited (22). As most enzymes 

are reaction limited, the effects originating from fractal diffusion are therefore not likely dominating 

in metabolic networks. 

To build a GEEK model, that allows to characterize the enzyme kinetics in a crowded environment, we 

sampled the concentration space. This was done using a full-factorial design, allowing us to study the 

effect of several variables on the response output, as well as interactions between those variables, 

that sampled both the product and substrate concentrations as well as different enzyme saturation 

levels, indicating the percentage of bound enzyme with respect to the total enzyme concentration. 

For the regression input space, all combinations of substrate and product concentrations that were n-

fold increased and decreased with respect to the reference concentration of [𝑆]0 = [𝑃]0 = 49 μM 

were used, with 𝑛 ∈ [1,2,3,4,5], in combination with all free enzyme and enzyme-complex 

concentrations that yielded saturations of 𝜎 = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] given a total 

amount of enzyme [𝐸𝑡𝑜𝑡] = 64 μM. Furthermore, ten independent realizations of the crowding 

population were used for every sample concentration to capture the variability that comes from 

differently sized crowding-agents drawn from the size distribution. Thus, we measured the effective 

rate constants ten times for each of the 729 concentration samples and crowding conditions.  
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In total, we generated 21 generalized elementary kinetic models for five different inert volume 

fractions 𝜙𝑘 and four different size distributions 𝑝𝑘(𝑟) plus one without any crowding. This allowed 

for a detailed comparison of the effects of the volume fraction and size distribution of the crowding 

agents on enzyme kinetics. For the size-distributions, we used (i) the E. coli distribution derived from 

Kalwarczyk et al., (ii) a population containing only particles of the median size of the E. coli distribution, 

(iii) a population the size of the upper quartile of the E. coli size distribution, and (iv) a population the 

size of the lower quartile (Fig. 3) (36). These crowding populations were each investigated for inert 

volume fractions of 𝜙 ∈ [0.0,0.1,0.2,0.3,0.4,0.5]. 

For each crowding condition, we estimated the mean GEEK parameters 𝛼𝑖𝑗 and 𝛽𝑗 using multivariate 

weighted linear regression, which indicate conditions that likely influenced the enzyme kinetics. To 

further quantify the uncertainty of the mean GEEK parameters, the 95% confidence intervals of the 

regression results are given in Table 4. For parameter estimates with a p value ≥ 0.05, it was assumed 

that no significant correlation existed, and these parameters were not accounted for in the GEEK 

model. Note that this mean GEEK parameter model assumes that the crowding composition of an 

average cell is given by the average effect of a crowding configuration on the rate constant, which 

should be accurate for cell populations of the because the average has been shown to be reflective of 

the overall state of a cell population.  

Comparing the parameters 𝛼𝑖,𝑗 and 𝛽𝑗 of each elementary reaction 𝑗 (Table 4), it can generally be 

observed that the direct effect 𝛽𝑗 is about one to two orders of magnitude larger than each 

corresponding coupling coefficient, 𝛼𝑖,𝑗. Therefore, the direct effect is on the order of ±10−2 to ±100, 

whereas the coupling coefficients are on the order of ±10−4 to ±10−2. Assuming a two-fold increase 

in a concentration, the change in the coupling is smaller than one percent, whereas the direct effect 

varies between one and a thousand percent. This suggests that the effect of the reduced 

dimensionality only plays a small role compared to the effective interaction potential and the diffusion 

inhibition. For comparison, we show in the supplementary material that for diffusion-limited 

reactions, GEEK captures the influence of fractal diffusion as a deviation in the effective order as 

described by the coupling coefficient 𝛼𝑖,𝑗 (Supplementary Fig. 5) (16, 22, 42). 

Effects of crowding on the reversible Michalis-Menten kinetics  

We used the results of the linear regression to parameterize GEEK models to compare the ODE-

simulations of the classical Michaelis-Menten experiment with the mass-action model. The basis of 

this experiment involved an initial substrate concentration [𝑆]𝑖𝑛𝑖𝑡 that was added to a volume with a 

fixed enzyme concentration [𝐸]𝑖𝑛𝑖𝑡 = [𝐸]𝑡𝑜𝑡. When the substrate was added, the enzyme started to 

convert the substrate into a product. If the enzyme was operating reversibly, part of the product would 
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also be converted back to a substrate, and the reaction would become indistinguishable as it 

approached equilibrium. In this equilibrium state, the overall free energy of the reaction Δ𝑟𝐺
∘′ was 

close to zero. Therefore, the ratio between the product and substrate concentrations could be used 

to estimate the apparent equilibrium constant 𝐾𝑒𝑞.  

To characterize the dynamics of this system, the time to half-equilibrium 𝑡𝑒𝑞/2 was measured, which 

indicates the time needed for the ratio between the product and substrate concentrations to equal 

𝐾𝑒𝑞/2 (Fig. 4a). In general, an increase in the 𝑡𝑒𝑞/2 was seen with an increasing substrate concentration 

(Fig. 4a). The time to half-equilibrium for the interconversion between g3p to g2p was reduced for 

small substrate concentrations and inert molecule fractions, to up 𝜙 = 30 − 40%. In the case of  

[𝑆]𝑖𝑛𝑖𝑡 = [𝑆]𝑟𝑒𝑓/4, the time to half-equilibrium was reduced to a minimum value for an inert volume 

fraction of 𝜙 = 40% (Fig. 4a). For [𝑆]𝑖𝑛𝑖𝑡 = [𝑆]𝑟𝑒𝑓 and [𝑆]𝑖𝑛𝑖𝑡 = 2[𝑆]𝑟𝑒𝑓  this decrease in half-life time 

persists, though the overall half-life times are larger than for [𝑆]𝑖𝑛𝑖𝑡 = [𝑆]𝑟𝑒𝑓/4 and the minimum 

point occurs at lower inert volume fractions. Finally, in the [𝑆]𝑖𝑛𝑖𝑡 = 4[𝑆]𝑟𝑒𝑓 case, this decrease in 

𝑡𝑒𝑞/2 is no longer visible. It follows from this that the average initial rate increases with substrate 

concentration and decreases with an increasing volume occupancy. This suggest that the same 

substrate concentrations yield higher enzyme saturations, meaning that the ratio of enzyme-substrate 

complex to the total amount of enzyme increases and that the dissociation of the enzyme-substrate 

complex is inhibited.  

For a closer analysis of these findings, the Michaelis-Menten parameters were estimated using Eadie-

Hofstee diagrams, solving for the steady-state flux of the substrate and product concentrations 

between 4.9 μM and 490 μM, (Eq.(11)). The Eadie-Hofstee diagrams (Fig. 5) reveal that for both high 

and low occupancy volume fractions, a slight non-linearity with respect to the linear Eadie-Hofstee 

form of the reversible Michaelis-Menten is introduced with the generalized elementary kinetics. This 

indicates that the effective maximal flux 𝑉𝑚𝑎𝑥,𝑒𝑓𝑓
+/−

 and effective Michealis-Menten constant 𝐾𝑀,𝑋,𝑒𝑓𝑓 

are actually functions of the reactant concentrations [𝑆] and [𝑃]. For the case of 𝜙 = 0%, this non-

linearity is only pronounced at small reactant concentrations, whereas for higher volume occupancy 

conditions, the non-linearty is visible over the entire measurement range. Nevertheless, we used 

linear regression to estimate the effective average parameters to compare the steady-state GEEK 

model to the traditional Michaelis-Menten kinetics (Supplementary Fig. 3). 

Interestingly, the steady-state analysis revealed that all the effective Michaelis-Menten parameters 

𝑉𝑚𝑎𝑥,𝑒𝑓𝑓
+/−

, 𝐾𝑀,𝑋,𝑒𝑓𝑓 decreased as a function of the inert occupied volume 𝜙 These results complement 

our primary analysis, as the maximal flux of the enzyme directly relates to the ability of the enzyme-

substrate complex to dissociate, and the Michaelis-Menten constant is a measure of the affinity of the 
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reactant binding to the enzyme. The lower the Michaelis-Menten constant, the higher the binding 

affinity to the enzyme. Consequently, a decreasing Michaelis-Menten constant indicates more enzyme 

bound at the same reactant concentration, or in other words, an increased enzyme saturation. For the 

effective flux through the enzyme, this results in two counteracting effects: a potential increase in flux 

due to an increase in saturation or a decrease in flux due to the reduced dissociation. From the analysis 

of 𝑡𝑒𝑞/2 and the effective Michaelis-Menten parameters, it is evident that the flux-increasing effect is 

dominating if enough free enzyme is available to increase the saturation. If the enzyme capacity does 

not allow more substrate to associate, the flux-decreasing effect dominates. 

Influence of crowder size on the Michaelis-Menten kinetics 

We further investigated the influence of the size of the inert molecules on the enzyme kinetics by 

comparing crowding with different inert molecule sizes obtained using the results for the E. coli size 

distribution. When comparing the 𝑡𝑒𝑞/2 as a function of the volume occupancy obtained from 

crowding using the E. coli distribution to the population consisting of a single inert molecule size, a 

general flux-decreasing effect was observed for crowding in the single-sized population. Furthermore, 

smaller inert molecule sizes showed a stronger flux-decreasing effect that was alleviated as the size of 

the inert molecules increased. When we compared the enzyme saturation at equilibrium for the 

different inert molecule sizes, the single-sized crowding showed an increased saturation, and smaller 

crowding sizes had a stronger effect. This shows that the overall substrate affinity is increased more if 

the inert molecules are smaller than the enzyme-substrate collision radius.  

Finally, we determined the effective standard free energy of the reaction from the effective 

equilibrium constant Δ𝑟𝐺°
′ = −𝑅𝑇ln(𝐾𝑒𝑞),  where the effective equilibrium constant was 

determined from the reactant concentrations at equilibrium 𝐾𝑒𝑞 = [𝑃]𝑒𝑞/[𝑆]𝑒𝑞. This showed that the 

overall apparent standard free energy of reaction does not vary significantly with crowding size or 

volume fraction. Since the non-ideal contributions, which contain the terms emerging from molecular 

interactions, from steric interaction for the substrates and products are exactly equal, we would 

expect the overall non-ideal contribution to the free energy of the enzymatic reaction to be zero. The 

deviation in the effective standard energy using GEEK can be attributed to the approximation over the 

state space at points far from equilibrium (See Supplementary Fig. 7). 

Consequences of the crowded kinetics on the pathway level 

We further investigated the effects of crowding at a system level using an example linear pathway 

with three enzymes. We considered a linear pathway where a compound 𝑋𝑛 was reversibly converted 

into a compound 𝑋𝑛+1. All reactions were considered to follow reversible Michaelis-Menten kinetics. 
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The concentration of the first compound [𝑋1] was considered to be 250 μM and the concentration of 

the last compound [𝑋4] to be 50 μM. These boundary concentrations were considered to be constant. 

The last reaction catalyzed by enzyme 3 was parameterized using the results found for PGM. We 

further choose the parameters of enzyme 1 and 2 by scaling the product-specific Michaelis-Menten 

constant 𝐾𝑀,𝑃 by a factor of 2 and 3, respectively, as well as the maximum backwards flux 𝑉𝑚𝑎𝑥
−  by a 

factor of 0.5 and 0.33, respectively (Table 5). We further considered that all enzymes and reactants 

were of the same size and that, therefore, their GEEK parameters 𝛼𝑖𝑗 and 𝛽𝑗 were assumed to be the 

same. This models short pathway where only minor modifications occur on the molecule for example 

the reallocation of a phosphate group or a double bond. 

To characterize the influence of crowding on our pathway, we calculated the relative responses of the 

flux with respect to a two-fold increase in each of the enzyme concentrations, modeling an 

overexpression of the respective enzyme. We then compared the results obtained for the traditional 

mass-action model with the GEEK models representing the E. coli size distribution at different 

occupied volume fractions. Comparing the GEEK model without any inert molecules with the results 

from the mass-action model, only minor differences were observed. On the other hand, a 

redistribution of the flux control was clearly seen for increasing volume fractions, wherein the initially 

largest flux response decreased and the lower flux responses increased as a function of the volume 

fraction. Considering the typical volume occupancy in cells of 20% to 40%, the relative order between 

the flux responses was still the same as under dilute conditions, though the magnitude of the largest 

flux response is significantly reduced. In this case, it is the relative sensitivity of the flux that is reduced. 

This could act as an additional stabilization mechanism with respect to fluctuations in the enzyme 

levels, though it should be noted that this effect does depend on many factors, such as relative 𝐾𝑀s, 

𝑉𝑚𝑎𝑥, and reaction Δ𝑟𝐺’s. How these factors impact the response of the pathway fluxes with respect 

to the change in enzyme levels will require an extensive analysis considering different pathway 

structures and different types of enzyme kinetics. Given the extend of such a study it will beneficial to 

first understand impact for different types of enzyme kinetics before moving to the network level.  

Conclusion  

This research presents a method for characterizing spatial effects of any nature on biochemical 

reactions based on the mapping of average effects to ordinary differential equations. Besides studying 

the effects of intracellular crowding as we have done, this framework can influence the study of 

membrane confined biochemical reactions, enzyme-channeling, and DNA or actin bound reactions 

systems, which are all current topics in biochemistry that lack dedicated study tools. Using a 

representative example, we confirm the hypothesis of recent research in the field that for reaction-

limited enzyme kinetics, the diffusion effects in fractal spaces are negligible and are most likely not 
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dominating in reaction networks. Instead, a strong direct effect of crowding was seen on the effective 

rates, where a decrease in dissociation rates and an increase in association rates was observed when 

increasing occupied volume fraction. Both effects can be sufficiently explained by an effective increase 

of the crowding induced potential with the volume fraction, confirming that this is a better predictor 

of intracellular enzyme kinetics than the diffusion. Furthermore, we show that the effective 

Michaelis-Menten parameters strongly depended on the volume occupancy and the size distribution 

of inert molecules, indicating that the kinetics are likely to vary dramatically in different cellular 

compartments. We finally show that crowding at a simplified network level can lead to a redistribution 

of the effective control on the flux response, suggesting that crowding can have a stabilizing effect 

with respect to fluctuation in enzyme levels, potentially indicating why enzymatic systems in vivo 

systems show a higher robustness compared to in vitro.  

In future work, this framework will be used to analyze the impact of crowding on other kinetic 

mechanisms and on an expanded network level. The results will illuminate the strength of the overall 

impact of crowding on the regulation of metabolism. 
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Figure 1: Individual algorithm steps of the molecular particle model. 1) 1st order reactions are 

determined by a probabilistic success rate depending on the microscopic reaction rate per molecule 

𝑘𝑚𝑖𝑐𝑟𝑜,𝑖 and the timestep Δ𝑡. 2) The Brownian motion for every molecule is determined by its 

individual diffusion coefficient 𝐷𝑖. 3) For 2nd order reactions, success is determined upon collision given 

the microscopic reaction, the sum of the diffusion coefficient 𝐷𝑖𝑗 = 𝐷𝑖 + 𝐷𝑗 , the sum of the radii of 

the colliding particles 𝑟𝑖𝑗 = 𝑟𝑖 + 𝑟𝑗, and the time step (24). 4) Boundary reactions as constant particle 

boundaries, wherein the removal or insertion of particles is done if the number of particles deviates 

from the given boundary condition. 
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Figure 2: Modeling framework for crowded GEneralized Elementary Kinetics (GEEK). The input for the 

modeling framework is an arbitrary elementary step model containing in vitro data for the enzyme 

kinetics. 1) This model is then translated into an equivalent in vitro particle model of the enzymatic 

reaction. 2) The space is filled with inert molecules that are drawn from a size distribution 𝑝(𝑟) until 

the fraction 𝜙 of the simulation space is occupied. 3) A reference concentration state is then chosen 

for the GEEK-model and 4) the space around the concentration space is sampled. 5) The 𝑘 particle 

model realizations are then simulated for each concentration sample, i.e. repeat step 2 and simulate. 

6) From the resulting particle traces, the effective rate constants are measured from the particle 

collision frequencies and the locally available volume. 7) These effective reaction rate constants are 

log-transformed, and a linear regression is performed with respect to the scaled logarithmic 

concentrations. The output of the linear regression directly links to the GEEK parameters, see Eq. (7) 

and Eq. (8). 8) Finally, the GEEK model can approximate the crowded kinetics using ordinary 

differential equations. 
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Figure 3: Size distribution function of the inert particles, numerically calculated from the mass 

distribution and empirical mass size relation as reported for proteins in E. coli by Kalwarczyk et al. (36).   
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Figure 4: a) [𝑃]/[𝑆] Dynamics determined for mass-action and generalized elementary kinetics (GEEK) 

models for different initial substrate concentrations [𝑆]𝑖𝑛𝑖𝑡 and different occupied volume fractions 

(𝜙)for the E. coli molecular weight distributions. The light dashed lines represent the dilute mass-

action model, whereas the thin solid lines represent a population of 100 re-sampled GEEK models. b) 

Time to half-equilibrium 𝑡𝑒𝑞/2 as a function of the occupied volume fraction for different initial 

substrate concentrations [𝑆]𝑖𝑛𝑖𝑡. The colors of the lines denote the different initial concentrations, 

where blue corresponds to [𝑆]𝑖𝑛𝑖𝑡 = [𝑆]𝑟𝑒𝑓/4, yellow to [𝑆]𝑖𝑛𝑖𝑡 = [𝑆]𝑟𝑒𝑓, green to [𝑆]𝑖𝑛𝑖𝑡 = 2[𝑆]𝑟𝑒𝑓, 

and red to [𝑆]𝑖𝑛𝑖𝑡 = 4[𝑆]𝑟𝑒𝑓. 
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Figure 5: Effective Michaelis-Menten parameters a) 𝐾𝑀,𝑆 and 𝐾𝑀,𝑃 and b) 𝑉𝑚𝑎𝑥
+  and 𝑉𝑚𝑎𝑥

−  as a function 

of volume fraction. The grey dashed lines represent the effective parameters when the all 

concentrations are scaled to an effective volume 𝑉𝑒𝑓𝑓 =  𝑉(1 − 𝜙) that excludes the volume occupied 

by inert molecules. The errors in the values calculated from uniformly resampling the GEEK parameters 

are smaller than 2% of the mean.  
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Figure 6: Effects of the particle size distribution. a) Time to half-equilibrium 𝑡𝑒𝑞/2, b) enzyme saturation 

[𝐸𝑆]/[𝐸]𝑡𝑜𝑡 for [𝑆]𝑟𝑒𝑓 = 49 μM, and c) apparent standard free energy of the reaction measured as 

𝑅𝑇log([𝑃]𝑒𝑞/[𝑆]𝑒𝑞) under different crowding conditions. The blue line represents the apparent 

equilibrium measured from the E. coli size distribution; yellow, green, and red are obtained using a 

single size of inert molecules corresponding to the lower quartile, the median quartile, and the upper 

quartile of the E. coli size distribution, respectively. The error bars denote the upper and lower quartile 

of the resulting population that was obtained by resampling the GEEK model parameters within their 

confidence bounds. The black line denotes the equilibrium constant calculated from the in vitro kinetic 

parameters.  
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Figure 7: Flux responses corresponding to a two-fold increase in the respective enzyme concentration 

for the basic mass-action model and the GEEK models derived from the E. coli distributions as well as 

the different volume fractions of the inert molecules. Blue denotes the first enzyme in the pathway, 

orange the second, and green the third. 
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Table 1: In vitro Michaelis-Menten parameters and calculated elementary rate constants for 
phosphoglycerate mutase in E. coli. 

Michaelis-Menten parameters Elementary rate constants  

Km g3p 210 µM (38) k1,f 15.2 × 105 s-1M-1 

Km g2p 97 µM (38) k1,b 10 s-1 

kcat g3p to g2p 22 s-1 (38) k2,f 22 s-1  

kcat g2p to g3p 10 s-1 (38) k2,b 32.9 × 105 s-1M-1 

 

Table 2: Molecular properties of the reacting particles. † were calculated according to the 

approximations suggested by Gameiro et al. (39). The remaining values were obtained from (a) Perry 

(41) and Gameiro et al. (39) (b). 

Species Diffusion (µm2s-1) Collision radius (nm) Mass (kDa) 

g3p 940 (a) 1.11 † 0.186 † 

g2p 940 (a) 1.11 † 0.186 † 

PGM 84.8 † 3.87 † 61 (b) 

PGM complex 84.8 † 3.87 † 61.186  

 

Table 3: Microscopic reaction rates per reacting particle (p), per collision (c), and diffusion-limited rate 

constants of the bimolecular reactions 

Microscopic rate constants  

k1,f (c) 15.7 × 105 s-1M-1 

k1,b (p) 10 s-1 

k2,f (p) 22 s-1  

k2,b (c) 34.0 × 105 s-1M-1 
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Table 4: Parameters of the generalized elementary kinetics, i.e. 𝛼𝑖𝑗 and 𝛽𝑗, for all elementary 

reactions at different inert volume fractions. The dashes denote GEEK parameters with a significance 
of 𝑝 ≤ 0.05. 

Elementary reaction Crowding conditions 

Formula Parameters 0% 10% 20% 30% 40% 50% 

𝑆 + 𝐸
𝑘1,𝑓
→ 𝐸𝑆 

𝛽1,𝑓 7.31 × 10−2 2.61 × 10−1 4.57 × 10−1 6.87 × 10−1 9.57 × 10−1 1.25 

𝛼𝑆,1,𝑓 4.74 × 10−3 − 3.22 × 10−3 7.22 × 10−3 6.95 × 10−3 3.23 × 10−3 

𝛼𝐸,1,𝑓 1.07 × 10−2 1.89 × 10−2 9.67 × 10−3 8.07 × 10−3 1.23 × 10−2 − 

𝛼𝐸𝑆,1,𝑓 − 1.34 × 10−2 − − − − 

𝛼𝑃,1,𝑓 − 2.51 × 10−3 −3.47 × 10−3 − − 2.42 × 10−3 

𝐸𝑆
𝑘1,𝑏
→ 𝑆 + 𝐸 

𝛽1,𝑏 −1.48 × 10−2 −1.17 × 10−1 −2.80 × 10−1 −5.46 × 10−1 −1.03 −2.26 

𝛼𝑆,1,𝑏 −2.94 × 10−3 −3.56 × 10−3 −4.53 × 10−3 −6.09 × 10−3 −8.33 × 10−3 −9.58 × 10−3 

𝛼𝐸,1,𝑏 −1.90 × 10−4 1.71 × 10−3 6.47 × 10−4 3.32 × 10−3 − 3.16 × 10−3 

𝛼𝐸𝑆,1,𝑏 − 3.46 × 10−3 − 2.03 × 10−3 −1.22 × 10−3 − 

𝛼𝑃,1,𝑏 −2.94 × 10−3 −3.58 × 10−3 −4.52 × 10−3 −6.09 × 10−3 −8.33 × 10−3 −9.58 × 10−3 

𝐸𝑆
𝑘2,𝑓
→ 𝑃 + 𝐸 

𝛽2,𝑓 −1.48 × 10−2 −1.17 × 10−1 −2.80 × 10−1 −5.46 × 10−1 −1.03 −2.26 

𝛼𝑆,2,𝑓 −2.94 × 10−3 −3.56 × 10−3 −4.53 × 10−3 −6.09 × 10−3 −8.34 × 10−3 −9.58 × 10−3 

𝛼𝐸,2,𝑓 −1.90 × 10−4 1.71 × 10−3 6.53 × 10−4 3.31 × 10−3 − 3.13 × 10−3 

𝛼𝐸𝑆,2,𝑓 − 3.46 × 10−3 − 2.01 × 10−3 −1.20 × 10−3 − 

𝛼𝑃,2,𝑓 −2.94 × 10−3 −3.58 × 10−3 −4.52 × 10−3 −6.10 × 10−3 −8.34 × 10−3 −9.57 × 10−3 

𝑃 + 𝐸
𝑘2,𝑏
→ 𝐸𝑆 

𝛽2,𝑏 6.88 × 10−2 2.54 × 10−1 4.58 × 10−1 6.85 × 10−1 9.52 × 10−1 1.25 

𝛼𝑆,2,𝑏 − − −2.29 × 10−3 − 3.09 × 10−3 − 

𝛼𝐸,2,𝑏 − − 1.05 × 10−2 − − − 

𝛼𝐸𝑆,2,𝑏 − − − −7.78 × 10−3 − − 

𝛼𝑃,2,𝑏 6.59 × 10−3 2.76 × 10−3 4.70 × 10−3 6.85 × 10−3 8.45 × 10−3 3.74 × 10−3 

 
Table 5: Enzyme parametrizations used for the linear pathway example. 

Parameters Enzyme 1 Enzyme 2 Enzyme 3 

𝐾𝑀,𝑆 200 μM 200 μM 200 μM 

𝐾𝑀,𝑃 300 μM 200 μM 100 μM 

𝑉𝑚𝑎𝑥
+  1.5 mM/s 1.5 mM/s 1.5 mM/s 

𝑉𝑚𝑎𝑥
−  0.15 mM/s 0.25 mM/s 0.5 mM/s 
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