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Abstract

Many computational models for analyzing and predicting cell physiology rely on in vitro data, collected
in dilute and cleanly controlled buffer solutions. However, this can mislead models because about 40%
of the intracellular volume is occupied by a dense mixture of proteins, lipids, polysaccharides, RNA,
and DNA. These intracellular macromolecules interact with enzymes and their reactants and affect the
kinetics of biochemical reactions, making in vivo reactions considerably more complex than the in vitro
data indicates. In this work, we present a new type of kinetics that captures and quantifies the effect
of volume exclusion and any other spatial phenomena on the kinetics of elementary reactions. We
further developed a framework that allows for the efficient parameterization of this type of kinetics
using particle simulations. Our formulation, entitled GEneralized Elementary Kinetics (GEEK), can be
used to analyze and predict the effect of intracellular crowding on enzymatic reactions and was herein
applied to investigate the influence of crowding on phosphoglycerate mutase in Escherichia coli, which
exhibits prototypical reversible Michaelis-Menten kinetics. Current research indicates that many
enzymes are reaction limited and not diffusion limited, and our results suggest that the influence of
fractal diffusion is minimal for these reaction-limited enzymes. Instead, increased association rates
and decreased dissociation rates lead to a strong decrease in the effective maximal velocities V44
and the effective Michaelis-Menten constants K;, under physiologically relevant volume occupancies.
Finally, the effects of crowding in the context of a linear pathway were explored, with the finding that
crowding can have a redistributing effect, relative to ideal conditions, on the effective flux responses
in the case of two-fold enzyme overexpression. We suggest that the presented framework in
combination with detailed kinetics models will improve our understanding of enzyme reaction

networks under non-ideal conditions.
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Introduction

The intracellular environment is a crowded place, with about 20-40% of the interior volume of living
cells occupied by a variety of macromolecules including proteins, RNA, DNA, and lipids. (1, 2). The
composition of this mixture depends considerably on the organism and its environment, but even
within the cell, the local density and size distribution of the macromolecules varies between and within
compartments (3-5). Because the presence of these macromolecules can impact diffusion rates,
protein conformation, folding and aggregation, catalytic rates, and enzyme-substrate affinities (6-8),
an alteration in the elementary properties governing the spatiotemporal dynamics of cells can affect
all cellular functions, such as expression, translation signaling, and metabolism. Because many of these
cellular functions depend on specific reactions catalyzed by cellular enzymes, it is necessary to study
the effect of macromolecular crowding on the function of enzyme-catalyzed reaction systems, and to

do this, it is necessary to characterize the kinetics of these systems under the altered conditions.

Computational models are used to analyze and predict cell physiology, though computational studies
are limited in their frequent reliance on in vitro characteristics to directly parameterize their models
(9, 10), reduce uncertainty (11, 12), or to evaluate predicted parameters (13). This causes that the
actual enzyme in vivo characteristics are not captured such that the model predictions from these
studies might deviate significantly from the ones measured in vitro. This is especially true considering
that in vitro characterizations are usually performed in dilute, homogenous conditions whereas

reactions in the cytoplasm occur in an inhomogeneous and densely packed environment (14).

The importance of environmental impact on enzyme kinetics is therefore an important topic of study,
especially in terms of crowding in the densely packed intracellular space. In early studies of crowded
enzyme catalysis, it was believed that the main effect of diffusion-limited Michaelis-Menten kinetics
was caused by altered, anomalous diffusion accompanied by increased effective concentrations.
These studies were limited, however, in that volume exclusion effects caused by the reactive partners
themselves were often neglected, which results that the change in activity due to interaction with
macromolecules is not captured (15-18). A more recent work on the subject was presented by Mourao
et al. in which fractal behavior, indicating that the diffusion and the apparent order of the elementary
reactions is altered, was studied using a lattice-based model for an irreversible Michaelis-Menten
mechanism. They showed that fractal kinetics only occur under very restrictive conditions, suggesting

that it might be less common than previously assumed (19).

Further recent work has shown that the effective rate constant for bimolecular reactions changes
under crowded conditions (20, 21). Berezhkovskii and Szabo demonstrated that it is possible to

express the effective rate for bimolecular reactions as a function of a crowding-induced interaction
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potential between two reaction partners, which results from an interaction with the surrounding
particles when two reactants are in contact. Repulsive interactions between the reactants and
particles would, therefore, result in an attractive effective potential between the reactants and vice
versa. Relatedly, it has been shown that for rate-limited reactions in the presence of high reactant
concentrations, the influence of diffusion minimal, indicating that the effective crowding-induced

interaction potential might be more dominant for most enzymatic reactions (22).

Because of its importance in modeling in vivo systems, the effects of crowding on biochemical
reactions have been extensively studied by various computational and experimental methods, as seen
in several reviews (1, 2, 23). Most of the effort in these studies has been directed towards investigating
the impact of diffusion in fractal media on the reaction kinetics (22), with little focus on characterizing
the effect of crowding on the mean effective enzyme kinetics. However, since it has now been shown
that most enzymes are not diffusion limited but instead are reaction limited (24), the reevaluation of
crowding in these reactions is important. In this work, therefore, we aimed to design computational
methods for studying spatial effects of any kind, applying our work specifically to the effects of
crowding on reaction-limited instead of diffusion-limited enzymes, with a goal of bridging the

discrepancy between the in vitro measurement of kinetic parameters and the actual in vivo conditions.

In contrast to the previous studies on the Michaelis-Menten kinetics, that use a diffusion limited
irreverisble reaction scheme, we studied the effect of crowding on enzyme kinetics by employing a
fully reversible reaction scheme and present herein an example with a representative catalytic activity
and affinities that result in a reaction-limited enzyme. Additionally, our molecular particle model
accounts for volume exclusion and the diffusion of all species, including reactants and crowding
agents, and this was used to study the effect of different size distributions of crowding agents on

reaction kinetics.

Previous studies into crowding conditions are limited by their computational cost and lack of global
insight into the sensitivity of the reaction kinetics. They often use spatial simulation techniques to
simulate multiple realizations of reaction trajectories to determine the influence on the effective
kinetics under very specific conditions, meaning that these studies only gain insight into the local
sensitivity of the kinetics with respect to the crowding conditions. Furthermore, it is computationally
very expensive to resolve the reaction trajectories from particle simulations for reaction-limited
reactions because the time scale to resolve the diffusion of the particle is up to seven orders of
magnitude faster than the reaction time scale. This requires billions of time steps to be solved for tens

of thousands of particles, resulting in a month of simulation time for a single trajectory (25).

To resolve these challenges, we present a new formulation entitled GEneralized Elementary Kinetics

(GEEK) to characterize the kinetic mechanisms that are influenced by various spatial effects, including
3
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volume exclusion, confinement (1D/2D diffusion), strong and weak interaction forces, localization, or
any combination of similar phenomena. In the presented work, we use a coarse-grained particle model
based on hard-sphere Brownian reaction dynamics to parametrize this formulation, which can be used
in a straightforward way to build ordinary differential equation (ODE) models that use power-law
approximations to capture the characteristics of spatial effects and to directly quantify the impact of

fractal diffusion.

We applied our method to the investigation of macromolecular crowding on the function of
phosphoglycerate mutase (PGM) in Escherichia coli. Our presented example clearly demonstrates that
accounting solely for an increased local concentration and anomalous diffusion is not sufficient to
properly describe crowding effects. We show that a mechanism-dependent effect emerges upon
crowding that is facilitated by an increase in both product and substrate association activity and a
decrease in the dissociation activity. For reversible Michaelis-Menten kinetics, these effects result in
an increase in the binding affinity for the product and substrate as well as a decrease in the maximal
reaction rate. Finally, we investigated the effects of crowding on a linear pathway, where we show
that crowding can significantly redistribute the relative flux responses with respect to enzyme

overexpression, indicating that the impact of altered kinetics is also propagated on a network level.
Methods

Reversible Michaelis-Menten kinetics

In this study, we primarily investigated a reversible Michaelis-Menten reaction mechanism, where a
substrate S binds to an enzyme E to form a complex ES via a reversible reaction, which can reversibly

transform the substrate and reversibly dissociate the product P. The overall reaction scheme is given

by:

kl'f kz,f
S+E = ES = E+P, (1)
kip  kop

where ky ¢, ky 1, k3 5, and k, , denote the rate constants of the elementary reactions. The typical form
of the reaction rate v as a function of substrate and product concentration, see Eq. (2), is derived from
the assumption that all enzymes are conserved such that [ES] + [E] = [Er], where [E;] denoted the
total enzyme concentration, and the enzyme-substrate complex concentration [ES] is in a quasi-
steady state, i.e. d[ES]/dt = 0 (26).
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(2)

where the parameters Vi+, Vi, Kin s, and Ky, p are related to the elementary rate constants k12,5 /p

given a [E7].

Vin = ko f[Er], Vi = kyplEr], (3a,b)

Kmns = (kip + kop)/kipand K p = (kyp + kop)/Kyf. (4a,b)

The equilibrium constant of the system is then:

kirk
— ‘uftaf ()

€4 kypkop

Generalized elementary kinetics (GEEK)

By introducing inert molecules, we observe an alteration of the effective rate constants due to a
change in the diffusion and the collision dynamics. In the most general case, this can, compared mass-
action kinetics, result in a change of the effective order and effective rate constant. Berezhkovskii and
Szabo showed that the effective (Collins-Kimball) reaction rate constant k. for a diffusion-influenced,
bimolecular reaction under crowded conditions can be expressed in terms of an altered diffusion
constant D; and an external crowding induced interaction potential AU between the two reacting
species. This potential is an implicit representation of the interaction of the individual reactant species
with the molecules in their environment and whether these interactions keep the reactants in contact
or if they are tearing them apart. The expression for the Collins-Kimball rate constant was found to
follow that described by Berezhkovskii and Szabo (20):
AU

41D, RkyeksT
kc[( = ! 0 AU (6)

4D,R + koeksT

where kj is the reaction rate upon collision. For the reaction-limited case ky > 4mD{R, this expression
simplifies to an exponential relation, kqx = ko exp(AU/kgT). In general, the induced interaction
potential AU and the diffusion constant D; are a function of the global state of the system, which

includes concentrations and intermolecular interactions.
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To approximate this deviation of the effective elementary rate constants, indicated by k; . s, where
Je[(1, ), (1,b), (2, f),(2,b)], from the free rate constants in ideal conditions, k; , in a general form,

the logarithmic deviation {; was introduced:

log (I(]Lf(qb)> ={j. (7)

kjo

To quantify this deviation as a function of the species’ concentrations, a linear function of the scaled

logarithmic concentrations log([X;]/[X;]o) was introduced and tested for {;:

kje [Xi]
g (1221) = iy og (3) + ®

where a; ; are the coefficients quantifying the effect of one of the N reactants X; on reaction j, and §;

is an offset attributed to the effect of different occupied volume fractions.

The effective reaction rate is thus given by:

1\ %id
[Xi] > . 9)

N
kjerr(P) = kjoexpfB; 1_[ <[X']o

=1
From this expression, a generalized mass-action rate law is defined for the elementary reactions:
N

Xl' ajtn;j e
vj (¢) = kj,O €xp )B_] 1_[ <[[Xl]]0> [Xi]ol’] ) (10)
i=1

where n; ; denotes the stoichiometric coefficient of the substrate X; in reaction j. The generalized
elementary mass-action rate law (10) can be directly used to create a system of ordinary differential

equations that can approximate the time evolution of the system under non-ideal conditions.
Generalized elementary Michaelis-Menten kinetics

Given the generalized elementary rate laws, the quasi-steady-state approximation for the Michaelis-
Menten reaction rate with generalized elementary kinetics can be defined. Therefore, it can be
assumed that the enzyme is conserved, [ES] + [E] = [Er], and the enzyme-complex is in a quasi-

steady state, i.e.

d[ES]

7 = Ul,f - vl,b - UZ,f + Uz’b =~ 0, (11)
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where each flux v; given by a generalized rate law as given in Eq. (10). The reaction rate of the

enzymatic reaction at steady state is then given by the rate of product formation at steady state:
v([S].[P]) = [ES]qss kz,f,effr (12)

where [ES]qss is enzyme complex concentration at the quasi-steady state. For the case of a; ; € R
and a; ; # 0, it is not possible to obtain an explicit expression for the reaction rate v([S], [P]). Eq. (11)
can thus be solved numerically for the quasi-steady-state concentration of the enzyme complex
[ES]4ss for given amount of total enzyme [E7], substrate [S], and product [P], and the reaction rate
can then be calculated according to Eq. (11). The average apparent Michaelis-Menten parameters are
then extracted using a linear approximation of v([X]) with v([X])/[X] for either [S] = 0 or [P] = 0,
i.e. the Eadie-Hofstee form of Michaelis-Menten kinetics (27, 28). The slope of these linear regressions

yields the respective K,,,, and the y-axis intercept yields the respective V,,,4:

S
|v([5])| = - m,S%'l'VnTax'
(13)
P
lv([PD] = — m,P%'l' Vinax-

To express the thermodynamic driving forces, the elementary rate model was considered as M
reversible reactions p € [1,2], with the forward flux v,  and the backward flux v, ,. Using the principle
of detailed balance, the free energy of the reaction can be expressed as a function of the displacement

from equilibrium I' = v, /v (29):

A,G) =RTInT, =RTIn (””—”) (14)

Vo.f

where R is the general gas constant and T is the absolute temperature. With the fluxes expressed in

terms of the generalized elementary rate law (10), the free energy reads:

Nip,
[Xi]o P

X-] NipbtQipb
Kk ()
p,b,0 expﬁp,b Hz—l [Xi]O

[X;] )"i,p.f tipf
[Xilo

A,Gy = RTIn (15)

[X Nip,f

ilo

kp,f,O exp ﬁp,f H{Vil (

In general, the overall free energy consists of the ideal and non-ideal contributions. The ideal
contribution consists of the standard free energy of the reaction and the concentration contributions,
and the non-ideal contribution contains terms emerging from molecular interactions, such as by steric

repulsion, van der Waals forces, and electrostatic interactions.
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ATG;; = ATG;QO + Ziw ni,pRT ln([Xi]) + ATG[I),StETiC + A1’61,),VDW + ArG;),el + -

’ 1
A1”Gp,ideal A7’Gp,non—ideal

(16)

In this work, only the non-ideal contributions due to steric repulsion were modeled by means of a
hard-sphere potential, though in the most general case, the formulation presented in this work allows

for the inclusion of any kind non-ideal contributions:

AGy = DGy + XV 0 pRTIN([X]) + ArGp reric -

! [;
AT‘Gp,ideal A7‘Gp,non—ideal

By comparing the free energy of the generalized elementary rate model to the free energy of the dilute

mass-action equivalent, the ideal contribution can be identified as:

M M

’ k ,b,0
ATGp,ideal = RTIn (kp—fo> + Z ni'p'bRT ln([Xl]) - Z ni'p'fRT ln([XL])
P i i
(17)
M
= A,GY + Z n; ,RT In([X;]).
i
The remaining contributions can be identified as the non-ideal contribution:
M ( [Xi] )ai""b
ArG) non—idgear = RT(Bop — By ) + RTIn \EAE (18)
rUpnon—ideal p.b p.f u ([Xi] )a’i,p,f
=1 \[X;lo

ArG;,),non—ideal can be further partitioned into a reactant-independent and a reactant-dependent

contribution:

’ _ ! ’
Aer,non—ideal - Aer,indep + ATGp,dep

M i,p.b~ i
X;] \“eer e s (19)
= RT(ﬁp,b' Bp.f) RTIn (ﬂ([[X]]o> )

=1

The free energy of the generalized elementary Michaelis-Menten kinetics is given by the sum of all

reversible reaction free energy contributions ArG,;:

R
AG = ZATG;. (20)
P

With [X;] = [[S], [E], [ES], [P]], the free energy of the reaction can be simplified to the well-known

ideal contribution containing only the chemically modified species [S] and [P] as well as a non-ideal
8
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contribution, wherein the non-ideal contribution is a phenomenological description of free energy
change based on the generalized elementary kinetics.
ro_ o [P] 1
AG = AG + RT In m + Aanon—ideal([S]r[E]:[ES]I[P])- (21)
The formulation of the reversible Michaelis-Menten rate law in terms of generalized elementary

kinetics allows for the phenomenological capture of non-linear effects on the collision level.
Hard-sphere Brownian reaction dynamics

To incorporate the spatial effects into the enzymatic reaction system, hard-sphere Brownian reaction
dynamics (HSBRD) were used. The method used in this work is a straightforward combination of hard-
sphere Brownian dynamics (30) and Brownian reaction dynamics (31, 32) that was accomplished by
adding the hard-sphere collision dynamics as described to Brownian reaction dynamics. The method
describes the movement of independent particles as a random walk of point particles diffusing in a
viscous medium. Thereby, HSBRD neglects the hydrodynamic interactions between the particles. The
equations of motion are given in terms of the overdamped Langevin equation. Using the Einstein-

Smoluchwoski relation, its velocity is given by Wang and Uhlenbeck (33):

dx D . dj(t)
= +2D —2 22
dt kyT FG) +v2b at '’ (22)

where F(X) is a force acting on the particle, k;, is the Boltzmann constant, T is the absolute
temperature of the surrounding fluid, and 7j(t) is the result of a three-dimensional Wiener process.

An explicit Euler formulation was used to update the positions at every time step, 4t, as follows:
- - D -
Xip1 = X;— AtﬁF(x) + V2DAt ng, (23)
b

where 1, is a random vector drawn from a normal distribution.

When two reactants collided, i.e. their radii overlapped after the positions were updated, a uniform
distributed random number r was compared to the reaction with a probability p to determine if the
reaction occurred within this time step At. The probability p was determined by a microscopic reaction
rate K- (34):
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kmicroAt )

471 (D, R, At) (24)

p=1—exp(—

where I(D, R, At) is a normalization factor for the effective collision volume in Brownian reaction
dynamics simulations, as derived by Morelli and ten Wolde (34). The observed steady-state reaction

rate k5 for a bimolecular reaction in homogenous, dilute conditions is then given by (35):

11 1 1 1

I + ,
kag  kapmicro Yap  Kapmicro 47(Da+ Dp)(1a +1g)

(25)

where kg micro is the reaction rate upon collision, and y,p is the diffusion-limited reaction rate

constant.

In the case of a particle collision without a subsequent reaction, an elastic hard-sphere collision was
assumed to take place. The new particle position was computed from the momentum conservation

using the average velocity v; = A7; /At of the move that led to the particle overlap (30).

First-order reactions are modeled similarly to bimolecular reactions by comparing a uniformly
distributed random variable to the probability that the reaction took place in the time interval At, with
the reaction probability of p = 1 — exp(—kicro4t). The reaction products are placed in contact
around the original position of the educt using a random orientation. If the products were to collide
with any other particles, the move would be rejected and the educt would remain at its original

position. Otherwise, the educt would be removed and the products would be placed instead.

Furthermore, constant particle boundary conditions were applied at every timestep through the
random insertion or removal of particles of a given species to match the specified particle count of the
species. The HSBRD particle simulation was implemented in C++ using the OPENFPM framework

(http://openfpm.mpi-cbg.de/).

Measuring effective rate constants

Since it is necessary to resolve the particle movement on the nanosecond timescale as opposed to the
timescales of the reaction dynamics, which are found to be on the order of seconds to hours, a
separated timescale approach was proposed to efficiently bridge these differences. The effective
elementary reaction rates at constant concentrations and crowding conditions in particle simulation
were therefore measured. To measure the effective rate constants from a particle simulation, two

separate schemes for monomolecular and bimolecular rate constants were proposed.
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For monomolecular rate constants, the effective reaction rates were extracted by probing the space
around the enzyme-substrate complexes. Therefore, every valid educt k for a reaction j was selected,
and multiple dissociation reactions were attempted in a random direction. If the dissociation were to
be successful, meaning that the dissociated particles did not collide, w;;; = 1. If the dissociation were
to yield a collision, wj,; = 0. Averaging over the results of all dissociation attempts w;; of the probed
particle i, a local success probability of (w ;) was obtained. To describe the equivalent homogenous
system, the success probability (w;) was computed as the mean of the local average success rate over
all probed particles. In the limit of continuous concentrations, the effective rate constant, ks, is

given by the rate constant kg ; scaled by the success probability (wj):

kmon,eff,j = ko,j (wj>- (26)

The effective bimolecular rate constant can be extracted from the effective collision frequency z4 5
between two species, A and B. This collision frequency is estimated as the number of collisions

between A and B in an integrated time interval ¢, g (t, t + At) per time step At:

CAB (t,t+At)

At (27)

ZA,B(t’ t+ At) =

Given the probability of a reactive collision (Eq. (24)), the effective bimolecular rate constant can be
measured as the mean collision frequency per number of possible interactions pairs, i.e. NyNp, scaled

by the fraction of successful collisions within a measurement time interval At:

— {zaB) (1 _ _ _kmicroAt
kbi,eff = NaNp (1 exp( 4n1(D,R,At)))‘ (28)

Modeling Framework

In this paper, we propose a new simulation framework using the above-described concept of
generalized elementary kinetics. In our simulation framework, an equivalent particle model is first
created from an elementary step mechanism (Fig. 2, part 1). To create an equivalent particle model,
only the elementary reactions of the enzyme mechanism are required. If only phenomenological

constants, e.g. parameters for the quasi-steady-state approximation, are given for the enzymatic
11
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reaction, it is necessary to map these to the elementary reaction rate constants. Furthermore, all
species involved in the elementary reaction properties need to be assigned to describe their molecular
movement, i.e., a diffusion coefficient, a collision radius, and a mass. Given the molecular data, the
rate constants of the particle model are matched with the rate constants of the elementary step model
with the assumption that the measured, or calculated, rate constants were measured in homogenous,
dilute conditions. In the case of monomolecular reactions, the observed rate constants are then
equivalent to the microscopic transition rates. For bimolecular reactions, the diffusion-limited rate
constant y, g is first computed based on the diffusion coefficients and collision radii and then matched
to the effective reaction rate of the dilute, homogenous particle system with the rate constant in the
elementary step model by adapting the corresponding microscopic rate constant k4 g i Using Eq.
(25). A volume that is large enough to capture the local bulk properties of a locally well-mixed enzyme
substrate system is then chosen such that the number of particles of each species in the system is

large enough to discretize the concentration space of interest.

In the second step, the system is perturbed on the microscopic level to investigate the influence of
crowding (Fig. 2, part 2). Therefore, inert particles are introduced into the system that therefore alter
effective particle interactions between the reactive species (20). To model a realistic crowding
environment, a size distribution function p(7) is estimated from the mass distribution p(M,, ) and an
empirical mass size relation, 7 = 0.0151 M33'5[nm], as reported for proteins in E. coli by Kalwarczyk
et al. (36). The simulation volume is then populated with inert molecules by randomly drawing collision
radii from the size distribution until the specified inert volume fraction ¢ is reached. The diffusion
constant of the individual species is then calculated using the Stokes-Einstein relation, assuming that

the hydrodynamic radius is equal to the collision radius:

k
D=—1 (29)

- 6MNThya

where 17,4 is the hydrodynamic radius and 7 is the dynamic viscosity.

Next, the model is sampled around a chosen reference state (Fig. 2, parts 3 and 4). In this work, we
chose to generate our sample with a full-factorial design. For each concentration sample, a particle
simulation is performed where the effective rate constants k. ; are measured for every elementary

reaction as described in the previous section (Fig. 2, part 5).

Subsequently, multivariate linear regression is used to estimate the mean GEEK parameters «;; and
p; for the specified crowding conditions (Fig. 2, part 6). Finally, the generalized elementary kinetics,
as described above, are used to analyze the response behavior of an equivalent crowded ODE-enzyme

model (Fig. 2, part 7).
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Weighted linear regressions

To estimate the GEEK parameters using multivariate regression, a multivariate regression was
performed. Because the variance of the reaction rate would be expected to be dependent on the
regression variables, a weighted linear regression was performed to avoid fitting data with a large
heteroscedasticity (See Supplemental Text). The conditional variance of the residuals was therefore
extracted, and a weighted linear regression was performed where each observation was weighted by
the inverse of the conditional variance of the residual. To perform these calculations, the Python

package statsmodels was used (37).

Results & Discussion

To address the pitfalls currently associated with computational studies of enzymatic reactions in the
intracellular space, this paper presents GEEK, a novel approach to capture spatial effects, such as
crowding, in ordinary differential equation models. The framework is available in the form of two

python packages: a package to implement GEEK expressions into ODE https://github.com/EPFL-

LCSB/geek, and a package to perform openfpm-based hard-sphere Brownian reaction dynamics
simulations https://github.com/EPFL-LCSB/openbread. The GEEK formulation directly quantifies the

deviation from dilute mass-action behavior in a systematic and efficient procedure, and we have
focused our studies on the impact of crowding due to the influence of densely packed biomolecules

on enzyme reaction rates in vivo.

As an example, we applied our modeling framework to an investigation of the effects of
macromolecular crowding on the enzymatic activity of PGM in E. coli. PGM is part of the lower
glycolysis pathway and functions by reversibly transforming 3-phospho-D-glycerate (g3p) into
2-phospho-D-glycerate (g2p). We use PGM for our investigation as it exhibits a prototypical reversible

Michaelis-Menten kinetics and it’s in vitro kinetics are well known (38).
Impact of crowding on the elementary reaction level

For our reference elementary step mass-action model, which will serve as a basis for to construct the
generalized elementary kinetic (GEEK) model, we calculated the elementary rate constants by the
relations given in Eq. (3a,b) and Eq. (4a,b) from the in vitro Michaelis-Menten parameters measured
by Fraser et al. (Table 1) (38). Based on this in vitro elementary step model, we built an equivalent in
vitro particle model that required additional information on the molecular parameters, including mass,
diffusion, and collision radius, of all the species involved in a reaction, meaning the substrates,
products, free enzymes, and enzyme complexes. To estimate the collision radius of the enzyme and

the enzyme-substrate complex, we followed the suggestions of Gameiro et al. and used the empirical
13
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relation between mass and size to estimate the inert molecule size from the enzyme mass (36, 39). In
the same way, we applied the Stokes-Einstein relation to calculate the diffusion constants from the
collision radius. We additionally assumed that the enzyme-substrate complex entirely enclosed the
substrate with its binding pocket, thus rendering the collision radius of the complex and enzyme equal.
To estimate the collision radius of g3p and g2p, we also followed the suggestions of Gameiro et al. and
used the method developed by Zhao et al. to estimate their van der Waals volume and to calculate
the equivalent sphere radius (39, 40). The diffusion constants of g2p and g3p were obtained from the

literature (41). All molecular properties are summarized in Table 2.

Given the effective elementary rate constants and the molecular properties of the species, we
calculated the effective microscopic rate constants using the relation given in Eq. (25) (Table 3).
Comparing the microscopic rate constants in Table 3 with the diffusion-limited rate constants, it can
be seen that the diffusion limited constants y; r = y,, = 3.88 X 10'® M~*s™! are about five orders
of magnitude higher than the microscopic reaction constants. This indicates that the microscopic
binding process is much slower than the diffusion process and that the kinetics are reaction limited
and not diffusion limited. Thus the mean time until the first collision between two reactants, i.e. the
mean first passage time, is orders of magnitudes shorter than the mean time to the first reaction. For
a reaction to be successful tens of thousands of collisions are occurring, hence, the impact of any
increase in high-frequency first passage events due to fractal diffusion is limited (22). As most enzymes
are reaction limited, the effects originating from fractal diffusion are therefore not likely dominating

in metabolic networks.

To build a GEEK model, that allows to characterize the enzyme kinetics in a crowded environment, we
sampled the concentration space. This was done using a full-factorial design, allowing us to study the
effect of several variables on the response output, as well as interactions between those variables,
that sampled both the product and substrate concentrations as well as different enzyme saturation
levels, indicating the percentage of bound enzyme with respect to the total enzyme concentration.
For the regression input space, all combinations of substrate and product concentrations that were n-
fold increased and decreased with respect to the reference concentration of [S], = [P], = 49 uM
were used, with n €[1,2,3,4,5], in combination with all free enzyme and enzyme-complex
concentrations that yielded saturations of ¢ = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] given a total
amount of enzyme [E;,;] = 64 uM. Furthermore, ten independent realizations of the crowding
population were used for every sample concentration to capture the variability that comes from
differently sized crowding-agents drawn from the size distribution. Thus, we measured the effective

rate constants ten times for each of the 729 concentration samples and crowding conditions.
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In total, we generated 21 generalized elementary kinetic models for five different inert volume
fractions ¢, and four different size distributions p, (r) plus one without any crowding. This allowed
for a detailed comparison of the effects of the volume fraction and size distribution of the crowding
agents on enzyme kinetics. For the size-distributions, we used (i) the E. coli distribution derived from
Kalwarczyk et al., (ii) a population containing only particles of the median size of the E. coli distribution,
(iii) a population the size of the upper quartile of the E. coli size distribution, and (iv) a population the
size of the lower quartile (Fig. 3) (36). These crowding populations were each investigated for inert
volume fractions of ¢ € [0.0,0.1,0.2,0.3,0.4,0.5].

For each crowding condition, we estimated the mean GEEK parameters @;; and f8; using multivariate
weighted linear regression, which indicate conditions that likely influenced the enzyme kinetics. To
further quantify the uncertainty of the mean GEEK parameters, the 95% confidence intervals of the
regression results are given in Table 4. For parameter estimates with a p value > 0.05, it was assumed
that no significant correlation existed, and these parameters were not accounted for in the GEEK
model. Note that this mean GEEK parameter model assumes that the crowding composition of an
average cell is given by the average effect of a crowding configuration on the rate constant, which
should be accurate for cell populations of the because the average has been shown to be reflective of

the overall state of a cell population.

Comparing the parameters a; ; and f; of each elementary reaction j (Table 4), it can generally be
observed that the direct effect ; is about one to two orders of magnitude larger than each
corresponding coupling coefficient, a; ;. Therefore, the direct effect is on the order of +1072to +10°,
whereas the coupling coefficients are on the order of +10™* to +£1072. Assuming a two-fold increase
in a concentration, the change in the coupling is smaller than one percent, whereas the direct effect
varies between one and a thousand percent. This suggests that the effect of the reduced
dimensionality only plays a small role compared to the effective interaction potential and the diffusion
inhibition. For comparison, we show in the supplementary material that for diffusion-limited
reactions, GEEK captures the influence of fractal diffusion as a deviation in the effective order as

described by the coupling coefficient a; ; (Supplementary Fig. 5) (16, 22, 42).

Effects of crowding on the reversible Michalis-Menten kinetics

We used the results of the linear regression to parameterize GEEK models to compare the ODE-
simulations of the classical Michaelis-Menten experiment with the mass-action model. The basis of
this experiment involved an initial substrate concentration [S];,;; that was added to a volume with a
fixed enzyme concentration [E];ni: = [Elto:- When the substrate was added, the enzyme started to

convert the substrate into a product. If the enzyme was operating reversibly, part of the product would
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also be converted back to a substrate, and the reaction would become indistinguishable as it
approached equilibrium. In this equilibrium state, the overall free energy of the reaction A,.G°*" was
close to zero. Therefore, the ratio between the product and substrate concentrations could be used

to estimate the apparent equilibrium constant K.

To characterize the dynamics of this system, the time to half-equilibrium t,,,, was measured, which
indicates the time needed for the ratio between the product and substrate concentrations to equal
K.q/2 (Fig.4a). In general, an increase in the t.,/, was seen with an increasing substrate concentration
(Fig. 4a). The time to half-equilibrium for the interconversion between g3p to g2p was reduced for
small substrate concentrations and inert molecule fractions, to up ¢ = 30 — 40%. In the case of
[Slinit = [Slref/4, the time to half-equilibrium was reduced to a minimum value for an inert volume
fraction of ¢ = 40% (Fig. 4a). For [S]init = [Slyer and [S]inie = 2[S]yef this decrease in half-life time
persists, though the overall half-life times are larger than for [S];;e = [S]yef/4 and the minimum
point occurs at lower inert volume fractions. Finally, in the [S];;;r = 4[S]f case, this decrease in
teq/2 is no longer visible. It follows from this that the average initial rate increases with substrate
concentration and decreases with an increasing volume occupancy. This suggest that the same
substrate concentrations yield higher enzyme saturations, meaning that the ratio of enzyme-substrate
complex to the total amount of enzyme increases and that the dissociation of the enzyme-substrate

complex is inhibited.

For a closer analysis of these findings, the Michaelis-Menten parameters were estimated using Eadie-
Hofstee diagrams, solving for the steady-state flux of the substrate and product concentrations
between 4.9 uM and 490 uM, (Eq.(11)). The Eadie-Hofstee diagrams (Fig. 5) reveal that for both high
and low occupancy volume fractions, a slight non-linearity with respect to the linear Eadie-Hofstee

form of the reversible Michaelis-Menten is introduced with the generalized elementary kinetics. This

indicates that the effective maximal flux Vn;{;eff and effective Michealis-Menten constant Ky x o

are actually functions of the reactant concentrations [S] and [P]. For the case of ¢ = 0%, this non-
linearity is only pronounced at small reactant concentrations, whereas for higher volume occupancy
conditions, the non-linearty is visible over the entire measurement range. Nevertheless, we used
linear regression to estimate the effective average parameters to compare the steady-state GEEK

model to the traditional Michaelis-Menten kinetics (Supplementary Fig. 3).

Interestingly, the steady-state analysis revealed that all the effective Michaelis-Menten parameters

A

maxeffr Kmxers decreased as a function of the inert occupied volume ¢ These results complement

our primary analysis, as the maximal flux of the enzyme directly relates to the ability of the enzyme-

substrate complex to dissociate, and the Michaelis-Menten constant is a measure of the affinity of the
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reactant binding to the enzyme. The lower the Michaelis-Menten constant, the higher the binding
affinity to the enzyme. Consequently, a decreasing Michaelis-Menten constant indicates more enzyme
bound at the same reactant concentration, or in other words, an increased enzyme saturation. For the
effective flux through the enzyme, this results in two counteracting effects: a potential increase in flux
due to anincrease in saturation or a decrease in flux due to the reduced dissociation. From the analysis
of t.q/, and the effective Michaelis-Menten parameters, it is evident that the flux-increasing effect is
dominating if enough free enzyme is available to increase the saturation. If the enzyme capacity does

not allow more substrate to associate, the flux-decreasing effect dominates.
Influence of crowder size on the Michaelis-Menten kinetics

We further investigated the influence of the size of the inert molecules on the enzyme kinetics by
comparing crowding with different inert molecule sizes obtained using the results for the E. coli size
distribution. When comparing the t.,,, as a function of the volume occupancy obtained from
crowding using the E. coli distribution to the population consisting of a single inert molecule size, a
general flux-decreasing effect was observed for crowding in the single-sized population. Furthermore,
smaller inert molecule sizes showed a stronger flux-decreasing effect that was alleviated as the size of
the inert molecules increased. When we compared the enzyme saturation at equilibrium for the
different inert molecule sizes, the single-sized crowding showed an increased saturation, and smaller
crowding sizes had a stronger effect. This shows that the overall substrate affinity is increased more if

the inert molecules are smaller than the enzyme-substrate collision radius.

Finally, we determined the effective standard free energy of the reaction from the effective
equilibrium constant A,.G® = — RTln(Keq), where the effective equilibrium constant was
determined from the reactant concentrations at equilibrium K,; = [Plcq/[S]eq- This showed that the
overall apparent standard free energy of reaction does not vary significantly with crowding size or
volume fraction. Since the non-ideal contributions, which contain the terms emerging from molecular
interactions, from steric interaction for the substrates and products are exactly equal, we would
expect the overall non-ideal contribution to the free energy of the enzymatic reaction to be zero. The
deviation in the effective standard energy using GEEK can be attributed to the approximation over the

state space at points far from equilibrium (See Supplementary Fig. 7).
Consequences of the crowded kinetics on the pathway level

We further investigated the effects of crowding at a system level using an example linear pathway
with three enzymes. We considered a linear pathway where a compound X,, was reversibly converted

into a compound X,,, ;. All reactions were considered to follow reversible Michaelis-Menten kinetics.
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The concentration of the first compound [X; ] was considered to be 250 uM and the concentration of
the last compound [X,] to be 50 uM. These boundary concentrations were considered to be constant.
The last reaction catalyzed by enzyme 3 was parameterized using the results found for PGM. We
further choose the parameters of enzyme 1 and 2 by scaling the product-specific Michaelis-Menten
constant K), p by a factor of 2 and 3, respectively, as well as the maximum backwards flux 1}, by a
factor of 0.5 and 0.33, respectively (Table 5). We further considered that all enzymes and reactants
were of the same size and that, therefore, their GEEK parameters a;; and ; were assumed to be the
same. This models short pathway where only minor modifications occur on the molecule for example

the reallocation of a phosphate group or a double bond.

To characterize the influence of crowding on our pathway, we calculated the relative responses of the
flux with respect to a two-fold increase in each of the enzyme concentrations, modeling an
overexpression of the respective enzyme. We then compared the results obtained for the traditional
mass-action model with the GEEK models representing the E. coli size distribution at different
occupied volume fractions. Comparing the GEEK model without any inert molecules with the results
from the mass-action model, only minor differences were observed. On the other hand, a
redistribution of the flux control was clearly seen for increasing volume fractions, wherein the initially
largest flux response decreased and the lower flux responses increased as a function of the volume
fraction. Considering the typical volume occupancy in cells of 20% to 40%, the relative order between
the flux responses was still the same as under dilute conditions, though the magnitude of the largest
flux response is significantly reduced. In this case, it is the relative sensitivity of the flux that is reduced.
This could act as an additional stabilization mechanism with respect to fluctuations in the enzyme
levels, though it should be noted that this effect does depend on many factors, such as relative Kys,
Vinax, and reaction A,.G’s. How these factors impact the response of the pathway fluxes with respect
to the change in enzyme levels will require an extensive analysis considering different pathway
structures and different types of enzyme kinetics. Given the extend of such a study it will beneficial to

first understand impact for different types of enzyme kinetics before moving to the network level.
Conclusion

This research presents a method for characterizing spatial effects of any nature on biochemical
reactions based on the mapping of average effects to ordinary differential equations. Besides studying
the effects of intracellular crowding as we have done, this framework can influence the study of
membrane confined biochemical reactions, enzyme-channeling, and DNA or actin bound reactions
systems, which are all current topics in biochemistry that lack dedicated study tools. Using a
representative example, we confirm the hypothesis of recent research in the field that for reaction-
limited enzyme kinetics, the diffusion effects in fractal spaces are negligible and are most likely not
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dominating in reaction networks. Instead, a strong direct effect of crowding was seen on the effective
rates, where a decrease in dissociation rates and an increase in association rates was observed when
increasing occupied volume fraction. Both effects can be sufficiently explained by an effective increase
of the crowding induced potential with the volume fraction, confirming that this is a better predictor
of intracellular enzyme kinetics than the diffusion. Furthermore, we show that the effective
Michaelis-Menten parameters strongly depended on the volume occupancy and the size distribution
of inert molecules, indicating that the kinetics are likely to vary dramatically in different cellular
compartments. We finally show that crowding at a simplified network level can lead to a redistribution
of the effective control on the flux response, suggesting that crowding can have a stabilizing effect
with respect to fluctuation in enzyme levels, potentially indicating why enzymatic systems in vivo

systems show a higher robustness compared to in vitro.

In future work, this framework will be used to analyze the impact of crowding on other kinetic
mechanisms and on an expanded network level. The results will illuminate the strength of the overall

impact of crowding on the regulation of metabolism.
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Figure 1: Individual algorithm steps of the molecular particle model. 1) 1%t order reactions are

determined by a probabilistic success rate depending on the microscopic reaction rate per molecule

kmicro,i and the timestep At. 2) The Brownian motion for every molecule is determined by its

individual diffusion coefficient D;. 3) For 2" order reactions, success is determined upon collision given

the microscopic reaction, the sum of the diffusion coefficient D;; = D; + D;, the sum of the radii of

the colliding particles r;; = r; + 17, and the time step (24). 4) Boundary reactions as constant particle

boundaries, wherein the removal or insertion of particles is done if the number of particles deviates

from the given boundary condition.
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Figure 2: Modeling framework for crowded GEneralized Elementary Kinetics (GEEK). The input for the
modeling framework is an arbitrary elementary step model containing in vitro data for the enzyme
kinetics. 1) This model is then translated into an equivalent in vitro particle model of the enzymatic
reaction. 2) The space is filled with inert molecules that are drawn from a size distribution p(r) until
the fraction ¢ of the simulation space is occupied. 3) A reference concentration state is then chosen
for the GEEK-model and 4) the space around the concentration space is sampled. 5) The k particle
model realizations are then simulated for each concentration sample, i.e. repeat step 2 and simulate.
6) From the resulting particle traces, the effective rate constants are measured from the particle
collision frequencies and the locally available volume. 7) These effective reaction rate constants are
log-transformed, and a linear regression is performed with respect to the scaled logarithmic
concentrations. The output of the linear regression directly links to the GEEK parameters, see Eq. (7)
and Eq. (8). 8) Finally, the GEEK model can approximate the crowded kinetics using ordinary

differential equations.
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Figure 3: Size distribution function of the inert particles, numerically calculated from the mass

distribution and empirical mass size relation as reported for proteins in E. coli by Kalwarczyk et al. (36).
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Figure 4: a) [P]/[S] Dynamics determined for mass-action and generalized elementary kinetics (GEEK)
models for different initial substrate concentrations [S];,;; and different occupied volume fractions
(¢)for the E. coli molecular weight distributions. The light dashed lines represent the dilute mass-
action model, whereas the thin solid lines represent a population of 100 re-sampled GEEK models. b)
Time to half-equilibrium t,,/, as a function of the occupied volume fraction for different initial
substrate concentrations [S];n;:- The colors of the lines denote the different initial concentrations,
where blue corresponds to [S]inir = [S]yer/4, yellow to [S]ini = [Slrer, green to [Slinie = 2[Slref,
and red to [S]inie = 4[STrer-

23


https://doi.org/10.1101/429316
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/429316; this version posted September 27, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a)
200
1501
z
=
< 100 A
z
50 -
(] L T T T T T T
0 10 20 30 40 50
b)
+ V;'j;a:z: Ve .
2.5 - 7
1/';7[(124'1’? /

V;'n. ax.eff [mhl s 1 ]

0 10 20 30 40 a0
Inert volume fraction ¢ [%]
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Figure 6: Effects of the particle size distribution. a) Time to half-equilibrium ¢, , b) enzyme saturation
[ES1/[E]¢or for [S]yer = 49 uM, and c) apparent standard free energy of the reaction measured as
RTlog([P]eq/[S]eq) under different crowding conditions. The blue line represents the apparent
equilibrium measured from the E. coli size distribution; yellow, green, and red are obtained using a
single size of inert molecules corresponding to the lower quartile, the median quartile, and the upper
quartile of the E. coli size distribution, respectively. The error bars denote the upper and lower quartile
of the resulting population that was obtained by resampling the GEEK model parameters within their
confidence bounds. The black line denotes the equilibrium constant calculated from the in vitro kinetic

parameters.
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Figure 7: Flux responses corresponding to a two-fold increase in the respective enzyme concentration

for the basic mass-action model and the GEEK models derived from the E. coli distributions as well

as

the different volume fractions of the inert molecules. Blue denotes the first enzyme in the pathway,

orange the second, and green the third.
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Table 1: /n vitro Michaelis-Menten parameters and calculated elementary rate constants for

phosphoglycerate mutase in E. coli.

Michaelis-Menten parameters Elementary rate constants

Km g3p 210 uM (38) | kus 15.2 X 10° s'M?
Km g2p 97 uM (38) | kip 10 st
keat g3p to g2p 2251(38) | kot 225t
keat g2p to g3p 10s1(38) | kap 32.9 x 10°s'Mm?

Table 2: Molecular properties of the reacting particles. T were calculated according to the

approximations suggested by Gameiro et al. (39). The remaining values were obtained from (a) Perry
(41) and Gameiro et al. (39) (b).

Species Diffusion (um2s) | Collision radius (nm) | Mass (kDa)
g3p 940 (a) 1.11 ¢ 0.186 T
g2p 940 (a) 1.11 ¢ 0.186 1
PGM 84.8 1 3.87 1 61 (b)
PGM complex 84.8 1 3.87 T 61.186

Table 3: Microscopic reaction rates per reacting particle (p), per collision (c), and diffusion-limited rate

constants of the bimolecular reactions

Microscopic rate constants

ks (c) 15.7 x 10° sIM1
ki (p) 10s*
kaf (p) 225t
ko () 34.0 X 10°s*Mm?
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Table 4: Parameters of the generalized elementary kinetics, i.e. a;; and B}, for all elementary

reactions at different inert volume fractions. The dashes denote GEEK parameters with a significance

of p < 0.05.
Elementary reaction Crowding conditions
Formula Parameters | 0% 10% 20% 30% 40% 50%
By 7.31x 1072 261x1071 | 457 x107? 6.87x 1071 | 9.57x 107! 1.25
Usqp 4.74x 1073 - 3.22x 1073 7.22x 1073 6.95x 1073 3.23x 1073
S+E™MEs Agqy 1.07 X 1072 1.89 X 1072 9.67 x 1073 8.07 x 1073 1.23 x 1072 -
Agsaf - 1.34 x 1072 - - - -
Apy1f - 2.51x 1073 | —3.47 x 1073 - - 242x1073
Bip -1.48%x 1072 | —1.17x 107! | —2.80 x 107! | —5.46 x 107! -1.03 —2.26
ds1p —2.94x107% | =3.56x 1073 | —4.53x 1073 | —6.09x 1073 | —8.33x 1073 | —9.58 x 1073
ES™ sy p g 1p -1.90 x 10~* 1.71x 1073 6.47 x 107* 332x 1073 - 3.16 x 1073
@Es 1 - 3.46 X 1073 - 2.03x107% | —1.22x 1073 -
ap1p —2.94x 1073 | —3.58x 1073 | —4.52x 1073 | —6.09x 1073 | —8.33 x 1072 | —9.58 x 1073
Bas -148x107% | =117 x 107" | —2.80x107* | —5.46 x 107" —-1.03 —2.26
Usof —2.94%x107% | =356 x 1073 | —4.53x 1073 | —6.09x 1073 | —8.34x 1073 | —9.58 x 1072
ESpiE Apyf -1.90 x 10~* 1.71x 1073 6.53 x 107* 331x 1073 - 3.13x 1073
Ags 2y - 3.46 x 1073 - 2.01x107% | —1.20x 1073 -
Upyy —2.94x107% | —3.58%x 1073 | —4.52x 1073 | —6.10x 1073 | —8.34x 1072 | —9.57 x 1073
Bap 6.88 x 1072 2.54x107' | 4.58x 107! 6.85x107* | 9.52x 107! 1.25
Asap - - -2.29%x1073 - 3.09 x 1073 -
P+E ’ﬂ ES QApap - - 1.05 x 1072 - - -
QAEs2,b - - - —-7.78 x 1073 - —
@pap 6.59 x 1073 2.76 x 1073 4,70 x 1073 6.85x 1073 8.45x 1073 3.74x 1073

Table 5: Enzyme parametrizations used for the linear pathway example.

Parameters | Enzyme 1 Enzyme 2 Enzyme 3
Ky s 200 pM 200 pM 200 pM
Ky p 300 uM 200 uM 100 uM
Vit ox 1.5mM/s | 1.5mM/s | 1.5mM/s
Vinax 0.15mM/s | 0.25mM/s | 0.5 mM/s
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