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Abstract: 

Drug resistance is threatening attempts at tuberculosis epidemic control. Molecular diagnostics for drug 

resistance that rely on the detection of resistance-related mutations could expedite patient care and 

accelerate progress in TB eradication. We performed minimum inhibitory concentration testing for 12 

anti-TB drugs together with Illumina whole genome sequencing on 1452 clinical Mycobacterium 

tuberculosis (MTB) isolates. We then used a linear mixed model to evaluate genome wide associations 

between mutations in MTB genes or noncoding regions and drug resistance, followed by validation of 

our findings in an independent dataset of 792 patient isolates. Novel associations at 13 genomic loci 

were confirmed in the validation set, with 2 involving noncoding regions. We found promoter mutations 

to have smaller average effects on resistance levels than gene body mutations in genes where both can 

contribute to resistance. Enabled by a quantitative measure of resistance, we estimated the heritability 

of the resistance phenotype to 11 anti-TB drugs and identify a lower than expected contribution from 

known resistance genes. We also report the proportion of variation in resistance levels explained by the 

novel loci identified here. This study highlights the complexity of the genomic mechanisms associated 

with the MTB resistance phenotype, including the relatively large number of potentially causative or 

compensatory loci, and emphasizes the contribution of the noncoding portion of the genome. 
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Introduction: 
 

Tuberculosis (TB) remains a major global public health threat. In 2016 there were an estimated 10.4 

million TB cases globally and 1.7 million deaths due to the disease. One of the most challenging forms of 

disease is caused by multidrug resistant (MDR) Mycobacterium tuberculosis, with a global annual 

incidence of over half a million cases1. The World Health Organization (WHO) estimates that only two of 

every three patients with multidrug resistant TB are diagnosed, three in every four of the diagnosed are 

treated, and only one of every two of the treated patients are cured, resulting in the grim reality of 

about 75% of the incident cases persisting in the community or succumbing to their illness. Antibiotic 

resistance is also an increasing problem in other human pathogens, and transmission of antibiotic 

resistance from person to person is amplifying the public health threat2. 
 

Improved surveillance, diagnosis and treatment are designated priorities by the WHO and the US, 

European CDCs for addressing the antibiotic resistance challenge1,3,4. These measures will rely on an 

improved understanding of the mechanisms of resistance acquisition in bacteria. The knowledge of 

genetic mechanisms of antibiotic resistance has formed the basis of several commercial molecular 

diagnostics for TB that have had remarkable global uptake, despite the fact that they only reliably test 

for a subset of TB drugs and hence have not yet been able to replace the traditional more costly and 

slow process of mycobacterial culture and drug susceptibility testing (DST) 1,5–7. Understanding antibiotic 

resistance mechanisms and methods that compensate for lost bacterial fitness in the context of 

antibiotic resistance can also pave the way for the development of companion drugs that restore 

antibiotic susceptibility8,9 and can open the possibility of ‘evolutionarily directed’ therapies that can aid 

in primary prevention of resistance acquisition10. 
 

To date, attempts at genome wide association for antibiotic resistance in Mycobacterium tuberculosis 

(MTB) have been limited by the relatively low number of isolates phenotypically resistant to antibiotics, 

and have exclusively relied on phenotypes defined by drug susceptibility testing (DST) performed at a 

single ‘critical concentration’, likely a result of convenience sampling from clinical isolate archives in 

clinical mycobacterial laboratories 11–13. Although such ‘binary’ DST is currently the standard to guide 

patient care, MTB critical concentrations are largely based on consensus and lack solid scientific support. 

The WHO has also declared that “the critical concentration defining resistance is often very close to the 

minimum inhibitory concentration required to achieve anti-mycobacterial activity, increasing the 

probability of misclassification of susceptibility or resistance and leading to poor reproducibility of DST 

results”14. Although more laborious and expensive, the quantification of the resistance phenotype 

through minimum inhibitory concentration (MIC) testing is considered a major improvement in the 

current standard for clinical phenotyping of drug resistance15, and MICs are more appropriate for the 

assessment of the biological effects of genomic variation in understanding the mechanism of resistance 

and bacterial fitness. The association of this variation with MICs also promises to refine our molecular 

prediction of antibiotic resistance for clinical and diagnostic use, as considerable gaps remain in 

prediction of resistance to first line drugs like pyrazinamide (PZA), ethambutol (EMB) and second line 

drugs16,17. Here we present a study of 1526 isolates where MICs were measured for 12 anti-tubercular 

agents and whole genome sequencing and genome wide association was performed. We also validate 

our findings in a globally representative public set of TB genomes with binary DST phenotypic data. 
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Results: 
 

Of the total 1526 isolates included in the primary analysis, 76 isolates were excluded because their 

sequencing data did not meet coverage and mapping criteria (methods). The remaining 1452 isolates 

originated from 24 different countries, but the majority, 1,226, was from Peru. The isolates were each 

tested against a minimum of four and up to 19 drugs with a median of 12 drugs/isolate (Table S1). 

Figure 1A provides histograms of the MIC results for isoniazid (INH), PZA, amikacin (AMI) and 

moxifloxacin (MXF) (complete set of histograms in Figure S1).  Overall, 976 isolates were MDR (INH MIC 

>0.2mg/dl & rifampicin (RIF) MIC >1mg/dl) and 438 were pre-XDR (i.e. additionally resistant to  either a 

fluoroquinolone, MXF, ciprofloxacin (CIP) or ofloxacin (OFX) or a second line injectable, SLI i.e. 

capreomycin (CAP), kanamycin (KAN) or AMI. A total of 157 isolates were XDR, i.e. MDR and resistant to 

a fluoroquinolone and a SLI. Despite testing at multiple concentrations close to the critical cutpoint in 

this sample enriched for MDR, we observed a low rate of intermediate MICs for most first and second 

line agents with notable exceptions for the drugs EMB, PZA, streptomycin (STR) and ethionamide (ETA) 

(Figure 1A & Figure S1). 
 

We identified 73,778 unique genetic variants in the 1,452 genomes. The majority of the variants, 42,871 

(58%) occurred in only one of the 1,452 isolates (Figure 1B) and the majority of single nucleotide 

substitutions (SNVs) in coding regions were nonsynonymous amounting to 36,479 vs 20,541 that were 

silent. We identified 7,178 variants with a frequency of >0.01 of which 2,701 had a frequency of >0.05.  

In addition to SNVs we observed an appreciable number of insertions and deletions (indels), with 9% of 

the observed variants with an AF >0.05 being indels. Furthermore, the noncoding portion of the genome 

(10.3% by length) harbored a slightly disproportionate degree of variation with 13% of SNVs with an 

AF>0.05 occurring in these regions. 
 

The isolates’ lineage diversity was consistent with their geographic origin with 86% being lineage 4 but 

diverse within this lineage with 39% of the total being lineage 4.3 (LAM), 31% lineage 4.1 (Haarlem) and 

16% representing other L4-sublineages. Of the total 11% belonged to Lineage 2. There were a total of 43 

isolates that belonged to other lineages (L1, L3 & L5). Figure 1C displays the pairwise genetic covariance 

between the isolates, and demonstrates that although the majority were lineage 4 there was 

considerable diversity among the isolates. 
 

Genome wide association was performed for each drug separately using a gene/noncoding region binary 

burden score, excluding any loci with burden frequency of <0.01, and correcting for population structure 

by fitting a linear mixed model. A total of 2791 loci had a burden frequency of ≥0.01. We set the 

significance threshold at an FDR<0.05 as we planned to perform validation on an independent dataset. 

QQ plots of the resultant p-value distribution suggested that the correction for population structure was 

adequate (Figure S2).  Twenty known resistance loci (methods) were identified by genome-wide 

association and for all drugs known loci were associated with the highest effect size and lowest P-value 

of all the significant hits (Table S2). The RNA polymerase β-subunit gene rpoB was the most significant 

hit across all drugs with a RIF logMIC increase of 3.24 log(mg/L) and P-value of <10-187.  Of the known 

locus-drug associations detected, the smallest effect size was measured for the embA- embC intergenic 

region, an EMB logMIC increase of 0.45 at a P-value of 1x10-7. Notably we did not identify a significant 

association between the compensatory gene rpoA and RIF resistance, the embA & embC genes and EMB 

resistance and between gyrB and MXF resistance. Given stepwise and co-linear development of 

antibiotic resistance in MTB and the prevalence of MDR in our sample, most of the known resistance loci 
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were identified to be associated with more than one antibiotic, but in each case the known causative 

locus was the most significantly associated with its respective drug (Table 1, Table S2). We implicated 

several promoter/intergenic regions surrounding known genes including not only the Rv1482c-fabG1 

and the eis-Rv2417c intergenic regions that are currently used in one or more commercial diagnostics6,25, 

but also the regions upstream of embAB (embA-embC), pncA (pncA- Rv2044c), and ahpC (oxyR’–ahpC). 

The known compensatory gene rpoC was strongly associated with resistance to both RIF and rifabutin. 

We also identified the rpsA gene to be associated with PZA resistance with an effect size and P-value 

lower that of variants in the intergenic region containing the pncA promoter (0.55 logMIC increase & 

2x10-4 vs 0.81 & 7x10-5 respectively, Table S2). 
 

We identified 50 novel loci to be associated with resistance to one or more antibiotics (Table S2).  

Sixteen loci were associated with resistance to more than one drug. Two such loci were associated with 

resistance to all three SLI agents, the gene encoding the transcriptional regulator WhiB6, the 

cytochrome P450 oxidoreductase encoding fprA gene (logMIC change & P-value: 0.59 & 1x10-4, 1.37 & 

1x10-6 respectively). CcsA a gene in the cytochrome P450 maturation pathway was also associated with 

SLI resistance (KAN logMIC change 1.64 & P-value 2x10-4 -Tables 1 & S5) with an effect size among the 

top 10 measured for the novel loci. The most significantly associated novel locus was the gene ubiA 

(Rv3806c) with the drug EMB (logMIC 0.52 & P-value 1x10-13). The locus Rv3083 which encodes the gene 

mymA, an alternative monoxygenase to ethA41, was associated with resistance to ETA and two other 

drugs and was among the 10 most significant novel hits (ETA logMIC 0.60 & P-value 1x10-4). Twelve 

intergenic regions were found to be associated with resistance including the intergenic regions thyX- 

hsdS.1 and glnE-glnA2, as well as regions adjacent to type VII secretion system related genes like espK- 

espL (Table 1 & Table S2). The secondary genome wide association performed at the site level identified 

associations of individual substitutions (SNV) or indels within the loci associated in the primary analysis 

(Table S3). In addition, four SNVs in other novel loci: L111M in Rv3327, D397G in gene aftB, 3778221GA 

in the intergenic region spoU-PE-PGRS51, and 640954AG in the intergenic regions Rv0550c-fadD8 were 

associated with resistance (Table S3). No novel associations were found for the drug linezolid. 
 

The 50 novel associations were tested in an independent set of globally representative MTB isolates 

with public sequence and drug resistance data. The validation set showed a higher level of genetic 

diversity with 44.3% of the 792 isolates belonging to lineage 2, 40.3% belonging to lineage 4 (15% 4.1 

sublineages, 8% 4.3 sublineages) and a higher representation of other lineages: 5% L1, 4% L3, 3% 

L6/BOV/AFR. The proportion of isolates that were MDR in the validation set was 35% (278 isolates). 

Second line drug resistance phenotypes were available for 25%-57% of the isolates (Table S4) and 29 

isolates were XDR. Of the 50 loci identified above, 6 could not be validated as there was no appreciable 

variation observed in the set of 792 isolates (AF<0.01). Twenty seven other loci were tested but had an 

AF <0.05 and were not significantly associated, these included the loci mymA and fprA. Of the remaining 

17 loci, 12 were validated to be associated with resistance to one or more drugs. These included whiB6, 

ccsA, ubiA, a metal beta-lactamase Rv2752c, and two intergenic regions including thyX-hsdS.1 (Table 1). 

In the site level analysis the D397G SNV in the gene Rv3805c (aftB) was validated as significantly 

associated with resistance. The strength of association for several of the novel loci was comparable to 

some canonical genes, but the allele or burden frequency was lower for most of them. For example the 

effect of ubiA mutations on the EMB MIC was measured to be 0.52 logMIC increase, similar in 

magnitude to the effect of variants in the Rv1482c-fabG1 intergenic region on INH MIC (0.63 logMIC 

increase) as was the effect of whiB6 mutations on SLI MICs (ranging between 0.56-0.60 logMIC 
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increase). The respective allele frequencies were 0.07 for ubiA, 0.03-0.04 for whiB6 and 0.10 for the 

Rv1482c-fabG1 intergenic region. The allele frequency in all but two validated loci was <10% (Table 1, 

Table S2). 
 

All of the validated regions were found to have variants in two or more of the major TB lineages, and all 

but four of the coding loci harbored nonsense or frameshift variants in one or more isolates (Table S5, 

Figure S3). The distribution of variants varied by locus; ubiA, whiB6, Rv2752c and PPE35 all displayed 

considerable diversity of variants that were closely spaced in one or more segments of the gene, in a 

pattern similar to that observed in known resistance genes (Figure S3). For the two intergenic hits, 

variants were most frequent in a distal portion of the region adjacent to the next coding region. 
 

We examined the proportion of variance in the resistance phenotype explained (PVE) by all of the 

observed genetic variation for each drug (Table 2). The PVE varied by drug, ranging from 0.64 +/- 0.06 

for MXF and 0.66 +/- 0.04 for PZA at the lower end to 0.84 +/- 0.02 for RIF and 0.88 +/- 0.02 for AMI at 

the higher end. We measured the PVE for the known antibiotic resistance genes, and that for novel 

genes captured in this study. The proportion explained by the known genes was relatively low and at 

most 0.24 +/- 0.08 (27% of the total PVE) for AMI. The proportion explained by the novel genes was 

even lower but on par with PVE of known drug resistance loci for PZA and ETA albeit with large error 

margins (Table 2). 
 

We hypothesized that because antibiotic resistance arises as a result of strong positive selection in MTB 

that the MIC distributions observed for the same resistance mutation would not vary appreciably across 

different lineages. We focused on lineage 4 and lineage 2, as they were well represented in our sample. 

Examining the five mutations: katG S315T, rpoB S450L, embB M306V, inhA -15, pncA H51R for INH, RIF, 

EMB, ETA and PZA respectively, we found the MIC distributions not to be appreciably different by the 

Kolmogrov-smirnov test (P-value >0.5 in all four cases). 
 

Given the number of intergenic regions found to be associated with resistance we tested the hypothesis 

that intergenic variants have smaller effects on drug MIC compared with gene body mutations for the 

three genes and the promoter-containing upstream intergenic region that were independently 

associated with resistance in the GWAS; namely inhA, pncA and embB and their upstream intergenic 

regions respectively. We focused on the codon and promoter site with the largest allele frequency in 

each case. Isolates not infrequently had both a gene body and a promoter mutation: 12% of isolates with 

embB promoter mutations also had an embB codon 306V, and 19% of isolates with an inhA promoter 

mutation also had a mutation at inhA codon 21. No isolates had both a pncA promoter mutation and a 

pncA mutation at codon 51.  Figure 2 shows the marginal MIC values for each site pair and drug. Variants 

in promoter regions consistently showed lower MICs than gene body mutations, although in most cases 

both medians were above the clinical cutoff (Wilcoxon rank sum test p values 0.03, 0.002, 0.01, 0.009 for 

the drugs INH, ETA, PZA & EMB respectively). This findings were also supported by the relative 

magnitude of the GWAS regression coefficients at the locus level for each drug (Table 1) with the 

notable exception of ETA (Table S2). 
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Discussion: 
 

Here, we examine 1452 clinical MTB isolates, enriched for phenotypic resistance, and quantify their 

antibiotic resistance phenotype using the minimum inhibitory concentration method. Our GWAS results 

using this quantitative phenotype are notable for the capture of several non-coding genetic regions. In 

aggregate, more than 20% of the loci associated with antibiotic resistance were intergenic regions. This 

stands in contrast to the relatively low proportion of the MTB genome annotated to be noncoding,  

10.5% by length for the H37Rv reference. Although only a subset of these regions are known promoter 

regions, their association with higher levels of antibiotic resistance, and the concentration of the  

variants adjacent to nearby open reading frames raises the possibility that the novel regions may also 

play a role in gene regulation. Canonically, antibiotic resistance is caused by inactivating protein 

mutations in drug targets or in pro-drug to drug converting enzymes in MTB. Also, to date, commercial 

based assays for detecting antibiotic resistance in TB have largely focused on gene based variants, with 

the notable exception of the inhA and eis promoters. We find that isolates harboring mutations in 

promoter regions tend on average to have lower drug MICs than those isolates with a corresponding 

nonsynonymous gene body variant, and although these tend to exceed the critical cutpoint in both 

cases, if the MICs are close enough to the cutpoint the isolates may be treatable in some cases with 

higher doses of drug or a more potent drug from the same class42,43. This highlights the importance of 

understanding the underlying genetic cause of resistance and personalizing therapy based on this, but 

definitely requires further investigation including potentially clinical trials exploring the efficacy of higher 

dose antibiotic therapy in patients with such isolates. 
 

We identify and validate 12 genetic regions and one SNV as associated with resistance in 

Mycobacterium tuberculosis. Although these loci have, to date, not been used to predict or diagnose 

antibiotic resistance in patients with TB16,17,21, several have been recently associated with resistance 

either in vitro or in other genome wide association studies performed on binary resistance read outs 

(Table S6)11–13. We summarize these by drug or class, detailing the full results in Table 1 and Tables S2-3 

&6. 
 

Ethambutol: The gene with the most significant p-value in the primary GWAS was ubiA. This locus is 

validated further by the results of two prior GWAS studies13,40, and mutations introduced at ubiA codon 

237 were shown to increase gene function and elevate decaprenylmonophosphoryl-B-D-ribose or 

arabinose (DPA) levels44. DPA is the donor substrate for arabinosyltransferases that include EmbB, the 

main target of the drug EMB, and increases in DPA levels likely result in competitive inhibition of the 

EMB drug effect measurable as an increase in the EMB MIC. The downstream gene aftB that encodes an 

enzyme catalyzing the final step in arabinoglycan arbinan biosynthesis was also found to have a SNV 

significantly associated with resistance in our study. The association was not with EMB but rather with 

the drug AMI, as most AMI resistance isolates are also EMB resistant we suspect this mutation to be 

compensatory to EMB resistance rather than resistance causing, reinforcing aftB to be a potentially 

valuable drug target as has been previously suggested45,46. 
 

Multidrug resistance & pyrazinamide: The gene Rv2752c encodes a bifunctional beta-lactamase 

/ribonuclease47,48, and was found to be associated with resistance in one prior survey40. We found this 

gene to be associated with resistance to either INH or RIF, with an effect size comparable to that of inhA 

promoter mutations on INH resistance, but with an allele frequency that was half of that of inhA 

promoter mutations (at 0.05). The integral membrane transport protein KefB (Rv3236c) is a K+/H+ 
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antiporter that releases K+ to the phagosomal space and prevents its acidification. We found variants in 

the encoding gene to associate with resistance most strongly with PZA resistance which is compelling 

given the known modulating effect of the medium’s pH on PZA’s drug activity49. 
 

Aminoglycosides (AG): We found several novel associations most strongly with the AG class of anti- 

tuberculosis drugs. These include the transcriptional regulator whiB6 that is known to activate 

expression of the DosR regulon, and controls aerobic and anaerobic metabolism and virulence among 

other pathways50.  Previous work has implicated another whiB-like transcriptional regulator, whiB7, in 

resistance to AGs51 and whiB6 and the upstream intergenic region were previously associated with 

resistance in a prior GWAS albeit to non-AG agents. The cytochrome-c maturation gene ccsA encodes an 

integral membrane protein that binds heme in the cytoplasm and exports it to the extracellular domain 

of ccsB that in-tail primes it for covalent attachment to apocytochrome c. Deficient cytochrome c 

oxidase activity is tolerated in MTB due to the flexibility of its electron transfer chain52, it is plausible  

that this may incur a fitness advantage by slowing growth under drug pressure. 
 

Ethionamide: The gene mymA, an alternative monoxygenase to ethA41 which encodes an enzyme known 

to activate the prodrug ETA, was associated with an increase in ETA MIC. In vitro, mymA deletion 

mutants were previously found to be resistant to ETA, and double mymA and ethA knock out mutants 

had even higher ETA MICs that the individual mutants41. We were not able to validate mymA in the 

independent dataset against the binary ETA resistance phenotype, possibly due to limited statistical 

power as only 116 isolates in the validation dataset where ETA resistant, and mymA variants are more 

rare occurring in <5% of the isolates in the test set. It is also possible that mymA mutations increase ETA 

MIC to a smaller extent in clinical isolates making the GWAS against binary phenotypes less sensitive. 

The diagnostic utility of mymA mutations for improving the prediction of ETA thus requires more study. 
 

Para-aminosalicylic acid (PAS): Mutations in the intergenic region upstream of thyX (thyX-hsdS.1) have 

been shown to modulate thyX expression and have been associated with resistance in two MTB GWA - 

studies13,40. Given that thyX is involved in folate metabolism, mutations in these regions may be 

causative of or compensatory for PAS resistance13. It is notable that the association we measured was 

with respect to other drugs, INH, KAN and AMI, as we did not have a sufficient number of isolates tested 

for PAS resistance. This likely resulted from drug-drug resistance collinearity and emphasizes the need to 

carefully interpret novel GWAS results in MDR-bacteria. 
 

The measurement and genome wide association with minimum inhibitory concentrations allowed us to 

quantify, for the first time, the proportion of the TB resistance phenotype that is explained by bacterial 

genetic variation. We estimate that 64-88% of the MIC variance to be explained by genetic effects, with 

standard errors ranging from 2-6%. The remaining proportion may be explained by other factors such as 

genetic interactions, mutation heterogeneity or environmental or other testing related factors that 

result in MIC level variability. It is notable that we found the known resistance loci to explain a relatively 

low amount of the total variation ranging as low as 0.01 for ETA to 0.24 for AMI. The gap between total 

PVE and that attributable to known drug resistance loci, is not completely explained by the presence of 

the novel genetic loci as these explained an even lower proportion than known drug resistance loci, 

likely related to their low mutation frequency. This gap may be better explained by lineage or gene-gene 

interactions. Although we did assess the interaction between 5 canonical resistance mutations and 

genetic lineage (lineage 4 vs 2) we could not measure an appreciable interaction for these mutations. It 
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remains possible that such interactions exist for other mutations, especially those with smaller effects as 

these have been noted previously in allelic exchange experiments53. 
 

In this study, we demonstrate the utility of genome wide association for examining bacterial phenotypes 

relevant to infectious disease. Our study was not without limitations. Given the recognized step wise 

acquisition of resistance in MTB54, it is very challenging to determine accurately which drug resistance is 

in fact associated with a particular gene or genetic region. For example resistance to any of the second 

line agents, fluoroquinolones like MXF, SLI’s like AMI, or to first line agents like PZA and EMB, nearly 

always co-exists with resistance to INH and RIF, and it is thus not possible to perform association 

conditioning on the absence of resistance to those agents. Further, the performance of linear mixed 

models for performing GWAS in bacteria has not been systematically studied, although applied recently 

to MTB and other bacteria with demonstrated success13,55–57. We acknowledge that we cannot be  

certain that these models adequately control for population structure in clonal bacteria and because of 

this we performed validation in an independent dataset with a different lineage distribution. We also 

provide the lineage breakdown of variants in our hit loci that in each case demonstrated evidence for 

convergent evolution11. We also demonstrate the power of using a binary gene-burden score for 

bacterial GWAS, as this decreased the number of necessary tests relative to GWAS of individual sites and 

allowed the incorporation of rare genetic variants that appear to be important for drug resistance in 

MTB58. This approach is however, reliant on the accuracy of the available genomic annotation for MTB, 

and is most sensitive for capturing genes under diversifying selection, i.e. where multiple different 

genetic mutations may contribute to a functional genetic change, and entirely ignores synonymous 

variation as potentially contributing to the phenotype. More refined measures of gene burden in 

bacteria, for example measures that incorporate protein structural data, are worth investigating 

systematically in the future. 
 

In summary, with the increasing availability of genomic data, powered by the formation of TB genomic 

data consortia38, our ability to identify more rare variants with smaller effects on resistance will increase. 

Our improved understanding of the genetic mechanisms of resistance in MTB can perhaps lead to more 

targeted drug development efforts, but more imminently will allow for improved diagnosis and 

surveillance given the increased uptake of genomic technologies in public health laboratories in high 

income countries59. Improvement in portable sequencing technology60 and decreased cost of sequencing 

is promising to facilitate adoption in settings with lower resources were TB is most  prevalent. However 

even if sequencing technology is available, our results suggest that genomic data interpretation will likely 

necessitate the use of statistical models or machine learning16,58,61 given the number of genetic loci 

associated with resistance and the likely contribution of gene-gene interactions, especially if a 

quantitative prediction of the drug MIC is desirable15. The portability of the potential benefits of these 

advances to areas of the world where TB is most prevalent will require continued efforts in open sharing 

of data and analysis tools62. 
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Online Methods: 
 

Sample Collection: 
 

MTB sputum based culture isolates were selected from (1) a Peruvian patient archive of culture isolates 

enriched for resistance based on prior targeted resistance gene sequencing and binary DST phenotype16 

(n=496), or (2) sampled from a longitudinal cohort of patients with Tuberculosis from Lima Peru18 

enriched for multidrug resistance based on prior binary DST (n=568). These 1064 isolates had 

phenotypic resistance testing by MIC for 12 drugs repeated (see below) at the National Jewish Hospital 

(NJH) Denver, CO, and underwent whole genome sequencing. Data from these isolates were pooled 

with data from two additional samples: a convenience sample from three national or supranational 

reference laboratories selected based on the availability of MIC data: the Institute for Tropical Medicine 

-Antwerp, Belgium, the Massachusetts State TB Reference Laboratory -Boston, MA, and the National 

Institute for Public Health and the Environment -Bilthoven, Netherlands (n=411) and a sample of 83 pan- 

susceptible isolates from the Peruvian TB cohort18 added to increase the representation of sensitive 

isolates. 
 

Culture and Drug resistance/MIC testing: 
 

Lowenstein-Jensen (LJ) culture was performed from sputum specimens using standard NALC-NaOH 

decontamination. Prior to DNA extraction and sequencing most cultures had been cryopreserved as 

follows: Inside a biosafety container, all colonies of each culture were extracted from the LJ slants and 

dissolved in 7H9 broth with 20% glycerol to reach a bacterial suspension similar or higher than 

McFarland 5. Then the bacterial suspension was aliquoted in volumes of 0.3 to 0.5 mL and stored 

overnight at 4oC to ensure the glycerol uptake of the cells. Then, all tubes were placed into the -80oC 

freezer for long term storage. 
 

All isolates, except the 83 pan-susceptible isolates described above, underwent minimum inhibitory 

concentration testing. Testing for the 1064 isolates at NJH was performed for 12 anti-TB drugs on 7H10 

media using agar proportion in a staged fashion. Isolates were first tested at three low concentrations 

that include the WHO recommended critical concentration. If the isolate was resistant at the critical 

concentration then testing at six higher concentrations was additionally performed. The testing 

concentrations deviated from the traditional doubling to better detect intermediate level MICs that are 

close to the clinical critical concentration and within theoretically achievable levels in patient sera based 

on available pharmacodynamics data19. The concentrations are detailed in Table S7. Culture, MIC and 

DST testing at the other labs is outlined in Table S8. Testing methods and concentrations are also listed 

for each isolate in Table S1. 
 

DNA extraction and Whole genome sequencing: 
 

DNA from sputum samples of TB patients was extracted from cryopreserved cultures. Each isolate was 

thawed and subcultured on LJ and a big loop of colonies were lysed with lysozyme and proteinase K to 

obtain DNA using CTAB / Chloroform extraction and ethanol precipitation.  DNA was sheared into 

~250bp fragments using a Covaris sonicator (Covaris,Inc.), and prepared using the TruSeq Whole- 

Genome Sequencing DNA sample preparation kit (Illumina, Inc.).  Samples were sequenced on an 
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Illumina HiSeq 2500 sequencer. Paired-end reads of length 125 bp were collected. Base-calling was 

performed using HCS 2.2.58 and RTA 1.18.64 software (Illumina, Inc.) 
 

Definition of known drug resistance loci 
 

We define the MTB known resistance loci as the following genes katG, inhA & its promoter, ahpC 

promoter, kasA, rpoB, embA, embB, embC & embA-embC intergenic region, ethA, gyrA, gyrB, rrs, rpsL, 

gid, pncA & its promoter, tlyA, thyA, rpsA, eis promoter and the compensatory genes rpoC, rpoA based 

on prior published work6,16,20–25. 
 

Variant calling and phylogeny construction: 
 

We aligned the Illumina reads to the reference MTB isolate H37Rv NC_000962.3 using Stampy 1.0.2326 

and variants were called by Platypus 0.5.227 using default parameters. Genome coverage was assessed 

using SAMtools 0.1.1828 and FastQC29 and read mapping taxonomy was assessed using Kraken30. Strains 

that failed sequencing at a coverage of less than 95% at ≥10x of the known drug resistance regions, or 

that had a mapping percentage of less than 90% to M. tuberculosis complex were excluded. Genomic 

regions not covered at ≥10x in at least 95% of the remaining isolates were filtered out from the analysis, 

i.e. no attempt at association with variants in those regions was made. In the remaining regions, variants 

were further filtered if they had a quality of <15, purity of <0.4 or did not meet the PASS filter 

designation by Platypus. We also excluded any indels >3bp in size or large sequence polymorphisms. 

Further quality control was performed after genome wide association when associated PE/PPE gene and 

indels were visualized and manually inspected using IGV v2.4.931. TB genetic lineage was called using the 

Coll et al.32 SNP barcode and confirmed by constructing a Neighbor joining phylogeny using MEGA-5 33 

including lineage representative MTB isolates from Sekizuka et al.34. 
 

Genome wide association & Validation: 
 

Phenotype: The MIC data was recorded as an interval indicating the last highest concentration tested 

where growth was seen and the MIC itself. Because critical concentrations on LJ media (for isolates 

tested at ITM) are in general higher than those on 7H10, the MIC intervals were normalized to allow for 

comparability by dividing by the critical concentration for each drug as defined by the WHO35. The 

interval midpoints were computed and converted to ranks as has been previously suggested for 

genotypic association with MIC data36; ties were assigned an average rank. A sensitivity analysis was 

performed to confirm that the results are not sensitive to the rank transformation of the phenotype, by 

comparing the region hits obtained in a parallel GWAS analysis using the natural log transformed 

phenotype instead of the rank transform. 
 

Genotype & GWAS: Association analysis was performed at the gene/non-coding region level using a 

binary gene burden score that was set at ‘one’ if any non-synonymous single nucleotide substitution 

(SNV) or indel (insertion or deletion) was observed in a gene, or any SNV or indel was observed in a non- 

coding region, and ‘zero’ otherwise. We excluded known lineage markers in drug resistance genes from 

the burden score calculation16. Association was also performed at the site level in a secondary analysis 

excluding synonymous variants. Any gene/region or SNV with a minor allele frequency (MAF) of <0.01 

was not tested. We controlled for population structure by computing a genetic relatedness matrix 

(GRM), including all synonymous and non-synonymous SNVs & indels but excluding variants in known 
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drug resistance loci and variants occurring at a MAF of <0.01 using the software package GEMMA37. 

Genome wide association was performed using a linear mixed model with the phenotype as the rank- 

transformed MICs also using GEMMA. Regions with a false discovery rate <0.05 were selected for 

validation. We verified control for population structure with QQplots using the qqman package in R 

v3.2.3. As the regression was performed on rank transformed MIC values, we scaled the resulting effect 

size back to the MIC scale by first performing a linear regression between the natural log MIC values and 

their rank transform and then using the resulting slopes as a scaling factor. LogMIC change in units of 

log(mg/L) are reported throughout. 
 

Validation: We validated the genomic regions identified above in an independent public dataset with 

binary phenotype data. The validation dataset consisted of a convenience sample of 792 MTB isolates 

obtained by pooling data from the ReSeqTB knowledge base (https://platform.reseqtb.org/)38 with 

additional MTB whole genome sequences and phenotype data curated manually from the following 

references39,40 (Table S4). We did not select isolates for the validation set based on lineage or drug 

resistance profiles. Association analysis was performed only using a similar linear mixed model approach 

as was outlined above using a GRM for population structure correction. A locus was considered 

validated if it had a Wald p-value of <0.005. 
 

Proportion of variance explained (PVE): We computed the PVE as the proportion of total phenotypic 

variance explained by the genetic relatedness between the isolates, using the restricted maximum 

likelihood approach as implemented in GEMMA, as a measure of heritability. We computed the PVE 

attributable to known drug resistance regions by recomputing the GRM after removing all variation 

(synonymous, nonsynonymous and indels) in the known resistance loci. Similarly we computed the PVE 

attributable to all other loci validated to be significantly associated with resistance in this study, as PVE 

attributable to ‘novel’ loci. Given the phenotypes were coded as ranks of the MIC distribution, we 

performed a sensitivity analysis to confirm that rank transformation did not affect our PVE 

measurements. In this sensitivity analysis we dichotomized the MICs using the WHO established critical 

concentration as the threshold, and recomputed the PVE on the liability scale. The PVEs changed by 

<10% for all drugs in the sensitivity analysis. 

Data: 

All data used in this study is available in the supplementary material or deposited on NCBI with 

accession numbers detailed in Table S1. 
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Figures & Tables: 
 

Figure 1A: MIC distributions for 4 drugs. Dotted red line represents the WHO recommended critical 

concentration on 7H10 media, and the blue line represents the lower limit of achievable serum 

concentration from pharmacodynamic studies (Table S7). 
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range. 
 

Figure 1C: Heatmap displaying genome level similarity, as measured by isolate-isolate genetic 

covariance, for the isolates used for GWAS. Isolates indexed in lineage order L-1, L-2, L-3, L-4 (4., 4.1, 

4.3) and L-5 as shown. Covariance ruler displayed on the far right. (pdf) 

Figure 1B: Allele Frequency distribution relative to H37Rv. Frequencies in the text given as minor allele frequencies, i.e. 

folded allele frequencies relative to H37Rv. The isolate count axis interrupted and scaled to accommodate the large 
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Figure 1C: Heatmap displaying genome level similarity of the isolates used for the test GWAS. Similarity 

was measured using the isolate-isolate genetic covariance. Darker red indicates higher 

similarity/covariance. Attached separately due to size. 
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Figure 2: Promoter vs gene body mutations and their effect on MIC (y-axis in ug/mL) for 4 drugs. 

Wilcoxon rank sum test comparing each pair was significant at p<0.01. For reference critical resistance 

testing concentration is 0.2ug/mL for INH, 5ug/mL for ETA, 100ug/mL for PZA, 5ug/mL for EMB and 

indicated by the horizontal dotted line in the box and whiskers plot. 
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Table 1: Novel regions that were confirmed in the second validation GWAS. All drugs to which they were 

found to be associated are listed. The first drug listed was the drug found to be most significantly 

associated and for which the GWAS results are listed in the subsequent columns. For reference 6 known 

resistance loci are listed at the end along with their respective allele frequency, effect size and P-value. 

Full results are detailed in Tables S2-3. Drug abbreviations detailed in Table S7. OR: odds ratio. SE standard 

error. *transmembrane protein, **integral membrane transport protein, ***probable methyl transferase 

& membrane protein, ^transcriptional regulator, †structure specific helicase.   

 Test GWAS (n=1452) Validation GWAS (n=792) 

Locus/site Drug  

Allele 

frequency 

Scaled 

Effect 

size 

(logMIC) 

Scaled SE 

(logMIC) 

P-value 

raw Drug  

Allele 

frequency OR SE 

P-value 

raw  

ubiA 

(Rv3806c) 

EMB, 

INH, 

RIF, 

PZA, 

KAN 

0.071 0.52 0.07 1E-13 
EMB, INH, 

RIF, PZA 
0.066 1.25 0.10 3.6E-03 

Rv3805c - 

4267647T>C 

(D397G) 

AMI 0.050 2.72 0.63 4E-06 AMI 0.283 1.11 0.03 4.7E-04 

sirA ETA 0.070 0.78 0.21 1E-04 
CAP, KAN, 

STR 
0.015 1.27 0.09 8.0E-04 

whiB6^ 

CAP, 

AMI, 

KAN 

0.037 0.59 0.15 3E-05 CAP, AMI 0.069 1.16 0.06 2.7E-03 

ccsA KAN 0.052 1.64 0.47 3E-04 AMI, CAP 0.274 1.11 0.03 2.7E-04 

RNase J 

(Rv2752c) 

INH, 

RIF 
0.042 0.77 0.20 8E-05 

KAN, AMI, 

RIF, INH 
0.067 1.29 0.06 2.8E-08 

PPE35 PZA 0.112 0.54 0.14 1E-04 EMB 0.334 1.24 0.08 4.9E-04 

Rv3434c* 
KAN, 

AMI 
0.048 1.14 0.33 1E-04 KAN, AMI 0.047 1.18 0.06 2.3E-03 

thyX-hsdS.1 AMI 0.018 0.74 0.22 3E-04 STR 0.016 1.32 0.13 3.9E-03 

dinG† RIF 0.069 1.86 0.47 2E-05 AMI, STR 0.293 1.10 0.03 8.8E-04 

espK-espL 
RFB, 

RIF 
0.053 1.21 0.34 2E-04 AMI, STR 0.283 1.11 0.03 4.7E-04 

kefB 

(Rv3236c)** 
PZA 0.137 0.80 0.24 6E-04 

RIF,INH, 

PZA,EMB, 

STR 

0.235 1.60 0.16 2.0E-06 

Rv2952*** EMB 0.067 0.64 0.17 2E-04 
STR,AMI, 

INH,CAP 
0.203 1.29 0.08 2.6E-05 

inhA INH 0.03 1.10 0.26 2E-05  -    

Rv1482c-

fabG1 
INH 0.10 0.63 0.16 6E-05  -    

pncA PZA 0.24 1.40 0.07 4E-89  -    

pncA-

Rv2044c 
PZA 0.02 0.81 0.20 7E-5  -    

embB EMB 0.28 0.94 0.04 9E-101  -    

embC-embA EMB 0.03 0.45 0.09 1E-7  -    
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Table 2: PVE for each drug attributable to all measurable genetic variation, and those within known 

drug resistance regions and novel regions associated in this study. Drug abbreviations detailed in Table 

S7. DR: drug resistance regions as detailed in the methods. Novel: regions specified in Table 1. wo: 

without. 
 

  

All 
 

wo DR 
 

wo DR wo Novel 
 

DR related 

PVE 

 

Novel loci 

related PVE 
Drug PVE SE PVE SE PVE SE 

INH 0.809 0.020 0.732 0.032 0.723 0.029 0.08 0.01 

RIF 0.838 0.017 0.701 0.034 0.692 0.033 0.14 0.01 

RFB 0.833 0.023 0.722 0.041 0.693 0.042 0.11 0.03 

EMB 0.748 0.027 0.674 0.036 0.665 0.035 0.07 0.01 

PZA 0.659 0.038 0.634 0.044 0.602 0.043 0.03 0.03 

KAN 0.833 0.022 0.671 0.040 0.658 0.041 0.16 0.01 

AMI 0.879 0.019 0.639 0.057 0.640 0.055 0.24 <0.01 

CAP 0.743 0.030 0.690 0.038 0.666 0.038 0.05 0.02 

ETA 0.701 0.034 0.689 0.038 0.675 0.038 0.01 0.01 

STR 0.710 0.033 0.604 0.047 0.601 0.045 0.11 <0.01 

MXF 0.643 0.058 0.494 0.083 0.456 0.081 0.15 0.04 
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